1
|
Cao J, Guo Z, Xu X, Li P, Fang Y, Deng S. Advances in CRISPR-Cas9 in lineage tracing of model animals. Animal Model Exp Med 2025. [PMID: 40491322 DOI: 10.1002/ame2.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/28/2025] [Indexed: 06/11/2025] Open
Abstract
Cell lineage tracing is a key technology for describing the developmental history of individual progenitor cells and assembling them to form a lineage development tree. However, traditional methods have limitations of poor stability and insufficient resolution. As an efficient and flexible gene editing tool, CRISPR-Cas9 system has been widely used in biological research. Furthermore, CRISPR-Cas9 gene editing-based tracing methods can introduce fluorescent proteins, reporter genes, or DNA barcodes for high-throughput sequencing, enabling precise lineage analysis, significantly improving precision and resolution, and expanding its application range. In this review, we summarize applications of CRISPR-Cas9 system in cell lineage tracing, with special emphasis on its successful applications in traditional model animals (e.g., zebrafish and mice), large animal models (pigs), and human cells or organoids. We also discussed its potential prospects and challenges in xenotransplantation and regenerative medicine.
Collapse
Affiliation(s)
- Jingchao Cao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zihang Guo
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Xueling Xu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pan Li
- Xianghu Laboratory, Hangzhou, China
| | - Yi Fang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Shoulong Deng
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Nobori T. Exploring the untapped potential of single-cell and spatial omics in plant biology. THE NEW PHYTOLOGIST 2025. [PMID: 40398874 DOI: 10.1111/nph.70220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/24/2025] [Indexed: 05/23/2025]
Abstract
Advances in single-cell and spatial omics technologies have revolutionised biology by revealing the diverse molecular states of individual cells and their spatial organization within tissues. The field of plant biology has widely adopted single-cell transcriptome and chromatin accessibility profiling and spatial transcriptomics, which extend traditional cell biology and genomics analyses and provide unique opportunities to reveal molecular and cellular dynamics of tissues. Using these technologies, comprehensive cell atlases have been generated in several model plant species, providing valuable platforms for discovery and tool development. Other emerging technologies related to single-cell and spatial omics, such as multiomics, lineage tracing, molecular recording, and high-content genetic and chemical perturbation phenotyping, offer immense potential for deepening our understanding of plant biology yet remain underutilised due to unique technical challenges and resource availability. Overcoming plant-specific barriers, such as cell wall complexity and limited antibody resources, alongside community-driven efforts in developing more complete reference atlases and computational tools, will accelerate progress. The synergy between technological innovation and targeted biological questions is poised to drive significant discoveries, advancing plant science. This review highlights the current applications of single-cell and spatial omics technologies in plant research and introduces emerging approaches with the potential to transform the field.
Collapse
Affiliation(s)
- Tatsuya Nobori
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
3
|
Wang K, Lu Z, Yao Z, He X, Hu Z, Zhou D. Single-cell phylodynamic inference of stem cell differentiation and tumor evolution. Cell Syst 2025; 16:101244. [PMID: 40174588 DOI: 10.1016/j.cels.2025.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/04/2025] [Accepted: 03/07/2025] [Indexed: 04/04/2025]
Abstract
Phylodynamic inference (PI) quantifies population dynamics and evolutionary trajectories using phylogenetic trees. Single-cell lineage tracing enables phylogenetic tree reconstruction for thousands of cells in multicellular organisms, facilitating PI at the cellular level. However, cell differentiation and somatic evolution challenge the direct application of existing PI frameworks to somatic tissues. We introduce scPhyloX, a computational framework modeling structured cell populations by leveraging single-cell phylogenetic trees to infer tissue development and tumor evolution dynamics. A key advancement is its ability to infer time-varying parameters, capturing dynamic biological processes. Simulations demonstrate scPhyloX's accuracy in scenarios including tissue development, disease treatment, and tumor growth. Application to three real datasets reveals insights into somatic dynamics: cycling stem cell overshoot in fly organ development, clonal expansion of multipotent hematopoietic progenitors during human aging, and pronounced subclonal selection in early colorectal tumorigenesis. scPhyloX thus provides a computational approach for investigating somatic tissue development and evolution.
Collapse
Affiliation(s)
- Kun Wang
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China
| | - Zhaolian Lu
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zeqi Yao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xionglei He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zheng Hu
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Weber TS, Biben C, Miles DC, Glaser SP, Tomei S, Lin CY, Kueh A, Pal M, Zhang S, Tam PPL, Taoudi S, Naik SH. LoxCode in vivo barcoding reveals epiblast clonal fate bias to fetal organs. Cell 2025:S0092-8674(25)00461-1. [PMID: 40378848 DOI: 10.1016/j.cell.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/12/2024] [Accepted: 04/18/2025] [Indexed: 05/19/2025]
Abstract
Much remains to be learned about the clonal fate of mammalian epiblast cells. Here, we develop high-diversity Cre recombinase-driven LoxCode barcoding for in vivo clonal lineage tracing for bulk tissue and single-cell readout. Embryonic day (E) 5.5 pre-gastrulation embryos were barcoded in utero, and epiblast clones were assessed for their contribution to a wide range of tissues in E12.5 embryos. Some epiblast clones contributed broadly across germ layers, while many were biased toward either blood, ectoderm, mesenchyme, or limbs, across tissue compartments and body axes. Using a stochastic agent-based model of embryogenesis and LoxCode barcoding, we inferred and experimentally validated cell fate biases across tissues in line with shared and segregating differentiation trajectories. Single-cell readout revealed numerous instances of asymmetry in epiblast contribution, including left-versus-right and kidney-versus-gonad fate. LoxCode barcoding enables clonal fate analysis for the study of development and broader questions of clonality in murine biology.
Collapse
Affiliation(s)
- Tom S Weber
- Immunology Division, WEHI, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia.
| | - Christine Biben
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia; Epigenetics and Development Division, WEHI, Parkville, Melbourne, VIC 3052, Australia; School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol BS8 1QU, UK
| | - Denise C Miles
- Immunology Division, WEHI, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | | | - Sara Tomei
- Immunology Division, WEHI, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Cheng-Yu Lin
- Immunology Division, WEHI, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Andrew Kueh
- Blood Cells and Blood Cancer Division, WEHI, Parkville, Melbourne, VIC 3052, Australia; Olivia Newton John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
| | - Martin Pal
- Blood Cells and Blood Cancer Division, WEHI, Parkville, Melbourne, VIC 3052, Australia; School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Stephen Zhang
- Immunology Division, WEHI, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Samir Taoudi
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia; Epigenetics and Development Division, WEHI, Parkville, Melbourne, VIC 3052, Australia; School of Cellular and Molecular Medicine, Faculty of Health and Life Sciences, University of Bristol, Bristol BS8 1QU, UK
| | - Shalin H Naik
- Immunology Division, WEHI, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia.
| |
Collapse
|
5
|
Chen W, Choi J. Molecular circuits for genomic recording of cellular events. Trends Genet 2025:S0168-9525(25)00079-4. [PMID: 40335327 DOI: 10.1016/j.tig.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
Advances in precise genome editing are enabling genomic recordings of cellular events. Since the initial demonstration of CRISPR-based genome editing, the field of genomic recording has witnessed key strides in lineage recording, where clonal lineage relationships among cells are indirectly recorded as synthetic mutations. However, methods for directly recording and reconstructing past cellular events are still limited, and their potential for revealing new insights into cell fate decisions has yet to be realized. The field needs new sensing modules and genetic circuit architectures that faithfully encode past cellular states into genomic DNA recordings to achieve such goals. Here we review recently developed strategies to construct diverse sensors and explore how emerging synthetic biology tools may help to build molecular circuits for genomic recording of diverse cellular events.
Collapse
Affiliation(s)
- Wei Chen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Junhong Choi
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, NY 10065, USA.
| |
Collapse
|
6
|
Birtele M, Lancaster M, Quadrato G. Modelling human brain development and disease with organoids. Nat Rev Mol Cell Biol 2025; 26:389-412. [PMID: 39668188 DOI: 10.1038/s41580-024-00804-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/14/2024]
Abstract
Organoids are systems derived from pluripotent stem cells at the interface between traditional monolayer cultures and in vivo animal models. The structural and functional characteristics of organoids enable the modelling of early stages of brain development in a physiologically relevant 3D environment. Moreover, organoids constitute a tool with which to analyse how individual genetic variation contributes to the susceptibility and progression of neurodevelopmental disorders. This Roadmap article describes the features of brain organoids, focusing on the neocortex, and their advantages and limitations - in comparison with other model systems - for the study of brain development, evolution and disease. We highlight avenues for enhancing the physiological relevance of brain organoids by integrating bioengineering techniques and unbiased high-throughput analyses, and discuss future applications. As organoids advance in mimicking human brain functions, we address the ethical and societal implications of this technology.
Collapse
Affiliation(s)
- Marcella Birtele
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Madeline Lancaster
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Giorgia Quadrato
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Loveless TB, Carlson CK, Dentzel Helmy CA, Hu VJ, Ross SK, Demelo MC, Murtaza A, Liang G, Ficht M, Singhai A, Pajoh-Casco MJ, Liu CC. Open-ended molecular recording of sequential cellular events into DNA. Nat Chem Biol 2025; 21:512-521. [PMID: 39543397 PMCID: PMC11952980 DOI: 10.1038/s41589-024-01764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/29/2024] [Indexed: 11/17/2024]
Abstract
Genetically encoded DNA recorders noninvasively convert transient biological events into durable mutations in a cell's genome, allowing for the later reconstruction of cellular experiences by DNA sequencing. We present a DNA recorder, peCHYRON, that achieves high-information, durable, and temporally resolved multiplexed recording of multiple cellular signals in mammalian cells. In each step of recording, prime editor, a Cas9-reverse transcriptase fusion protein, inserts a variable triplet DNA sequence alongside a constant propagator sequence that deactivates the previous and activates the next step of insertion. Insertions accumulate sequentially in a unidirectional order, editing can continue indefinitely, and high information is achieved by coexpressing a variety of prime editing guide RNAs (pegRNAs), each harboring unique triplet DNA sequences. We demonstrate that the constitutive expression of pegRNA collections generates insertion patterns for the straightforward reconstruction of cell lineage relationships and that the inducible expression of specific pegRNAs results in the accurate recording of exposures to biological stimuli.
Collapse
Affiliation(s)
- Theresa B Loveless
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Center for Synthetic Biology, University of California, Irvine, CA, USA.
- NSF-Simons Center for Multiscale Cell Fate, University of California, Irvine, CA, USA.
- Department of BioSciences, Rice University, Houston, TX, USA.
| | - Courtney K Carlson
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Center for Synthetic Biology, University of California, Irvine, CA, USA
| | - Catalina A Dentzel Helmy
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Center for Synthetic Biology, University of California, Irvine, CA, USA
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Vincent J Hu
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Center for Synthetic Biology, University of California, Irvine, CA, USA
- Graduate Program in Mathematical, Computational and Systems Biology, University of California, Irvine, CA, USA
| | - Sara K Ross
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Matt C Demelo
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Ali Murtaza
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Guohao Liang
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Center for Synthetic Biology, University of California, Irvine, CA, USA
| | - Michelle Ficht
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Center for Synthetic Biology, University of California, Irvine, CA, USA
| | - Arushi Singhai
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Center for Synthetic Biology, University of California, Irvine, CA, USA
| | - Marcello J Pajoh-Casco
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Center for Synthetic Biology, University of California, Irvine, CA, USA
| | - Chang C Liu
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Center for Synthetic Biology, University of California, Irvine, CA, USA.
- NSF-Simons Center for Multiscale Cell Fate, University of California, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
8
|
Hutchins NT, Meziane M, Lu C, Mitalipova M, Fischer D, Li P. Reconstructing signaling histories of single cells via perturbation screens and transfer learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.16.643448. [PMID: 40166200 PMCID: PMC11957020 DOI: 10.1101/2025.03.16.643448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Manipulating the signaling environment is an effective approach to alter cellular states for broad-ranging applications, from engineering tissues to treating diseases. Such manipulation requires knowing the signaling states and histories of the cells in situ , for which high-throughput discovery methods are lacking. Here, we present an integrated experimental-computational framework that learns signaling response signatures from a high-throughput in vitro perturbation atlas and infers combinatorial signaling activities in in vivo cell types with high accuracy and temporal resolution. Specifically, we generated signaling perturbation atlas across diverse cell types/states through multiplexed sequential combinatorial screens on human pluripotent stem cells. Using the atlas to train IRIS, a neural network-based model, and predicting on mouse embryo scRNAseq atlas, we discovered global features of combinatorial signaling code usage over time, identified biologically meaningful heterogeneity of signaling states within each cell type, and reconstructed signaling histories along diverse cell lineages. We further demonstrated that IRIS greatly accelerates the optimization of stem cell differentiation protocols by drastically reducing the combinatorial space that needs to be tested. This framework leads to the revelation that different cell types share robust signal response signatures, and provides a scalable solution for mapping complex signaling interactions in vivo to guide targeted interventions.
Collapse
|
9
|
Cao ML, Han RY, Chen SD, Zhao DY, Shi MY, Zou JH, Li L, Jiang HK. Gene Editing: An Effective Tool for the Future Treatment of Kidney Disease. J Inflamm Res 2025; 18:4001-4018. [PMID: 40125088 PMCID: PMC11927957 DOI: 10.2147/jir.s506760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Gene editing technology involves modifying target genes to alter genetic traits and generate new phenotypes. Beginning with zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN), the field has evolved through the advent of clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) systems, and more recently to base editors (BE) and prime editors (PE). These innovations have provided deep insights into the molecular mechanisms of complex biological processes and have paved the way for novel therapeutic strategies for a range of diseases. Gene editing is now being applied in the treatment of both genetic and acquired kidney diseases, as well as in kidney transplantation and the correction of genetic mutations. This review explores the current applications of mainstream gene editing technologies in biology, with a particular emphasis on their roles in kidney disease research and treatment of. It also addresses the limitations and challenges associated with these technologies, while offering perspectives on their future potential in this field.
Collapse
Affiliation(s)
- Mei-Ling Cao
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Rui-Yi Han
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Si-Da Chen
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People’s Republic of China
| | - Dan-Yang Zhao
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Ming-Yue Shi
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Jia-Hui Zou
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Lei Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People’s Republic of China
| | - Hong-Kun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| |
Collapse
|
10
|
Deng LH, Li MZ, Huang XJ, Zhao XY. Single-cell lineage tracing techniques in hematology: unraveling the cellular narrative. J Transl Med 2025; 23:270. [PMID: 40038725 PMCID: PMC11877926 DOI: 10.1186/s12967-025-06318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025] Open
Abstract
Lineage tracing is a valuable technique that has greatly facilitated the exploration of cell origins and behavior. With the continuous development of single-cell sequencing technology, lineage tracing technology based on the single-cell level has become an important method to study biological development. Single-cell Lineage tracing technology plays an important role in the hematological system. It can help to answer many important questions, such as the heterogeneity of hematopoietic stem cell function and structure, and the heterogeneity of malignant tumor cells in the hematological system. Many studies have been conducted to explore the field of hematology by applying this technology. This review focuses on the superiority of the emerging single-cell lineage tracing technologies of Integration barcodes, CRISPR barcoding, and base editors, and summarizes their applications in the hematology system. These studies have suggested the vast potential in unraveling complex cellular behaviors and lineage dynamics in both normal and pathological contexts.
Collapse
Affiliation(s)
- Lu-Han Deng
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Mu-Zi Li
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
11
|
Askary A, Chen W, Choi J, Du LY, Elowitz MB, Gagnon JA, Schier AF, Seidel S, Shendure J, Stadler T, Tran M. The lives of cells, recorded. Nat Rev Genet 2025; 26:203-222. [PMID: 39587306 DOI: 10.1038/s41576-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/27/2024]
Abstract
A paradigm for biology is emerging in which cells can be genetically programmed to write their histories into their own genomes. These records can subsequently be read, and the cellular histories reconstructed, which for each cell could include a record of its lineage relationships, extrinsic influences, internal states and physical locations, over time. DNA recording has the potential to transform the way that we study developmental and disease processes. Recent advances in genome engineering are driving the development of systems for DNA recording, and meanwhile single-cell and spatial omics technologies increasingly enable the recovery of the recorded information. Combined with advances in computational and phylogenetic inference algorithms, the DNA recording paradigm is beginning to bear fruit. In this Perspective, we explore the rationale and technical basis of DNA recording, what aspects of cellular biology might be recorded and how, and the types of discovery that we anticipate this paradigm will enable.
Collapse
Affiliation(s)
- Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Wei Chen
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Junhong Choi
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucia Y Du
- Biozentrum, University of Basel, Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Michael B Elowitz
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
| | - James A Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Alexander F Schier
- Biozentrum, University of Basel, Basel, Switzerland.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| | - Sophie Seidel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Martin Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
12
|
Kinsler G, Fagan C, Li H, Kaster J, Dunne M, Vander Velde RJ, Boe RH, Shaffer S, Herlyn M, Raj A, Heyman Y. SpaceBar enables clone tracing in spatial transcriptomic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637514. [PMID: 39990434 PMCID: PMC11844362 DOI: 10.1101/2025.02.10.637514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
We report a cellular barcoding strategy, SpaceBar, that enables simultaneous clone tracing and spatial transcriptomics profiling. Our approach uses a library of 96 synthetic barcode sequences that can be robustly detected by imaging based spatial transcriptomics (seqFISH), delivered such that each cell is labeled with a combination of barcodes. We used these barcodes to label melanoma cells in a tumor xenograft model and profiled both clone identity and spatial gene expression in situ. We developed a gene scoring metric that quantifies how strongly gene expression is driven by intrinsic cellular cues or extrinsic environmental signals. Our framework distinguishes between clonal dynamics and environmentally-driven transcriptional regulation in complex tissue contexts.
Collapse
Affiliation(s)
- Grant Kinsler
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Caitlin Fagan
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Haiyin Li
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | - Robert J. Vander Velde
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Ryan H. Boe
- Genetics and Epigenetics, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Shaffer
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | | | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yael Heyman
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Lu X, Zhang Q, Wang Z, Cheng X, Yan H, Cai S, Zhang H, Liu Q. Development of an inducible DNA barcoding system to understand lineage changes in Arabidopsis regeneration. Dev Cell 2025; 60:305-319.e5. [PMID: 39591964 DOI: 10.1016/j.devcel.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/27/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024]
Abstract
Plants demonstrate a high degree of developmental plasticity, capable of regenerating entire individuals from detached somatic tissues-a regenerative phenomenon rarely observed in metazoa. Consequently, elucidating the lineage relationship between somatic founder cells and descendant cells in regenerated plant organs has long been a pursuit. In this study, we developed and optimized both DNA barcode- and multi-fluorescence-based cell-lineage tracing toolsets, employing an inducible method to mark individual cells in Arabidopsis donor somatic tissues at the onset of regeneration. Utilizing these complementary methods, we scrutinized cell identities at the single-cell level and presented compelling evidence that all cells in the regenerated Arabidopsis plants, irrespective of their organ types, originated from a single progenitor cell in the donor somatic tissue. Our discovery suggests a single-cell passage directing the transition from multicellular donor tissue to regenerated plants, thereby creating opportunities for cell-cell competition during plant regeneration-a strategy for maximizing survival.
Collapse
Affiliation(s)
- Xinyue Lu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Qiyan Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Zejia Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Xuanzhi Cheng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Huiru Yan
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
| | - Shuyi Cai
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Huawei Zhang
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Maulding ND, Zou J, Zhou W, Metcalfe C, Stuart JM, Ye X, Hafner M. Transformer-based modeling of Clonal Selection and Expression Dynamics reveals resistance mechanisms in breast cancer. NPJ Syst Biol Appl 2025; 11:5. [PMID: 39794360 PMCID: PMC11723929 DOI: 10.1038/s41540-024-00485-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Understanding transcriptional heterogeneity in cancer cells and its implication for treatment response is critical to identify how resistance occurs and may be targeted. Such heterogeneity can be captured by in vitro studies through clonal barcoding methods. We present TraCSED (Transformer-based modeling of Clonal Selection and Expression Dynamics), a dynamic deep learning approach for modeling clonal selection. Using single-cell gene expression and the fitness of barcoded clones, TraCSED identifies interpretable gene programs and the time points at which they are associated with clonal selection. When applied to cells treated with either giredestrant, a selective estrogen receptor (ER) antagonist and degrader, or palbociclib, a CDK4/6 inhibitor, pathways dynamically associated with resistance are revealed. For example, ER activity is associated with positive selection around day four under palbociclib treatment and this adaptive response can be suppressed by combining the drugs. Yet, in the combination treatment, one clone still emerged. Clustering based on partial least squares regression found that high baseline expression of both SNHG25 and SNCG genes was the primary marker of positive selection to co-treatment and thus potentially associated with innate resistance - an aspect that traditional differential analysis methods missed. In conclusion, TraCSED enables associating features with phenotypes in a time-dependent manner from scRNA-seq data.
Collapse
Affiliation(s)
- Nathan D Maulding
- gRED Computational Sciences, Genentech Inc, South San Francisco, CA, USA
- Department of Biomolecular Engineering and Bioinformatics, UC Santa Cruz, Santa Cruz, CA, USA
| | - Jun Zou
- Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Wei Zhou
- Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Ciara Metcalfe
- Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Joshua M Stuart
- Department of Biomolecular Engineering and Bioinformatics, UC Santa Cruz, Santa Cruz, CA, USA
| | - Xin Ye
- Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Marc Hafner
- gRED Computational Sciences, Genentech Inc, South San Francisco, CA, USA.
- Discovery Oncology, Genentech Inc, South San Francisco, CA, USA.
| |
Collapse
|
15
|
Siniscalco AM, Perera RP, Greenslade JE, Veeravenkatasubramanian H, Masters A, Doll HM, Raj B. Barcoding Notch signaling in the developing brain. Development 2024; 151:dev203102. [PMID: 39575683 DOI: 10.1242/dev.203102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
Developmental signaling inputs are fundamental for shaping cell fates and behavior. However, traditional fluorescent-based signaling reporters have limitations in scalability and molecular resolution of cell types. We present SABER-seq, a CRISPR-Cas molecular recorder that stores transient developmental signaling cues as permanent mutations in cellular genomes for deconstruction at later stages via single-cell transcriptomics. We applied SABER-seq to record Notch signaling in developing zebrafish brains. SABER-seq has two components: a signaling sensor and a barcode recorder. The sensor activates Cas9 in a Notch-dependent manner with inducible control, while the recorder obtains mutations in ancestral cells where Notch is active. We combine SABER-seq with an expanded juvenile brain atlas to identify cell types derived from Notch-active founders. Our data reveal rare examples where differential Notch activities in ancestral progenitors are detected in terminally differentiated neuronal subtypes. SABER-seq is a novel platform for rapid, scalable and high-resolution mapping of signaling activity during development.
Collapse
Affiliation(s)
- Abigail M Siniscalco
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Roshan Priyarangana Perera
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jessie E Greenslade
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Aiden Masters
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hannah M Doll
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bushra Raj
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Callisto A, Strutz J, Leeper K, Kalhor R, Church G, Tyo KE, Bhan N. Post-translational digital data encoding into the genomes of mammalian cell populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.591851. [PMID: 38765976 PMCID: PMC11100781 DOI: 10.1101/2024.05.12.591851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
High resolution cellular signal encoding is critical for better understanding of complex biological phenomena. DNA-based biosignal encoders alter genomic or plasmid DNA in a signal dependent manner. Current approaches involve the signal of interest affecting a DNA edit by interacting with a signal specific promoter which then results in expression of the effector molecule (DNA altering enzyme). Here, we present the proof of concept of a biosignal encoding system where the enzyme terminal deoxynucleotidyl transferase (TdT) acts as the effector molecule upon directly interacting with the signal of interest. A template independent DNA polymerase (DNAp), TdT incorporates nucleotides at the 3' OH ends of DNA substrate in a signal dependent manner. By employing CRISPR-Cas9 to create double stranded breaks in genomic DNA, we make 3'OH ends available to act as substrate for TdT. We show that this system can successfully resolve and encode different concentrations of various biosignals into the genomic DNA of HEK-293T cells. Finally, we develop a simple encoding scheme associated with the tested biosignals and encode the message "HELLO WORLD" into the genomic DNA of HEK-293T cells at a population level with 91% accuracy. This work demonstrates a simple and engineerable system that can reliably store local biosignal information into the genomes of mammalian cell populations.
Collapse
Affiliation(s)
- Alec Callisto
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Jonathan Strutz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Kathleen Leeper
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Reza Kalhor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - George Church
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Keith E.J. Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Namita Bhan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Biomedical Research at Novartis, Cambridge, MA, USA
| |
Collapse
|
17
|
Adameyko I, Bakken T, Bhaduri A, Chhatbar C, Filbin MG, Gate D, Hochgerner H, Kim CN, Krull J, La Manno G, Li Q, Linnarsson S, Ma Q, Mayer C, Menon V, Nano P, Prinz M, Quake S, Walsh CA, Yang J, Bayraktar OA, Gokce O, Habib N, Konopka G, Liddelow SA, Nowakowski TJ. Applying single-cell and single-nucleus genomics to studies of cellular heterogeneity and cell fate transitions in the nervous system. Nat Neurosci 2024; 27:2278-2291. [PMID: 39627588 PMCID: PMC11949301 DOI: 10.1038/s41593-024-01827-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/22/2024] [Indexed: 12/13/2024]
Abstract
Single-cell and single-nucleus genomic approaches can provide unbiased and multimodal insights. Here, we discuss what constitutes a molecular cell atlas and how to leverage single-cell omics data to generate hypotheses and gain insights into cell transitions in development and disease of the nervous system. We share points of reflection on what to consider during study design and implementation as well as limitations and pitfalls.
Collapse
Affiliation(s)
- Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Aparna Bhaduri
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Chintan Chhatbar
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, MA, USA
| | - David Gate
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hannah Hochgerner
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Chang Nam Kim
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Jordan Krull
- Department of Biomedical Informatics, College of Medicine, the Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, the James Comprehensive Cancer Center, the Ohio State University, Columbus, OH, USA
| | - Gioele La Manno
- Laboratory of Neurodevelopmental Systems Biology, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Qingyun Li
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, the Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, the James Comprehensive Cancer Center, the Ohio State University, Columbus, OH, USA
| | - Christian Mayer
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Patricia Nano
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Steve Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Jin Yang
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | - Ozgun Gokce
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Naomi Habib
- The Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Chen X. Reimagining Cortical Connectivity by Deconstructing Its Molecular Logic into Building Blocks. Cold Spring Harb Perspect Biol 2024; 16:a041509. [PMID: 38621822 PMCID: PMC11529856 DOI: 10.1101/cshperspect.a041509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Comprehensive maps of neuronal connectivity provide a foundation for understanding the structure of neural circuits. In a circuit, neurons are diverse in morphology, electrophysiology, gene expression, activity, and other neuronal properties. Thus, constructing a comprehensive connectivity map requires associating various properties of neurons, including their connectivity, at cellular resolution. A commonly used approach is to use the gene expression profiles as an anchor to which all other neuronal properties are associated. Recent advances in genomics and anatomical techniques dramatically improved the ability to determine and associate the long-range projections of neurons with their gene expression profiles. These studies revealed unprecedented details of the gene-projection relationship, but also highlighted conceptual challenges in understanding this relationship. In this article, I delve into the findings and the challenges revealed by recent studies using state-of-the-art neuroanatomical and transcriptomic techniques. Building upon these insights, I propose an approach that focuses on understanding the gene-projection relationship through basic features in gene expression profiles and projections, respectively, that associate with underlying cellular processes. I then discuss how the developmental trajectories of projections and gene expression profiles create additional challenges and necessitate interrogating the gene-projection relationship across time. Finally, I explore complementary strategies that, together, can provide a comprehensive view of the gene-projection relationship.
Collapse
Affiliation(s)
- Xiaoyin Chen
- Allen Institute for Brain Science, Seattle, Washington 98109, USA
| |
Collapse
|
19
|
Jones MG, Sun D, Min KH(J, Colgan WN, Tian L, Weir JA, Chen VZ, Koblan LW, Yost KE, Mathey-Andrews N, Russell AJ, Stickels RR, Balderrama KS, Rideout WM, Chang HY, Jacks T, Chen F, Weissman JS, Yosef N, Yang D. Spatiotemporal lineage tracing reveals the dynamic spatial architecture of tumor growth and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619529. [PMID: 39484491 PMCID: PMC11526908 DOI: 10.1101/2024.10.21.619529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Tumor progression is driven by dynamic interactions between cancer cells and their surrounding microenvironment. Investigating the spatiotemporal evolution of tumors can provide crucial insights into how intrinsic changes within cancer cells and extrinsic alterations in the microenvironment cooperate to drive different stages of tumor progression. Here, we integrate high-resolution spatial transcriptomics and evolving lineage tracing technologies to elucidate how tumor expansion, plasticity, and metastasis co-evolve with microenvironmental remodeling in a Kras;p53-driven mouse model of lung adenocarcinoma. We find that rapid tumor expansion contributes to a hypoxic, immunosuppressive, and fibrotic microenvironment that is associated with the emergence of pro-metastatic cancer cell states. Furthermore, metastases arise from spatially-confined subclones of primary tumors and remodel the distant metastatic niche into a fibrotic, collagen-rich microenvironment. Together, we present a comprehensive dataset integrating spatial assays and lineage tracing to elucidate how sequential changes in cancer cell state and microenvironmental structures cooperate to promote tumor progression.
Collapse
Affiliation(s)
- Matthew G. Jones
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- These authors contributed equally
| | - Dawei Sun
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- These authors contributed equally
| | - Kyung Hoi (Joseph) Min
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William N. Colgan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luyi Tian
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jackson A. Weir
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Biological and Biomedical Sciences Program, Harvard University, Cambridge, MA, USA
| | - Victor Z. Chen
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York City, NY, USA
- Department of Systems Biology, Columbia University, New York City, NY, USA
| | - Luke W. Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kathryn E. Yost
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolas Mathey-Andrews
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Andrew J.C. Russell
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | | | | - William M. Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Tyler Jacks
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jonathan S. Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nir Yosef
- Department of Systems Immunology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Dian Yang
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York City, NY, USA
- Department of Systems Biology, Columbia University, New York City, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, USA
- Lead Contact
| |
Collapse
|
20
|
Lange M, Piran Z, Klein M, Spanjaard B, Klein D, Junker JP, Theis FJ, Nitzan M. Mapping lineage-traced cells across time points with moslin. Genome Biol 2024; 25:277. [PMID: 39434128 PMCID: PMC11492637 DOI: 10.1186/s13059-024-03422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
Simultaneous profiling of single-cell gene expression and lineage history holds enormous potential for studying cellular decision-making. Recent computational approaches combine both modalities into cellular trajectories; however, they cannot make use of all available lineage information in destructive time-series experiments. Here, we present moslin, a Gromov-Wasserstein-based model to couple cellular profiles across time points based on lineage and gene expression information. We validate our approach in simulations and demonstrate on Caenorhabditis elegans embryonic development how moslin predicts fate probabilities and putative decision driver genes. Finally, we use moslin to delineate lineage relationships among transiently activated fibroblast states during zebrafish heart regeneration.
Collapse
Affiliation(s)
- Marius Lange
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Department of Mathematics, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Zoe Piran
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Bastiaan Spanjaard
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Paediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Klein
- Department of Mathematics, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Jan Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Fabian J Theis
- Department of Mathematics, Technical University of Munich, Munich, Germany.
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
21
|
Hao K, Barrett M, Samadi Z, Zarezadeh A, McGrath Y, Askary A. Reconstructing signaling history of single cells with imaging-based molecular recording. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617908. [PMID: 39416000 PMCID: PMC11482953 DOI: 10.1101/2024.10.11.617908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The intensity and duration of biological signals encode information that allows a few pathways to regulate a wide array of cellular behaviors. Despite the central importance of signaling in biomedical research, our ability to quantify it in individual cells over time remains limited. Here, we introduce INSCRIBE, an approach for reconstructing signaling history in single cells using endpoint fluorescence images. By regulating a CRISPR base editor, INSCRIBE generates mutations in genomic target sequences, at a rate proportional to signaling activity. The number of edits is then recovered through a novel ratiometric readout strategy, from images of two fluorescence channels. We engineered human cell lines for recording WNT and BMP pathway activity, and demonstrated that INSCRIBE faithfully recovers both the intensity and duration of signaling. Further, we used INSCRIBE to study the variability of cellular response to WNT and BMP stimulation, and test whether the magnitude of response is a stable, heritable trait. We found a persistent memory in the BMP pathway. Progeny of cells with higher BMP response levels are likely to respond more strongly to a second BMP stimulation, up to 3 weeks later. Together, our results establish a scalable platform for genetic recording and in situ readout of signaling history in single cells, advancing quantitative analysis of cell-cell communication during development and disease.
Collapse
Affiliation(s)
- Kai Hao
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Mykel Barrett
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Zainalabedin Samadi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Amirhossein Zarezadeh
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Yuka McGrath
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
22
|
Shao J, Qiu X, Zhang L, Li S, Xue S, Si Y, Li Y, Jiang J, Wu Y, Xiong Q, Wang Y, Chen Q, Gao T, Zhu L, Wang H, Xie M. Multi-layered computational gene networks by engineered tristate logics. Cell 2024; 187:5064-5080.e14. [PMID: 39089254 DOI: 10.1016/j.cell.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024]
Abstract
So far, biocomputation strictly follows traditional design principles of digital electronics, which could reach their limits when assembling gene circuits of higher complexity. Here, by creating genetic variants of tristate buffers instead of using conventional logic gates as basic signal processing units, we introduce a tristate-based logic synthesis (TriLoS) framework for resource-efficient design of multi-layered gene networks capable of performing complex Boolean calculus within single-cell populations. This sets the stage for simple, modular, and low-interference mapping of various arithmetic logics of interest and an effectively enlarged engineering space within single cells. We not only construct computational gene networks running full adder and full subtractor operations at a cellular level but also describe a treatment paradigm building on programmable cell-based therapeutics, allowing for adjustable and disease-specific drug secretion logics in vivo. This work could foster the evolution of modern biocomputers to progress toward unexplored applications in precision medicine.
Collapse
Affiliation(s)
- Jiawei Shao
- Department of Pharmacy, Center for Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| | - Xinyuan Qiu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, China; College of Computer Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Lihang Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, Zhejiang 311100, China
| | - Shichao Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuai Xue
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Yaqing Si
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yilin Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jian Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yuhang Wu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qiqi Xiong
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yukai Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qidi Chen
- Department of Pharmacy, Center for Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Ting Gao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, China.
| | - Hui Wang
- Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, Zhejiang 311100, China.
| | - Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
| |
Collapse
|
23
|
Trapnell C. Revealing gene function with statistical inference at single-cell resolution. Nat Rev Genet 2024; 25:623-638. [PMID: 38951690 DOI: 10.1038/s41576-024-00750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/03/2024]
Abstract
Single-cell and spatial molecular profiling assays have shown large gains in sensitivity, resolution and throughput. Applying these technologies to specimens from human and model organisms promises to comprehensively catalogue cell types, reveal their lineage origins in development and discern their contributions to disease pathogenesis. Moreover, rapidly dropping costs have made well-controlled perturbation experiments and cohort studies widely accessible, illuminating mechanisms that give rise to phenotypes at the scale of the cell, the tissue and the whole organism. Interpreting the coming flood of single-cell data, much of which will be spatially resolved, will place a tremendous burden on existing computational pipelines. However, statistical concepts, models, tools and algorithms can be repurposed to solve problems now arising in genetic and molecular biology studies of development and disease. Here, I review how the questions that recent technological innovations promise to answer can be addressed by the major classes of statistical tools.
Collapse
Affiliation(s)
- Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
| |
Collapse
|
24
|
Jang H, Yim SS. Toward DNA-Based Recording of Biological Processes. Int J Mol Sci 2024; 25:9233. [PMID: 39273181 PMCID: PMC11394691 DOI: 10.3390/ijms25179233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Exploiting the inherent compatibility of DNA-based data storage with living cells, various cellular recording approaches have been developed for recording and retrieving biologically relevant signals in otherwise inaccessible locations, such as inside the body. This review provides an overview of the current state of engineered cellular memory systems, highlighting their design principles, advantages, and limitations. We examine various technologies, including CRISPR-Cas systems, recombinases, retrons, and DNA methylation, that enable these recording systems. Additionally, we discuss potential strategies for improving recording accuracy, scalability, and durability to address current limitations in the field. This emerging modality of biological measurement will be key to gaining novel insights into diverse biological processes and fostering the development of various biotechnological applications, from environmental sensing to disease monitoring and beyond.
Collapse
Affiliation(s)
- Hyeri Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sung Sun Yim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| |
Collapse
|
25
|
Chen W, Choi J, Li X, Nathans JF, Martin B, Yang W, Hamazaki N, Qiu C, Lalanne JB, Regalado S, Kim H, Agarwal V, Nichols E, Leith A, Lee C, Shendure J. Symbolic recording of signalling and cis-regulatory element activity to DNA. Nature 2024; 632:1073-1081. [PMID: 39020177 PMCID: PMC11357993 DOI: 10.1038/s41586-024-07706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/12/2024] [Indexed: 07/19/2024]
Abstract
Measurements of gene expression or signal transduction activity are conventionally performed using methods that require either the destruction or live imaging of a biological sample within the timeframe of interest. Here we demonstrate an alternative paradigm in which such biological activities are stably recorded to the genome. Enhancer-driven genomic recording of transcriptional activity in multiplex (ENGRAM) is based on the signal-dependent production of prime editing guide RNAs that mediate the insertion of signal-specific barcodes (symbols) into a genomically encoded recording unit. We show how this strategy can be used for multiplex recording of the cell-type-specific activities of dozens to hundreds of cis-regulatory elements with high fidelity, sensitivity and reproducibility. Leveraging signal transduction pathway-responsive cis-regulatory elements, we also demonstrate time- and concentration-dependent genomic recording of WNT, NF-κB and Tet-On activities. By coupling ENGRAM to sequential genome editing via DNA Typewriter1, we stably record information about the temporal dynamics of two orthogonal signalling pathways to genomic DNA. Finally we apply ENGRAM to integratively record the transient activity of nearly 100 transcription factor consensus motifs across daily windows spanning the differentiation of mouse embryonic stem cells into gastruloids, an in vitro model of early mammalian development. Although these are proof-of-concept experiments and much work remains to fully realize the possibilities, the symbolic recording of biological signals or states within cells, to the genome and over time, has broad potential to complement contemporary paradigms for how we make measurements in biological systems.
Collapse
Affiliation(s)
- Wei Chen
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA.
| | - Junhong Choi
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Xiaoyi Li
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Jenny F Nathans
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Beth Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Wei Yang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Nobuhiko Hamazaki
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Chengxiang Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | | | - Samuel Regalado
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Haedong Kim
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Vikram Agarwal
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Eva Nichols
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Anh Leith
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| |
Collapse
|
26
|
Fortner A, Bucur O. Multiplexed spatial transcriptomics methods and the application of expansion microscopy. Front Cell Dev Biol 2024; 12:1378875. [PMID: 39105173 PMCID: PMC11298486 DOI: 10.3389/fcell.2024.1378875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/10/2024] [Indexed: 08/07/2024] Open
Abstract
While spatial transcriptomics has undeniably revolutionized our ability to study cellular organization, it has driven the development of a great number of innovative transcriptomics methods, which can be classified into in situ sequencing (ISS) methods, in situ hybridization (ISH) techniques, and next-generation sequencing (NGS)-based sequencing with region capture. These technologies not only refine our understanding of cellular processes, but also open up new possibilities for breakthroughs in various research domains. One challenge of spatial transcriptomics experiments is the limitation of RNA detection due to optical crowding of RNA in the cells. Expansion microscopy (ExM), characterized by the controlled enlargement of biological specimens, offers a means to achieve super-resolution imaging, overcoming the diffraction limit inherent in conventional microscopy and enabling precise visualization of RNA in spatial transcriptomics methods. In this review, we elaborate on ISS, ISH and NGS-based spatial transcriptomic protocols and on how performance of these techniques can be extended by the combination of these protocols with ExM. Moving beyond the techniques and procedures, we highlight the broader implications of transcriptomics in biology and medicine. These include valuable insight into the spatial organization of gene expression in cells within tissues, aid in the identification and the distinction of cell types and subpopulations and understanding of molecular mechanisms and intercellular changes driving disease development.
Collapse
Affiliation(s)
- Andra Fortner
- Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Octavian Bucur
- Victor Babes National Institute of Pathology, Bucharest, Romania
- Genomics Research and Development Institute, Bucharest, Romania
| |
Collapse
|
27
|
Liberali P, Schier AF. The evolution of developmental biology through conceptual and technological revolutions. Cell 2024; 187:3461-3495. [PMID: 38906136 DOI: 10.1016/j.cell.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Developmental biology-the study of the processes by which cells, tissues, and organisms develop and change over time-has entered a new golden age. After the molecular genetics revolution in the 80s and 90s and the diversification of the field in the early 21st century, we have entered a phase when powerful technologies provide new approaches and open unexplored avenues. Progress in the field has been accelerated by advances in genomics, imaging, engineering, and computational biology and by emerging model systems ranging from tardigrades to organoids. We summarize how revolutionary technologies have led to remarkable progress in understanding animal development. We describe how classic questions in gene regulation, pattern formation, morphogenesis, organogenesis, and stem cell biology are being revisited. We discuss the connections of development with evolution, self-organization, metabolism, time, and ecology. We speculate how developmental biology might evolve in an era of synthetic biology, artificial intelligence, and human engineering.
Collapse
Affiliation(s)
- Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | | |
Collapse
|
28
|
Zhang Z, Melzer ME, Arun KM, Sun H, Eriksson CJ, Fabian I, Shaashua S, Kiani K, Oren Y, Goyal Y. Synthetic DNA barcodes identify singlets in scRNA-seq datasets and evaluate doublet algorithms. CELL GENOMICS 2024; 4:100592. [PMID: 38925122 PMCID: PMC11293576 DOI: 10.1016/j.xgen.2024.100592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/26/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) datasets contain true single cells, or singlets, in addition to cells that coalesce during the protocol, or doublets. Identifying singlets with high fidelity in scRNA-seq is necessary to avoid false negative and false positive discoveries. Although several methodologies have been proposed, they are typically tested on highly heterogeneous datasets and lack a priori knowledge of true singlets. Here, we leveraged datasets with synthetically introduced DNA barcodes for a hitherto unexplored application: to extract ground-truth singlets. We demonstrated the feasibility of our framework, "singletCode," to evaluate existing doublet detection methods across a range of contexts. We also leveraged our ground-truth singlets to train a proof-of-concept machine learning classifier, which outperformed other doublet detection algorithms. Our integrative framework can identify ground-truth singlets and enable robust doublet detection in non-barcoded datasets.
Collapse
Affiliation(s)
- Ziyang Zhang
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Madeline E Melzer
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Keerthana M Arun
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hanxiao Sun
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Carl-Johan Eriksson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Itai Fabian
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sagi Shaashua
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Karun Kiani
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yaara Oren
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; CZ Biohub Chicago, Chicago, IL, USA.
| |
Collapse
|
29
|
Shi S, Hamann CA, Lee JC, Brunger JM. Use of CRISPRoff and synthetic Notch to modulate and relay endogenous gene expression programs in engineered cells. Front Bioeng Biotechnol 2024; 12:1346810. [PMID: 38957576 PMCID: PMC11218679 DOI: 10.3389/fbioe.2024.1346810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Uncovering the stimulus-response histories that give rise to cell fates and behaviors is an area of great interest in developmental biology, tissue engineering, and regenerative medicine. A comprehensive accounting of cell experiences that lead to the development of organs and tissues can help us to understand developmental anomalies that may underly disease. Perhaps more provocatively, such a record can also reveal clues as to how to drive cell collective decision-making processes, which may yield predictable cell-based therapies or facilitate production of tissue substitutes for transplantation or in vitro screening of prospective therapies to mitigate disease. Toward this end, various methods have been applied to molecularly trace developmental trajectories and record interaction histories of cells. Typical methods involve artificial gene circuits based on recombinases that activate a suite of fluorescent reporters or CRISPR-Cas9 genome writing technologies whose nucleic acid-based record keeping serves to chronicle cell-cell interactions or past exposure to stimuli of interests. Exciting expansions of the synthetic biology toolkit with artificial receptors that permit establishment of defined input-to-output linkages of cell decision-making processes opens the door to not only record cell-cell interactions, but to also potentiate directed manipulation of the outcomes of such interactions via regulation of carefully selected transgenes. Here, we combine CRISPR-based strategies to genetically and epigenetically manipulate cells to express components of the synthetic Notch receptor platform, a widely used artificial cell signaling module. Our approach gives rise to the ability to conditionally record interactions between human cells, where the record of engagement depends on expression of a state-specific marker of a subset of cells in a population. Further, such signal-competent interactions can be used to direct differentiation of human embryonic stem cells toward pre-selected fates based on assigned synNotch outputs. We also implemented CRISPR-based manipulation of native gene expression profiles to bias outcomes of cell engagement histories in a targeted manner. Thus, we present a useful strategy that gives rise to both state-specific recording of cell-cell interactions as well as methods to intentionally influence products of such cell-cell exchanges.
Collapse
Affiliation(s)
- Shuqun Shi
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Catherine A. Hamann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Joanne C. Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jonathan M. Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
30
|
Aalam SMM, Nguyen LV, Ritting ML, Kannan N. Clonal tracking in cancer and metastasis. Cancer Metastasis Rev 2024; 43:639-656. [PMID: 37910295 PMCID: PMC11500829 DOI: 10.1007/s10555-023-10149-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
The eradication of many cancers has proven challenging due to the presence of functionally and genetically heterogeneous clones maintained by rare cancer stem cells (CSCs), which contribute to disease progression, treatment refractoriness, and late relapse. The characterization of functional CSC activity has necessitated the development of modern clonal tracking strategies. This review describes viral-based and CRISPR-Cas9-based cellular barcoding, lineage tracing, and imaging-based approaches. DNA-based cellular barcoding technology is emerging as a powerful and robust strategy that has been widely applied to in vitro and in vivo model systems, including patient-derived xenograft models. This review also highlights the potential of these methods for use in the clinical and drug discovery contexts and discusses the important insights gained from such approaches.
Collapse
Affiliation(s)
| | - Long Viet Nguyen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Megan L Ritting
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Nagarajan Kannan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
- Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, MN, USA.
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
31
|
Jindal K, Adil MT, Yamaguchi N, Yang X, Wang HC, Kamimoto K, Rivera-Gonzalez GC, Morris SA. Single-cell lineage capture across genomic modalities with CellTag-multi reveals fate-specific gene regulatory changes. Nat Biotechnol 2024; 42:946-959. [PMID: 37749269 PMCID: PMC11180607 DOI: 10.1038/s41587-023-01931-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/31/2023] [Indexed: 09/27/2023]
Abstract
Complex gene regulatory mechanisms underlie differentiation and reprogramming. Contemporary single-cell lineage-tracing (scLT) methods use expressed, heritable DNA barcodes to combine cell lineage readout with single-cell transcriptomics. However, reliance on transcriptional profiling limits adaptation to other single-cell assays. With CellTag-multi, we present an approach that enables direct capture of heritable random barcodes expressed as polyadenylated transcripts, in both single-cell RNA sequencing and single-cell Assay for Transposase Accessible Chromatin using sequencing assays, allowing for independent clonal tracking of transcriptional and epigenomic cell states. We validate CellTag-multi to characterize progenitor cell lineage priming during mouse hematopoiesis. Additionally, in direct reprogramming of fibroblasts to endoderm progenitors, we identify core regulatory programs underlying on-target and off-target fates. Furthermore, we reveal the transcription factor Zfp281 as a regulator of reprogramming outcome, biasing cells toward an off-target mesenchymal fate. Our results establish CellTag-multi as a lineage-tracing method compatible with multiple single-cell modalities and demonstrate its utility in revealing fate-specifying gene regulatory changes across diverse paradigms of differentiation and reprogramming.
Collapse
Affiliation(s)
- Kunal Jindal
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohd Tayyab Adil
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Naoto Yamaguchi
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xue Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Helen C Wang
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kenji Kamimoto
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Guillermo C Rivera-Gonzalez
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
32
|
Siniscalco A, Perera RP, Greenslade JE, Masters A, Doll H, Raj B. Barcoding Notch signaling in the developing brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593533. [PMID: 38766256 PMCID: PMC11100830 DOI: 10.1101/2024.05.10.593533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Developmental signaling inputs are fundamental for shaping cell fates and behavior. However, traditional fluorescent-based signaling reporters have limitations in scalability and molecular resolution of cell types. We present SABER-seq, a CRISPR-Cas molecular recorder that stores transient developmental signaling cues as permanent mutations in cellular genomes for deconstruction at later stages via single-cell transcriptomics. We applied SABER-seq to record Notch signaling in developing zebrafish brains. SABER-seq has two components: a signaling sensor and a barcode recorder. The sensor activates Cas9 in a Notch-dependent manner with inducible control while the recorder accumulates mutations that represent Notch activity in founder cells. We combine SABER-seq with an expanded juvenile brain atlas to define cell types whose fates are determined downstream of Notch signaling. We identified examples wherein Notch signaling may have differential impact on terminal cell fates. SABER-seq is a novel platform for rapid, scalable and high-resolution mapping of signaling activity during development.
Collapse
Affiliation(s)
- Abigail Siniscalco
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Roshan Priyarangana Perera
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jessie E. Greenslade
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Aiden Masters
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hannah Doll
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Bushra Raj
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
33
|
Sánchez Rivera FJ, Dow LE. How CRISPR Is Revolutionizing the Generation of New Models for Cancer Research. Cold Spring Harb Perspect Med 2024; 14:a041384. [PMID: 37487630 PMCID: PMC11065179 DOI: 10.1101/cshperspect.a041384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Cancers arise through acquisition of mutations in genes that regulate core biological processes like cell proliferation and cell death. Decades of cancer research have led to the identification of genes and mutations causally involved in disease development and evolution, yet defining their precise function across different cancer types and how they influence therapy responses has been challenging. Mouse models have helped define the in vivo function of cancer-associated alterations, and genome-editing approaches using CRISPR have dramatically accelerated the pace at which these models are developed and studied. Here, we highlight how CRISPR technologies have impacted the development and use of mouse models for cancer research and discuss the many ways in which these rapidly evolving platforms will continue to transform our understanding of this disease.
Collapse
Affiliation(s)
- Francisco J Sánchez Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA
| |
Collapse
|
34
|
Nathans JF, Ayers JL, Shendure J, Simpson CL. Genetic Tools for Cell Lineage Tracing and Profiling Developmental Trajectories in the Skin. J Invest Dermatol 2024; 144:936-949. [PMID: 38643988 PMCID: PMC11034889 DOI: 10.1016/j.jid.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 02/08/2024] [Indexed: 04/23/2024]
Abstract
The epidermis is the body's first line of protection against dehydration and pathogens, continually regenerating the outermost protective skin layers throughout life. During both embryonic development and wound healing, epidermal stem and progenitor cells must respond to external stimuli and insults to build, maintain, and repair the cutaneous barrier. Recent advances in CRISPR-based methods for cell lineage tracing have remarkably expanded the potential for experiments that track stem and progenitor cell proliferation and differentiation over the course of tissue and even organismal development. Additional tools for DNA-based recording of cellular signaling cues promise to deepen our understanding of the mechanisms driving normal skin morphogenesis and response to stressors as well as the dysregulation of cell proliferation and differentiation in skin diseases and cancer. In this review, we highlight cutting-edge methods for cell lineage tracing, including in organoids and model organisms, and explore how cutaneous biology researchers might leverage these techniques to elucidate the developmental programs that support the regenerative capacity and plasticity of the skin.
Collapse
Affiliation(s)
- Jenny F Nathans
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA; Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Jessica L Ayers
- Molecular Medicine and Mechanisms of Disease PhD Program, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Cory L Simpson
- Department of Dermatology, University of Washington, Seattle, Washington, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
35
|
Xiong E, Liu P, Deng R, Zhang K, Yang R, Li J. Recent advances in enzyme-free and enzyme-mediated single-nucleotide variation assay in vitro. Natl Sci Rev 2024; 11:nwae118. [PMID: 38742234 PMCID: PMC11089818 DOI: 10.1093/nsr/nwae118] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 05/16/2024] Open
Abstract
Single-nucleotide variants (SNVs) are the most common type variation of sequence alterations at a specific location in the genome, thus involving significant clinical and biological information. The assay of SNVs has engaged great awareness, because many genome-wide association studies demonstrated that SNVs are highly associated with serious human diseases. Moreover, the investigation of SNV expression levels in single cells are capable of visualizing genetic information and revealing the complexity and heterogeneity of single-nucleotide mutation-related diseases. Thus, developing SNV assay approaches in vitro, particularly in single cells, is becoming increasingly in demand. In this review, we summarized recent progress in the enzyme-free and enzyme-mediated strategies enabling SNV assay transition from sensing interface to the test tube and single cells, which will potentially delve deeper into the knowledge of SNV functions and disease associations, as well as discovering new pathways to diagnose and treat diseases based on individual genetic profiles. The leap of SNV assay achievements will motivate observation and measurement genetic variations in single cells, even within living organisms, delve into the knowledge of SNV functions and disease associations, as well as open up entirely new avenues in the diagnosis and treatment of diseases based on individual genetic profiles.
Collapse
Affiliation(s)
- Erhu Xiong
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Pengfei Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Beijing Institute of Life Science and Technology, Beijing 102206, China
| |
Collapse
|
36
|
Wang K, Hou L, Wang X, Zhai X, Lu Z, Zi Z, Zhai W, He X, Curtis C, Zhou D, Hu Z. PhyloVelo enhances transcriptomic velocity field mapping using monotonically expressed genes. Nat Biotechnol 2024; 42:778-789. [PMID: 37524958 DOI: 10.1038/s41587-023-01887-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/28/2023] [Indexed: 08/02/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) is a powerful approach for studying cellular differentiation, but accurately tracking cell fate transitions can be challenging, especially in disease conditions. Here we introduce PhyloVelo, a computational framework that estimates the velocity of transcriptomic dynamics by using monotonically expressed genes (MEGs) or genes with expression patterns that either increase or decrease, but do not cycle, through phylogenetic time. Through integration of scRNA-seq data with lineage information, PhyloVelo identifies MEGs and reconstructs a transcriptomic velocity field. We validate PhyloVelo using simulated data and Caenorhabditis elegans ground truth data, successfully recovering linear, bifurcated and convergent differentiations. Applying PhyloVelo to seven lineage-traced scRNA-seq datasets, generated using CRISPR-Cas9 editing, lentiviral barcoding or immune repertoire profiling, demonstrates its high accuracy and robustness in inferring complex lineage trajectories while outperforming RNA velocity. Additionally, we discovered that MEGs across tissues and organisms share similar functions in translation and ribosome biogenesis.
Collapse
Affiliation(s)
- Kun Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Liangzhen Hou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xin Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiangwei Zhai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhaolian Lu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhike Zi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weiwei Zhai
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Xionglei He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Christina Curtis
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.
| | - Zheng Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
37
|
Manso BA, Rodriguez y Baena A, Forsberg EC. From Hematopoietic Stem Cells to Platelets: Unifying Differentiation Pathways Identified by Lineage Tracing Mouse Models. Cells 2024; 13:704. [PMID: 38667319 PMCID: PMC11048769 DOI: 10.3390/cells13080704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Platelets are the terminal progeny of megakaryocytes, primarily produced in the bone marrow, and play critical roles in blood homeostasis, clotting, and wound healing. Traditionally, megakaryocytes and platelets are thought to arise from multipotent hematopoietic stem cells (HSCs) via multiple discrete progenitor populations with successive, lineage-restricting differentiation steps. However, this view has recently been challenged by studies suggesting that (1) some HSC clones are biased and/or restricted to the platelet lineage, (2) not all platelet generation follows the "canonical" megakaryocytic differentiation path of hematopoiesis, and (3) platelet output is the default program of steady-state hematopoiesis. Here, we specifically investigate the evidence that in vivo lineage tracing studies provide for the route(s) of platelet generation and investigate the involvement of various intermediate progenitor cell populations. We further identify the challenges that need to be overcome that are required to determine the presence, role, and kinetics of these possible alternate pathways.
Collapse
Affiliation(s)
- Bryce A. Manso
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
- Department of Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alessandra Rodriguez y Baena
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
- Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - E. Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
- Department of Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
38
|
Eisele AS, Tarbier M, Dormann AA, Pelechano V, Suter DM. Gene-expression memory-based prediction of cell lineages from scRNA-seq datasets. Nat Commun 2024; 15:2744. [PMID: 38553478 PMCID: PMC10980719 DOI: 10.1038/s41467-024-47158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Assigning single cell transcriptomes to cellular lineage trees by lineage tracing has transformed our understanding of differentiation during development, regeneration, and disease. However, lineage tracing is technically demanding, often restricted in time-resolution, and most scRNA-seq datasets are devoid of lineage information. Here we introduce Gene Expression Memory-based Lineage Inference (GEMLI), a computational tool allowing to robustly identify small to medium-sized cell lineages solely from scRNA-seq datasets. GEMLI allows to study heritable gene expression, to discriminate symmetric and asymmetric cell fate decisions and to reconstruct individual multicellular structures from pooled scRNA-seq datasets. In human breast cancer biopsies, GEMLI reveals previously unknown gene expression changes at the onset of cancer invasiveness. The universal applicability of GEMLI allows studying the role of small cell lineages in a wide range of physiological and pathological contexts, notably in vivo. GEMLI is available as an R package on GitHub ( https://github.com/UPSUTER/GEMLI ).
Collapse
Affiliation(s)
- A S Eisele
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Institute of Bioengineering, Lausanne, Switzerland.
| | - M Tarbier
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - A A Dormann
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Institute of Bioengineering, Lausanne, Switzerland
| | - V Pelechano
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - D M Suter
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Institute of Bioengineering, Lausanne, Switzerland.
| |
Collapse
|
39
|
Mai U, Chu G, Raphael BJ. Maximum Likelihood Inference of Time-scaled Cell Lineage Trees with Mixed-type Missing Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583638. [PMID: 38496496 PMCID: PMC10942411 DOI: 10.1101/2024.03.05.583638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Recent dynamic lineage tracing technologies combine CRISPR-based genome editing with single-cell sequencing to track cell divisions during development. A key computational problem in dynamic lineage tracing is to infer a cell lineage tree from the measured CRISPR-induced mutations. Three features of dynamic lineage tracing data distinguish this problem from standard phylogenetic tree inference. First, the CRISPR-editing process modifies a genomic location exactly once. This non-modifiable property is not well described by the time-reversible models commonly used in phylogenetics. Second, as a consequence of non-modifiability, the number of mutations per time unit decreases over time. Third, CRISPR-based genome-editing and single-cell sequencing results in high rates of both heritable and non-heritable (dropout) missing data. To model these features, we introduce the Probabilistic Mixed-type Missing (PMM) model. We describe an algorithm, LAML (Lineage Analysis via Maximum Likelihood), to search for the maximum likelihood (ML) tree under the PMM model. LAML combines an Expectation Maximization (EM) algorithm with a heuristic tree search to jointly estimate tree topology, branch lengths and missing data parameters. We derive a closed-form solution for the M-step in the case of no heritable missing data, and a block coordinate ascent approach in the general case which is more efficient than the standard General Time Reversible (GTR) phylogenetic model. On simulated data, LAML infers more accurate tree topologies and branch lengths than existing methods, with greater advantages on datasets with higher ratios of heritable to non-heritable missing data. We show that LAML provides unbiased time-scaled estimates of branch lengths. In contrast, we demonstrate that maximum parsimony methods for lineage tracing data not only underestimate branch lengths, but also yield branch lengths which are not proportional to time, due to the nonlinear decay in the number of mutations on branches further from the root. On lineage tracing data from a mouse model of lung adenocarcinoma, we show that LAML infers phylogenetic distances that are more concordant with gene expression data compared to distances derived from maximum parsimony. The LAML tree topology is more plausible than existing published trees, with fewer total cell migrations between distant metastases and fewer reseeding events where cells migrate back to the primary tumor. Crucially, we identify three distinct time epochs of metastasis progression, which includes a burst of metastasis events to various anatomical sites during a single month.
Collapse
Affiliation(s)
| | | | - Benjamin J. Raphael
- Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
40
|
Liu Y, Huang K, Chen W. Resolving cellular dynamics using single-cell temporal transcriptomics. Curr Opin Biotechnol 2024; 85:103060. [PMID: 38194753 DOI: 10.1016/j.copbio.2023.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 01/11/2024]
Abstract
Cellular dynamics, the transition of a cell from one state to another, is central to understanding developmental processes and disease progression. Single-cell transcriptomics has been pushing the frontiers of cellular dynamics studies into a genome-wide and single-cell level. While most single-cell RNA sequencing approaches are disruptive and only provide a snapshot of cell states, the dynamics of a cell could be reconstructed by either exploiting temporal information hiding in the transcriptomics data or integrating additional information. In this review, we describe these approaches, highlighting their underlying principles, key assumptions, and the rationality to interpret the results as models. We also discuss the recently emerging nondisruptive live-cell transcriptomics methods, which are highly complementary to the computational models for their assumption-free nature.
Collapse
Affiliation(s)
- Yifei Liu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kai Huang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wanze Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
41
|
Sun W, Perkins M, Huyghe M, Faraldo MM, Fre S, Perié L, Lyne AM. Extracting, filtering and simulating cellular barcodes using CellBarcode tools. NATURE COMPUTATIONAL SCIENCE 2024; 4:128-143. [PMID: 38374363 PMCID: PMC10899113 DOI: 10.1038/s43588-024-00595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024]
Abstract
Identifying true DNA cellular barcodes among polymerase chain reaction and sequencing errors is challenging. Current tools are restricted in the diversity of barcode types supported or the analysis strategies implemented. As such, there is a need for more versatile and efficient tools for barcode extraction, as well as for tools to investigate which factors impact barcode detection and which filtering strategies to best apply. Here we introduce the package CellBarcode and its barcode simulation kit, CellBarcodeSim, that allows efficient and versatile barcode extraction and filtering for a range of barcode types from bulk or single-cell sequencing data using a variety of filtering strategies. Using the barcode simulation kit and biological data, we explore the technical and biological factors influencing barcode identification and provide a decision tree on how to optimize barcode identification for different barcode settings. We believe that CellBarcode and CellBarcodeSim have the capability to enhance the reproducibility and interpretation of barcode results across studies.
Collapse
Affiliation(s)
- Wenjie Sun
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France.
| | - Meghan Perkins
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Mathilde Huyghe
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Marisa M Faraldo
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Silvia Fre
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Leïla Perié
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France.
| | - Anne-Marie Lyne
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France.
- INSERM U900, Paris, France.
- MINES ParisTech, CBIO-Centre for Computational Biology, PSL Research University, Paris, France.
| |
Collapse
|
42
|
Wang L, Dong W, Yin Z, Sheng J, Ezeana CF, Yang L, Yu X, Wong SSY, Wan Z, Danforth RL, Han K, Gao D, Wong STC. Charting Single Cell Lineage Dynamics and Mutation Networks via Homing CRISPR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574236. [PMID: 38260351 PMCID: PMC10802354 DOI: 10.1101/2024.01.05.574236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Single cell lineage tracing, essential for unraveling cellular dynamics in disease evolution is critical for developing targeted therapies. CRISPR-Cas9, known for inducing permanent and cumulative mutations, is a cornerstone in lineage tracing. The novel homing guide RNA (hgRNA) technology enhances this by enabling dynamic retargeting and facilitating ongoing genetic modifications. Charting these mutations, especially through successive hgRNA edits, poses a significant challenge. Our solution, LINEMAP, is a computational framework designed to trace and map these mutations with precision. LINEMAP meticulously discerns mutation alleles at single-cell resolution and maps their complex interrelationships through a mutation evolution network. By utilizing a Markov Process model, we can predict mutation transition probabilities, revealing potential mutational routes and pathways. Our reconstruction algorithm, anchored in the Markov model's attributes, reconstructs cellular lineage pathways, shedding light on the cell's evolutionary journey to the minutiae of single-cell division. Our findings reveal an intricate network of mutation evolution paired with a predictive Markov model, advancing our capability to reconstruct single-cell lineage via hgRNA. This has substantial implications for advancing our understanding of biological mechanisms and propelling medical research forward.
Collapse
Affiliation(s)
- Lin Wang
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
| | - Wenjuan Dong
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
| | - Zheng Yin
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
- Biostatistics and Bioinformatics Shared Resource, Houston Methodist Neal Cancer Center, Houston, Texas 77030
| | - Jianting Sheng
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
| | - Chika F. Ezeana
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
| | - Li Yang
- T.T. and W. F. Chao Center for BRAIN, Houston Methodist Research Institute, Houston, Texas 77030
| | - Xiaohui Yu
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
| | | | - Zhihao Wan
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
| | - Rebecca L. Danforth
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
| | - Kun Han
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
| | - Dingcheng Gao
- Department of Cell & Development Biology, Weill Cornell Medical College, New York, NY 10065
| | - Stephen T. C. Wong
- Department of System Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, Texas 77030
- Departments of Radiology, Pathology and Genomic Medicine, Houston Methodist Hospital, Weill Cornell Medical College, Houston, TX 77030
| |
Collapse
|
43
|
Yang C, Lei Y, Ren T, Yao M. The Current Situation and Development Prospect of Whole-Genome Screening. Int J Mol Sci 2024; 25:658. [PMID: 38203828 PMCID: PMC10779205 DOI: 10.3390/ijms25010658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
High-throughput genetic screening is useful for discovering critical genes or gene sequences that trigger specific cell functions and/or phenotypes. Loss-of-function genetic screening is mainly achieved through RNA interference (RNAi), CRISPR knock-out (CRISPRko), and CRISPR interference (CRISPRi) technologies. Gain-of-function genetic screening mainly depends on the overexpression of a cDNA library and CRISPR activation (CRISPRa). Base editing can perform both gain- and loss-of-function genetic screening. This review discusses genetic screening techniques based on Cas9 nuclease, including Cas9-mediated genome knock-out and dCas9-based gene activation and interference. We compare these methods with previous genetic screening techniques based on RNAi and cDNA library overexpression and propose future prospects and applications for CRISPR screening.
Collapse
Affiliation(s)
| | | | | | - Mingze Yao
- Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education and Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (C.Y.); (Y.L.); (T.R.)
| |
Collapse
|
44
|
Li Z, Yang W, Wu P, Shan Y, Zhang X, Chen F, Yang J, Yang JR. Reconstructing cell lineage trees with genomic barcoding: approaches and applications. J Genet Genomics 2024; 51:35-47. [PMID: 37269980 DOI: 10.1016/j.jgg.2023.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
In multicellular organisms, developmental history of cell divisions and functional annotation of terminal cells can be organized into a cell lineage tree (CLT). The reconstruction of the CLT has long been a major goal in developmental biology and other related fields. Recent technological advancements, especially those in editable genomic barcodes and single-cell high-throughput sequencing, have sparked a new wave of experimental methods for reconstructing CLTs. Here we review the existing experimental approaches to the reconstruction of CLT, which are broadly categorized as either image-based or DNA barcode-based methods. In addition, we present a summary of the related literature based on the biological insight provided by the obtained CLTs. Moreover, we discuss the challenges that will arise as more and better CLT data become available in the near future. Genomic barcoding-based CLT reconstructions and analyses, due to their wide applicability and high scalability, offer the potential for novel biological discoveries, especially those related to general and systemic properties of the developmental process.
Collapse
Affiliation(s)
- Zizhang Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wenjing Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Peng Wu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuyan Shan
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaoyu Zhang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Feng Chen
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Junnan Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jian-Rong Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
45
|
Kim IS. DNA Barcoding Technology for Lineage Recording and Tracing to Resolve Cell Fate Determination. Cells 2023; 13:27. [PMID: 38201231 PMCID: PMC10778210 DOI: 10.3390/cells13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
In various biological contexts, cells receive signals and stimuli that prompt them to change their current state, leading to transitions into a future state. This change underlies the processes of development, tissue maintenance, immune response, and the pathogenesis of various diseases. Following the path of cells from their initial identity to their current state reveals how cells adapt to their surroundings and undergo transformations to attain adjusted cellular states. DNA-based molecular barcoding technology enables the documentation of a phylogenetic tree and the deterministic events of cell lineages, providing the mechanisms and timing of cell lineage commitment that can either promote homeostasis or lead to cellular dysregulation. This review comprehensively presents recently emerging molecular recording technologies that utilize CRISPR/Cas systems, base editing, recombination, and innate variable sequences in the genome. Detailing their underlying principles, applications, and constraints paves the way for the lineage tracing of every cell within complex biological systems, encompassing the hidden steps and intermediate states of organism development and disease progression.
Collapse
Affiliation(s)
- Ik Soo Kim
- Department of Microbiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| |
Collapse
|
46
|
Walsh LA, Quail DF. Decoding the tumor microenvironment with spatial technologies. Nat Immunol 2023; 24:1982-1993. [PMID: 38012408 DOI: 10.1038/s41590-023-01678-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2023]
Abstract
Visualization of the cellular heterogeneity and spatial architecture of the tumor microenvironment (TME) is becoming increasingly important to understand mechanisms of disease progression and therapeutic response. This is particularly relevant in the era of cancer immunotherapy, in which the contexture of immune cell positioning within the tumor landscape has been proven to affect efficacy. Although single-cell technologies have mostly replaced conventional approaches to analyze specific cellular subsets within tumors, those that integrate a spatial dimension are now on the rise. In this Review, we assess the strengths and limitations of emerging spatial technologies with a focus on their applications in tumor immunology, as well as forthcoming opportunities for artificial intelligence (AI) and the value of integrating multiomics datasets to achieve a holistic picture of the TME.
Collapse
Affiliation(s)
- Logan A Walsh
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada.
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
47
|
Biggs BW, de Paz AM, Bhan NJ, Cybulski TR, Church GM, Tyo KEJ. Engineering Ca 2+-Dependent DNA Polymerase Activity. ACS Synth Biol 2023; 12:3301-3311. [PMID: 37856140 DOI: 10.1021/acssynbio.3c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Advancements in synthetic biology have provided new opportunities in biosensing, with applications ranging from genetic programming to diagnostics. Next generation biosensors aim to expand the number of accessible environments for measurements, increase the number of measurable phenomena, and improve the quality of the measurement. To this end, an emerging area in the field has been the integration of DNA as an information storage medium within biosensor outputs, leveraging nucleic acids to record the biosensor state over time. However, slow signal transduction steps, due to the time scales of transcription and translation, bottleneck many sensing-DNA recording approaches. DNA polymerases (DNAPs) have been proposed as a solution to the signal transduction problem by operating as both the sensor and responder, but there is presently a lack of DNAPs with functional sensitivity to many desirable target ligands. Here, we engineer components of the Pol δ replicative polymerase complex of Saccharomyces cerevisiae to sense and respond to Ca2+, a metal cofactor relevant to numerous biological phenomena. Through domain insertion and binding site grafting to Pol δ subunits, we demonstrate functional allosteric sensitivity to Ca2+. Together, this work provides an important foundation for future efforts in the development of DNAP-based biosensors.
Collapse
Affiliation(s)
- Bradley W Biggs
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexandra M de Paz
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Namita J Bhan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Thaddeus R Cybulski
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, Illinois 60611, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
48
|
Zhang X, Cao Q, Rajachandran S, Grow EJ, Evans M, Chen H. Dissecting mammalian reproduction with spatial transcriptomics. Hum Reprod Update 2023; 29:794-810. [PMID: 37353907 PMCID: PMC10628492 DOI: 10.1093/humupd/dmad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/15/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Mammalian reproduction requires the fusion of two specialized cells: an oocyte and a sperm. In addition to producing gametes, the reproductive system also provides the environment for the appropriate development of the embryo. Deciphering the reproductive system requires understanding the functions of each cell type and cell-cell interactions. Recent single-cell omics technologies have provided insights into the gene regulatory network in discrete cellular populations of both the male and female reproductive systems. However, these approaches cannot examine how the cellular states of the gametes or embryos are regulated through their interactions with neighboring somatic cells in the native tissue environment owing to tissue disassociations. Emerging spatial omics technologies address this challenge by preserving the spatial context of the cells to be profiled. These technologies hold the potential to revolutionize our understanding of mammalian reproduction. OBJECTIVE AND RATIONALE We aim to review the state-of-the-art spatial transcriptomics (ST) technologies with a focus on highlighting the novel biological insights that they have helped to reveal about the mammalian reproductive systems in the context of gametogenesis, embryogenesis, and reproductive pathologies. We also aim to discuss the current challenges of applying ST technologies in reproductive research and provide a sneak peek at what the field of spatial omics can offer for the reproduction community in the years to come. SEARCH METHODS The PubMed database was used in the search for peer-reviewed research articles and reviews using combinations of the following terms: 'spatial omics', 'fertility', 'reproduction', 'gametogenesis', 'embryogenesis', 'reproductive cancer', 'spatial transcriptomics', 'spermatogenesis', 'ovary', 'uterus', 'cervix', 'testis', and other keywords related to the subject area. All relevant publications until April 2023 were critically evaluated and discussed. OUTCOMES First, an overview of the ST technologies that have been applied to studying the reproductive systems was provided. The basic design principles and the advantages and limitations of these technologies were discussed and tabulated to serve as a guide for researchers to choose the best-suited technologies for their own research. Second, novel biological insights into mammalian reproduction, especially human reproduction revealed by ST analyses, were comprehensively reviewed. Three major themes were discussed. The first theme focuses on genes with non-random spatial expression patterns with specialized functions in multiple reproductive systems; The second theme centers around functionally interacting cell types which are often found to be spatially clustered in the reproductive tissues; and the thrid theme discusses pathological states in reproductive systems which are often associated with unique cellular microenvironments. Finally, current experimental and computational challenges of applying ST technologies to studying mammalian reproduction were highlighted, and potential solutions to tackle these challenges were provided. Future directions in the development of spatial omics technologies and how they will benefit the field of human reproduction were discussed, including the capture of cellular and tissue dynamics, multi-modal molecular profiling, and spatial characterization of gene perturbations. WIDER IMPLICATIONS Like single-cell technologies, spatial omics technologies hold tremendous potential for providing significant and novel insights into mammalian reproduction. Our review summarizes these novel biological insights that ST technologies have provided while shedding light on what is yet to come. Our review provides reproductive biologists and clinicians with a much-needed update on the state of art of ST technologies. It may also facilitate the adoption of cutting-edge spatial technologies in both basic and clinical reproductive research.
Collapse
Affiliation(s)
- Xin Zhang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qiqi Cao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shreya Rajachandran
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward J Grow
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melanie Evans
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Haiqi Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
49
|
Boers R, Boers J, Tan B, van Leeuwen ME, Wassenaar E, Sanchez EG, Sleddens E, Tenhagen Y, Mulugeta E, Laven J, Creyghton M, Baarends W, van IJcken WFJ, Gribnau J. Retrospective analysis of enhancer activity and transcriptome history. Nat Biotechnol 2023; 41:1582-1592. [PMID: 36823354 PMCID: PMC10635829 DOI: 10.1038/s41587-023-01683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/20/2023] [Indexed: 02/25/2023]
Abstract
Cell state changes in development and disease are controlled by gene regulatory networks, the dynamics of which are difficult to track in real time. In this study, we used an inducible DCM-RNA polymerase subunit b fusion protein which labels active genes and enhancers with a bacterial methylation mark that does not affect gene transcription and is propagated in S-phase. This DCM-RNA polymerase fusion protein enables transcribed genes and active enhancers to be tagged and then examined at later stages of development or differentiation. We apply this DCM-time machine (DCM-TM) technology to study intestinal homeostasis, revealing rapid and coordinated activation of enhancers and nearby genes during enterocyte differentiation. We provide new insights in absorptive-secretory lineage decision-making in intestinal stem cell (ISC) differentiation and show that ISCs retain a unique chromatin landscape required to maintain ISC identity and delineate future expression of differentiation-associated genes. DCM-TM has wide applicability in tracking cell states, providing new insights in the regulatory networks underlying cell state changes.
Collapse
Affiliation(s)
- Ruben Boers
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joachim Boers
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Beatrice Tan
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marieke E van Leeuwen
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Evelyne Wassenaar
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Erlantz Gonzalez Sanchez
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Esther Sleddens
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Yasha Tenhagen
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Eskeatnaf Mulugeta
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joop Laven
- Department of Obstetrics and Gynaecology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Menno Creyghton
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Willy Baarends
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wilfred F J van IJcken
- Erasmus Center for Biomics, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.
| |
Collapse
|
50
|
Tseng KC, Crump JG. Craniofacial developmental biology in the single-cell era. Development 2023; 150:dev202077. [PMID: 37812056 PMCID: PMC10617621 DOI: 10.1242/dev.202077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The evolution of a unique craniofacial complex in vertebrates made possible new ways of breathing, eating, communicating and sensing the environment. The head and face develop through interactions of all three germ layers, the endoderm, ectoderm and mesoderm, as well as the so-called fourth germ layer, the cranial neural crest. Over a century of experimental embryology and genetics have revealed an incredible diversity of cell types derived from each germ layer, signaling pathways and genes that coordinate craniofacial development, and how changes to these underlie human disease and vertebrate evolution. Yet for many diseases and congenital anomalies, we have an incomplete picture of the causative genomic changes, in particular how alterations to the non-coding genome might affect craniofacial gene expression. Emerging genomics and single-cell technologies provide an opportunity to obtain a more holistic view of the genes and gene regulatory elements orchestrating craniofacial development across vertebrates. These single-cell studies generate novel hypotheses that can be experimentally validated in vivo. In this Review, we highlight recent advances in single-cell studies of diverse craniofacial structures, as well as potential pitfalls and the need for extensive in vivo validation. We discuss how these studies inform the developmental sources and regulation of head structures, bringing new insights into the etiology of structural birth anomalies that affect the vertebrate head.
Collapse
Affiliation(s)
- Kuo-Chang Tseng
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|