1
|
Nietiadi ML, Urbassek HM, Rosandi Y. An atomistic study of sticking, bouncing, and aggregate destruction in collisions of grains with small aggregates. Sci Rep 2024; 14:7439. [PMID: 38548830 PMCID: PMC10978963 DOI: 10.1038/s41598-024-57844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024] Open
Abstract
Molecular dynamics simulations are used to study central collisions between spherical grains and between grains and small grain aggregates (up to 5 grains). For a model material (Lennard-Jones), grain-grain collisions are sticking when the relative velocity v is smaller than the so-called bouncing velocity and bouncing for higher velocities. We find a similar behavior for grain-aggregate collisions. The value of the bouncing velocity depends only negligibly on the aggregate size. However, it is by 35% larger than the separation velocity needed to break a contact; this is explained by energy dissipation processes during the collision. The separation velocity follows the predictions of the macroscopic Johnson-Kendall-Roberts theory of contacts. At even higher collision velocities, the aggregate is destroyed, first by the loss of a monomer grain and then by total disruption. In contrast to theoretical considerations, we do not find a proportionality of the collision energy needed for destruction and the number of bonds to be broken. Our study thus sheds novel light on the foundations of granular mechanics, namely the energy needed to separate two grains, the difference between grain-grain and grain-aggregate collisions, and the energy needed for aggregate destruction.
Collapse
Affiliation(s)
- Maureen L Nietiadi
- Department of Geophysics, Universitas Padjadjaran, Jatinangor, Sumedang, 45363, Indonesia
| | - Herbert M Urbassek
- Physics Department, University Kaiserslautern-Landau, Erwin-Schrödinger-Straße, 67663, Kaiserslautern, Germany.
| | - Yudi Rosandi
- Department of Geophysics, Universitas Padjadjaran, Jatinangor, Sumedang, 45363, Indonesia
| |
Collapse
|
2
|
Alfaridzi R, Urbassek HM, Rosandi Y. The effect of collisions on the chemomechanics of ice-covered silica slabs: a molecular dynamics study. Phys Chem Chem Phys 2023; 25:32208-32215. [PMID: 37987499 DOI: 10.1039/d3cp03892k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Using molecular dynamics simulation and the REAX potential, we study the collision of two planar silica surfaces covered by water ice. Without the ice cover, the two surfaces stick at all velocities investigated (160-1800 m s-1), due to the formation of chemical bonds between the colliding surfaces. A narrow ice cover - here of thickness 2 nm - prevents the sticking above a characteristic velocity, the bouncing velocity νb. During the collision, reactions occur at the silica-water interface; in particular, water molecules are dissociated and silanols are formed at the surface of the silica slabs. Passivation of the silica surface by H atoms is of little consequence to the magnitude of vb but reduces the number of surface reactions occurring.
Collapse
Affiliation(s)
- Raihan Alfaridzi
- The Department of Geophysics and The Department of Chemistry, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Herbert M Urbassek
- Physics Department and Research Center OPTIMAS, University Kaiserslautern-Landau, Erwin-Schrödinger-Straße, Kaiserslautern D-67663, Germany.
| | - Yudi Rosandi
- The Department of Geophysics and The Department of Chemistry, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
3
|
Goetz C, Behar E, Beth A, Bodewits D, Bromley S, Burch J, Deca J, Divin A, Eriksson AI, Feldman PD, Galand M, Gunell H, Henri P, Heritier K, Jones GH, Mandt KE, Nilsson H, Noonan JW, Odelstad E, Parker JW, Rubin M, Simon Wedlund C, Stephenson P, Taylor MGGT, Vigren E, Vines SK, Volwerk M. The Plasma Environment of Comet 67P/Churyumov-Gerasimenko. SPACE SCIENCE REVIEWS 2022; 218:65. [PMID: 36397966 PMCID: PMC9649581 DOI: 10.1007/s11214-022-00931-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/20/2022] [Indexed: 06/04/2023]
Abstract
The environment of a comet is a fascinating and unique laboratory to study plasma processes and the formation of structures such as shocks and discontinuities from electron scales to ion scales and above. The European Space Agency's Rosetta mission collected data for more than two years, from the rendezvous with comet 67P/Churyumov-Gerasimenko in August 2014 until the final touch-down of the spacecraft end of September 2016. This escort phase spanned a large arc of the comet's orbit around the Sun, including its perihelion and corresponding to heliocentric distances between 3.8 AU and 1.24 AU. The length of the active mission together with this span in heliocentric and cometocentric distances make the Rosetta data set unique and much richer than sets obtained with previous cometary probes. Here, we review the results from the Rosetta mission that pertain to the plasma environment. We detail all known sources and losses of the plasma and typical processes within it. The findings from in-situ plasma measurements are complemented by remote observations of emissions from the plasma. Overviews of the methods and instruments used in the study are given as well as a short review of the Rosetta mission. The long duration of the Rosetta mission provides the opportunity to better understand how the importance of these processes changes depending on parameters like the outgassing rate and the solar wind conditions. We discuss how the shape and existence of large scale structures depend on these parameters and how the plasma within different regions of the plasma environment can be characterised. We end with a non-exhaustive list of still open questions, as well as suggestions on how to answer them in the future.
Collapse
Affiliation(s)
- Charlotte Goetz
- ESTEC, European Space Agency, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle-upon-Tyne, UK
| | - Etienne Behar
- Swedish Institute of Space Physics, Box 812, 981 28 Kiruna, Sweden
- Lagrange, OCA, UCA, CNRS, Nice, France
| | - Arnaud Beth
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - Dennis Bodewits
- Physics Department, Leach Science Center, Auburn University, Auburn, AL 36832 USA
| | - Steve Bromley
- Physics Department, Leach Science Center, Auburn University, Auburn, AL 36832 USA
| | - Jim Burch
- Southwest Research Institute, P.O. Drawer 28510, San Antonio, TX 78228-0510 USA
| | - Jan Deca
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, 3665 Discovery Drive, Boulder, CO 80303 USA
| | - Andrey Divin
- Earth Physics Department, St. Petersburg State University, Ulianovskaya, 1, St Petersburg, 198504 Russia
| | | | - Paul D. Feldman
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Marina Galand
- Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ UK
| | - Herbert Gunell
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - Pierre Henri
- Lagrange, OCA, UCA, CNRS, Nice, France
- LPC2E, CNRS, Orléans, France
| | - Kevin Heritier
- Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ UK
| | - Geraint H. Jones
- UCL Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, RH5 6NT UK
- The Centre for Planetary Sciences at UCL/Birkbeck, Gower Street, London, WC1E 6BT UK
| | | | - Hans Nilsson
- Swedish Institute of Space Physics, Box 812, 981 28 Kiruna, Sweden
| | - John W. Noonan
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85719 USA
| | - Elias Odelstad
- Swedish Institute of Space Physics, Box 537, SE-751 21 Uppsala, Sweden
| | | | - Martin Rubin
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Cyril Simon Wedlund
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
| | - Peter Stephenson
- Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ UK
| | | | - Erik Vigren
- Swedish Institute of Space Physics, Box 537, SE-751 21 Uppsala, Sweden
| | - Sarah K. Vines
- Johns Hopkins Applied Physics Laboratory, Laurel, MD 20723 USA
| | - Martin Volwerk
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
| |
Collapse
|
4
|
Nietiadi ML, Rosandi Y, Bringa EM, Urbassek HM. Collisions between CO, CO[Formula: see text], H[Formula: see text]O and Ar ice nanoparticles compared by molecular dynamics simulation. Sci Rep 2022; 12:13858. [PMID: 35974128 PMCID: PMC9381553 DOI: 10.1038/s41598-022-18039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/04/2022] [Indexed: 12/01/2022] Open
Abstract
Molecular dynamics simulations are used to study collisions between amorphous ice nanoparticles consisting of CO, CO[Formula: see text], Ar and H[Formula: see text]O. The collisions are always sticking for the nanoparticle size (radius of 20 nm) considered. At higher collision velocities, the merged clusters show strong plastic deformation and material mixing in the collision zone. Collision-induced heating influences the collision outcome. Partial melting of the merged cluster in the collision zone contributes to energy dissipation and deformation. Considerable differences exist-even at comparable collision conditions-between the ices studied here. The number of ejecta emitted during the collision follows the trend in triple-point temperatures and increases exponentially with the NP temperature.
Collapse
Affiliation(s)
- Maureen L. Nietiadi
- Physics Department and Research Center OPTIMAS, University Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Yudi Rosandi
- Department of Geophysics, Universitas Padjadjaran, Jatinangor, Sumedang 45363 Indonesia
| | - Eduardo M. Bringa
- CONICET and Facultad de Ingenería, Universidad de Mendoza, 5500 Mendoza, Argentina
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, 8580745 Santiago, Chile
| | - Herbert M. Urbassek
- Physics Department and Research Center OPTIMAS, University Kaiserslautern, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| |
Collapse
|
5
|
Monte Carlo Models of Comet Dust Tails Observed from the Ground. UNIVERSE 2022. [DOI: 10.3390/universe8070366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dust particles leaving the comet nucleus surface are entrained by the gas within the first few nuclear radius distances and are subjected to a complex hydrodynamical environment. From distances of about 20 nuclear radii outwards, the particles decouple from the accelerating gas and are mainly affected by solar gravity and radiation pressure for small-sized nuclei. Their motion is then a function of their so-called β parameter, which is the ratio of the radiation pressure force to gravity force, and their velocity when the gas drag vanishes. At a given observation time, the position of those particles projected on the sky plane form the coma, tail and trail structures that can be observed from ground-based or space-borne instrumentation. Monte Carlo models, based on the computer simulation of the Keplerian trajectories of a large set of dust particles, provide the best possible approach to extract the dust environment parameters from the observed scattered solar light or thermal emission. In this paper, we describe the Monte Carlo code along with some successful applications of such technique to a number of targets.
Collapse
|
6
|
Bouncing and spinning of amorphous Lennard-Jones nanoparticles under oblique collisions. Sci Rep 2022; 12:10699. [PMID: 35739170 PMCID: PMC9226068 DOI: 10.1038/s41598-022-14754-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022] Open
Abstract
Collisions of Lennard-Jones nanoparticles (NPs) may be used to study the generic collision behavior of NPs. We study the collision dynamics of amorphous NPs for oblique collisions using molecular dynamics simulation as a function of collision velocity and impact parameter. In order to allow for NP bouncing, the attraction between atoms originating from differing NPs is reduced. For near-central collisions, a finite region of velocities – a ‘bouncing window’ – exists where the 2 NPs bounce from each other. At smaller velocities, energy dissipation and – at larger velocities – also NP deformation do not allow the NPs to surpass the attractive forces such that they stick to each other. Oblique collisions of non-rotating NPs convert angular momentum into NP spin. For low velocities, the NP spin is well described by assuming the NPs to come momentarily to a complete stop at the contact point (‘grip’), such that orbital and spin angular momentum share the pre-collision angular momentum in a ratio of 5:2. The normal coefficient of restitution increases with impact parameter for small velocities, but changes sign for larger velocities where the 2 NPs do not repel but their motion direction persists. The tangential coefficient of restitution is fixed in the ‘grip’ regime to a value of 5/7, but increases towards 1 for high-velocity collisions at not too small impact parameters, where the 2 NPs slide along each other.
Collapse
|
7
|
YOSHIMURA Y, ENYA K, KOBAYASHI K, SASAKI S, YAMAGISHI A. Life Explorations for Biosignatures in Space. BUNSEKI KAGAKU 2021. [DOI: 10.2116/bunsekikagaku.70.309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yoshitaka YOSHIMURA
- Department of Advanced Food Sciences, College of Agriculture, Tamagawa University
| | - Keigo ENYA
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
| | - Kensei KOBAYASHI
- Graduate School of Engineering Science, Yokohama National University
| | - Satoshi SASAKI
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Akihiko YAMAGISHI
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
8
|
Potapov A, McCoustra M. Physics and chemistry on the surface of cosmic dust grains: a laboratory view. INT REV PHYS CHEM 2021. [DOI: 10.1080/0144235x.2021.1918498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexey Potapov
- Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Jena, Germany
| | - Martin McCoustra
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
9
|
Marschall R, Skorov Y, Zakharov V, Rezac L, Gerig SB, Christou C, Dadzie SK, Migliorini A, Rinaldi G, Agarwal J, Vincent JB, Kappel D. Cometary Comae-Surface Links: The Physics of Gas and Dust from the Surface to a Spacecraft. SPACE SCIENCE REVIEWS 2020; 216:130. [PMID: 33184519 PMCID: PMC7647976 DOI: 10.1007/s11214-020-00744-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/28/2020] [Indexed: 06/04/2023]
Abstract
A comet is a highly dynamic object, undergoing a permanent state of change. These changes have to be carefully classified and considered according to their intrinsic temporal and spatial scales. The Rosetta mission has, through its contiguous in-situ and remote sensing coverage of comet 67P/Churyumov-Gerasimenko (hereafter 67P) over the time span of August 2014 to September 2016, monitored the emergence, culmination, and winding down of the gas and dust comae. This provided an unprecedented data set and has spurred a large effort to connect in-situ and remote sensing measurements to the surface. In this review, we address our current understanding of cometary activity and the challenges involved when linking comae data to the surface. We give the current state of research by describing what we know about the physical processes involved from the surface to a few tens of kilometres above it with respect to the gas and dust emission from cometary nuclei. Further, we describe how complex multidimensional cometary gas and dust models have developed from the Halley encounter of 1986 to today. This includes the study of inhomogeneous outgassing and determination of the gas and dust production rates. Additionally, the different approaches used and results obtained to link coma data to the surface will be discussed. We discuss forward and inversion models and we describe the limitations of the respective approaches. The current literature suggests that there does not seem to be a single uniform process behind cometary activity. Rather, activity seems to be the consequence of a variety of erosion processes, including the sublimation of both water ice and more volatile material, but possibly also more exotic processes such as fracture and cliff erosion under thermal and mechanical stress, sub-surface heat storage, and a complex interplay of these processes. Seasons and the nucleus shape are key factors for the distribution and temporal evolution of activity and imply that the heliocentric evolution of activity can be highly individual for every comet, and generalisations can be misleading.
Collapse
Affiliation(s)
- Raphael Marschall
- Southwest Research Institute, 1050 Walnut St, Suite 300, Boulder, CO 80302 USA
- International Space Science Institute (ISSI), Hallerstrasse 6, 3012 Bern, Switzerland
| | - Yuri Skorov
- Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | | | - Ladislav Rezac
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Selina-Barbara Gerig
- Physikalisches Institut, University of Bern, Sidlerstr. 5, 3012 Bern, Switzerland
- NCCR PlanetS, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Chariton Christou
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland UK
| | - S. Kokou Dadzie
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS Scotland UK
| | | | | | - Jessica Agarwal
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - Jean-Baptiste Vincent
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Planetenforschung, Rutherfordstrasse 2, 12489 Berlin, Germany
| | - David Kappel
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Planetenforschung, Rutherfordstrasse 2, 12489 Berlin, Germany
- Institute of Physics and Astronomy, University of Potsdam, Potsdam-Golm, Germany
| |
Collapse
|
10
|
Potapov A, Jäger C, Henning T. Ice Coverage of Dust Grains in Cold Astrophysical Environments. PHYSICAL REVIEW LETTERS 2020; 124:221103. [PMID: 32567895 DOI: 10.1103/physrevlett.124.221103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/14/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Surface processes on cosmic solids in cold astrophysical environments lead to gas-phase depletion and molecular complexity. Most astrophysical models assume that the molecular ice forms a thick multilayer substrate, not interacting with the dust surface. In contrast, we present experimental results demonstrating the importance of the surface for porous grains. We show that cosmic dust grains may be covered by a few monolayers of ice only. This implies that the role of dust surface structure, composition, and reactivity in models describing surface processes in cold interstellar, protostellar, and protoplanetary environments has to be reevaluated.
Collapse
Affiliation(s)
- Alexey Potapov
- Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, 07743 Jena, Germany
| | - Cornelia Jäger
- Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, 07743 Jena, Germany
| | - Thomas Henning
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany
| |
Collapse
|
11
|
Nietiadi ML, Rosandi Y, Urbassek HM. Bouncing of Hydroxylated Silica Nanoparticles: an Atomistic Study Based on REAX Potentials. NANOSCALE RESEARCH LETTERS 2020; 15:67. [PMID: 32232683 PMCID: PMC7105590 DOI: 10.1186/s11671-020-03296-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Clean silica surfaces have a high surface energy. In consequence, colliding silica nanoparticles will stick rather than bounce over a wide range of collision velocities. Often, however, silica surfaces are passivated by adsorbates, in particular water, which considerably reduce the surface energy. We study the effect of surface hydroxylation on silica nanoparticle collisions by atomistic simulation, using the REAX potential that allows for bond breaking and formation. We find that the bouncing velocity is reduced by more than an order of magnitude compared to clean nanoparticle collisions.
Collapse
Affiliation(s)
- Maureen L Nietiadi
- Physics Department and Research Center OPTIMAS, University Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, 67663, Germany
| | - Yudi Rosandi
- Department of Geophysics, Universitas Padjadjaran, Jatinangor, Sumedang, 45363, Indonesia
| | - Herbert M Urbassek
- Physics Department and Research Center OPTIMAS, University Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern, 67663, Germany.
| |
Collapse
|
12
|
Rubin M, Engrand C, Snodgrass C, Weissman P, Altwegg K, Busemann H, Morbidelli A, Mumma M. On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko. SPACE SCIENCE REVIEWS 2020. [PMID: 32801398 DOI: 10.1007/s11214-019-0625-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Primitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects.
Collapse
Affiliation(s)
- Martin Rubin
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Cécile Engrand
- CNRS/IN2P3, IJCLab, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Colin Snodgrass
- Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ UK
| | | | - Kathrin Altwegg
- Physikalisches Institut, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
| | - Henner Busemann
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Michael Mumma
- NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, 20771 MD USA
| |
Collapse
|
13
|
The Influence of Chemical Component Distribution on the Radiometric Properties of Particle Aggregates. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The radiometric properties, including the extinction efficiency, absorption efficiency, scattering efficiency, and asymmetric parameter values of particle aggregates consisting of multiple chemical components are critical in industry and nature. This article aims to analyze the influence of chemical component distribution on these radiometric properties. The particle aggregates are generated by a diffusion-limited aggregate method by which spherical particles are stuck together randomly. The particle aggregates have two components with a major component of a fixed refractive index and a minor component of a changed refractive index. The radiometric properties are calculated using a multi-sphere T-matrix (MSTM) method for particle aggregates with different particle radii and with refractive indices, distributions of components, and volume fractions of the minor component. The results show that the chemical component distribution influences the radiometric properties of the particle aggregate. Evenly spreading the strong absorptive minor component into each particle, compared to concentrating it in a few particles, can raise the absorption efficiency, reduce the scattering efficiency, and ultimately reduce the extinction efficiency of the aggregate. For aggregates with major and minor components in different particles, a similar effect is shown when spreading the minor component particles evenly in the aggregate relative to gathering them in one part of the aggregate.
Collapse
|
14
|
Nietiadi ML, Millán EN, Bringa EM, Urbassek HM. Bouncing window for colliding nanoparticles: Role of dislocation generation. Phys Rev E 2019; 99:032904. [PMID: 30999515 DOI: 10.1103/physreve.99.032904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Indexed: 11/07/2022]
Abstract
Available macroscopic theories-such as the Johnson-Kendall-Roberts (JKR) model-predict spherical particles to stick to each other at small collision velocities v; above the bouncing velocity, v_{b}, they bounce. We study the details of the bouncing threshold using molecular dynamics simulation for crystalline nanoparticles where atoms interact via the Lennard-Jones potential. We show that the bouncing velocity strongly depends on the nanoparticle orientation during collision; for some orientations, nanoparticles stick at all velocities. The dependence of bouncing on orientation is caused by energy dissipation during dislocation activity. The bouncing velocity decreases with increasing nanoparticle radius in reasonable agreement with JKR theory. For orientations for which bouncing exists, nanoparticles stick again at a higher velocity, the fusion velocity, v_{f}, such that bouncing only occurs in a finite range of velocities-the bouncing window. The fusion velocity is rather independent of the nanoparticle radius.
Collapse
Affiliation(s)
- Maureen L Nietiadi
- Fachbereich Physik und Forschungszentrum OPTIMAS, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany
| | - Emmanuel N Millán
- CONICET and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Eduardo M Bringa
- CONICET and Facultad de Ingenería, Universidad de Mendoza, Mendoza 5500, Argentina
| | - Herbert M Urbassek
- Fachbereich Physik und Forschungszentrum OPTIMAS, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany
| |
Collapse
|
15
|
Levasseur-Regourd AC, Agarwal J, Cottin H, Engrand C, Flynn G, Fulle M, Gombosi T, Langevin Y, Lasue J, Mannel T, Merouane S, Poch O, Thomas N, Westphal A. Cometary Dust. SPACE SCIENCE REVIEWS 2018; 214:64. [PMID: 35095119 PMCID: PMC8793767 DOI: 10.1007/s11214-018-0496-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/16/2018] [Indexed: 05/15/2023]
Abstract
This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.
Collapse
Affiliation(s)
- Anny-Chantal Levasseur-Regourd
- Sorbonne Université; UVSQ; CNRS/INSU; Campus Pierre et Marie Curie, BC 102, 4 place Jussieu, F-75005 Paris, France, Tel.: + 33 144274875,
| | - Jessica Agarwal
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg, 3, D-37077, Göttingen, Germany
| | - Hervé Cottin
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris-Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, 94000 Créteil, France
| | - Cécile Engrand
- Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS/IN2P3 Université Paris Sud - UMR 8609, Université Paris-Saclay, Bâtiment 104, 91405 Orsay Campus, France
| | - George Flynn
- SUNY-Plattsburgh, 101 Broad St, Plattsburgh, NY 12901, United States
| | - Marco Fulle
- INAF - Osservatorio Astronomico, Via Tiepolo 11, 34143 Trieste Italy
| | - Tamas Gombosi
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yves Langevin
- Institut dAstrophysique Spatiale (IAS), CNRS/Université Paris Sud, Bâtiment 121, 91405 Orsay France
| | - Jérémie Lasue
- IRAP, Université de Toulouse, CNRS, UPS, CNES, Toulouse, France
| | - Thurid Mannel
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria; Physics Institute, University of Graz, Universitätsplatz 5, 8010 Graz, Austria
| | - Sihane Merouane
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg, 3, D-37077, Göttingen, Germany
| | - Olivier Poch
- Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France
| | - Nicolas Thomas
- Physikalisches Institut, Universität Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Andrew Westphal
- Space Sciences Laboratory, U.C. Berkeley, Berkeley, California 94720-7450 USA
| |
Collapse
|
16
|
Nietiadi ML, Umstätter P, Tjong T, Rosandi Y, Millán EN, Bringa EM, Urbassek HM. The bouncing threshold in silica nanograin collisions. Phys Chem Chem Phys 2018; 19:16555-16562. [PMID: 28612852 DOI: 10.1039/c7cp02106b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using molecular dynamics simulations, we study collisions between amorphous silica nanoparticles. Our silica model contains uncontaminated surfaces, that is, the effect of surface hydroxylation or of adsorbed water layers is excluded. For central collisions, we characterize the boundary between sticking and bouncing collisions as a function of impact velocity and particle size and quantify the coefficient of restitution. We show that the traditional Johnson-Kendall-Roberts (JKR) model provides a valid description of the ingoing trajectory of two grains up to the moment of maximum compression. The distance of closest approach is slightly underestimated by the JKR model, due to the appearance of plasticity in the grains, which shows up in the form of localized shear transformation zones. The JKR model strongly underestimates the contact radius and the collision duration during the outgoing trajectory, evidencing that the breaking of covalent bonds during grain separation is not well described by this model. The adhesive neck formed between the two grains finally collapses while creating narrow filaments joining the grains, which eventually tear.
Collapse
Affiliation(s)
- Maureen L Nietiadi
- Fachbereich Physik und Forschungszentrum OPTIMAS, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Jeżewski W. Aggregation and fragmentation in liquids with dispersed nanoparticles. Phys Chem Chem Phys 2018; 20:18879-18888. [DOI: 10.1039/c8cp01594e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nanoparticle-induced aggregation and fragmentation phenomena in liquid media are investigated by applying a model of preferential attachment of dispersing molecules to randomly chosen nanoparticles and larger particles, each containing a single nanoparticle.
Collapse
Affiliation(s)
- Wojciech Jeżewski
- Institute of Molecular Physics
- Polish Academy of Sciences
- 60-179 Poznań
- Poland
| |
Collapse
|
18
|
Russell MJ, Murray AE, Hand KP. The Possible Emergence of Life and Differentiation of a Shallow Biosphere on Irradiated Icy Worlds: The Example of Europa. ASTROBIOLOGY 2017; 17:1265-1273. [PMID: 29016193 PMCID: PMC5729856 DOI: 10.1089/ast.2016.1600] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/28/2017] [Indexed: 05/17/2023]
Abstract
Irradiated ice-covered ocean worlds with rocky mafic mantles may provide the conditions needed to drive the emergence and maintenance of life. Alkaline hydrothermal springs-relieving the geophysical, thermal, and chemical disequilibria between oceans and tidally stressed crusts-could generate inorganic barriers to the otherwise uncontrolled and kinetically disfavored oxidation of hydrothermal hydrogen and methane. Ionic gradients imposed across these inorganic barriers, comprising iron oxyhydroxides and sulfides, could drive the hydrogenation of carbon dioxide and the oxidation of methane through thermodynamically favorable metabolic pathways leading to early life-forms. In such chemostatic environments, fuels may eventually outweigh oxidants. Ice-covered oceans are primarily heated from below, creating convection that could transport putative microbial cells and cellular cooperatives upward to congregate beneath an ice shell, potentially giving rise to a highly focused shallow biosphere. It is here where electron acceptors, ultimately derived from the irradiated surface, could be delivered to such life-forms through exchange with the icy surface. Such zones would act as "electron disposal units" for the biosphere, and occupants might be transferred toward the surface by buoyant diapirs and even entrained into plumes. Key Words: Biofilms-Europa-Extraterrestrial life-Hydrothermal systems. Astrobiology 17, 1265-1273.
Collapse
Affiliation(s)
- Michael J. Russell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Alison E. Murray
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, Nevada
| | - Kevin P. Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
19
|
Wooden DH, Ishii HA, Zolensky ME. Cometary dust: the diversity of primitive refractory grains. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:20160260. [PMID: 28554979 PMCID: PMC5454228 DOI: 10.1098/rsta.2016.0260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/13/2017] [Indexed: 05/07/2023]
Abstract
Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive cometary particles has expanded significantly through microscale investigations of cosmic dust samples (anhydrous interplanetary dust particles (IDPs), chondritic porous (CP) IDPs and UltraCarbonaceous Antarctic micrometeorites, Stardust and Rosetta), as well as through remote sensing (Spitzer IR spectroscopy). Comet dust are aggregate particles of materials unequilibrated at submicrometre scales. We discuss the properties and processes experienced by primitive matter in comets. Primitive particles exhibit a diverse range of: structure and typology; distribution of constituents; concentration and form of carbonaceous and refractory organic matter; Mg- and Fe-contents of the silicate minerals; sulfides; existence/abundance of type II chondrule fragments; high-temperature calcium-aluminium inclusions and ameboid-olivine aggregates; and rarely occurring Mg-carbonates and magnetite, whose explanation requires aqueous alteration on parent bodies. The properties of refractory materials imply there were disc processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disc present at the time and in the region where the comets formed.This article is part of the themed issue 'Cometary science after Rosetta'.
Collapse
Affiliation(s)
- D H Wooden
- NASA Ames Research Center, Moffett Field, CA 94035-0001, USA
| | - H A Ishii
- University of Hawaii, Hawai'i Institute of Geophysics and Planetology, Honolulu, HI 96822, USA
| | - M E Zolensky
- NASA Johnson Space Center, ARES, X12 2010 NASA Parkway, Houston, TX 77058-3607, USA
| |
Collapse
|
20
|
Mann I. Comets as a possible source of nanodust in the Solar System cloud and in planetary debris discs. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0254. [PMID: 28554974 DOI: 10.1098/rsta.2016.0254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/29/2017] [Indexed: 05/25/2023]
Abstract
Comets, comet-like objects and their fragments are the most plausible source for the dust in both the inner heliosphere and planetary debris discs around other stars. The smallest size of dust particles in debris discs is not known and recent observational results suggest that the size distribution of the dust extends down to sizes of a few nanometres or a few tens of nanometres. In the Solar System, electric field measurements from spacecraft observe events that are explained with high-velocity impacts of nanometre-sized dust. In some planetary debris discs an observed mid- to near-infrared emission supposedly results from hot dust located in the vicinity of the star. And the observed emission is characteristic of dust of sizes a few tens of nanometres. Rosetta observations, on the other hand, provide little information on the presence of nanodust near comet 67P/Churyumov-Gerasimenko. This article describes why this is not in contradiction to the observations of nanodust in the heliosphere and in planetary debris discs. The direct ejection of nanodust from the nucleus of the comet would not contribute significantly to the observed nanodust fluxes. We discuss a scenario that nanodust forms in the interplanetary dust cloud through the high-velocity collision process in the interplanetary medium for which the production rates are highest near the Sun. Likewise, fragmentation by collisions occurs near the star in planetary debris discs. The collisional fragmentation process in the inner Solar System occurs at similar velocities to those of the collisional evolution in the interstellar medium. A question for future studies is whether there is a common magic size of the smallest collision fragments and what determines this size.This article is part of the themed issue 'Cometary science after Rosetta'.
Collapse
Affiliation(s)
- Ingrid Mann
- Department of Physics and Technology, UiT the Artic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
| |
Collapse
|
21
|
Raj G, Lesimple A, Whelan J, Naumov P. Direct Observation of Asphaltene Nanoparticles on Model Mineral Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6248-6257. [PMID: 28553982 DOI: 10.1021/acs.langmuir.7b00866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The propensity for adherence to solid surfaces of asphaltenes, a complex solubility class of heteropolycyclic aromatic compounds from the heavy fraction of crude oil, has long been the root cause of scale deposition and remains an intractable problem in the petroleum industry. Although the adhesion is essential to understanding the process of asphaltene deposition, the relationship between the conformation of asphaltene molecules on mineral substrates and its impact on adhesion and mechanical properties of the deposits is not completely understood. To rationalize the primary processes in the process of organic scale deposition, here we use atomic force microscopy (AFM) to visualize the morphology of petroleum asphaltenes deposited on model mineral substrates. High imaging contrast was achieved by the differential adhesion of the tip between asphaltenes and the mineral substrate. While asphaltenes form smooth continuous films on all substrates at higher concentrations, they deposit as individual nanoparticles at lower concentrations. The size, shape, and spatial distribution of the nanoaggregates are strongly affected by the nature of the substrate; while uniformly distributed spherical particles are formed on highly polar and hydrophilic substrates (mica), irregular islands and thicker patches are observed with substrates of lower polarity (silica and calcite). Asphaltene nanoparticles flatten when adsorbed on highly oriented pyrolytic graphite due to π-π interactions with the polycyclic core. Force-distance profiles provide direct evidence of the conformational changes of asphaltene molecules on hydrophilic/hydrophobic substrates that result in dramatic changes in adhesion and mechanical properties of asphaltene deposits. Such an understanding of the nature of adhesion and mechanical properties tuned by surface properties, on the level of asphaltene nanoaggregates, would contribute to the design of efficient asphaltene inhibitors for preventing asphaltene fouling on targeted surfaces. Unlike flat surfaces, the AFM phase contrast images of defected calcite surfaces show that asphaltenes form continuous deposits to fill the recesses, and this process could trigger the onset for asphaltene deposition.
Collapse
Affiliation(s)
- Gijo Raj
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Alain Lesimple
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Jamie Whelan
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Panče Naumov
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
22
|
Affiliation(s)
- Ludmilla Kolokolova
- Department of Astronomy, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|