1
|
Wu F, Li N, Xiao Y, Palanki R, Yamagata H, Mitchell MJ, Han X. Lipid Nanoparticles for Delivery of CRISPR Gene Editing Components. SMALL METHODS 2025:e2401632. [PMID: 40434188 DOI: 10.1002/smtd.202401632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 05/05/2025] [Indexed: 05/29/2025]
Abstract
Gene editing has emerged as a promising therapeutic option for treating genetic diseases. However, a central challenge in the field is the safe and efficient delivery of these large editing tools, especially in vivo. Lipid nanoparticles (LNPs) are attractive nonviral vectors due to their low immunogenicity and high delivery efficiency. To maximize editing efficiency, LNPs should efficiently protect gene editing components against multiple biological barriers and release them into the cytoplasm of target cells. In this review, the widely used CRISPR gene editing systems are first overviewed. Then, each component of LNPs, as well as their effects on delivery, are systematically discussed. Following this, the current LNP engineering strategies to achieve non-liver targeting are summarized. Finally, preclinical and clinical applications of LNPs for in vivo genome editing are highlighted, and perspectives for the future development of LNPs are provided.
Collapse
Affiliation(s)
- Fan Wu
- Key Laboratory of RNA Innovation, Science and Engineering, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Nei Li
- Key Laboratory of RNA Innovation, Science and Engineering, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yudian Xiao
- Key Laboratory of RNA Innovation, Science and Engineering, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hannah Yamagata
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xuexiang Han
- Key Laboratory of RNA Innovation, Science and Engineering, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
2
|
Belato HB, Knight AL, D'Ordine AM, Pindi C, Fan Z, Luo J, Palermo G, Jogl G, Lisi GP. Structural and dynamic impacts of single-atom disruptions to guide RNA interactions within the recognition lobe of Geobacillus stearothermophilus Cas9. eLife 2025; 13:RP99275. [PMID: 40387084 PMCID: PMC12088677 DOI: 10.7554/elife.99275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025] Open
Abstract
The intuitive manipulation of specific amino acids to alter the activity or specificity of CRISPR-Cas9 has been a topic of great interest. As a large multi-domain RNA-guided endonuclease, the intricate molecular crosstalk within the Cas9 protein hinges on its conformational dynamics, but a comprehensive understanding of the extent and timescale of the motions that drive its allosteric function and association with nucleic acids remains elusive. Here, we investigated the structure and multi-timescale molecular motions of the recognition (Rec) lobe of GeoCas9, a thermophilic Cas9 from Geobacillus stearothermophilus. Our results provide new atomic details about the GeoRec subdomains (GeoRec1, GeoRec2) and the full-length domain in solution. Two rationally designed mutants, K267E and R332A, enhanced and redistributed micro-millisecond flexibility throughout GeoRec, and NMR studies of the interaction between GeoRec and its guide RNA showed that mutations reduced this affinity and the stability of the ribonucleoprotein complex. Despite measured biophysical differences due to the mutations, DNA cleavage assays reveal no functional differences in on-target activity, and similar specificity. These data suggest that guide RNA interactions can be tuned at the biophysical level in the absence of major functional losses but also raise questions about the underlying mechanism of GeoCas9, since analogous single-point mutations have significantly impacted on- and off-target DNA editing in mesophilic Streptococcus pyogenes Cas9. A K267E/R332A double mutant did also did not enhance GeoCas9 specificity, highlighting the robust tolerance of mutations to the Rec lobe of GeoCas9 and species-dependent complexity of Rec across Cas9 paralogs. Ultimately, this work provides an avenue by which to modulate the structure, motion, and guide RNA interactions at the level of the Rec lobe of GeoCas9, setting the stage for future studies of GeoCas9 variants and their effect on its allosteric mechanism.
Collapse
Affiliation(s)
- Helen B Belato
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
| | - Alexa L Knight
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
| | - Alexandra M D'Ordine
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
| | - Chinmai Pindi
- Departments of Bioengineering and Chemistry, University of California, RiversideRiversideUnited States
| | - Zhiqiang Fan
- Brown University Transgenic Mouse and Gene Targeting FacilityProvidenceUnited States
| | - Jinping Luo
- Brown University Transgenic Mouse and Gene Targeting FacilityProvidenceUnited States
| | - Giulia Palermo
- Departments of Bioengineering and Chemistry, University of California, RiversideRiversideUnited States
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
- Brown University RNA CenterProvidenceUnited States
| | - George P Lisi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
- Brown University RNA CenterProvidenceUnited States
| |
Collapse
|
3
|
Wang KC, Zheng T, Hubbard BP. CRISPR/Cas technologies for cancer drug discovery and treatment. Trends Pharmacol Sci 2025; 46:437-452. [PMID: 40133194 DOI: 10.1016/j.tips.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) tools are revolutionizing the establishment of genotype-phenotype relationships and are transforming cell- and gene-based therapies. In the field of oncology, CRISPR/CRISPR-associated protein 9 (Cas9), Cas12, and Cas13 have advanced the generation of cancer models, the study of tumor evolution, the identification of target genes involved in cancer growth, and the discovery of genes involved in chemosensitivity and resistance. Moreover, preclinical therapeutic strategies employing CRISPR/Cas have emerged. These include the generation of chimeric antigen receptor T (CAR-T) cells and engineered immune cells, and the use of precision anticancer gene-editing agents to inactivate driver oncogenes, suppress tumor support genes, and cull cancer cells in response to genetic circuit output. This review summarizes the collective impact that CRISPR technology has had on basic and applied cancer research, and highlights the promises and challenges facing its clinical translation.
Collapse
Affiliation(s)
- Kevin C Wang
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Tiffany Zheng
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Basil P Hubbard
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
4
|
Wei J, Chen F, Lu X, Fan J, Li M, Huang J, Liu N, Zhang J, Chai Z, Lu S. In silico identification and experimental validation of long-range allosteric inhibition of Staphylococcus aureus Cas9 catalytic activity by an anti-CRISPR protein AcrIIA14. Int J Biol Macromol 2025; 310:143324. [PMID: 40254211 DOI: 10.1016/j.ijbiomac.2025.143324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Effective temporal and spatial regulation of CRISPR-Cas9 catalytic activity remains a key challenge, limiting the clinical application of CRISPR-Cas9 gene-editing. Here, we investigated the long-range allosteric inhibition of Staphylococcus aureus Cas9 (SauCas9) catalytic activity by its anti-CRISPR (Acr) protein, AcrIIA14, aiming to uncover remote allosteric mechanisms in large protein complexes and identify potential allosteric sites for the design of SauCas9 inhibitors. Through a combined computational-experimental framework integrating extensive molecular dynamics simulations, Markov state models, network community modeling, and site-directed mutagenesis, we identified canonical and non-canonical inhibitory states of SauCas9 regulated by AcrIIA14. Key domains, including REC, L1, HNH, L2, and PI, play crucial roles in transmitting the AcrIIA14-meidated inhibitory signal. Introducing point mutations on the routes of allosteric communication and analyzing these mutants using in vitro DNA cleavage assays and surface plasmon resonance analysis revealed that SauCas9 escaped AcrIIA14's inhibition owing to the disruption of AcrIIA14-meidated allosteric communication. Moreover, two cryptic allosteric sites on SauCas9 were identified as mutations of these sites prevented inhibition of SauCas9 by AcrIIA14. Overall, our results provide a dynamic understanding of CRISPR-Cas9 regulation and an avenue to design SauCas9 inhibitors with a broad range of applications in Cas9 enzyme catalysis, biophysics, and gene-editing.
Collapse
Affiliation(s)
- Jiacheng Wei
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Feiying Chen
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jigang Fan
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingyu Li
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianxiang Huang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jian Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zongtao Chai
- Department of Hepatic Surgery, Shanghai Geriatric Medical Center, Shanghai 201104, China; Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Shaoyong Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
5
|
Navarro C, Díaz MP, Duran P, Castro A, Díaz A, Cano C, Carbonell-Zabaleta AK, Solano-Jimenez DS, Rivera-Porras D, Contreras-Velásquez JC, Bermúdez V. CRISPR-Cas Systems: A Functional Perspective and Innovations. Int J Mol Sci 2025; 26:3645. [PMID: 40332149 PMCID: PMC12026748 DOI: 10.3390/ijms26083645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 05/08/2025] Open
Abstract
Adaptation is a fundamental tenet of evolutionary biology and is essential for the survival of all organisms, including prokaryotes. The evolution of clustered regularity exemplifies this principle of interspaced short palindromic repeats (CRISPR) and associated proteins (Cas), an adaptive immune system that confers resistance to viral infections. By integrating short segments of viral genomes into their own, bacteria and archaea develop a molecular memory that enables them to mount a rapid and targeted response upon subsequent viral challenges. The fortuitous discovery of this immune mechanism prompted many studies and introduced researchers to novel tools that could potentially be developed from CRISPR-Cas and become clinically relevant as biotechnology rapidly advances in this area. Thus, a deeper understanding of the underpinnings of CRISPR-Cas and its possible therapeutic applications is required. This review analyses the mechanism of action of the CRISPR-Cas systems in detail and summarises the advances in developing biotechnological tools based on CRISPR, opening the field for further research.
Collapse
Affiliation(s)
- Carla Navarro
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 40001, Venezuela; (M.P.D.); (P.D.); (A.C.); (A.D.); (C.C.)
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 40001, Venezuela; (M.P.D.); (P.D.); (A.C.); (A.D.); (C.C.)
| | - Pablo Duran
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 40001, Venezuela; (M.P.D.); (P.D.); (A.C.); (A.D.); (C.C.)
| | - Ana Castro
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 40001, Venezuela; (M.P.D.); (P.D.); (A.C.); (A.D.); (C.C.)
| | - Andrea Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 40001, Venezuela; (M.P.D.); (P.D.); (A.C.); (A.D.); (C.C.)
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 40001, Venezuela; (M.P.D.); (P.D.); (A.C.); (A.D.); (C.C.)
| | - Ana-Karina Carbonell-Zabaleta
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Programa de Medicina, Barranquilla 080001, Colombia; (A.-K.C.-Z.); (D.-S.S.-J.)
| | - Donny-Sabrith Solano-Jimenez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Programa de Medicina, Barranquilla 080001, Colombia; (A.-K.C.-Z.); (D.-S.S.-J.)
| | - Diego Rivera-Porras
- Universidad de la Costa, Departamento de Productividad e Innovación, Barranquilla 080001, Atlántico, Colombia; (D.R.-P.); (J.C.C.-V.)
| | - Julio César Contreras-Velásquez
- Universidad de la Costa, Departamento de Productividad e Innovación, Barranquilla 080001, Atlántico, Colombia; (D.R.-P.); (J.C.C.-V.)
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Barranquilla 080001, Colombia
| |
Collapse
|
6
|
Noel EA, Sahu SU, Wyman SK, Krishnappa N, Jeans C, Wilson RC. Hairpin Internal Nuclear Localization Signals in CRISPR-Cas9 Enhance Editing in Primary Human Lymphocytes. CRISPR J 2025; 8:105-119. [PMID: 40163415 DOI: 10.1089/crispr.2024.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The incorporation of nuclear localization signal (NLS) sequences at one or both termini of CRISPR enzymes is a widely adopted strategy to facilitate genome editing. Engineered variants of CRISPR enzymes with diverse NLS sequences have demonstrated superior performance, promoting nuclear localization and efficient DNA editing. However, limiting NLS fusion to the CRISPR protein's termini can negatively impact protein yield via recombinant expression. Here we present a distinct strategy involving the installation of hairpin internal NLS sequences (hiNLS) at rationally selected sites within the backbone of CRISPR-Cas9. We evaluated the performance of these hiNLS Cas9 variants by editing genes in human primary T cells following the delivery of ribonucleoprotein enzymes via either electroporation or co-incubation with amphiphilic peptides. We show that hiNLS Cas9 variants can improve editing efficiency in T cells compared with constructs with terminally fused NLS sequences. Furthermore, many hiNLS Cas9 constructs can be produced with high purity and yield, even when these constructs contain as many as nine NLS. These hiNLS Cas9 constructs represent a key advance in optimizing CRISPR effector design and may contribute to improved editing outcomes in research and therapeutic applications.
Collapse
Affiliation(s)
- Eric A Noel
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
- California Institute for Quantitative Biosciences at University of California Berkeley, Berkeley, California, USA
| | - Srishti U Sahu
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
- California Institute for Quantitative Biosciences at University of California Berkeley, Berkeley, California, USA
| | - Stacia K Wyman
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA
| | - Netravathi Krishnappa
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA
| | - Chris Jeans
- California Institute for Quantitative Biosciences at University of California Berkeley, Berkeley, California, USA
| | - Ross C Wilson
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
- California Institute for Quantitative Biosciences at University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
7
|
Belato HB, Knight AL, D’Ordine AM, Pindi C, Fan Z, Luo J, Palermo G, Jogl G, Lisi GP. Structural and Dynamic Impacts of Single-atom Disruptions to Guide RNA Interactions within the Recognition Lobe of Geobacillus stearothermophilus Cas9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.26.591382. [PMID: 38746279 PMCID: PMC11092435 DOI: 10.1101/2024.04.26.591382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The intuitive manipulation of specific amino acids to alter the activity or specificity of CRISPR-Cas9 has been a topic of great interest. As a large multi-domain RNA-guided endonuclease, the intricate molecular crosstalk within the Cas9 protein hinges on its conformational dynamics, but a comprehensive understanding of the extent and timescale of the motions that drive its allosteric function and association with nucleic acids remains elusive. Here, we investigated the structure and multi-timescale molecular motions of the recognition (Rec) lobe of GeoCas9, a thermophilic Cas9 from Geobacillus stearothermophilus. Our results provide new atomic details about the GeoRec subdomains (GeoRec1, GeoRec2) and the full-length domain in solution. Two rationally designed mutants, K267E and R332A, enhanced and redistributed micro-millisecond flexibility throughout GeoRec, and NMR studies of the interaction between GeoRec and its guide RNA showed that mutations reduced this affinity and the stability of the ribonucleoprotein complex. Despite measured biophysical differences due to the mutations, DNA cleavage assays reveal no functional differences in on-target activity, and similar specificity. These data suggest that guide RNA interactions can be tuned at the biophysical level in the absence of major functional losses but also raise questions about the underlying mechanism of GeoCas9, since analogous single-point mutations have significantly impacted on- and off-target DNA editing in mesophilic S. pyogenes Cas9. A K267E/R332A double mutant did also did not enhance GeoCas9 specificity, highlighting the robust tolerance of mutations to the Rec lobe of GeoCas9 and species-dependent complexity of Rec across Cas9 paralogs. Ultimately, this work provides an avenue by which to modulate the structure, motion, and guide RNA interactions at the level of the Rec lobe of GeoCas9, setting the stage for future studies of GeoCas9 variants and their effect on its allosteric mechanism.
Collapse
Affiliation(s)
- Helen B. Belato
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI USA
| | - Alexa L. Knight
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI USA
| | - Alexandra M. D’Ordine
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI USA
| | - Chinmai Pindi
- Departments of Bioengineering and Chemistry, University of California Riverside, Riverside, CA USA
| | - Zhiqiang Fan
- Departments of Bioengineering and Chemistry, University of California Riverside, Riverside, CA USA
| | - Jinping Luo
- Departments of Bioengineering and Chemistry, University of California Riverside, Riverside, CA USA
| | - Giulia Palermo
- Departments of Bioengineering and Chemistry, University of California Riverside, Riverside, CA USA
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI USA
| | - George P. Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI USA
- Brown University RNA Center, Providence, RI USA
| |
Collapse
|
8
|
Liu D, Cao D, Han R. Recent advances in therapeutic gene-editing technologies. Mol Ther 2025:S1525-0016(25)00200-X. [PMID: 40119516 DOI: 10.1016/j.ymthe.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
The advent of gene-editing technologies, particularly CRISPR-based systems, has revolutionized the landscape of biomedical research and gene therapy. Ongoing research in gene editing has led to the rapid iteration of CRISPR technologies, such as base and prime editors, enabling precise nucleotide changes without the need for generating harmful double-strand breaks (DSBs). Furthermore, innovations such as CRISPR fusion systems with DNA recombinases, DNA polymerases, and DNA ligases have expanded the size limitations for edited sequences, opening new avenues for therapeutic development. Beyond the CRISPR system, mobile genetic elements (MGEs) and epigenetic editors are emerging as efficient alternatives for precise large insertions or stable gene manipulation in mammalian cells. These advances collectively set the stage for next-generation gene therapy development. This review highlights recent developments of genetic and epigenetic editing tools and explores preclinical innovations poised to advance the field.
Collapse
Affiliation(s)
- Dongqi Liu
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Di Cao
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Renzhi Han
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
9
|
Barber HM, Pater AA, Gagnon KT, Damha MJ, O'Reilly D. Chemical engineering of CRISPR-Cas systems for therapeutic application. Nat Rev Drug Discov 2025; 24:209-230. [PMID: 39690326 DOI: 10.1038/s41573-024-01086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/19/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) technology has transformed molecular biology and the future of gene-targeted therapeutics. CRISPR systems comprise a CRISPR-associated (Cas) endonuclease and a guide RNA (gRNA) that can be programmed to guide sequence-specific binding, cleavage, or modification of complementary DNA or RNA. However, the application of CRISPR-based therapeutics is challenged by factors such as molecular size, prokaryotic or phage origins, and an essential gRNA cofactor requirement, which impact efficacy, delivery and safety. This Review focuses on chemical modification and engineering approaches for gRNAs to enhance or enable CRISPR-based therapeutics, emphasizing Cas9 and Cas12a as therapeutic paradigms. Issues that chemically modified gRNAs seek to address, including drug delivery, physiological stability, editing efficiency and off-target effects, as well as challenges that remain, are discussed.
Collapse
Affiliation(s)
- Halle M Barber
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Adrian A Pater
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Keith T Gagnon
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec, Canada.
| | - Daniel O'Reilly
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
10
|
De Paula VS, Dubey A, Arthanari H, Sgourakis NG. Dynamic sampling of a surveillance state enables DNA proofreading by Cas9. Cell Chem Biol 2025; 32:267-279.e5. [PMID: 39471812 PMCID: PMC12051036 DOI: 10.1016/j.chembiol.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/22/2024] [Accepted: 10/03/2024] [Indexed: 11/01/2024]
Abstract
CRISPR-Cas9 has revolutionized genome engineering applications by programming its single-guide RNA, where high specificity is required. However, the precise molecular mechanism underscoring discrimination between on/off-target DNA sequences, relative to the guide RNA template, remains elusive. Here, using methyl-based NMR to study multiple holoenzymes assembled in vitro, we elucidate a discrete protein conformational state which enables recognition of DNA mismatches at the protospacer adjacent motif (PAM)-distal end. Our results delineate an allosteric pathway connecting a dynamic conformational switch at the REC3 domain, with the sampling of a catalytically competent state by the HNH domain. Our NMR data show that HiFi Cas9 (R691A) increases the fidelity of DNA recognition by stabilizing this "surveillance state" for mismatched substrates, shifting the Cas9 conformational equilibrium away from the active state. These results establish a paradigm of substrate recognition through an allosteric protein-based switch, providing unique insights into the molecular mechanism which governs Cas9 selectivity.
Collapse
Affiliation(s)
- Viviane S De Paula
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104-6059, USA.
| | - Abhinav Dubey
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nikolaos G Sgourakis
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104-6059, USA.
| |
Collapse
|
11
|
Shu H, Luan A, Ullah H, He J, Wang Y, Chen C, Wei Q, Zhan R, Chang S. Utilizing Target Sequences with Multiple Flanking Protospacer Adjacent Motif (PAM) Sites Reduces Off-Target Effects of the Cas9 Enzyme in Pineapple. Genes (Basel) 2025; 16:217. [PMID: 40004545 PMCID: PMC11855603 DOI: 10.3390/genes16020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats)-associated protein 9 is now widely used in agriculture and medicine. Off-target effects can lead to unexpected results that may be harmful, and these effects are a common concern in both research and therapeutic applications. METHODS In this study, using pineapple as the gene-editing material, eighteen target sequences with varying numbers of PAM (Protospacer-Adjacent Motif) sites were used to construct gRNA vectors. Fifty mutant lines were generated for each target sequence, and the off-target rates were counted. RESULTS Selecting sequences with multiple flanking PAM sites as editing targets resulted in a lower off-target rate compared to those with a single PAM site. Target sequences with two 5'-NGG ("N" represents any nucleobase, followed by two guanine "G") PAM sites at the 3' end exhibited greater specificity and a higher probability of binding with the Cas9 protein than those only with one 5'-NGG PAM site at the 3' end. Conversely, although the target sequence with a 5'-NAG PAM site (where "N" is any nucleobase, followed by adenine "A" and guanine "G") adjacent and upstream of an NGG PAM site had a lower off-target rate compared to sequences with only an NGG PAM site, their off-target rates were still higher than those of sequences with two adjacent 5'-NAG PAM sites. Among the target sequences of pineapple mutant lines (AcACS1, AcOT5, AcCSPE6, AcPKG11A), more deletions than insertions were found. CONCLUSIONS We found that target sequences with multiple flanking PAM sites are more likely to bind with the Cas9 protein and induce mutations. Selecting sequences with multiple flanking PAM sites as editing targets can reduce the off-target effects of the Cas9 enzyme in pineapple. These findings provide a foundation for improving off-target prediction and engineering CRISPR-Cas9 complexes for gene editing.
Collapse
Affiliation(s)
- Haiyan Shu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.S.); (A.L.); (J.H.); (Y.W.); (C.C.); (Q.W.); (R.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| | - Aiping Luan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.S.); (A.L.); (J.H.); (Y.W.); (C.C.); (Q.W.); (R.Z.)
| | - Hidayat Ullah
- Department of Agriculture, The University of Swabi, Anbar-Swabi 23561, Pakistan;
| | - Junhu He
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.S.); (A.L.); (J.H.); (Y.W.); (C.C.); (Q.W.); (R.Z.)
| | - You Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.S.); (A.L.); (J.H.); (Y.W.); (C.C.); (Q.W.); (R.Z.)
| | - Chengjie Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.S.); (A.L.); (J.H.); (Y.W.); (C.C.); (Q.W.); (R.Z.)
| | - Qing Wei
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.S.); (A.L.); (J.H.); (Y.W.); (C.C.); (Q.W.); (R.Z.)
| | - Rulin Zhan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.S.); (A.L.); (J.H.); (Y.W.); (C.C.); (Q.W.); (R.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| | - Shenghe Chang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.S.); (A.L.); (J.H.); (Y.W.); (C.C.); (Q.W.); (R.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| |
Collapse
|
12
|
Lazzarotto CR, Li Y, Flory AR, Chyr J, Yang M, Katta V, Urbina E, Lee G, Wood R, Matsubara A, Rashkin SR, Ma J, Cheng Y, Tsai SQ. Population-scale cellular GUIDE-seq-2 and biochemical CHANGE-seq-R profiles reveal human genetic variation frequently affects Cas9 off-target activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637517. [PMID: 39990392 PMCID: PMC11844382 DOI: 10.1101/2025.02.10.637517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Genome editing enzymes can introduce targeted changes to the DNA in living cells 1-4 , transforming biological research and enabling the first approved gene editing therapy for sickle cell disease 5 . However, their genome-wide activity can be altered by genetic variation at on- or off-target sites 6-8 , potentially impacting both their precision and therapeutic safety. Due to a lack of scalable methods to measure genome-wide editing activity in cells from large populations and diverse target libraries, the frequency and extent of these variant effects on editing remains unknown. Here, we present the first population-scale study of how genetic variation affects the cellular genome-wide activity of CRISPR-Cas9, enabled by a novel, sensitive, and unbiased cellular assay, GUIDE-seq-2 with improved scalability and accuracy compared to the original broadly adopted method 9 . Analyzing Cas9 genome-wide activity at 1,115 on- and off-target sites across six guide RNAs in cells from 95 individuals spanning four genetically diverse populations, we found that variants frequently overlap off-target sites, with 13% significantly altering Cas9 editing activity by up to 33% indels. To understand common features of high-impact variants, we developed a new massively parallel biochemical assay, CHANGE-seq-R, to measure Cas9 activity across millions of mismatched target sites, and trained a deep neural network model, CHANGE-net, to accurately predict and interpret the effects of single-nucleotide variants on off-targets with up to six mismatches. Taken together, our findings illuminate a path to account for genetic variation when designing genome editing strategies for research and therapeutics.
Collapse
|
13
|
Hibshman GN, Taylor DW. Structural basis for a dual-function type II-B CRISPR-Cas9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.22.619592. [PMID: 39990493 PMCID: PMC11844402 DOI: 10.1101/2024.10.22.619592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Cas9 from Streptococcus pyogenes (SpCas9) revolutionized genome editing by enabling programmable DNA cleavage guided by an RNA. However, SpCas9 tolerates mismatches in the DNA-RNA duplex, which can lead to deleterious off-target editing. Here, we reveal that Cas9 from Francisella novicida (FnCas9) possesses a unique structural feature-the REC3 clamp-that underlies its intrinsic high-fidelity DNA targeting. Through kinetic and structural analyses, we show that the REC3 clamp forms critical contacts with the PAM-distal region of the R-loop, thereby imposing a novel checkpoint during enzyme activation. Notably, F. novicida encodes a non-canonical small CRISPR-associated RNA (scaRNA) that enables FnCas9 to repress an endogenous bacterial lipoprotein gene, subverting host immune detection. Structures of FnCas9 with scaRNA illustrate how partial R-loop complementarity hinders REC3 clamp docking and prevents cleavage in favor of transcriptional repression. The REC3 clamp is conserved in type II-B CRISPR-Cas9 systems, pointing to a potential path for engineering precise genome editors or developing novel antibacterial strategies. These findings reveal the dual mechanisms of high specificity and virulence by FnCas9, with broad implications for biotechnology and therapeutic development.
Collapse
|
14
|
Hossain KA, Nierzwicki L, Orozco M, Czub J, Palermo G. Flexibility in PAM recognition expands DNA targeting in xCas9. eLife 2025; 13:RP102538. [PMID: 39928547 PMCID: PMC11810106 DOI: 10.7554/elife.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025] Open
Abstract
xCas9 is an evolved variant of the CRISPR-Cas9 genome editing system, engineered to improve specificity and reduce undesired off-target effects. How xCas9 expands the DNA targeting capability of Cas9 by recognising a series of alternative protospacer adjacent motif (PAM) sequences while ignoring others is unknown. Here, we elucidate the molecular mechanism underlying xCas9's expanded PAM recognition and provide critical insights for expanding DNA targeting. We demonstrate that while wild-type Cas9 enforces stringent guanine selection through the rigidity of its interacting arginine dyad, xCas9 introduces flexibility in R1335, enabling selective recognition of specific PAM sequences. This increased flexibility confers a pronounced entropic preference, which also improves recognition of the canonical TGG PAM. Furthermore, xCas9 enhances DNA binding to alternative PAM sequences during the early evolution cycles, while favouring binding to the canonical PAM in the final evolution cycle. This dual functionality highlights how xCas9 broadens PAM recognition and underscores the importance of fine-tuning the flexibility of the PAM-interacting cleft as a key strategy for expanding the DNA targeting potential of CRISPR-Cas systems. These findings deepen our understanding of DNA recognition in xCas9 and may apply to other CRISPR-Cas systems with similar PAM recognition requirements.
Collapse
Affiliation(s)
- Kazi A Hossain
- Department of Bioengineering , University of California RiversideRiversideUnited States
- Department of Physical Chemistry, Gdańsk University of TechnologyGdańskPoland
| | - Lukasz Nierzwicki
- Department of Bioengineering , University of California RiversideRiversideUnited States
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Departament de Bioquímica i Biomedicina, Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | - Jacek Czub
- Department of Physical Chemistry, Gdańsk University of TechnologyGdańskPoland
- BioTechMed Center, Gdańsk University of TechnologyGdańskPoland
| | - Giulia Palermo
- Department of Bioengineering , University of California RiversideRiversideUnited States
- Department of Chemistry, University of California RiversideRiversideUnited States
| |
Collapse
|
15
|
Nguyen GT, Raju A, Sashital DG. Analysis of metal-dependent DNA nicking activities by Cas endonucleases. Methods Enzymol 2025; 712:117-142. [PMID: 40121070 DOI: 10.1016/bs.mie.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
CRISPR-Cas systems use RNA-guided CRISPR-associated (Cas) effectors to neutralize infections in bacteria and archaea. In class 2 CRISPR-Cas systems, Cas9 and Cas12 are single-protein Cas effectors that target double-stranded DNA based on complementarity to the guide RNA before cleaving the target DNA using metal-dependent endonuclease domains. Cas9 and Cas12 proteins can be readily programmed to target any DNA of interest by changing the guiding RNA sequence and have been co-opted for genome editing and other biotechnology purposes. The effect of metal ion concentration is an essential consideration in the physiological role of Cas immunity effectors as well as the biotechnological applications of Cas endonucleases. In this chapter, we describe methods for studying the effect of variable divalent metal ion conditions on the DNA binding and cleavage activities of well-studied Cas9 and Cas12a proteins.
Collapse
Affiliation(s)
- Giang T Nguyen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Akshara Raju
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States.
| |
Collapse
|
16
|
He Y, Zalenski N, Stephenson AA, Raper AT, Ghimire C, Suo Z. Conformational transitions of Streptococcus pyogenes Cas9 induced by salt and single-guide RNA binding. J Biol Chem 2025; 301:108120. [PMID: 39716488 PMCID: PMC11791316 DOI: 10.1016/j.jbc.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024] Open
Abstract
Streptococcus pyogenes (Sp) Cas9 has been widely utilized to edit genomes across diverse species. To achieve high efficiency and specificity as a gene-editing enzyme, Sp Cas9 undergoes a series of sequential conformational changes during substrate binding and catalysis. Here, we employed single-molecule FRET techniques to investigate the effect of different KCl concentrations on conformational dynamics of Sp Cas9 in the presence or the absence of a single-guide RNA (sgRNA). In the absence of sgRNA and at low KCl concentrations (75 mM), apo Cas9 surprisingly exhibited two distinct conformations: a primary autoinhibited open conformation (apo Cas9 conformation [Cas9apo]) and a secondary sgRNA-bound-like conformation (Cas9X). Interestingly, increase in buffer KCl concentration led to a linear increase in the Cas9X population and a corresponding decrease in the Cas9apo population. In contrast, changes in KCl concentration exerted the opposite effects on the Cas9X and Cas9apo populations in the presence of sgRNA. Collectively, our findings by using KCl concentration as the probe suggest that Cas9 might employ a conformational sampling mechanism, in addition to the more common induced-fit mechanism established by us previously, for sgRNA binding.
Collapse
Affiliation(s)
- Yufan He
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Nikita Zalenski
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | | | - Austin T Raper
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Chiran Ghimire
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA; Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
17
|
Soczek K, Cofsky J, Tuck O, Shi H, Doudna J. CRISPR-Cas12a bends DNA to destabilize base pairs during target interrogation. Nucleic Acids Res 2025; 53:gkae1192. [PMID: 39698811 PMCID: PMC11754666 DOI: 10.1093/nar/gkae1192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
RNA-guided endonucleases are involved in processes ranging from adaptive immunity to site-specific transposition and have revolutionized genome editing. CRISPR-Cas9, -Cas12 and related proteins use guide RNAs to recognize ∼20-nucleotide target sites within genomic DNA by mechanisms that are not yet fully understood. We used structural and biochemical methods to assess early steps in DNA recognition by Cas12a protein-guide RNA complexes. We show here that Cas12a initiates DNA target recognition by bending DNA to induce transient nucleotide flipping that exposes nucleobases for DNA-RNA hybridization. Cryo-EM structural analysis of a trapped Cas12a-RNA-DNA surveillance complex and fluorescence-based conformational probing show that Cas12a-induced DNA helix destabilization enables target discovery and engagement. This mechanism of initial DNA interrogation resembles that of CRISPR-Cas9 despite distinct evolutionary origins and different RNA-DNA hybridization directionality of these enzyme families. Our findings support a model in which RNA-mediated DNA interference begins with local helix distortion by transient CRISPR-Cas protein binding.
Collapse
Affiliation(s)
- Katarzyna M Soczek
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Joshua C Cofsky
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
| | - Owen T Tuck
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Honglue Shi
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
18
|
Van R, Pan X, Rostami S, Liu J, Agarwal PK, Brooks B, Rajan R, Shao Y. Exploring CRISPR-Cas9 HNH-Domain-Catalyzed DNA Cleavage Using Accelerated Quantum Mechanical Molecular Mechanical Free Energy Simulation. Biochemistry 2025; 64:289-299. [PMID: 39680038 PMCID: PMC12005057 DOI: 10.1021/acs.biochem.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The target DNA (tDNA) cleavage catalyzed by the CRISPR Cas9 enzyme is a critical step in the Cas9-based genome editing technologies. Previously, the tDNA cleavage from an active SpyCas9 enzyme conformation was modeled by Palermo and co-workers (Nierzwicki et al., Nat. Catal. 2022 5, 912) using ab initio quantum mechanical molecular mechanical (ai-QM/MM) free energy simulations, where the free energy barrier was found to be more favorable than that from a pseudoactive enzyme conformation. In this work, we performed ai-QM/MM simulations based on another catalytically active conformation (PDB 7Z4J) of the Cas9 HNH domain from cryo-electron microscopy experiments. For the wildtype enzyme, we acquired a free energy profile for the tDNA cleavage that is largely consistent with the previous report. Furthermore, we explored the role of the active-site K866 residue on the catalytic efficiency by modeling the K866A mutant and found that the K866A mutation increased the reaction free energy barrier, which is consistent with the experimentally observed reduction in the enzyme activity.
Collapse
Affiliation(s)
- Richard Van
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, United States
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, United States
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Pratul K. Agarwal
- High Performance Computing Center, Oklahoma State University, 106 Math Sciences, Stillwater, OK 74078, United States
| | - Bernard Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, United States
| |
Collapse
|
19
|
Kiernan K, Kwon J, Merrill B, Simonović M. Structural basis of Cas9 DNA interrogation with a 5' truncated sgRNA. Nucleic Acids Res 2025; 53:gkae1164. [PMID: 39657754 PMCID: PMC11724282 DOI: 10.1093/nar/gkae1164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
The efficiency and accuracy of CRISPR-Cas9 targeting varies considerably across genomic targets and remains a persistent issue for using this system in cells. Studies have shown that the use of 5' truncated single guide RNAs (sgRNAs) can reduce the rate of unwanted off-target recognition while still maintaining on-target specificity. However, it is not well-understood how reducing target complementarity enhances specificity or how truncation past 15 nucleotides (nts) prevents full Cas9 activation without compromising on-target binding. Here, we use biochemistry and cryogenic electron microscopy to investigate Cas9 structure and activity when bound to a 14-nt sgRNA. Our structures reveal that the shortened path of the displaced non-target strand (NTS) sterically occludes docking of the HNH L1 linker and prevents proper positioning of the nuclease domains. We show that cleavage inhibition can be alleviated by either artificially melting the protospacer adjacent motif (PAM)-distal duplex or providing a supercoiled substrate. Even though Cas9 forms a stable complex with its target, we find that plasmid cleavage is ∼1000-fold slower with a 14-nt sgRNA than with a full-length 20-nt sgRNA. Our results provide a structural basis for Cas9 target binding with 5' truncated sgRNAs and underline the importance of PAM-distal NTS availability in promoting Cas9 activation.
Collapse
Affiliation(s)
- Kaitlyn A Kiernan
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, 900 S Ashland Ave, Chicago, IL 60607, USA
| | - Jieun Kwon
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, 900 S Ashland Ave, Chicago, IL 60607, USA
| | - Bradley J Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, 900 S Ashland Ave, Chicago, IL 60607, USA
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, 900 S Ashland Ave, Chicago, IL 60607, USA
| |
Collapse
|
20
|
Xiang T, Feng H, Xing XH, Zhang C. GLiDe: a web-based genome-scale CRISPRi sgRNA design tool for prokaryotes. BMC Bioinformatics 2025; 26:1. [PMID: 39754035 PMCID: PMC11699761 DOI: 10.1186/s12859-024-06012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND CRISPRi screening has become a powerful approach for functional genomic research. However, the off-target effects resulting from the mismatch tolerance between sgRNAs and their intended targets is a primary concern in CRISPRi applications. RESULTS We introduce Guide Library Designer (GLiDe), a web-based tool specifically created for the genome-scale design of sgRNA libraries tailored for CRISPRi screening in prokaryotic organisms. GLiDe incorporates a robust quality control framework, rooted in prior experimental knowledge, ensuring the accurate identification of off-target hits. It boasts an extensive built-in database, encompassing 1,397 common prokaryotic species as a comprehensive design resource. It also provides the capability to design sgRNAs for newly discovered organisms by accepting uploaded design resource. We further demonstrated that GLiDe exhibits enhanced precision in identifying off-target binding sites for the CRISPRi system. CONCLUSIONS We present a web server that allows the construction of genome-scale CRISPRi sgRNA libraries for prokaryotes. It mitigates off-target effects through a robust quality control framework, leveraging prior experimental knowledge within an end-to-end, user-friendly pipeline.
Collapse
Affiliation(s)
- Tongjun Xiang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Huibao Feng
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Xin-Hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
21
|
Hossain KA, Nierzwicki L, Orozco M, Czub J, Palermo G. Flexibility in PAM Recognition Expands DNA Targeting in xCas9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.26.609653. [PMID: 39803448 PMCID: PMC11722361 DOI: 10.1101/2024.08.26.609653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
xCas9 is an evolved variant of the CRISPR-Cas9 genome editing system, engineered to improve specificity and reduce undesired off-target effects. How xCas9 expands the DNA targeting capability of Cas9 by recognizing a series of alternative Protospacer Adjacent Motif (PAM) sequences while ignoring others is unknown. Here, we elucidate the molecular mechanism underlying xCas9's expanded PAM recognition and provide critical insights for expanding DNA targeting. We demonstrate that while wild-type Cas9 enforces stringent guanine selection through the rigidity of its interacting arginine dyad, xCas9 introduces flexibility in R1335, enabling selective recognition of specific PAM sequences. This increased flexibility confers a pronounced entropic preference, which also improves recognition of the canonical TGG PAM. Furthermore, xCas9 enhances DNA binding to alternative PAM sequences during the early evolution cycles, while favouring binding to the canonical PAM in the final evolution cycle. This dual functionality highlights how xCas9 broadens PAM recognition and underscores the importance of fine-tuning the flexibility of the PAM-interacting cleft as a key strategy for expanding the DNA targeting potential of CRISPR-Cas systems. These findings deepen our understanding of DNA recognition in xCas9 and may apply to other CRISPR-Cas systems with similar PAM recognition requirements.
Collapse
Affiliation(s)
- Kazi A. Hossain
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
- Department of Physical Chemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland
| | - Lukasz Nierzwicki
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jacek Czub
- Department of Physical Chemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland
- BioTechMed Center, Gdańsk University of Technology, Gdańsk 80-233, Poland
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
- Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| |
Collapse
|
22
|
Lee J, Jeong C. Single-molecule perspectives of CRISPR/Cas systems: target search, recognition, and cleavage. BMB Rep 2025; 58:8-16. [PMID: 39701024 PMCID: PMC11788531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024] Open
Abstract
CRISPR/Cas systems have emerged as powerful tools for gene editing, nucleic acid detection, and therapeutic applications. Recent advances in single-molecule techniques have provided new insights into the DNA-targeting mechanisms of CRISPR/ Cas systems, in particular, Types I, II, and V. Here, we review how single-molecule approaches have expanded our understanding of key processes, namely target search, recognition, and cleavage. Furthermore, we focus on the dynamic behavior of Cas proteins, including PAM site recognition and R-loop formation, which are crucial to ensure specificity and efficiency in gene editing. Additionally, we discuss the conformational changes and interactions that drive precise DNA cleavage by different Cas proteins. This mini review provides a comprehensive overview of CRISPR/Cas molecular dynamics, offering conclusive insights into their broader potential for genome editing and biotechnological applications. [BMB Reports 2025; 58(1): 8-16].
Collapse
Affiliation(s)
- Jeongmin Lee
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Cherlhyun Jeong
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul 02792, Korea
| |
Collapse
|
23
|
Zhang Q, He J, Zhu D, Chen Y, Fu M, Lu S, Qiu Y, Zhou G, Yang G, Jiang Z. Genetically modified organoids for tissue engineering and regenerative medicine. Adv Colloid Interface Sci 2025; 335:103337. [PMID: 39547125 DOI: 10.1016/j.cis.2024.103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/23/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
To date, genetically modified organoids are emerging as a promising 3D modeling tool aimed at solving genetically relevant clinical and biomedical problems for regenerative medicine and tissue engineering. As an optimal vehicle for gene delivery, genetically modified organoids can enhance or reduce the expression of target genes through virus and non-virus-based gene transfection methods to achieve tissue regeneration. Animal experiments and preclinical studies have demonstrated the beneficial role of genetically modified organoids in various aspects of organ regeneration, including thymus, lacrimal glands, brain, lung, kidney, photoreceptors, etc. Furthermore, the technology offers a potential treatment option for various diseases, such as Fabry disease, non-alcoholic steatohepatitis, and Lynch syndrome. Nevertheless, the uncertain safety of genetic modification, the risk of organoid application, and bionics of current genetically modified organoids are still challenging. This review summarizes the researches on genetically modified organoids in recent years, and describes the transfection methods and functions of genetically modified organoids, then introduced their applications at length. Also, the limitations and future development directions of genetically modified organoids are included.
Collapse
Affiliation(s)
- Qinmeng Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yunxuan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Shifan Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yuesheng Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guodong Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
24
|
Patel AC, Sinha S, Palermo G. Graph theory approaches for molecular dynamics simulations. Q Rev Biophys 2024; 57:e15. [PMID: 39655478 PMCID: PMC11853848 DOI: 10.1017/s0033583524000143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Graph theory, a branch of mathematics that focuses on the study of graphs (networks of nodes and edges), provides a robust framework for analysing the structural and functional properties of biomolecules. By leveraging molecular dynamics (MD) simulations, atoms or groups of atoms can be represented as nodes, while their dynamic interactions are depicted as edges. This network-based approach facilitates the characterization of properties such as connectivity, centrality, and modularity, which are essential for understanding the behaviour of molecular systems. This review details the application and development of graph theory-based models in studying biomolecular systems. We introduce key concepts in graph theory and demonstrate their practical applications, illustrating how innovative graph theory approaches can be employed to design biomolecular systems with enhanced functionality. Specifically, we explore the integration of graph theoretical methods with MD simulations to gain deeper insights into complex biological phenomena, such as allosteric regulation, conformational dynamics, and catalytic functions. Ultimately, graph theory has proven to be a powerful tool in the field of molecular dynamics, offering valuable insights into the structural properties, dynamics, and interactions of molecular systems. This review establishes a foundation for using graph theory in molecular design and engineering, highlighting its potential to transform the field and drive advancements in the understanding and manipulation of biomolecular systems.
Collapse
Affiliation(s)
- Amun C. Patel
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Souvik Sinha
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
- Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| |
Collapse
|
25
|
Wen S, Zhao Y, Qi X, Cai M, Huang K, Liu H, Kong DX. Conformational plasticity of SpyCas9 induced by AcrIIA4 and AcrIIA2: Insights from molecular dynamics simulation. Comput Struct Biotechnol J 2024; 23:537-548. [PMID: 38235361 PMCID: PMC10791570 DOI: 10.1016/j.csbj.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
CRISPR-Cas9 systems constitute bacterial adaptive immune systems that protect against phage infections. Bacteriophages encode anti-CRISPR proteins (Acrs) that mitigate the bacterial immune response. However, the structural basis for their inhibitory actions from a molecular perspective remains elusive. In this study, through microsecond atomistic molecular dynamics simulations, we demonstrated the remarkable flexibility of Streptococcus pyogenes Cas9 (SpyCas9) and its conformational adaptability during interactions with AcrIIA4 and AcrIIA2. Specifically, we demonstrated that the binding of AcrIIA4 and AcrIIA2 to SpyCas9 induces a conformational rearrangement that causes spatial separation between the nuclease and cleavage sites, thus making the endonuclease inactive. This separation disrupts the transmission of signals between the protospacer adjacent motif recognition and nuclease domains, thereby impeding the efficient processing of double-stranded DNA. The simulation also reveals that AcrIIA4 and AcrIIA2 cause different structural variations of SpyCas9. Our research illuminates the precise mechanisms underlying the suppression of SpyCas9 by AcrIIA4 and AcrIIA2, thus presenting new possibilities for controlling genome editing with higher accuracy.
Collapse
Affiliation(s)
- Shuixiu Wen
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Yuxin Zhao
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Xinyu Qi
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Mingzhu Cai
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Kaisheng Huang
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Hui Liu
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - De-Xin Kong
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
26
|
Jiang G, Gao Y, Zhou N, Wang B. CRISPR-powered RNA sensing in vivo. Trends Biotechnol 2024; 42:1601-1614. [PMID: 38734565 DOI: 10.1016/j.tibtech.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/13/2024]
Abstract
RNA sensing in vivo evaluates past or ongoing endogenous RNA disturbances, which is crucial for identifying cell types and states and diagnosing diseases. Recently, the CRISPR-driven genetic circuits have offered promising solutions to burgeoning challenges in RNA sensing. This review delves into the cutting-edge developments of CRISPR-powered RNA sensors in vivo, reclassifying these RNA sensors into four categories based on their working mechanisms, including programmable reassembly of split single-guide RNA (sgRNA), RNA-triggered RNA processing and protein cleavage, miRNA-triggered RNA interference (RNAi), and strand displacement reactions. Then, we discuss the advantages and challenges of existing methodologies in diverse application scenarios and anticipate and analyze obstacles and opportunities in forthcoming practical implementations.
Collapse
Affiliation(s)
- Guo Jiang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, Zhejiang, China
| | - Yuanli Gao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, Zhejiang, China; School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Nan Zhou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, Zhejiang, China
| | - Baojun Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, Zhejiang, China.
| |
Collapse
|
27
|
Goldberg GW, Kogenaru M, Keegan S, Haase MAB, Kagermazova L, Arias MA, Onyebeke K, Adams S, Beyer DK, Fenyö D, Noyes MB, Boeke JD. Engineered transcription-associated Cas9 targeting in eukaryotic cells. Nat Commun 2024; 15:10287. [PMID: 39604381 PMCID: PMC11603292 DOI: 10.1038/s41467-024-54629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
DNA targeting Class 2 CRISPR-Cas effector nucleases, including the well-studied Cas9 proteins, evolved protospacer-adjacent motif (PAM) and guide RNA interactions that sequentially license their binding and cleavage activities at protospacer target sites. Both interactions are nucleic acid sequence specific but function constitutively; thus, they provide intrinsic spatial control over DNA targeting activities but naturally lack temporal control. Here we show that engineered Cas9 fusion proteins which bind to nascent RNAs near a protospacer can facilitate spatiotemporal coupling between transcription and DNA targeting at that protospacer: Transcription-associated Cas9 Targeting (TraCT). Engineered TraCT is enabled in eukaryotic yeast or human cells when suboptimal PAM interactions limit basal activity and when one or more nascent RNA substrates are still tethered to the actively transcribed target DNA in cis. Using yeast, we further show that this phenomenon can be applied for selective editing at one of two identical targets in distinct gene loci, or, in diploid allelic loci that are differentially transcribed. Our work demonstrates that temporal control over Cas9's targeting activity at specific DNA sites may be engineered without modifying Cas9's core domains and guide RNA components or their expression levels. More broadly, it establishes co-transcriptional RNA binding as a cis-acting mechanism that can conditionally stimulate CRISPR-Cas DNA targeting in eukaryotic cells.
Collapse
Affiliation(s)
- Gregory W Goldberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| | - Manjunatha Kogenaru
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Max A B Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Larisa Kagermazova
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Mauricio A Arias
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Kenenna Onyebeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Samantha Adams
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Daniel K Beyer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Marcus B Noyes
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA.
| |
Collapse
|
28
|
Fatemi
Abhari SH, Di Felice R. Probing Electrostatic Interactions in DNA-Bound CRISPR/Cas9 Complexes by Molecular Dynamics Simulations. ACS OMEGA 2024; 9:44974-44988. [PMID: 39554421 PMCID: PMC11561601 DOI: 10.1021/acsomega.4c04359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
Engineered protein mutations may be exploited to tune molecular interactions in the cellular environment. Here, we have explored the structural consequences of different Cas9 mutations in genome-editing CRISPR/Cas9 systems by means of Molecular Dynamics simulations. We have characterized mutation-induced structural changes and their implications for changes in protein-DNA, DNA-RNA, and DNA-DNA interactions. We present the analysis of multiple trajectories over the cumulative time scale of 7.7 μs, focusing on triple mutations that have been associated with enhancement of genome editing specificity, as well as control mutations. We find that the structural changes induced by the protein mutations are consistent with decreasing the strength of the interaction between Cas9 and the nontarget DNA strand. We discuss the implications of this finding for genome editing specificity.
Collapse
Affiliation(s)
- Seyedeh Hoda Fatemi
Abhari
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| | - Rosa Di Felice
- Departments
of Physics and Astronomy and Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, United States
- CNR
Institute of Nanoscience, Modena 41125, Italy
| |
Collapse
|
29
|
Cheng H, Deng H, Ma D, Gao M, Zhou Z, Li H, Liu S, Teng T. Insight into the natural regulatory mechanisms and clinical applications of the CRISPR-Cas system. Heliyon 2024; 10:e39538. [PMID: 39502233 PMCID: PMC11535992 DOI: 10.1016/j.heliyon.2024.e39538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
CRISPR-Cas, the adaptive immune system exclusive to prokaryotes, confers resistance against foreign mobile genetic elements. The CRISPR-Cas system is now being exploited by scientists in a diverse range of genome editing applications. CRISPR-Cas systems can be categorized into six different types based on their composition and mechanism, and there are also natural regulatory biomolecules in bacteria and bacteriophages that can either enhance or inhibit the immune function of CRISPR-Cas. The CRISPR-Cas systems are currently being trialed as a new tool for gene therapy to treat various human diseases, including cancers and genetic diseases, offering significant therapeutic potential. This paper comprehensively summarizes various aspects of the CRISPR-Cas system, encompassing its diversity, regulatory mechanisms, its clinical applications and the obstacles encountered.
Collapse
Affiliation(s)
- Hui Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Haoyue Deng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Dongdao Ma
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Mengyuan Gao
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Zhihan Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Heng Li
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Shejuan Liu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Tieshan Teng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
30
|
Přibylová A, Fischer L. How to use CRISPR/Cas9 in plants: from target site selection to DNA repair. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5325-5343. [PMID: 38648173 PMCID: PMC11389839 DOI: 10.1093/jxb/erae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
A tool for precise, target-specific, efficient, and affordable genome editing is a dream for many researchers, from those who conduct basic research to those who use it for applied research. Since 2012, we have tool that almost fulfils such requirements; it is based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems. However, even CRISPR/Cas has limitations and obstacles that might surprise its users. In this review, we focus on the most frequently used variant, CRISPR/Cas9 from Streptococcus pyogenes, and highlight key factors affecting its mutagenesis outcomes: (i) factors affecting the CRISPR/Cas9 activity, such as the effect of the target sequence, chromatin state, or Cas9 variant, and how long it remains in place after cleavage; and (ii) factors affecting the follow-up DNA repair mechanisms including mostly the cell type and cell cycle phase, but also, for example, the type of DNA ends produced by Cas9 cleavage (blunt/staggered). Moreover, we note some differences between using CRISPR/Cas9 in plants, yeasts, and animals, as knowledge from individual kingdoms is not fully transferable. Awareness of these factors can increase the likelihood of achieving the expected results of plant genome editing, for which we provide detailed guidelines.
Collapse
Affiliation(s)
- Adéla Přibylová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| | - Lukáš Fischer
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| |
Collapse
|
31
|
Nguyen GT, Schelling MA, Sashital DG. CRISPR-Cas9 target-strand nicking provides phage resistance by inhibiting replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611540. [PMID: 39282300 PMCID: PMC11398490 DOI: 10.1101/2024.09.05.611540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Cas endonucleases, like Cas9 and Cas12a, are RNA-guided immune effectors that provide bacterial defense against bacteriophages. Cas endonucleases rely on divalent metal ions for their enzymatic activities and to facilitate conformational changes that are required for specific recognition and cleavage of target DNA. While Cas endonucleases typically produce double-strand breaks (DSBs) in DNA targets, reduced, physiologically relevant Mg2+ concentrations and target mismatches can result in incomplete second-strand cleavage, resulting in the production of a nicked DNA. It remains poorly understood whether nicking by Cas endonucleases is sufficient to provide protection against phage. To address this, we tested phage protection by Cas9 nickases, in which only one of two nuclease domains is catalytically active. By testing a large panel of guide RNAs, we find that target strand nicking can be sufficient to provide immunity, while non-target nicking does not provide any additional protection beyond Cas9 binding. Target-strand nicking inhibits phage replication and can reduce the susceptibility of Cas9 to viral escape when targeting non-essential regions of the genome. Cleavage of the non-target strand by the RuvC domain is strongly impaired at low Mg2+ concentrations. As a result, fluctuations in the concentration of other biomolecules that can compete for binding of free Mg2+ strongly influences the ability of Cas9 to form a DSB at targeted sites. Overall, our results suggest that Cas9 may only nick DNA during CRISPR-mediated immunity, especially under conditions of low Mg2+ availability in cells.
Collapse
Affiliation(s)
- Giang T Nguyen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Michael A Schelling
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
32
|
Kumar A, Daripa P, Rasool K, Chakraborty D, Jain N, Maiti S. Deciphering the Thermodynamic Landscape of CRISPR/Cas9: Insights into Enhancing Gene Editing Precision and Efficiency. J Phys Chem B 2024; 128:8409-8422. [PMID: 39190773 DOI: 10.1021/acs.jpcb.4c04044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The thermodynamic landscape of the CRISPR/Cas9 system plays a crucial role in understanding and optimizing the performance of this revolutionary genome-editing technology. In this research, we utilized isothermal titration calorimetry and microscale thermophoresis techniques to thoroughly investigate the thermodynamic properties governing CRISPR/Cas9 interactions. Our findings revealed that the binding between sgRNA and Cas9 is primarily governed by entropy, which compensates for an unfavorable enthalpy change. Conversely, the interaction between the CRISPR RNP complex and the target DNA is characterized by a favorable enthalpy change, offsetting an unfavorable entropy change. Notably, both interactions displayed negative heat capacity changes, indicative of potential hydration, ionization, or structural rearrangements. However, we noted that the involvement of water molecules and counterions in the interactions is minimal, suggesting that structural rearrangements play a significant role in influencing the binding thermodynamics. These results offer a nuanced understanding of the energetic contributions and structural dynamics underlying CRISPR-mediated gene editing. Such insights are invaluable for optimizing the efficiency and specificity of CRISPR-based genome editing applications, ultimately advancing our ability to precisely manipulate genetic material in various organisms for research, therapeutic, and biotechnological purposes.
Collapse
Affiliation(s)
- Ajit Kumar
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Purba Daripa
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
| | - Kaiser Rasool
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
| | - Debojyoti Chakraborty
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Niyati Jain
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
33
|
Zheng J, Zhu Y, Huang T, Gao W, He J, Huang Z. Inhibition mechanisms of CRISPR-Cas9 by AcrIIA25.1 and AcrIIA32. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1781-1791. [PMID: 38842649 DOI: 10.1007/s11427-024-2607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024]
Abstract
In the ongoing arms race between bacteria and bacteriophages, bacteriophages have evolved anti-CRISPR proteins to counteract bacterial CRISPR-Cas systems. Recently, AcrIIA25.1 and AcrIIA32 have been found to effectively inhibit the activity of SpyCas9 both in bacterial and human cells. However, their molecular mechanisms remain elusive. Here, we report the cryo-electron microscopy structures of ternary complexes formed by AcrIIA25.1 and AcrIIA32 bound to SpyCas9-sgRNA. Using structural analysis and biochemical experiments, we revealed that AcrIIA25.1 and AcrIIA32 recognize a novel, previously-unidentified anti-CRISPR binding site on SpyCas9. We found that both AcrIIA25.1 and AcrIIA32 directly interact with the WED domain, where they spatially obstruct conformational changes of the WED and PI domains, thereby inhibiting SpyCas9 from recognizing protospacer adjacent motif (PAM) and unwinding double-stranded DNA. In addition, they may inhibit nuclease activity by blocking the dynamic conformational changes of the SpyCas9 surveillance complex. In summary, our data elucidate the inhibition mechanisms of two new anti-CRISPR proteins, provide new strategies for the modulation of SpyCas9 activity, and expand our understanding of the diversity of anti-CRISPR protein inhibition mechanisms.
Collapse
Affiliation(s)
- Jianlin Zheng
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Tengjin Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Wenbo Gao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Jiale He
- Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China.
- Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
| |
Collapse
|
34
|
Aguirre Rivera J, Mao G, Sabantsev A, Panfilov M, Hou Q, Lindell M, Chanez C, Ritort F, Jinek M, Deindl S. Massively parallel analysis of single-molecule dynamics on next-generation sequencing chips. Science 2024; 385:892-898. [PMID: 39172826 DOI: 10.1126/science.adn5371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/12/2024] [Indexed: 08/24/2024]
Abstract
Single-molecule techniques are ideally poised to characterize complex dynamics but are typically limited to investigating a small number of different samples. However, a large sequence or chemical space often needs to be explored to derive a comprehensive understanding of complex biological processes. Here we describe multiplexed single-molecule characterization at the library scale (MUSCLE), a method that combines single-molecule fluorescence microscopy with next-generation sequencing to enable highly multiplexed observations of complex dynamics. We comprehensively profiled the sequence dependence of DNA hairpin properties and Cas9-induced target DNA unwinding-rewinding dynamics. The ability to explore a large sequence space for Cas9 allowed us to identify a number of target sequences with unexpected behaviors. We envision that MUSCLE will enable the mechanistic exploration of many fundamental biological processes.
Collapse
Affiliation(s)
- J Aguirre Rivera
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - G Mao
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - A Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - M Panfilov
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - Q Hou
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - M Lindell
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, 75144 Uppsala, Sweden
| | - C Chanez
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland
| | - F Ritort
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - M Jinek
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland
| | - S Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| |
Collapse
|
35
|
Hirano S, Altae-Tran H, Kannan S, Macrae RK, Zhang F. Structural determinants of DNA cleavage by a CRISPR HNH-Cascade system. Mol Cell 2024; 84:3154-3162.e5. [PMID: 39111310 PMCID: PMC11459484 DOI: 10.1016/j.molcel.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 08/25/2024]
Abstract
Canonical prokaryotic type I CRISPR-Cas adaptive immune systems contain a multicomponent effector complex called Cascade, which degrades large stretches of DNA via Cas3 helicase-nuclease activity. Recently, a highly precise subtype I-F1 CRISPR-Cas system (HNH-Cascade) was found that lacks Cas3, the absence of which is compensated for by the insertion of an HNH endonuclease domain in the Cas8 Cascade component. Here, we describe the cryo-EM structure of Selenomonas sp. HNH-Cascade (SsCascade) in complex with target DNA and characterize its mechanism of action. The Cascade scaffold is complemented by the HNH domain, creating a ring-like structure in which the unwound target DNA is precisely cleaved. This structure visualizes a unique hybrid of two extensible biological systems-Cascade, an evolutionary platform for programmable DNA effectors, and an HNH nuclease, an adaptive domain with a spectrum of enzymatic activity.
Collapse
Affiliation(s)
- Seiichi Hirano
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Han Altae-Tran
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Soumya Kannan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Rhiannon K Macrae
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
36
|
Goldberg GW, Kogenaru M, Keegan S, Haase MAB, Kagermazova L, Arias MA, Onyebeke K, Adams S, Beyer DK, Fenyö D, Noyes MB, Boeke JD. Engineered transcription-associated Cas9 targeting in eukaryotic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.18.558319. [PMID: 37781609 PMCID: PMC10541143 DOI: 10.1101/2023.09.18.558319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
DNA targeting Class 2 CRISPR-Cas effector nucleases, including the well-studied Cas9 proteins, evolved protospacer-adjacent motif (PAM) and guide RNA interactions that sequentially license their binding and cleavage activities at protospacer target sites. Both interactions are nucleic acid sequence specific but function constitutively; thus, they provide intrinsic spatial control over DNA targeting activities but naturally lack temporal control. Here we show that engineered Cas9 fusion proteins which bind to nascent RNAs near a protospacer can facilitate spatiotemporal coupling between transcription and DNA targeting at that protospacer: Transcription-associated Cas9 Targeting (TraCT). Engineered TraCT is enabled in eukaryotic yeast or human cells when suboptimal PAM interactions limit basal activity and when one or more nascent RNA substrates are still tethered to the actively transcribed target DNA in cis. Using yeast, we further show that this phenomenon can be applied for selective editing at one of two identical targets in distinct gene loci, or, in diploid allelic loci that are differentially transcribed. Our work demonstrates that temporal control over Cas9's targeting activity at specific DNA sites may be engineered without modifying Cas9's core domains and guide RNA components or their expression levels. More broadly, it establishes co-transcriptional RNA binding as a cis-acting mechanism that can conditionally stimulate CRISPR-Cas DNA targeting in eukaryotic cells.
Collapse
Affiliation(s)
- Gregory W. Goldberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Manjunatha Kogenaru
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Max A. B. Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Larisa Kagermazova
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Mauricio A. Arias
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Kenenna Onyebeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Samantha Adams
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Daniel K. Beyer
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Marcus B. Noyes
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D. Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn NY 11201
| |
Collapse
|
37
|
Soczek KM, Cofsky JC, Tuck OT, Shi H, Doudna JA. CRISPR-Cas12a bends DNA to destabilize base pairs during target interrogation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606079. [PMID: 39131396 PMCID: PMC11312533 DOI: 10.1101/2024.07.31.606079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
RNA-guided endonucleases are involved in processes ranging from adaptive immunity to site-specific transposition and have revolutionized genome editing. CRISPR-Cas9, -Cas12 and related proteins use guide RNAs to recognize ~20-nucleotide target sites within genomic DNA by mechanisms that are not yet fully understood. We used structural and biochemical methods to assess early steps in DNA recognition by Cas12a protein-guide RNA complexes. We show here that Cas12a initiates DNA target recognition by bending DNA to induce transient nucleotide flipping that exposes nucleobases for DNA-RNA hybridization. Cryo-EM structural analysis of a trapped Cas12a-RNA-DNA surveillance complex and fluorescence-based conformational probing show that Cas12a-induced DNA helix destabilization enables target discovery and engagement. This mechanism of initial DNA interrogation resembles that of CRISPR-Cas9 despite distinct evolutionary origins and different RNA-DNA hybridization directionality of these enzyme families. Our findings support a model in which RNA-mediated DNA engineering begins with local helix distortion by transient CRISPR-Cas protein binding.
Collapse
Affiliation(s)
- Katarzyna M. Soczek
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Joshua C. Cofsky
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
| | - Owen T. Tuck
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley; Berkeley, CA, USA
| | - Honglue Shi
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley; Berkeley CA, USA
| | - Jennifer A. Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley; Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley; Berkeley CA, USA
- Gladstone-UCSF Institute of Genomic Immunology; San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA, USA
| |
Collapse
|
38
|
Yan H, Tan X, Zou S, Sun Y, Ke A, Tang W. Assessing and engineering the IscB-ωRNA system for programmed genome editing. Nat Chem Biol 2024:10.1038/s41589-024-01669-3. [PMID: 38977787 DOI: 10.1038/s41589-024-01669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
OMEGA RNA (ωRNA)-guided endonuclease IscB, the evolutionary ancestor of Cas9, is an attractive system for in vivo genome editing because of its compact size and mechanistic resemblance to Cas9. However, wild-type IscB-ωRNA systems show limited activity in human cells. Here we report enhanced OgeuIscB, which, with eight amino acid substitutions, displayed a fourfold increase in in vitro DNA-binding affinity and a 30.4-fold improvement in insertion-deletion (indel) formation efficiency in human cells. Paired with structure-guided ωRNA engineering, the enhanced OgeuIscB-ωRNA systems efficiently edited the human genome across 26 target sites, attaining up to 87.3% indel and 62.2% base-editing frequencies. Both wild-type and engineered OgeuIscB-ωRNA showed moderate fidelity in editing the human genome, with off-target profiles revealing key determinants of target selection including an NARR target-adjacent motif (TAM) and the TAM-proximal 14 nucleotides in the R-loop. Collectively, our engineered OgeuIscB-ωRNA systems are programmable, potent and sufficiently specific for human genome editing.
Collapse
Affiliation(s)
- Hao Yan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Xiaoqing Tan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Siyuan Zou
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Yihong Sun
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| | - Weixin Tang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
39
|
Wang J, Wang K, Deng Z, Zhong Z, Sun G, Mei Q, Zhou F, Deng Z, Sun Y. Engineered cytosine base editor enabling broad-scope and high-fidelity gene editing in Streptomyces. Nat Commun 2024; 15:5687. [PMID: 38971862 PMCID: PMC11227558 DOI: 10.1038/s41467-024-49987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
Base editing (BE) faces protospacer adjacent motif (PAM) constraints and off-target effects in both eukaryotes and prokaryotes. For Streptomyces, renowned as one of the most prolific bacterial producers of antibiotics, the challenges are more pronounced due to its diverse genomic content and high GC content. Here, we develop a base editor named eSCBE3-NG-Hypa, tailored with both high efficiency and -fidelity for Streptomyces. Of note, eSCBE3-NG-Hypa recognizes NG PAM and exhibits high activity at challenging sites with high GC content or GC motifs, while displaying minimal off-target effects. To illustrate its practicability, we employ eSCBE3-NG-Hypa to achieve precise key amino acid conversion of the dehydratase (DH) domains within the modular polyketide synthase (PKS) responsible for the insecticide avermectins biosynthesis, achieving domains inactivation. The resulting DH-inactivated mutants, while ceasing avermectins production, produce a high yield of oligomycin, indicating competitive relationships among multiple biosynthetic gene clusters (BGCs) in Streptomyces avermitilis. Leveraging this insight, we use eSCBE3-NG-Hypa to introduce premature stop codons into competitor gene cluster of ave in an industrial S. avermitilis, with the mutant Δolm exhibiting the highest 4.45-fold increase in avermectin B1a compared to the control. This work provides a potent tool for modifying biosynthetic pathways and advancing metabolic engineering in Streptomyces.
Collapse
Affiliation(s)
- Jian Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhe Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhiyu Zhong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Guo Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qing Mei
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuhui Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
40
|
Nakane T, Nakagawa R, Ishiguro S, Okazaki S, Mori H, Shuto Y, Yamashita K, Yachie N, Nishimasu H, Nureki O. Structure and engineering of Brevibacillus laterosporus Cas9. Commun Biol 2024; 7:803. [PMID: 38961195 PMCID: PMC11222456 DOI: 10.1038/s42003-024-06422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
The RNA-guided DNA endonuclease Cas9 cleaves double-stranded DNA targets complementary to an RNA guide, and is widely used as a powerful genome-editing tool. Here, we report the crystal structure of Brevibacillus laterosporus Cas9 (BlCas9, also known as BlatCas9), in complex with a guide RNA and its target DNA at 2.4-Å resolution. The structure reveals that the BlCas9 guide RNA adopts an unexpected architecture containing a triple-helix, which is specifically recognized by BlCas9, and that BlCas9 recognizes a unique N4CNDN protospacer adjacent motif through base-specific interactions on both the target and non-target DNA strands. Based on the structure, we rationally engineered a BlCas9 variant that exhibits enhanced genome- and base-editing activities with an expanded target scope in human cells. This approach may further improve the performance of the enhanced BlCas9 variant to generate useful genome-editing tools that require only a single C PAM nucleotide and can be packaged into a single AAV vector for in vivo gene therapy.
Collapse
Affiliation(s)
- Toshihiro Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryoya Nakagawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Soh Ishiguro
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, BC, V6S 0L4, Canada
| | - Sae Okazaki
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hideto Mori
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0035, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yutaro Shuto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Keitaro Yamashita
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Nozomu Yachie
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, BC, V6S 0L4, Canada
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, 565-0871, Japan
- Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Hiroshi Nishimasu
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
- Inamori Research Institute for Science, 620 Suiginya-cho, Shimogyo-ku, Kyoto, 600-8411, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
41
|
Acharya S, Ansari AH, Kumar Das P, Hirano S, Aich M, Rauthan R, Mahato S, Maddileti S, Sarkar S, Kumar M, Phutela R, Gulati S, Rahman A, Goel A, Afzal C, Paul D, Agrawal T, Pulimamidi VK, Jalali S, Nishimasu H, Mariappan I, Nureki O, Maiti S, Chakraborty D. PAM-flexible Engineered FnCas9 variants for robust and ultra-precise genome editing and diagnostics. Nat Commun 2024; 15:5471. [PMID: 38942756 PMCID: PMC11213958 DOI: 10.1038/s41467-024-49233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/29/2024] [Indexed: 06/30/2024] Open
Abstract
The clinical success of CRISPR therapies hinges on the safety and efficacy of Cas proteins. The Cas9 from Francisella novicida (FnCas9) is highly precise, with a negligible affinity for mismatched substrates, but its low cellular targeting efficiency limits therapeutic use. Here, we rationally engineer the protein to develop enhanced FnCas9 (enFnCas9) variants and broaden their accessibility across human genomic sites by ~3.5-fold. The enFnCas9 proteins with single mismatch specificity expanded the target range of FnCas9-based CRISPR diagnostics to detect the pathogenic DNA signatures. They outperform Streptococcus pyogenes Cas9 (SpCas9) and its engineered derivatives in on-target editing efficiency, knock-in rates, and off-target specificity. enFnCas9 can be combined with extended gRNAs for robust base editing at sites which are inaccessible to PAM-constrained canonical base editors. Finally, we demonstrate an RPE65 mutation correction in a Leber congenital amaurosis 2 (LCA2) patient-specific iPSC line using enFnCas9 adenine base editor, highlighting its therapeutic utility.
Collapse
Affiliation(s)
- Sundaram Acharya
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Asgar Hussain Ansari
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prosad Kumar Das
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Seiichi Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Meghali Aich
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Riya Rauthan
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sudipta Mahato
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Savitri Maddileti
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Sajal Sarkar
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manoj Kumar
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rhythm Phutela
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sneha Gulati
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Abdul Rahman
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Arushi Goel
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C Afzal
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Deepanjan Paul
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Trupti Agrawal
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vinay Kumar Pulimamidi
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Subhadra Jalali
- Srimati Kannuri Santhamma Centre for vitreoretinal diseases, Anant Bajaj Retina Institute, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Hiroshi Nishimasu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
- Inamori Research Institute for Science, 620 Suiginya-cho, Shimogyo-ku, Kyoto, 600-8411, Japan
| | - Indumathi Mariappan
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debojyoti Chakraborty
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
42
|
Liang Z, Huang C, Xia Y, Ye Z, Fan S, Zeng J, Guo S, Ma X, Sun L, Huo YX. Identification of functional sgRNA mutants lacking canonical secondary structure using high-throughput FACS screening. Cell Rep 2024; 43:114290. [PMID: 38823012 DOI: 10.1016/j.celrep.2024.114290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/22/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024] Open
Abstract
Coexpressing multiple identical single guide RNAs (sgRNAs) in CRISPR-dependent engineering triggers genetic instability and phenotype loss. To provide sgRNA derivatives for efficient DNA digestion, we design a high-throughput digestion-activity-dependent positive screening strategy and astonishingly obtain functional nonrepetitive sgRNA mutants with up to 48 out of the 61 nucleotides mutated, and these nonrepetitive mutants completely lose canonical secondary sgRNA structure in simulation. Cas9-sgRNA complexes containing these noncanonical sgRNAs maintain wild-type level of digestion activities in vivo, indicating that the Cas9 protein is compatible with or is able to adjust the secondary structure of sgRNAs. Using these noncanonical sgRNAs, we achieve multiplex genetic engineering for gene knockout and base editing in microbial cell factories. Libraries of strains with rewired metabolism are constructed, and overproducers of isobutanol or 1,3-propanediol are identified by biosensor-based fluorescence-activated cell sorting (FACS). This work sheds light on the remarkable flexibility of the secondary structure of functional sgRNA.
Collapse
Affiliation(s)
- Zeyu Liang
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Chaoyong Huang
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yan Xia
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhaojin Ye
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Shunhua Fan
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Junwei Zeng
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Beijing Institute of Technology (Tangshan) Translational Research Center, Hebei 063611, China
| | - Lichao Sun
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Beijing Institute of Technology (Tangshan) Translational Research Center, Hebei 063611, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Beijing Institute of Technology (Tangshan) Translational Research Center, Hebei 063611, China.
| |
Collapse
|
43
|
Kim GE, Park HH. AcrIIA28 is a metalloprotein that specifically inhibits targeted-DNA loading to SpyCas9 by binding to the REC3 domain. Nucleic Acids Res 2024; 52:6459-6471. [PMID: 38726868 PMCID: PMC11194106 DOI: 10.1093/nar/gkae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 06/25/2024] Open
Abstract
CRISPR-Cas systems serve as adaptive immune systems in bacteria and archaea, protecting against phages and other mobile genetic elements. However, phages and archaeal viruses have developed countermeasures, employing anti-CRISPR (Acr) proteins to counteract CRISPR-Cas systems. Despite the revolutionary impact of CRISPR-Cas systems on genome editing, concerns persist regarding potential off-target effects. Therefore, understanding the structural and molecular intricacies of diverse Acrs is crucial for elucidating the fundamental mechanisms governing CRISPR-Cas regulation. In this study, we present the structure of AcrIIA28 from Streptococcus phage Javan 128 and analyze its structural and functional features to comprehend the mechanisms involved in its inhibition of Cas9. Our current study reveals that AcrIIA28 is a metalloprotein that contains Zn2+ and abolishes the cleavage activity of Cas9 only from Streptococcus pyrogen (SpyCas9) by directly interacting with the REC3 domain of SpyCas9. Furthermore, we demonstrate that the AcrIIA28 interaction prevents the target DNA from being loaded onto Cas9. These findings indicate the molecular mechanisms underlying AcrIIA28-mediated Cas9 inhibition and provide valuable insights into the ongoing evolutionary battle between bacteria and phages.
Collapse
Affiliation(s)
- Gi Eob Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
44
|
Kang ES, Kim NH, Lim HK, Jeon H, Han K, No YH, Kim K, Khaleel ZH, Shin D, Eom K, Nam J, Lee BS, Kim HJ, Suh M, Lee J, Thach TT, Hyun J, Kim YH. Structure-Guided Engineering of Thermodynamically Enhanced SaCas9 for Improved Gene Suppression. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2404680. [PMID: 38944889 DOI: 10.1002/adma.202404680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Proteins with multiple domains play pivotal roles in various biological processes, necessitating a thorough understanding of their structural stability and functional interplay. Here, a structure-guided protein engineering approach is proposed to develop thermostable Cas9 (CRISPR-associated protein 9) variant for CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) interference applications. By employing thermodynamic analysis, combining distance mapping and molecular dynamics simulations, deletable domains are identified to enhance stability while preserving the DNA recognition function of Cas9. The resulting engineered Cas9, termed small and dead form Cas9, exhibits improved thermostability and maintains target DNA recognition function. Cryo-electron microscopy analysis reveals structural integrity with reduced atomic density in the deleted domain. Fusion with functional elements enables intracellular delivery and nuclear localization, demonstrating efficient gene suppression in diverse cell types. Direct delivery in the mouse brain shows enhanced knockdown efficiency, highlighting the potential of structure-guided engineering to develop functional CRISPR systems tailored for specific applications. This study underscores the significance of integrating computational and experimental approaches for protein engineering, offering insights into designing tailored molecular tools for precise biological interventions.
Collapse
Affiliation(s)
- Eun Sung Kang
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- IMNEWRUN INC., Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Nam Hyeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- IMNEWRUN INC., Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun-Kyoung Lim
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeyeon Jeon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kayoung Han
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Young Hyun No
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyungtae Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Zinah Hilal Khaleel
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Dongsun Shin
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kilho Eom
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jiyoung Nam
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- IMNEWRUN INC., Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Bok-Soo Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- IMNEWRUN INC., Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han-Joo Kim
- IMNEWRUN INC., Suwon, 16419, Republic of Korea
| | - Minah Suh
- IMNEWRUN INC., Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence (IPHC), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- KIST-SKKU Brain Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- IMNEWRUN INC., Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | | | - Jaekyung Hyun
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- IMNEWRUN INC., Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
45
|
Allemailem KS, Almatroudi A, Rahmani AH, Alrumaihi F, Alradhi AE, Alsubaiyel AM, Algahtani M, Almousa RM, Mahzari A, Sindi AAA, Dobie G, Khan AA. Recent Updates of the CRISPR/Cas9 Genome Editing System: Novel Approaches to Regulate Its Spatiotemporal Control by Genetic and Physicochemical Strategies. Int J Nanomedicine 2024; 19:5335-5363. [PMID: 38859956 PMCID: PMC11164216 DOI: 10.2147/ijn.s455574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
The genome editing approach by clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) is a revolutionary advancement in genetic engineering. Owing to its simple design and powerful genome-editing capability, it offers a promising strategy for the treatment of different infectious, metabolic, and genetic diseases. The crystal structure of Streptococcus pyogenes Cas9 (SpCas9) in complex with sgRNA and its target DNA at 2.5 Å resolution reveals a groove accommodating sgRNA:DNA heteroduplex within a bilobate architecture with target recognition (REC) and nuclease (NUC) domains. The presence of a PAM is significantly required for target recognition, R-loop formation, and strand scission. Recently, the spatiotemporal control of CRISPR/Cas9 genome editing has been considerably improved by genetic, chemical, and physical regulatory strategies. The use of genetic modifiers anti-CRISPR proteins, cell-specific promoters, and histone acetyl transferases has uplifted the application of CRISPR/Cas9 as a future-generation genome editing tool. In addition, interventions by chemical control, small-molecule activators, oligonucleotide conjugates and bioresponsive delivery carriers have improved its application in other areas of biological fields. Furthermore, the intermediation of physical control by using heat-, light-, magnetism-, and ultrasound-responsive elements attached to this molecular tool has revolutionized genome editing further. These strategies significantly reduce CRISPR/Cas9's undesirable off-target effects. However, other undesirable effects still offer some challenges for comprehensive clinical translation using this genome-editing approach. In this review, we summarize recent advances in CRISPR/Cas9 structure, mechanistic action, and the role of small-molecule activators, inhibitors, promoters, and physical approaches. Finally, off-target measurement approaches, challenges, future prospects, and clinical applications are discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arwa Essa Alradhi
- General Administration for Infectious Disease Control, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Amal M Alsubaiyel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca 21955, Saudi Arabia
| | - Rand Mohammad Almousa
- Department of Education, General Directorate of Education, Qassim 52361, Saudi Arabia
| | - Ali Mahzari
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65527, Saudi Arabia
| | - Abdulmajeed A A Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65527, Saudi Arabia
| | - Gasim Dobie
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan 82911, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
46
|
Huang D, Yang X, Peng Z, Yin H, Liu Y, Zhang Y, Li C, Chen G, Wang Q. Multichannel-optical imaging for in vivo evaluating the safety and therapeutic efficacy of stem cells in tumor model in terms of cell tropism, proliferation and NF-κB activity. Biomaterials 2024; 307:122510. [PMID: 38422837 DOI: 10.1016/j.biomaterials.2024.122510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/20/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Stem cell-based cancer treatment has garnered significant attention, yet its safety and efficacy remain incompletely understood. The nuclear factor-kappa B (NF-κB) pathway, a critical signaling mechanism involved in tumor growth, angiogenesis, and invasion, serves as an essential metric for evaluating the behavior of stem cells in tumor models. Herein, we report the development of a triple-channel imaging system capable of simultaneously monitoring the tropism of stem cells towards tumors, assessing tumor proliferation, and quantifying tumor NF-κB activity. In this system, we generated a CRISPR-Cas9 gene-edited human glioblastoma cell line, GE-U87-MG, which provided a reliable readout of the proliferation and NF-κB activity of tumors by EF1α-RFLuc- and NF-κB-GLuc-based bioluminescent imaging, respectively. Additionally, near infrared-II emitting Tat-PEG-AgAuSe quantum dots were developed for tracking of stem cell tropism towards tumor. In a representative case involving human mesenchymal stem cells (hMSCs), multichannel imaging revealed no discernible effect of hMSCs on the proliferation and NF-κB activity of GE-U87-MG tumors. Moreover, hMSCs engineered to overexpress the necrosis factor-related apoptosis-inducing ligand were able to inhibit NF-κB activity and growth of GE-U87-MG in vivo. Taken together, our imaging system represents a powerful and feasible approach to evaluating the safety and therapeutic efficacy of stem cells in tumor models.
Collapse
Affiliation(s)
- Dehua Huang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xue Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhao Peng
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongqiang Yin
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yongyang Liu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
47
|
Ganguly C, Rostami S, Long K, Aribam SD, Rajan R. Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms. J Biol Chem 2024; 300:107295. [PMID: 38641067 PMCID: PMC11127173 DOI: 10.1016/j.jbc.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are adaptive immune systems that protect bacteria and archaea from invading mobile genetic elements (MGEs). The Cas protein-CRISPR RNA (crRNA) complex uses complementarity of the crRNA "guide" region to specifically recognize the invader genome. CRISPR effectors that perform targeted destruction of the foreign genome have emerged independently as multi-subunit protein complexes (Class 1 systems) and as single multi-domain proteins (Class 2). These different CRISPR-Cas systems can cleave RNA, DNA, and protein in an RNA-guided manner to eliminate the invader, and in some cases, they initiate programmed cell death/dormancy. The versatile mechanisms of the different CRISPR-Cas systems to target and destroy nucleic acids have been adapted to develop various programmable-RNA-guided tools and have revolutionized the development of fast, accurate, and accessible genomic applications. In this review, we present the structure and interference mechanisms of different CRISPR-Cas systems and an analysis of their unified features. The three types of Class 1 systems (I, III, and IV) have a conserved right-handed helical filamentous structure that provides a backbone for sequence-specific targeting while using unique proteins with distinct mechanisms to destroy the invader. Similarly, all three Class 2 types (II, V, and VI) have a bilobed architecture that binds the RNA-DNA/RNA hybrid and uses different nuclease domains to cleave invading MGEs. Additionally, we highlight the mechanistic similarities of CRISPR-Cas enzymes with other RNA-cleaving enzymes and briefly present the evolutionary routes of the different CRISPR-Cas systems.
Collapse
Affiliation(s)
- Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Kole Long
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Swarmistha Devi Aribam
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
48
|
Qin M, Deng C, Wen L, Luo G, Meng Y. CRISPR-Cas and CRISPR-based screening system for precise gene editing and targeted cancer therapy. J Transl Med 2024; 22:516. [PMID: 38816739 PMCID: PMC11138051 DOI: 10.1186/s12967-024-05235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Target cancer therapy has been developed for clinical cancer treatment based on the discovery of CRISPR (clustered regularly interspaced short palindromic repeat) -Cas system. This forefront and cutting-edge scientific technique improves the cancer research into molecular level and is currently widely utilized in genetic investigation and clinical precision cancer therapy. In this review, we summarized the genetic modification by CRISPR/Cas and CRISPR screening system, discussed key components for successful CRISPR screening, including Cas enzymes, guide RNA (gRNA) libraries, target cells or organs. Furthermore, we focused on the application for CAR-T cell therapy, drug target, drug screening, or drug selection in both ex vivo and in vivo with CRISPR screening system. In addition, we elucidated the advantages and potential obstacles of CRISPR system in precision clinical medicine and described the prospects for future genetic therapy.In summary, we provide a comprehensive and practical perspective on the development of CRISPR/Cas and CRISPR screening system for the treatment of cancer defects, aiming to further improve the precision and accuracy for clinical treatment and individualized gene therapy.
Collapse
Affiliation(s)
- Mingming Qin
- Reproductive Medical Center, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Women and Children Hospital), Foshan, Guangdong, 528000, China
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chunhao Deng
- Chinese Medicine and Translational Medicine R&D center, Zhuhai UM Science & Technology Research Institute, Zhuhai, Guangdong, 519031, China
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, 519000, China
| | - Guoqun Luo
- Reproductive Medical Center, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University (Foshan Women and Children Hospital), Foshan, Guangdong, 528000, China.
| | - Ya Meng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
49
|
Tanga S, Hota A, Karmakar A, Banerjee P, Maji B. Cysteine-independent CRISPR-Associated Protein Labeling for Presentation and Co-delivery of Molecules Toward Genetic and Epigenetic Regulations. Chembiochem 2024; 25:e202400149. [PMID: 38530114 DOI: 10.1002/cbic.202400149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Labeling of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) associated proteins (Cas) remains an immense challenge for their genome engineering applications. To date, cysteine-mediated bioconjugation is the most efficient strategy for labeling Cas proteins. However, introducing a cysteine residue in the protein at the right place might be challenging without perturbing the enzymatic activity. We report a method that does not require cysteine residues for small molecule presentation on the CRISPR-associated protein SpCas9 for in vitro protein detection, probing cellular protein expression, and nuclear co-delivery of molecules in mammalian cells. We repurposed a simple protein purification tag His6 peptide for non-covalent labeling of molecules on the CRISPR enzyme SpCas9. The small molecule labeling enabled us to rapidly detect SpCas9 in a biochemical assay. We demonstrate that small molecule labeling can be utilized for probing bacterial protein expression in realtime. Furthermore, we coupled SpCas9's nuclear-targeting ability in co-delivering the presenting small molecules to the mammalian cell nucleus for prospective genome engineering applications. Furthermore, we demonstrate that the method can be generalized to label oligonucleotides for multiplexing CRISPR-based genome editing and template-mediated DNA repair applications. This work paves the way for genomic loci-specific bioactive small molecule and oligonucleotide co-delivery toward genetic and epigenetic regulations.
Collapse
Affiliation(s)
- Sadiya Tanga
- Ashoka University, Department of Chemistry, Rajiv Gandhi Education City, Sonipat, Haryana, 131029
- Bose Institute, Department of Biological Sciences, EN 80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal
| | - Arpita Hota
- Bose Institute, Department of Biological Sciences, EN 80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal
| | - Arkadeep Karmakar
- Bose Institute, Department of Biological Sciences, EN 80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal
| | - Paramita Banerjee
- S N Bose National Centre for Basic Science, JD Block, Sector 3, Bidhannagar, Kolkata, 700106, West Bengal
| | - Basudeb Maji
- Bose Institute, Department of Biological Sciences, EN 80, Sector V, Bidhannagar, Kolkata, 700091, West Bengal
| |
Collapse
|
50
|
Bhattacharya S, Agarwal A, Muniyappa K. Deciphering the Substrate Specificity Reveals that CRISPR-Cas12a Is a Bifunctional Enzyme with Both Endo- and Exonuclease Activities. J Mol Biol 2024; 436:168550. [PMID: 38575054 DOI: 10.1016/j.jmb.2024.168550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
The class 2 CRISPR-Cas9 and CRISPR-Cas12a systems, originally described as adaptive immune systems of bacteria and archaea, have emerged as versatile tools for genome-editing, with applications in biotechnology and medicine. However, significantly less is known about their substrate specificity, but such knowledge may provide instructive insights into their off-target cleavage and previously unrecognized mechanism of action. Here, we document that the Acidaminococcus sp. Cas12a (AsCas12a) binds preferentially, and independently of crRNA, to a suite of branched DNA structures, such as the Holliday junction (HJ), replication fork and D-loops, compared with single- or double-stranded DNA, and promotes their degradation. Further, our study revealed that AsCas12a binds to the HJ, specifically at the crossover region, protects it from DNase I cleavage and renders a pair of thymine residues in the HJ homologous core hypersensitive to KMnO4 oxidation, suggesting DNA melting and/or distortion. Notably, these structural changes enabled AsCas12a to resolve HJ into nonligatable intermediates, and subsequently their complete degradation. We further demonstrate that crRNA impedes HJ cleavage by AsCas12a, and that of Lachnospiraceae bacterium Cas12a, without affecting their DNA-binding ability. We identified a separation-of-function variant, which uncouples DNA-binding and DNA cleavage activities of AsCas12a. Importantly, we found robust evidence that AsCas12a endonuclease also has 3'-to-5' and 5'-to-3' exonuclease activity, and that these two activities synergistically promote degradation of DNA, yielding di- and mononucleotides. Collectively, this study significantly advances knowledge about the substrate specificity of AsCas12a and provides important insights into the degradation of different types of DNA substrates.
Collapse
Affiliation(s)
- Supreet Bhattacharya
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Ankit Agarwal
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|