1
|
Wu R, Qiu J, Tang X, Li A, Yang Y, Zhu X, Zheng X, Yang W, Wu G, Wang G. Effects of okadaic acid on Pyropia yezoensis: Evidence from growth, photosynthesis, oxidative stress and transcriptome analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137902. [PMID: 40088667 DOI: 10.1016/j.jhazmat.2025.137902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
The frequent occurrences of harmful algal blooms potentially threaten marine organisms. The phycotoxin okadaic acid (OA) has been globally detected in seawater, however, the knowledge of effects of OA on macroalgae is limited. This study investigated the effects of OA (0.01, 0.1 μM) on the growth, physiological and biochemical properties, and transcriptional expression of Pyropia yezoensis. Exposure to 0.1 μM OA for 48 h led to decreased growth, oxidative stress, and lipid peroxidation in P. yezoensis. Levels of reactive oxygen species, glutathione and malondialdehyde, and activity of catalase enzyme were increased, but activity of superoxide dismutase was decreased in P. yezoensis exposed to OA. Even at the low concentration of 0.01 μM, OA influenced the photosynthetic efficiency and stimulated the pigment levels, including phycoerythrin, phycocyanin, allophycocyanin and chlorophyll a. Analytical results of amino acids indicated that OA reduced the nutritional quality of P. yezoensis. The expression of genes involved in nitrogen metabolism was up-regulated, but the genes associated with ABC transporters and photosynthesis was down-regulated by the OA exposure, suggesting that OA may affect photosynthesis and enhance nitrogen uptake and assimilation processes. This study provides a new perspective on the chemical ecology risk of phycotoxins to marine macroalgae.
Collapse
Affiliation(s)
- Ruolin Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Yongmeng Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xinyu Zhu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xianyao Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenke Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guangyao Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
2
|
Zachayus A, Loup-Forest J, Cura V, Poterszman A. Nucleotide Excision Repair: Insights into Canonical and Emerging Functions of the Transcription/DNA Repair Factor TFIIH. Genes (Basel) 2025; 16:231. [PMID: 40004560 PMCID: PMC11855273 DOI: 10.3390/genes16020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Nucleotide excision repair (NER) is a universal cut-and-paste DNA repair mechanism that corrects bulky DNA lesions such as those caused by UV radiation, environmental mutagens, and some chemotherapy drugs. In this review, we focus on the human transcription/DNA repair factor TFIIH, a key player of the NER pathway in eukaryotes. This 10-subunit multiprotein complex notably verifies the presence of a lesion and opens the DNA around the damage via its XPB and XPD subunits, two proteins identified in patients suffering from Xeroderma Pigmentosum syndrome. Isolated as a class II gene transcription factor in the late 1980s, TFIIH is a prototypic molecular machine that plays an essential role in both DNA repair and transcription initiation and harbors a DNA helicase, a DNA translocase, and kinase activity. More recently, TFIIH subunits have been identified as participating in other cellular processes, including chromosome segregation during mitosis, maintenance of mitochondrial DNA integrity, and telomere replication.
Collapse
Affiliation(s)
- Amélie Zachayus
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France; (A.Z.); (J.L.-F.); (V.C.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Institut National De La Sante et de la Recherche Médicale (Inserm), UMR S 1258, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Jules Loup-Forest
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France; (A.Z.); (J.L.-F.); (V.C.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Institut National De La Sante et de la Recherche Médicale (Inserm), UMR S 1258, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Vincent Cura
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France; (A.Z.); (J.L.-F.); (V.C.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Institut National De La Sante et de la Recherche Médicale (Inserm), UMR S 1258, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France; (A.Z.); (J.L.-F.); (V.C.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Institut National De La Sante et de la Recherche Médicale (Inserm), UMR S 1258, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
3
|
Zhou L, Sun S, Zhu L, Chen X, Xu R, Wu L, Gu S. Genome-Wide Identification and Expression Analysis of the Mediator Complex Subunit Gene Family in Cassava. Int J Mol Sci 2025; 26:1666. [PMID: 40004128 PMCID: PMC11855191 DOI: 10.3390/ijms26041666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
The Mediator complex (MED) functions as a co-activator in plants, transmitting transcriptional signals to regulate gene expression, including responses to environmental stresses. While the MED gene family has been identified in several species, it has not yet been reported in cassava. In this study, we identified 32 members of the MeMED gene family in cassava (Manihot esculenta Crantz) distributed across 13 chromosomes. These genes were categorized into distinct Mediator subunits based on their similarity to Arabidopsis modules. Promoter analysis revealed the presence of various cis-regulatory elements, which likely play key roles in regulating plant growth, development, and stress responses. RNA-seq data showed tissue-specific expression patterns for the MeMED genes, with significant expression observed in leaves, roots, petioles, stems, friable embryogenic callus, and shoot apical meristems. Further RT-qPCR analysis under various abiotic stress conditions-including drought, exogenous hydrogen peroxide, cold, heat, and salt-demonstrated that 10 selected MeMED genes exhibited significant differential expression, indicating their potential functional involvement in stress adaptation. These findings offer insights into the biological roles of the MeMED gene family in cassava, with implications for improving stress tolerance in future breeding programs.
Collapse
Affiliation(s)
- Lingling Zhou
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (L.Z.); (S.S.); (L.Z.); (X.C.); (R.X.)
| | - Shuhui Sun
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (L.Z.); (S.S.); (L.Z.); (X.C.); (R.X.)
| | - Linlong Zhu
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (L.Z.); (S.S.); (L.Z.); (X.C.); (R.X.)
| | - Xian Chen
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (L.Z.); (S.S.); (L.Z.); (X.C.); (R.X.)
| | - Ran Xu
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (L.Z.); (S.S.); (L.Z.); (X.C.); (R.X.)
| | - Lian Wu
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (L.Z.); (S.S.); (L.Z.); (X.C.); (R.X.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shuang Gu
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China; (L.Z.); (S.S.); (L.Z.); (X.C.); (R.X.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Berger C, Lewis C, Gao Y, Knoops K, López-Iglesias C, Peters PJ, Ravelli RBG. In situ and in vitro cryo-EM reveal structures of mycobacterial encapsulin assembly intermediates. Commun Biol 2025; 8:245. [PMID: 39955411 PMCID: PMC11830004 DOI: 10.1038/s42003-025-07660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
Prokaryotes rely on proteinaceous compartments such as encapsulin to isolate harmful reactions. Encapsulin are widely expressed by bacteria, including the Mycobacteriaceae, which include the human pathogens Mycobacterium tuberculosis and Mycobacterium leprae. Structures of fully assembled encapsulin shells have been determined for several species, but encapsulin assembly and cargo encapsulation are still poorly characterised, because of the absence of encapsulin structures in intermediate assembly states. We combine in situ and in vitro structural electron microscopy to show that encapsulins are dynamic assemblies with intermediate states of cargo encapsulation and shell assembly. Using cryo-focused ion beam (FIB) lamella preparation and cryo-electron tomography (CET), we directly visualise encapsulins in Mycobacterium marinum, and observed ribbon-like attachments to the shell, encapsulin shells with and without cargoes, and encapsulin shells in partially assembled states. In vitro cryo-electron microscopy (EM) single-particle analysis of the Mycobacterium tuberculosis encapsulin was used to obtain three structures of the encapsulin shell in intermediate states, as well as a 2.3 Å structure of the fully assembled shell. Based on the analysis of the intermediate encapsulin shell structures, we propose a model of encapsulin self-assembly via the pairwise addition of monomers.
Collapse
Affiliation(s)
- Casper Berger
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands.
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, United Kingdom.
| | - Chris Lewis
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
- Microscopy CORE Lab, FHML, Maastricht University, Maastricht, The Netherlands
| | - Ye Gao
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Kèvin Knoops
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
- Microscopy CORE Lab, FHML, Maastricht University, Maastricht, The Netherlands
| | - Carmen López-Iglesias
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
- Microscopy CORE Lab, FHML, Maastricht University, Maastricht, The Netherlands
| | - Peter J Peters
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Raimond B G Ravelli
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Gui Z, Shi W, Zhou F, Yan Y, Li Y, Xu Y. The role of estrogen receptors in intracellular estrogen signaling pathways, an overview. J Steroid Biochem Mol Biol 2025; 245:106632. [PMID: 39551163 DOI: 10.1016/j.jsbmb.2024.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
To date five members of estrogen receptors (ESRs) have been reported. They are grouped into two classes, the nuclear estrogen receptors are members of the nuclear receptor family which found at nuclear, cytoplasm and plasma membrane, and the membrane estrogen receptors, such as G protein-coupled estrogen receptor 1, ESR-X and Gq-coupled membrane estrogen receptor. The structure and function of estrogen receptors, and interaction between ESR and coregulators were reviewed. In canonical pathway ESRs can translocate to the nucleus, bind to the target gene promotor with or without estrogen responsive element and regulate transcription, mediating the genomic effects of estrogen. Coactivators and corepressors are recruited to activate or inhibit transcription by activated ESRs. Many coactivators and corepressors are recruited to activate or inhibit ESR mediated gene transcription via different mechanisms. ESRs also indirectly bind to the promoter via interaction with other transcription factors, tethering the transcription factors. ESRs can be phosphorylated by several kinases such as p38, extracellular-signal-regulated kinase, and activated protein kinase B, and which activates transcription without ligand binding. Non-genomic estrogen action can be manifested by the increases of cytoplasmic NO and Ca2+ through the activation of membrane ESRs. In female, ESRs signaling is crucial for folliculogenesis, oocyte growth, ovulation, oviduct and uterus. In male, ESRs signaling modulates libido, erectile function, leydig cell steroidogenesis, sertoli cell's function, and epididymal fluid homeostatsis, supporting spermatogenesis and sperm maturation. The abnormal ESRs signaling is believed to be closely related to reproductive diseases and cancer.
Collapse
Affiliation(s)
- Zichang Gui
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China.
| | - Wei Shi
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Fangting Zhou
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yongqing Yan
- Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| | - Yuntian Li
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yang Xu
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China; Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| |
Collapse
|
6
|
Zhou DH, Jeon J, Farheen N, Friedman LJ, Kondev J, Buratowski S, Gelles J. Mechanisms of synergistic Mediator recruitment in RNA polymerase II transcription activation revealed by single-molecule fluorescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627625. [PMID: 39713438 PMCID: PMC11661148 DOI: 10.1101/2024.12.10.627625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Transcription activators trigger transcript production by RNA Polymerase II (RNApII) via the Mediator coactivator complex. Here the dynamics of activator, Mediator, and RNApII binding at promoter DNA were analyzed using multi-wavelength single-molecule microscopy of fluorescently labeled proteins in budding yeast nuclear extract. Binding of Mediator and RNApII to the template required activator and an upstream activator sequence (UAS), but not a core promoter. While Mediator and RNApII sometimes bind as a pre-formed complex, more commonly Mediator binds first and subsequently recruits RNApII to form a preinitiation complex precursor (pre-PIC) tethered to activators on the UAS. Interestingly, Mediator occupancy has a highly non-linear response to activator concentration, and fluorescence intensity measurements show Mediator preferentially associates with templates having at least two activators bound. Statistical mechanical modeling suggests this "synergy" is not due to cooperative binding between activators, but instead occurs when multiple DNA-bound activator molecules simultaneously interact with a single Mediator.
Collapse
Affiliation(s)
- Daniel H. Zhou
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| | - Jongcheol Jeon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Nida Farheen
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| | | | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA 02453
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
| |
Collapse
|
7
|
Yang C, Basnet P, Sharmin S, Shen H, Kaplan C, Murakami K. Transcription start site scanning requires the fungi-specific hydrophobic loop of Tfb3. Nucleic Acids Res 2024; 52:11602-11611. [PMID: 39287137 PMCID: PMC11514446 DOI: 10.1093/nar/gkae805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/07/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
RNA polymerase II (pol II) initiates transcription from transcription start sites (TSSs) located ∼30-35 bp downstream of the TATA box in metazoans, whereas in the yeast Saccharomyces cerevisiae, pol II scans further downstream TSSs located ∼40-120 bp downstream of the TATA box. Previously, we found that removal of the kinase module TFIIK (Kin28-Ccl1-Tfb3) from TFIIH shifts the TSS in a yeast in vitro system upstream to the location observed in metazoans and that addition of recombinant Tfb3 back to TFIIH-ΔTFIIK restores the downstream TSS usage. Here, we report that this biochemical activity of yeast TFIIK in TSS scanning is attributable to the Tfb3 RING domain at the interface with pol II in the pre-initiation complex (PIC): especially, swapping Tfb3 Pro51-a residue conserved among all fungi-with Ala or Ser as in MAT1, the metazoan homolog of Tfb3, confers an upstream TSS shift in vitro in a similar manner to the removal of TFIIK. Yeast genetic analysis suggests that both Pro51 and Arg64 of Tfb3 are required to maintain the stability of the Tfb3-pol II interface in the PIC. Cryo-electron microscopy analysis of a yeast PIC lacking TFIIK reveals considerable variability in the orientation of TFIIH, which impairs TSS scanning after promoter opening.
Collapse
Affiliation(s)
- Chun Yang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 415 CurieBlvd. Philadelphia, PA 19104, USA
| | - Pratik Basnet
- Department of Biological Sciences, University of Pittsburgh, 5th and Ruskin Avenues, Pittsburgh, PA 15260, USA
| | - Samah Sharmin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 415 CurieBlvd. Philadelphia, PA 19104, USA
| | - Hui Shen
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing 210009, China
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, 5th and Ruskin Avenues, Pittsburgh, PA 15260, USA
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 415 CurieBlvd. Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Kuper J, Hove T, Maidl S, Neitz H, Sauer F, Kempf M, Schroeder T, Greiter E, Höbartner C, Kisker C. XPD stalled on cross-linked DNA provides insight into damage verification. Nat Struct Mol Biol 2024; 31:1580-1588. [PMID: 38806694 PMCID: PMC11479942 DOI: 10.1038/s41594-024-01323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024]
Abstract
The superfamily 2 helicase XPD is a central component of the general transcription factor II H (TFIIH), which is essential for transcription and nucleotide excision DNA repair (NER). Within these two processes, the helicase function of XPD is vital for NER but not for transcription initiation, where XPD acts only as a scaffold for other factors. Using cryo-EM, we deciphered one of the most enigmatic steps in XPD helicase action: the active separation of double-stranded DNA (dsDNA) and its stalling upon approaching a DNA interstrand cross-link, a highly toxic form of DNA damage. The structure shows how dsDNA is separated and reveals a highly unusual involvement of the Arch domain in active dsDNA separation. Combined with mutagenesis and biochemical analyses, we identified distinct functional regions important for helicase activity. Surprisingly, those areas also affect core TFIIH translocase activity, revealing a yet unencountered function of XPD within the TFIIH scaffold. In summary, our data provide a universal basis for NER bubble formation, XPD damage verification and XPG incision.
Collapse
Affiliation(s)
- Jochen Kuper
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| | - Tamsanqa Hove
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Sarah Maidl
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Hermann Neitz
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Florian Sauer
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Maximilian Kempf
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Till Schroeder
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Elke Greiter
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Claudia Höbartner
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), University of Würzburg, Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
9
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
10
|
Evans R, Waterfield NR. The Pvc15 ATPase selectively associates effector proteins with the Photorhabdus virulence cassette. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240948. [PMID: 39445091 PMCID: PMC11495950 DOI: 10.1098/rsos.240948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/19/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
The Photorhabdus virulence cassette (PVC) is an extracellular contractile injection system. In the producing bacterium, N-terminal signal peptides enable effector 'payloads' to be loaded into the PVC's hollow tube-facilitated by the 'ATPases associated with diverse cellular activities' (AAA) ATPase, Pvc15-ready for injection of the toxin or virulence factor into eukaryotic cytosols. Pvc15's function and its interaction with the signal peptide were unclear. This study describes the signal peptide diversity in extracellular contractile injection system clades and interrogates the Pvc15-signal peptide interaction using ATPase assays, cell respiratory assays and western blot quantification of Escherichia coli lysates and co-purifications of PVCs with their payloads. This study found that extracellular contractile injection system signal peptides can be grouped according to sequence alignment, owing to potentially homologous loading mechanisms. Pvc15 contains three domains, including tandem AAA domains D1 and D2. By constructing Pvc15 mutants, we found that while each domain is necessary for PVC-payload loading, domain D2 is the sole bioactive ATPase domain and rescues unstable payloads via the signal peptide. Finally, truncating the signal peptide abolishes Pvc15-dependent PVC loading and has varying effects on payload stability. This study provides crucial insights into extracellular contractile injection system effector loading mechanisms and their ATPase chaperones, and suggests that these devices could be bioengineered for injection of therapeutic proteins into human cells.
Collapse
Affiliation(s)
- Rhys Evans
- Warwick Medical School, University of Warwick, CoventryCV4 7AL, UK
| | | |
Collapse
|
11
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
12
|
Zhao H, Li J, Xiang Y, Malik S, Vartak SV, Veronezi GMB, Young N, Riney M, Kalchschmidt J, Conte A, Jung SK, Ramachandran S, Roeder RG, Shi Y, Casellas R, Asturias FJ. An IDR-dependent mechanism for nuclear receptor control of Mediator interaction with RNA polymerase II. Mol Cell 2024; 84:2648-2664.e10. [PMID: 38955181 PMCID: PMC11283359 DOI: 10.1016/j.molcel.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/29/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
The essential Mediator (MED) coactivator complex plays a well-understood role in regulation of basal transcription in all eukaryotes, but the mechanism underlying its role in activator-dependent transcription remains unknown. We investigated modulation of metazoan MED interaction with RNA polymerase II (RNA Pol II) by antagonistic effects of the MED26 subunit and the CDK8 kinase module (CKM). Biochemical analysis of CKM-MED showed that the CKM blocks binding of the RNA Pol II carboxy-terminal domain (CTD), preventing RNA Pol II interaction. This restriction is eliminated by nuclear receptor (NR) binding to CKM-MED, which enables CTD binding in a MED26-dependent manner. Cryoelectron microscopy (cryo-EM) and crosslinking-mass spectrometry (XL-MS) revealed that the structural basis for modulation of CTD interaction with MED relates to a large intrinsically disordered region (IDR) in CKM subunit MED13 that blocks MED26 and CTD interaction with MED but is repositioned upon NR binding. Hence, NRs can control transcription initiation by priming CKM-MED for MED26-dependent RNA Pol II interaction.
Collapse
Affiliation(s)
- Haiyan Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora, CO 80045, USA
| | - Jiaqin Li
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora, CO 80045, USA
| | - Yufei Xiang
- Center of Protein Engineering and Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sohail Malik
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, NY 10065, USA
| | | | - Giovana M B Veronezi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora, CO 80045, USA
| | - Natalie Young
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora, CO 80045, USA
| | - McKayla Riney
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora, CO 80045, USA
| | | | - Andrea Conte
- Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Seol Kyoung Jung
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado Anschutz Medical School, Aurora, CO 80045, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, NY 10065, USA
| | - Yi Shi
- Center of Protein Engineering and Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rafael Casellas
- Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Francisco J Asturias
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical School, Aurora, CO 80045, USA.
| |
Collapse
|
13
|
Zurita M. Does TFIIH move nucleosomes? Trends Genet 2024; 40:560-563. [PMID: 38789376 DOI: 10.1016/j.tig.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Transcription factor (TF) IIH is a factor involved in transcription, DNA repair, mitosis, and telomere stability. These functions stem from its helicase/ATPase and kinase activities. Recent reports on the structure and function of the transcription machinery, as well as chromosome compaction during mitosis, suggest that TFIIH also influences nucleosome movement, are explored here.
Collapse
Affiliation(s)
- Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Col. Chamilpa, 62250, México.
| |
Collapse
|
14
|
Freytes SN, Gobbini ML, Cerdán PD. The Plant Mediator Complex in the Initiation of Transcription by RNA Polymerase II. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:211-237. [PMID: 38277699 DOI: 10.1146/annurev-arplant-070623-114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Thirty years have passed since the discovery of the Mediator complex in yeast. We are witnessing breakthroughs and advances that have led to high-resolution structural models of yeast and mammalian Mediators in the preinitiation complex, showing how it is assembled and how it positions the RNA polymerase II and its C-terminal domain (CTD) to facilitate the CTD phosphorylation that initiates transcription. This information may be also used to guide future plant research on the mechanisms of Mediator transcriptional control. Here, we review what we know about the subunit composition and structure of plant Mediators, the roles of the individual subunits and the genetic analyses that pioneered Mediator research, and how transcription factors recruit Mediators to regulatory regions adjoining promoters. What emerges from the research is a Mediator that regulates transcription activity and recruits hormonal signaling modules and histone-modifying activities to set up an off or on transcriptional state that recruits general transcription factors for preinitiation complex assembly.
Collapse
Affiliation(s)
| | | | - Pablo D Cerdán
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina; , ,
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
15
|
Giordano G, Buratowski R, Jeronimo C, Poitras C, Robert F, Buratowski S. Uncoupling the TFIIH Core and Kinase Modules Leads To Misregulated RNA Polymerase II CTD Serine 5 Phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557269. [PMID: 37745343 PMCID: PMC10515806 DOI: 10.1101/2023.09.11.557269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
TFIIH is an essential transcription initiation factor for RNA polymerase II (RNApII). This multi-subunit complex comprises two modules that are physically linked by the subunit Tfb3 (MAT1 in metazoans). The TFIIH Core Module, with two DNA-dependent ATPases and several additional subunits, promotes DNA unwinding. The TFIIH Kinase Module phosphorylates Serine 5 of the C-terminal domain (CTD) of RNApII subunit Rpb1, a modification that coordinates exchange of initiation and early elongation factors. While it is not obvious why these two disparate activities are bundled into one factor, the connection may provide temporal coordination during early initiation. Here we show that Tfb3 can be split into two parts to uncouple the TFIIH modules. The resulting cells grow slower than normal, but are viable. Chromatin immunoprecipitation of the split TFIIH shows that the Core Module, but not the Kinase, is properly recruited to promoters. Instead of the normal promoter-proximal peak, high CTD Serine 5 phosphorylation is seen throughout transcribed regions. Therefore, coupling the TFIIH modules is necessary to localize and limit CTD kinase activity to early stages of transcription. These results are consistent with the idea that the two TFIIH modules began as independent functional entities that became connected by Tfb3 during early eukaryotic evolution.
Collapse
Affiliation(s)
- Gabriela Giordano
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Robin Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Célia Jeronimo
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Christian Poitras
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
- Division of Experimental Medicine, Medicine, McGill University, Montréal, Québec, Canada
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Birkenheuer CH, Baines JD. Aberrant RNA polymerase initiation and processivity on the genome of a herpes simplex virus 1 mutant lacking ICP27. J Virol 2024; 98:e0071224. [PMID: 38780246 PMCID: PMC11237563 DOI: 10.1128/jvi.00712-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Within the first 15 minutes of infection, herpes simplex virus 1 immediate early proteins repurpose cellular RNA polymerase (Pol II) for viral transcription. An important role of the viral-infected cell protein 27 (ICP27) is to facilitate viral pre-mRNA processing and export viral mRNA to the cytoplasm. Here, we use precision nuclear run-on followed by deep sequencing (PRO-seq) to characterize transcription of a viral ICP27 null mutant. At 1.5 and 3 hours post infection (hpi), we observed increased total levels of Pol II on the mutant viral genome and accumulation of Pol II downstream of poly A sites indicating increased levels of initiation and processivity. By 6 hpi, Pol II accumulation on specific mutant viral genes was higher than that on wild-type virus either at or upstream of poly A signals, depending on the gene. The PRO-seq profile of the ICP27 mutant on late genes at 6 hpi was similar but not identical to that caused by treatment with flavopiridol, a known inhibitor of RNA processivity. This pattern was different from PRO-seq profiles of other α gene mutants and upon inhibition of viral DNA replication with PAA. Together, these results indicate that ICP27 contributes to the repression of aberrant viral transcription at 1.5 and 3 hpi by inhibiting initiation and decreasing RNA processivity. However, ICP27 is needed to enhance processivity on most late genes by 6 hpi in a mechanism distinguishable from its role in viral DNA replication.IMPORTANCEWe developed and validated the use of a processivity index for precision nuclear run-on followed by deep sequencing data. The processivity index calculations confirm infected cell protein 27 (ICP27) induces downstream of transcription termination on certain host genes. The processivity indices and whole gene probe data implicate ICP27 in transient immediate early gene-mediated repression, a process that also requires ICP4, ICP22, and ICP0. The data indicate that ICP27 directly or indirectly regulates RNA polymerase (Pol II) initiation and processivity on specific genes at specific times post infection. These observations support specific and varied roles for ICP27 in regulating Pol II activity on viral genes in addition to its known roles in post transcriptional mRNA processing and export.
Collapse
Affiliation(s)
- Claire H. Birkenheuer
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Joel D. Baines
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
17
|
Zhan Y, Grabbe F, Oberbeckmann E, Dienemann C, Cramer P. Three-step mechanism of promoter escape by RNA polymerase II. Mol Cell 2024; 84:1699-1710.e6. [PMID: 38604172 DOI: 10.1016/j.molcel.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/04/2024] [Accepted: 03/16/2024] [Indexed: 04/13/2024]
Abstract
The transition from transcription initiation to elongation is highly regulated in human cells but remains incompletely understood at the structural level. In particular, it is unclear how interactions between RNA polymerase II (RNA Pol II) and initiation factors are broken to enable promoter escape. Here, we reconstitute RNA Pol II promoter escape in vitro and determine high-resolution structures of initially transcribing complexes containing 8-, 10-, and 12-nt ordered RNAs and two elongation complexes containing 14-nt RNAs. We suggest that promoter escape occurs in three major steps. First, the growing RNA displaces the B-reader element of the initiation factor TFIIB without evicting TFIIB. Second, the rewinding of the transcription bubble coincides with the eviction of TFIIA, TFIIB, and TBP. Third, the binding of DSIF and NELF facilitates TFIIE and TFIIH dissociation, establishing the paused elongation complex. This three-step model for promoter escape fills a gap in our understanding of the initiation-elongation transition of RNA Pol II transcription.
Collapse
Affiliation(s)
- Yumeng Zhan
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Frauke Grabbe
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Elisa Oberbeckmann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
18
|
Kupkova K, Shetty SJ, Hoffman EA, Bekiranov S, Auble DT. Genome-scale chromatin binding dynamics of RNA Polymerase II general transcription machinery components. EMBO J 2024; 43:1799-1821. [PMID: 38565951 PMCID: PMC11066129 DOI: 10.1038/s44318-024-00089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
A great deal of work has revealed, in structural detail, the components of the preinitiation complex (PIC) machinery required for initiation of mRNA gene transcription by RNA polymerase II (Pol II). However, less-well understood are the in vivo PIC assembly pathways and their kinetics, an understanding of which is vital for determining how rates of in vivo RNA synthesis are established. We used competition ChIP in budding yeast to obtain genome-scale estimates of the residence times for five general transcription factors (GTFs): TBP, TFIIA, TFIIB, TFIIE and TFIIF. While many GTF-chromatin interactions were short-lived ( < 1 min), there were numerous interactions with residence times in the range of several minutes. Sets of genes with a shared function also shared similar patterns of GTF kinetic behavior. TFIIE, a GTF that enters the PIC late in the assembly process, had residence times correlated with RNA synthesis rates. The datasets and results reported here provide kinetic information for most of the Pol II-driven genes in this organism, offering a rich resource for exploring the mechanistic relationships between PIC assembly, gene regulation, and transcription.
Collapse
Affiliation(s)
- Kristyna Kupkova
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, 22908, USA
- Center for Public Health Genomics, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Savera J Shetty
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Elizabeth A Hoffman
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - David T Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
19
|
Lam JH, Nakano A, Katritch V. Scalable computation of anisotropic vibrations for large macromolecular assemblies. Nat Commun 2024; 15:3479. [PMID: 38658556 PMCID: PMC11043083 DOI: 10.1038/s41467-024-47685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
The Normal Mode Analysis (NMA) is a standard approach to elucidate the anisotropic vibrations of macromolecules at their folded states, where low-frequency collective motions can reveal rearrangements of domains and changes in the exposed surface of macromolecules. Recent advances in structural biology have enabled the resolution of megascale macromolecules with millions of atoms. However, the calculation of their vibrational modes remains elusive due to the prohibitive cost associated with constructing and diagonalizing the underlying eigenproblem and the current approaches to NMA are not readily adaptable for efficient parallel computing on graphic processing unit (GPU). Here, we present eigenproblem construction and diagonalization approach that implements level-structure bandwidth-reducing algorithms to transform the sparse computation in NMA to a globally-sparse-yet-locally-dense computation, allowing batched tensor products to be most efficiently executed on GPU. We map, optimize, and compare several low-complexity Krylov-subspace eigensolvers, supplemented by techniques such as Chebyshev filtering, sum decomposition, external explicit deflation and shift-and-inverse, to allow fast GPU-resident calculations. The method allows accurate calculation of the first 1000 vibrational modes of some largest structures in PDB ( > 2.4 million atoms) at least 250 times faster than existing methods.
Collapse
Affiliation(s)
- Jordy Homing Lam
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Bridge Institute and Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Center for New Technologies in Drug Discovery and Development, University of Southern California, Los Angeles, CA, USA
| | - Aiichiro Nakano
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA.
- Department of Computer Science, University of Southern California, Los Angeles, CA, USA.
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
- Bridge Institute and Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
- Center for New Technologies in Drug Discovery and Development, University of Southern California, Los Angeles, CA, USA.
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Eustermann S, Patel AB, Hopfner KP, He Y, Korber P. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat Rev Mol Cell Biol 2024; 25:309-332. [PMID: 38081975 DOI: 10.1038/s41580-023-00683-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 03/28/2024]
Abstract
The packaging of DNA into chromatin in eukaryotes regulates gene transcription, DNA replication and DNA repair. ATP-dependent chromatin remodelling enzymes (re)arrange nucleosomes at the first level of chromatin organization. Their Snf2-type motor ATPases alter histone-DNA interactions through a common DNA translocation mechanism. Whether remodeller activities mainly catalyse nucleosome dynamics or accurately co-determine nucleosome organization remained unclear. In this Review, we discuss the emerging mechanisms of chromatin remodelling: dynamic remodeller architectures and their interactions, the inner workings of the ATPase cycle, allosteric regulation and pathological dysregulation. Recent mechanistic insights argue for a decisive role of remodellers in the energy-driven self-organization of chromatin, which enables both stability and plasticity of genome regulation - for example, during development and stress. Different remodellers, such as members of the SWI/SNF, ISWI, CHD and INO80 families, process (epi)genetic information through specific mechanisms into distinct functional outputs. Combinatorial assembly of remodellers and their interplay with histone modifications, histone variants, DNA sequence or DNA-bound transcription factors regulate nucleosome mobilization or eviction or histone exchange. Such input-output relationships determine specific nucleosome positions and compositions with distinct DNA accessibilities and mediate differential genome regulation. Finally, remodeller genes are often mutated in diseases characterized by genome dysregulation, notably in cancer, and we discuss their physiological relevance.
Collapse
Affiliation(s)
- Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Avinash B Patel
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Faculty of Chemistry and Pharmacy, LMU Munich, Munich, Germany
| | - Yuan He
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| | - Philipp Korber
- Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, LMU Munich, Martinsried, Germany.
| |
Collapse
|
21
|
Hoag A, Duan M, Mao P. The role of Transcription Factor IIH complex in nucleotide excision repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:72-81. [PMID: 37545038 PMCID: PMC10903506 DOI: 10.1002/em.22568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
DNA damage occurs throughout life from a variety of sources, and it is imperative to repair damage in a timely manner to maintain genome stability. Thus, DNA repair mechanisms are a fundamental part of life. Nucleotide excision repair (NER) plays an important role in the removal of bulky DNA adducts, such as cyclobutane pyrimidine dimers from ultraviolet light or DNA crosslinking damage from platinum-based chemotherapeutics, such as cisplatin. A main component for the NER pathway is transcription factor IIH (TFIIH), a multifunctional, 10-subunit protein complex with crucial roles in both transcription and NER. In transcription, TFIIH is a component of the pre-initiation complex and is important for promoter opening and the phosphorylation of RNA Polymerase II (RNA Pol II). During repair, TFIIH is important for DNA unwinding, recruitment of downstream repair factors, and verification of the bulky lesion. Several different disease states can arise from mutations within subunits of the TFIIH complex. Most strikingly are xeroderma pigmentosum (XP), XP combined with Cockayne syndrome (CS), and trichothiodystrophy (TTD). Here, we summarize the recruitment and functions of TFIIH in the two NER subpathways, global genomic (GG-NER) and transcription-coupled NER (TC-NER). We will also discuss how TFIIH's roles in the two subpathways lead to different genetic disorders.
Collapse
Affiliation(s)
- Allyson Hoag
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States
| | - Mingrui Duan
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States
| |
Collapse
|
22
|
Greber BJ. High-resolution cryo-EM of a small protein complex: The structure of the human CDK-activating kinase. Structure 2024:S0969-2126(24)00085-6. [PMID: 38565138 DOI: 10.1016/j.str.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/27/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
The human CDK-activating kinase (CAK) is a multifunctional protein complex and key regulator of cell growth and division. Because of its critical functions in regulating the cell cycle and transcription initiation, it is a key target for multiple cancer drug discovery programs. However, the structure of the active human CAK, insights into its regulation, and its interactions with cellular substrates and inhibitors remained elusive until recently due to the lack of high-resolution structures of the intact complex. This review covers the progress in structure determination of the human CAK by cryogenic electron microscopy (cryo-EM), from early efforts to recent near-atomic resolution maps routinely resolved at 2Å or better. These results were enabled by the latest cryo-EM technologies introduced after the initial phase of the "resolution revolution" and allowed the application of high-resolution methods to new classes of molecular targets, including small protein complexes that were intractable using earlier technology.
Collapse
Affiliation(s)
- Basil J Greber
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
23
|
Franzese M, Zanfardino M, Soricelli A, Coppola A, Maiello C, Salvatore M, Schiano C, Napoli C. Familial Dilated Cardiomyopathy: A Novel MED9 Short Isoform Identification. Int J Mol Sci 2024; 25:3057. [PMID: 38474301 DOI: 10.3390/ijms25053057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Familial dilated cardiomyopathy (DCM) is among the leading indications for heart transplantation. DCM alters the transcriptomic profile. The alteration or activation/silencing of physiologically operating transcripts may explain the onset and progression of this pathological state. The mediator complex (MED) plays a fundamental role in the transcription process. The aim of this study is to investigate the MED subunits, which are altered in DCM, to identify target crossroads genes. RNA sequencing allowed us to identify specific MED subunits that are altered during familial DCM, transforming into human myocardial samples. N = 13 MED subunits were upregulated and n = 7 downregulated. MED9 alone was significantly reduced in patients compared to healthy subjects (HS) (FC = -1.257; p < 0.05). Interestingly, we found a short MED9 isoform (MED9s) (ENSG00000141026.6), which was upregulated when compared to the full-transcript isoform (MED9f). Motif identification analysis yielded several significant matches (p < 0.05), such as GATA4, which is downregulated in CHD. Moreover, although the protein-protein interaction network showed FOG2/ZFPM2, FOS and ID2 proteins to be the key interacting partners of GATA4, only FOG2/ZFPM2 overexpression showed an interaction score of "high confidence" ≥ 0.84. A significant change in the MED was observed during HF. For the first time, the MED9 subunit was significantly reduced between familial DCM and HS (p < 0.05), showing an increased MED9s isoform in DCM patients with respect to its full-length transcript. MED9 and GATA4 shared the same sequence motif and were involved in a network with FOG2/ZFPM2, FOS, and ID2, proteins already implicated in cardiac development.
Collapse
Affiliation(s)
| | | | - Andrea Soricelli
- IRCCS SYNLAB SDN, 80143 Naples, Italy
- Department of Exercise and Wellness Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Annapaola Coppola
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 81100 Naples, Italy
| | - Ciro Maiello
- Department of Cardiothoracic Science, U.O.S.D. of Heart Transplantation, Monaldi Hospital, 80131 Naples, Italy
| | | | - Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 81100 Naples, Italy
| | - Claudio Napoli
- IRCCS SYNLAB SDN, 80143 Naples, Italy
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 81100 Naples, Italy
- Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Azienda Universitaria Policlinico (AOU), 80131 Naples, Italy
| |
Collapse
|
24
|
Chen X, Xu Y. Interplay between the transcription preinitiation complex and the +1 nucleosome. Trends Biochem Sci 2024; 49:145-155. [PMID: 38218671 DOI: 10.1016/j.tibs.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/15/2024]
Abstract
Eukaryotic transcription starts with the assembly of a preinitiation complex (PIC) on core promoters. Flanking this region is the +1 nucleosome, the first nucleosome downstream of the core promoter. While this nucleosome is rich in epigenetic marks and plays a key role in transcription regulation, how the +1 nucleosome interacts with the transcription machinery has been a long-standing question. Here, we summarize recent structural and functional studies of the +1 nucleosome in complex with the PIC. We specifically focus on how differently organized promoter-nucleosome templates affect the assembly of the PIC and PIC-Mediator on chromatin and result in distinct transcription initiation.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China.
| |
Collapse
|
25
|
Dunn LEM, Birkenheuer CH, Baines JD. A Revision of Herpes Simplex Virus Type 1 Transcription: First, Repress; Then, Express. Microorganisms 2024; 12:262. [PMID: 38399666 PMCID: PMC10892140 DOI: 10.3390/microorganisms12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The herpes virus genome bears more than 80 strong transcriptional promoters. Upon entry into the host cell nucleus, these genes are transcribed in an orderly manner, producing five immediate-early (IE) gene products, including ICP0, ICP4, and ICP22, while non-IE genes are mostly silent. The IE gene products are necessary for the transcription of temporal classes following sequentially as early, leaky late, and true late. A recent analysis using precision nuclear run-on followed by deep sequencing (PRO-seq) has revealed an important step preceding all HSV-1 transcription. Specifically, the immediate-early proteins ICP4 and ICP0 enter the cell with the incoming genome to help preclude the nascent antisense, intergenic, and sense transcription of all viral genes. VP16, which is also delivered into the nucleus upon entry, almost immediately reverses this repression on IE genes. The resulting de novo expression of ICP4 and ICP22 further repress antisense, intergenic, and early and late viral gene transcription through different mechanisms before the sequential de-repression of these gene classes later in infection. This early repression, termed transient immediate-early protein-mediated repression (TIEMR), precludes unproductive, antisense, intergenic, and late gene transcription early in infection to ensure the efficient and orderly progression of the viral cascade.
Collapse
Affiliation(s)
- Laura E M Dunn
- Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | - Claire H Birkenheuer
- Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | - Joel D Baines
- Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
26
|
Chen X, Liu W, Wang Q, Wang X, Ren Y, Qu X, Li W, Xu Y. Structural visualization of transcription initiation in action. Science 2023; 382:eadi5120. [PMID: 38127763 DOI: 10.1126/science.adi5120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
Transcription initiation is a complex process, and its mechanism is incompletely understood. We determined the structures of de novo transcribing complexes TC2 to TC17 with RNA polymerase II halted on G-less promoters when nascent RNAs reach 2 to 17 nucleotides in length, respectively. Connecting these structures generated a movie and a working model. As initially synthesized RNA grows, general transcription factors (GTFs) remain bound to the promoter and the transcription bubble expands. Nucleoside triphosphate (NTP)-driven RNA-DNA translocation and template-strand accumulation in a nearly sealed channel may promote the transition from initially transcribing complexes (ITCs) (TC2 to TC9) to early elongation complexes (EECs) (TC10 to TC17). Our study shows dynamic processes of transcription initiation and reveals why ITCs require GTFs and bubble expansion for initial RNA synthesis, whereas EECs need GTF dissociation from the promoter and bubble collapse for promoter escape.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xinxin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xuechun Qu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Wanjun Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Shanghai Key Laboratory of Radiation Oncology, and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
27
|
Carminati M, Rodríguez-Molina JB, Manav MC, Bellini D, Passmore LA. A direct interaction between CPF and RNA Pol II links RNA 3' end processing to transcription. Mol Cell 2023; 83:4461-4478.e13. [PMID: 38029752 PMCID: PMC10783616 DOI: 10.1016/j.molcel.2023.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Transcription termination by RNA polymerase II (RNA Pol II) is linked to RNA 3' end processing by the cleavage and polyadenylation factor (CPF or CPSF). CPF contains endonuclease, poly(A) polymerase, and protein phosphatase activities, which cleave and polyadenylate pre-mRNAs and dephosphorylate RNA Pol II to control transcription. Exactly how the RNA 3' end processing machinery is coupled to transcription remains unclear. Here, we combine in vitro reconstitution, structural studies, and genome-wide analyses to show that yeast CPF physically and functionally interacts with RNA Pol II. Surprisingly, CPF-mediated dephosphorylation promotes the formation of an RNA Pol II stalk-to-stalk homodimer in vitro. This dimer is compatible with transcription but not with the binding of transcription elongation factors. Disruption of the dimerization interface in cells causes transcription defects, including altered RNA Pol II abundance on protein-coding genes, tRNA genes, and intergenic regions. We hypothesize that RNA Pol II dimerization may provide a mechanistic basis for the allosteric model of transcription termination.
Collapse
Affiliation(s)
| | | | - M Cemre Manav
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Dom Bellini
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
28
|
Theil AF, Häckes D, Lans H. TFIIH central activity in nucleotide excision repair to prevent disease. DNA Repair (Amst) 2023; 132:103568. [PMID: 37977600 DOI: 10.1016/j.dnarep.2023.103568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 11/19/2023]
Abstract
The heterodecameric transcription factor IIH (TFIIH) functions in multiple cellular processes, foremost in nucleotide excision repair (NER) and transcription initiation by RNA polymerase II. TFIIH is essential for life and hereditary mutations in TFIIH cause the devastating human syndromes xeroderma pigmentosum, Cockayne syndrome or trichothiodystrophy, or combinations of these. In NER, TFIIH binds to DNA after DNA damage is detected and, using its translocase and helicase subunits XPB and XPD, opens up the DNA and checks for the presence of DNA damage. This central activity leads to dual incision and removal of the DNA strand containing the damage, after which the resulting DNA gap is restored. In this review, we discuss new structural and mechanistic insights into the central function of TFIIH in NER. Moreover, we provide an elaborate overview of all currently known patients and diseases associated with inherited TFIIH mutations and describe how our understanding of TFIIH function in NER and transcription can explain the different disease features caused by TFIIH deficiency.
Collapse
Affiliation(s)
- Arjan F Theil
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - David Häckes
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands.
| |
Collapse
|
29
|
Li T, Tang HC, Tsai KL. Unveiling the noncanonical activation mechanism of CDKs: insights from recent structural studies. Front Mol Biosci 2023; 10:1290631. [PMID: 38028546 PMCID: PMC10666765 DOI: 10.3389/fmolb.2023.1290631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
The Cyclin-dependent kinases (CDKs) play crucial roles in a range of essential cellular processes. While the classical two-step activation mechanism is generally applicable to cell cycle-related CDKs, both CDK7 and CDK8, involved in transcriptional regulation, adopt distinct mechanisms for kinase activation. In both cases, binding to their respective cyclin partners results in only partial activity, while their full activation requires the presence of an additional subunit. Recent structural studies of these two noncanonical kinases have provided unprecedented insights into their activation mechanisms, enabling us to understand how the third subunit coordinates the T-loop stabilization and enhances kinase activity. In this review, we summarize the structure and function of CDK7 and CDK8 within their respective functional complexes, while also describing their noncanonical activation mechanisms. These insights open new avenues for targeted drug discovery and potential therapeutic interventions in various diseases related to CDK7 and CDK8.
Collapse
Affiliation(s)
- Tao Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hui-Chi Tang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
30
|
Ruoff R, Weber H, Wang Y, Huang H, Shapiro E, Fenyö D, Garabedian MJ. MED19 encodes two unique protein isoforms that confer prostate cancer growth under low androgen through distinct gene expression programs. Sci Rep 2023; 13:18227. [PMID: 37880276 PMCID: PMC10600210 DOI: 10.1038/s41598-023-45199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
MED19, a component of the mediator complex and a co-regulator of the androgen receptor (AR), is pivotal in prostate cancer cell proliferation. MED19 has two isoforms: a full-length "canonical" and a shorter "alternative" variant. Specific antibodies were developed to investigate these isoforms. Both exhibit similar expression in normal prostate development and adult prostate tissue, but the canonical isoform is elevated in prostate adenocarcinomas. Overexpression of canonical MED19 in LNCaP cells promotes growth under conditions of androgen deprivation in vitro and in vivo, mirroring earlier findings with alternative MED19-overexpressing LNCaP cells. Interestingly, alternative MED19 cells displayed strong colony formation in clonogenic assays under conditions of androgen deprivation, while canonical MED19 cells did not, suggesting distinct functional roles. These isoforms also modulated gene expression differently. Canonical MED19 triggered genes related to extracellular matrix remodeling while suppressing those involved in androgen-inactivating glucuronidation. In contrast, alternative MED19 elevated genes tied to cell movement and reduced those associated with cell adhesion and differentiation. The ratio of MED19 isoform expression in prostate cancers shifts with the disease stage. Early-stage cancers exhibit higher canonical MED19 expression than alternative MED19, consistent with canonical MED19's ability to promote cell proliferation under androgen deprivation. Conversely, alternative MED19 levels were higher in later-stage metastatic prostate cancer than in canonical MED19, reflecting alternative MED19's capability to enhance cell migration and autonomous cell growth. Our findings suggest that MED19 isoforms play unique roles in prostate cancer progression and highlights MED19 as a potential therapeutic target for both early and late-stage prostate cancer.
Collapse
Affiliation(s)
- Rachel Ruoff
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Hannah Weber
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ying Wang
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Hongying Huang
- Department of Urology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ellen Shapiro
- Department of Urology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - David Fenyö
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Michael J Garabedian
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Urology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
31
|
Farnung L. Nucleosomes unwrapped: Structural perspectives on transcription through chromatin. Curr Opin Struct Biol 2023; 82:102690. [PMID: 37633188 DOI: 10.1016/j.sbi.2023.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/28/2023]
Abstract
Transcription of most protein-coding genes requires the passage of RNA polymerase II through chromatin. Chromatin with its fundamental unit, the nucleosome, represents a barrier to transcription. How RNA polymerase II and associated factors traverse through nucleosomes and how chromatin architecture is maintained have remained largely enigmatic. Only recently, cryo-EM structures have visualized the transcription process through chromatin. These structures have elucidated how transcription initiation and transcription elongation influence and are influenced by a chromatinized DNA substrate. This review provides a summary of our current structural understanding of transcription through chromatin, highlighting common mechanisms during nucleosomal traversal and novel regulatory mechanisms that have emerged in the last five years.
Collapse
Affiliation(s)
- Lucas Farnung
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Papadopoulos D, Uhl L, Ha SA, Eilers M. Beyond gene expression: how MYC relieves transcription stress. Trends Cancer 2023; 9:805-816. [PMID: 37422352 DOI: 10.1016/j.trecan.2023.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023]
Abstract
MYC oncoproteins are key drivers of tumorigenesis. As transcription factors, MYC proteins regulate transcription by all three nuclear polymerases and gene expression. Accumulating evidence shows that MYC proteins are also crucial for enhancing the stress resilience of transcription. MYC proteins relieve torsional stress caused by active transcription, prevent collisions between the transcription and replication machineries, resolve R-loops, and repair DNA damage by participating in a range of protein complexes and forming multimeric structures at sites of genomic instability. We review the key complexes and multimerization properties of MYC proteins that allow them to mitigate transcription-associated DNA damage, and propose that the oncogenic functions of MYC extend beyond the modulation of gene expression.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Mildred Scheel Early Career Center, University Hospital Würzburg, Würzburg, Germany
| | - Leonie Uhl
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stefanie Anh Ha
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
33
|
Liu H, Tsai H, Yang M, Li G, Bian Q, Ding G, Wu D, Dai J. Three-dimensional genome structure and function. MedComm (Beijing) 2023; 4:e326. [PMID: 37426677 PMCID: PMC10329473 DOI: 10.1002/mco2.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Linear DNA undergoes a series of compression and folding events, forming various three-dimensional (3D) structural units in mammalian cells, including chromosomal territory, compartment, topologically associating domain, and chromatin loop. These structures play crucial roles in regulating gene expression, cell differentiation, and disease progression. Deciphering the principles underlying 3D genome folding and the molecular mechanisms governing cell fate determination remains a challenge. With advancements in high-throughput sequencing and imaging techniques, the hierarchical organization and functional roles of higher-order chromatin structures have been gradually illuminated. This review systematically discussed the structural hierarchy of the 3D genome, the effects and mechanisms of cis-regulatory elements interaction in the 3D genome for regulating spatiotemporally specific gene expression, the roles and mechanisms of dynamic changes in 3D chromatin conformation during embryonic development, and the pathological mechanisms of diseases such as congenital developmental abnormalities and cancer, which are attributed to alterations in 3D genome organization and aberrations in key structural proteins. Finally, prospects were made for the research about 3D genome structure, function, and genetic intervention, and the roles in disease development, prevention, and treatment, which may offer some clues for precise diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Hao Liu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Hsiangyu Tsai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Maoquan Yang
- School of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Guozhi Li
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Qian Bian
- Shanghai Institute of Precision MedicineShanghaiChina
| | - Gang Ding
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Dandan Wu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Jiewen Dai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| |
Collapse
|
34
|
Rengachari S, Schilbach S, Cramer P. Mediator structure and function in transcription initiation. Biol Chem 2023; 404:829-837. [PMID: 37078249 DOI: 10.1515/hsz-2023-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023]
Abstract
Recent advances in cryo-electron microscopy have led to multiple structures of Mediator in complex with the RNA polymerase II (Pol II) transcription initiation machinery. As a result we now hold in hands near-complete structures of both yeast and human Mediator complexes and have a better understanding of their interactions with the Pol II pre-initiation complex (PIC). Herein, we provide a summary of recent achievements and discuss their implications for future studies of Mediator and its role in gene regulation.
Collapse
Affiliation(s)
- Srinivasan Rengachari
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Sandra Schilbach
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
35
|
Kupkova K, Shetty SJ, Hoffman EA, Bekiranov S, Auble DT. Genome-scale chromatin interaction dynamic measurements for key components of the RNA Pol II general transcription machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550532. [PMID: 37546819 PMCID: PMC10402067 DOI: 10.1101/2023.07.25.550532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Background A great deal of work has revealed in structural detail the components of the machinery responsible for mRNA gene transcription initiation. These include the general transcription factors (GTFs), which assemble at promoters along with RNA Polymerase II (Pol II) to form a preinitiation complex (PIC) aided by the activities of cofactors and site-specific transcription factors (TFs). However, less well understood are the in vivo PIC assembly pathways and their kinetics, an understanding of which is vital for determining on a mechanistic level how rates of in vivo RNA synthesis are established and how cofactors and TFs impact them. Results We used competition ChIP to obtain genome-scale estimates of the residence times for five GTFs: TBP, TFIIA, TFIIB, TFIIE and TFIIF in budding yeast. While many GTF-chromatin interactions were short-lived (< 1 min), there were numerous interactions with residence times in the several minutes range. Sets of genes with a shared function also shared similar patterns of GTF kinetic behavior. TFIIE, a GTF that enters the PIC late in the assembly process, had residence times correlated with RNA synthesis rates. Conclusions The datasets and results reported here provide kinetic information for most of the Pol II-driven genes in this organism and therefore offer a rich resource for exploring the mechanistic relationships between PIC assembly, gene regulation, and transcription. The relationships between gene function and GTF dynamics suggest that shared sets of TFs tune PIC assembly kinetics to ensure appropriate levels of expression.
Collapse
Affiliation(s)
- Kristyna Kupkova
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Public Health Genomics, University of Virginia Health System, Charlottesville, VA 22908
| | - Savera J. Shetty
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
| | - Elizabeth A. Hoffman
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
| | - David T. Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
| |
Collapse
|
36
|
Shekhar AC, Wu WJ, Chen HT. Mutational and biophysical analyses reveal a TFIIIC binding region in the TFIIF-related Rpc53 subunit of RNA polymerase III. J Biol Chem 2023; 299:104859. [PMID: 37230389 PMCID: PMC10404625 DOI: 10.1016/j.jbc.2023.104859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
The TFIIF-like Rpc53/Rpc37 heterodimer of RNA polymerase (pol) III is involved in various stages of transcription. The C-terminal region of Rpc53 dimerizes with Rpc37 to anchor on the lobe domain of the pol III cleft. However, structural and functional features of the Rpc53 N-terminal region had not been characterized previously. Here, we conducted site-directed alanine replacement mutagenesis on the Rpc53 N-terminus, generating yeast strains that exhibited a cold-sensitive growth defect and severely compromised pol III transcriptional activity. Circular dichroism and NMR spectroscopy revealed a highly disordered 57-amino acid polypeptide in the Rpc53 N-terminus. This polypeptide is a versatile protein-binding module displaying nanomolar-level binding affinities for Rpc37 and the Tfc4 subunit of the transcription initiation factor TFIIIC. Accordingly, we denote this Rpc53 N-terminus polypeptide as the TFIIIC-binding region or CBR. Alanine replacements in the CBR significantly reduced its binding affinity for Tfc4, highlighting its functional importance to cell growth and transcription in vitro. Our study reveals the functional basis for Rpc53's CBR in assembly of the pol III transcription initiation complex.
Collapse
Affiliation(s)
- Arvind Chandra Shekhar
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C.; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Hung-Ta Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C..
| |
Collapse
|
37
|
He F, Bravo M, Fan L. Helicases required for nucleotide excision repair: structure, function and mechanism. Enzymes 2023; 54:273-304. [PMID: 37945175 DOI: 10.1016/bs.enz.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Nucleotide excision repair (NER) is a major DNA repair pathway conserved from bacteria to humans. Various DNA helicases, a group of enzymes capable of separating DNA duplex into two strands through ATP binding and hydrolysis, are required by NER to unwind the DNA duplex around the lesion to create a repair bubble and for damage verification and removal. In prokaryotes, UvrB helicase is required for repair bubble formation and damage verification, while UvrD helicase is responsible for the removal of the excised damage containing single-strand (ss) DNA fragment. In addition, UvrD facilitates transcription-coupled repair (TCR) by backtracking RNA polymerase stalled at the lesion. In eukaryotes, two helicases XPB and XPD from the transcription factor TFIIH complex fulfill the helicase requirements of NER. Interestingly, homologs of all these four helicases UvrB, UvrD, XPB, and XPD have been identified in archaea. This review summarizes our current understanding about the structure, function, and mechanism of these four helicases.
Collapse
Affiliation(s)
- Feng He
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Marco Bravo
- Department of Biochemistry, University of California, Riverside, CA, United States
| | - Li Fan
- Department of Biochemistry, University of California, Riverside, CA, United States.
| |
Collapse
|
38
|
Punjani A, Fleet DJ. 3DFlex: determining structure and motion of flexible proteins from cryo-EM. Nat Methods 2023; 20:860-870. [PMID: 37169929 PMCID: PMC10250194 DOI: 10.1038/s41592-023-01853-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/16/2023] [Indexed: 05/13/2023]
Abstract
Modeling flexible macromolecules is one of the foremost challenges in single-particle cryogenic-electron microscopy (cryo-EM), with the potential to illuminate fundamental questions in structural biology. We introduce Three-Dimensional Flexible Refinement (3DFlex), a motion-based neural network model for continuous molecular heterogeneity for cryo-EM data. 3DFlex exploits knowledge that conformational variability of a protein is often the result of physical processes that transport density over space and tend to preserve local geometry. From two-dimensional image data, 3DFlex enables the determination of high-resolution 3D density, and provides an explicit model of a flexible protein's motion over its conformational landscape. Experimentally, for large molecular machines (tri-snRNP spliceosome complex, translocating ribosome) and small flexible proteins (TRPV1 ion channel, αVβ8 integrin, SARS-CoV-2 spike), 3DFlex learns nonrigid molecular motions while resolving details of moving secondary structure elements. 3DFlex can improve 3D density resolution beyond the limits of existing methods because particle images contribute coherent signal over the conformational landscape.
Collapse
Affiliation(s)
- Ali Punjani
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada.
- Structura Biotechnology Inc., Toronto, Ontario, Canada.
| | - David J Fleet
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada.
- Google Research, Toronto, Ontario, Canada.
| |
Collapse
|
39
|
Yu J, Yan C, Dodd T, Tsai CL, Tainer JA, Tsutakawa SE, Ivanov I. Dynamic conformational switching underlies TFIIH function in transcription and DNA repair and impacts genetic diseases. Nat Commun 2023; 14:2758. [PMID: 37179334 PMCID: PMC10183003 DOI: 10.1038/s41467-023-38416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Transcription factor IIH (TFIIH) is a protein assembly essential for transcription initiation and nucleotide excision repair (NER). Yet, understanding of the conformational switching underpinning these diverse TFIIH functions remains fragmentary. TFIIH mechanisms critically depend on two translocase subunits, XPB and XPD. To unravel their functions and regulation, we build cryo-EM based TFIIH models in transcription- and NER-competent states. Using simulations and graph-theoretical analysis methods, we reveal TFIIH's global motions, define TFIIH partitioning into dynamic communities and show how TFIIH reshapes itself and self-regulates depending on functional context. Our study uncovers an internal regulatory mechanism that switches XPB and XPD activities making them mutually exclusive between NER and transcription initiation. By sequentially coordinating the XPB and XPD DNA-unwinding activities, the switch ensures precise DNA incision in NER. Mapping TFIIH disease mutations onto network models reveals clustering into distinct mechanistic classes, affecting translocase functions, protein interactions and interface dynamics.
Collapse
Affiliation(s)
- Jina Yu
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Chunli Yan
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Thomas Dodd
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
40
|
Kuper J, Kisker C. At the core of nucleotide excision repair. Curr Opin Struct Biol 2023; 80:102605. [PMID: 37150041 DOI: 10.1016/j.sbi.2023.102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Nucleotide excision repair (NER) is unique in its ability to identify and remove vastly different lesions from DNA. Recent advances in the structural characterization of complexes involved in detection, verification, and excision of damaged DNA have reshaped our understanding of the molecular architecture of this efficient and accurate machinery. Initial damage recognition achieved through transcription coupled repair (TC-NER) or global genome repair (GG-NER) has been addressed by complexes of RNA Pol II with different TC-NER factors and XPC/RAD23B/Centrin-2 with TFIIH, respectively. Moreover, transcription factor IIH (TFIIH), one of the core repair factors and a central NER hub was resolved in different states, providing important insights how this complex facilitates DNA opening and damage verification. Combined, these recent advances led to a highly improved understanding of the molecular landscape of NER core processes, sharpening our view on how NER is successfully achieved.
Collapse
Affiliation(s)
- Jochen Kuper
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Germany.
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Germany.
| |
Collapse
|
41
|
Toader B, Sigworth FJ, Lederman RR. Methods for Cryo-EM Single Particle Reconstruction of Macromolecules Having Continuous Heterogeneity. J Mol Biol 2023; 435:168020. [PMID: 36863660 PMCID: PMC10164696 DOI: 10.1016/j.jmb.2023.168020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Macromolecules change their shape (conformation) in the process of carrying out their functions. The imaging by cryo-electron microscopy of rapidly-frozen, individual copies of macromolecules (single particles) is a powerful and general approach to understanding the motions and energy landscapes of macromolecules. Widely-used computational methods already allow the recovery of a few distinct conformations from heterogeneous single-particle samples, but the treatment of complex forms of heterogeneity such as the continuum of possible transitory states and flexible regions remains largely an open problem. In recent years there has been a surge of new approaches for treating the more general problem of continuous heterogeneity. This paper surveys the current state of the art in this area.
Collapse
Affiliation(s)
- Bogdan Toader
- Department of Statistics and Data Science, Yale University, United States.
| | - Fred J Sigworth
- Department of Cellular and Molecular Physiology, Yale University, United States
| | - Roy R Lederman
- Department of Statistics and Data Science, Yale University, United States. https://twitter.com/roylederman
| |
Collapse
|
42
|
Abril-Garrido J, Dienemann C, Grabbe F, Velychko T, Lidschreiber M, Wang H, Cramer P. Structural basis of transcription reduction by a promoter-proximal +1 nucleosome. Mol Cell 2023:S1097-2765(23)00255-1. [PMID: 37148879 DOI: 10.1016/j.molcel.2023.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
At active human genes, the +1 nucleosome is located downstream of the RNA polymerase II (RNA Pol II) pre-initiation complex (PIC). However, at inactive genes, the +1 nucleosome is found further upstream, at a promoter-proximal location. Here, we establish a model system to show that a promoter-proximal +1 nucleosome can reduce RNA synthesis in vivo and in vitro, and we analyze its structural basis. We find that the PIC assembles normally when the edge of the +1 nucleosome is located 18 base pairs (bp) downstream of the transcription start site (TSS). However, when the nucleosome edge is located further upstream, only 10 bp downstream of the TSS, the PIC adopts an inhibited state. The transcription factor IIH (TFIIH) shows a closed conformation and its subunit XPB contacts DNA with only one of its two ATPase lobes, inconsistent with DNA opening. These results provide a mechanism for nucleosome-dependent regulation of transcription initiation.
Collapse
Affiliation(s)
- Julio Abril-Garrido
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Frauke Grabbe
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Taras Velychko
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Lidschreiber
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Haibo Wang
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
43
|
Gorbea Colón JJ, Palao L, Chen SF, Kim HJ, Snyder L, Chang YW, Tsai KL, Murakami K. Structural basis of a transcription pre-initiation complex on a divergent promoter. Mol Cell 2023; 83:574-588.e11. [PMID: 36731470 PMCID: PMC10162435 DOI: 10.1016/j.molcel.2023.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/28/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
Most eukaryotic promoter regions are divergently transcribed. As the RNA polymerase II pre-initiation complex (PIC) is intrinsically asymmetric and responsible for transcription in a single direction, it is unknown how divergent transcription arises. Here, the Saccharomyces cerevisiae Mediator complexed with a PIC (Med-PIC) was assembled on a divergent promoter and analyzed by cryoelectron microscopy. The structure reveals two distinct Med-PICs forming a dimer through the Mediator tail module, induced by a homodimeric activator protein localized near the dimerization interface. The tail dimer is associated with ∼80-bp upstream DNA, such that two flanking core promoter regions are positioned and oriented in a suitable form for PIC assembly in opposite directions. Also, cryoelectron tomography visualized the progress of the PIC assembly on the two core promoter regions, providing direct evidence for the role of the Med-PIC dimer in divergent transcription.
Collapse
Affiliation(s)
- Jose J Gorbea Colón
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leon Palao
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shin-Fu Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura Snyder
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Hope I, Endicott JA, Watt JE. Emerging approaches to CDK inhibitor development, a structural perspective. RSC Chem Biol 2023; 4:146-164. [PMID: 36794018 PMCID: PMC9906319 DOI: 10.1039/d2cb00201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Aberrant activity of the cyclin-dependent kinase family is frequently noted in a number of diseases identifying them as potential targets for drug development. However, current CDK inhibitors lack specificity owing to the high sequence and structural conservation of the ATP binding cleft across family members, highlighting the necessity of finding novel modes of CDK inhibition. The wealth of structural information regarding CDK assemblies and inhibitor complexes derived from X-ray crystallographic studies has been recently complemented through the use of cryo-electron microscopy. These recent advances have provided insights into the functional roles and regulatory mechanisms of CDKs and their interaction partners. This review explores the conformational malleability of the CDK subunit, the importance of SLiM recognition sites in CDK complexes, the progress made in chemically induced CDK degradation and how these studies can contribute to CDK inhibitor design. Additionally, fragment-based drug discovery can be utilised to identify small molecules that bind to allosteric sites on the CDK surface employing interactions which mimic those of native protein-protein interactions. These recent structural advances in CDK inhibitor mechanisms and in chemical probes which do not occupy the orthosteric ATP binding site can provide important insights for targeted CDK therapies.
Collapse
Affiliation(s)
- Ian Hope
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Jane A Endicott
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Jessica E Watt
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| |
Collapse
|
45
|
Wang H, Schilbach S, Ninov M, Urlaub H, Cramer P. Structures of transcription preinitiation complex engaged with the +1 nucleosome. Nat Struct Mol Biol 2023; 30:226-232. [PMID: 36411341 PMCID: PMC9935396 DOI: 10.1038/s41594-022-00865-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022]
Abstract
The preinitiation complex (PIC) assembles on promoters of protein-coding genes to position RNA polymerase II (Pol II) for transcription initiation. Previous structural studies revealed the PIC on different promoters, but did not address how the PIC assembles within chromatin. In the yeast Saccharomyces cerevisiae, PIC assembly occurs adjacent to the +1 nucleosome that is located downstream of the core promoter. Here we present cryo-EM structures of the yeast PIC bound to promoter DNA and the +1 nucleosome located at three different positions. The general transcription factor TFIIH engages with the incoming downstream nucleosome and its translocase subunit Ssl2 (XPB in human TFIIH) drives the rotation of the +1 nucleosome leading to partial detachment of nucleosomal DNA and intimate interactions between TFIIH and the nucleosome. The structures provide insights into how transcription initiation can be influenced by the +1 nucleosome and may explain why the transcription start site is often located roughly 60 base pairs upstream of the dyad of the +1 nucleosome in yeast.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Sandra Schilbach
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Momchil Ninov
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Institute of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
46
|
When transcription initiation meets chromatin. Nat Struct Mol Biol 2023; 30:131-133. [PMID: 36725911 DOI: 10.1038/s41594-022-00916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
47
|
Lambert É, Puwakdandawa K, Tao YF, Robert F. From structure to molecular condensates: emerging mechanisms for Mediator function. FEBS J 2023; 290:286-309. [PMID: 34698446 DOI: 10.1111/febs.16250] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023]
Abstract
Mediator is a large modular protein assembly whose function as a coactivator of transcription is conserved in all eukaryotes. The Mediator complex can integrate and relay signals from gene-specific activators bound at enhancers to activate the general transcription machinery located at promoters. It has thus been described as a bridge between these elements during initiation of transcription. Here, we review recent studies on Mediator relating to its structure, gene specificity and general requirement, roles in chromatin architecture as well as novel concepts involving phase separation and transcriptional bursting. We revisit the mechanism of action of Mediator and ultimately put forward models for its mode of action in gene activation.
Collapse
Affiliation(s)
- Élie Lambert
- Institut de recherches cliniques de Montréal, Canada
| | | | - Yi Fei Tao
- Institut de recherches cliniques de Montréal, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Canada
| |
Collapse
|
48
|
Bajracharya A, Xi J, Grace KF, Bayer EE, Grant CA, Clutton CH, Baerson SR, Agarwal AK, Qiu Y. PHYTOCHROME-INTERACTING FACTOR 4/HEMERA-mediated thermosensory growth requires the Mediator subunit MED14. PLANT PHYSIOLOGY 2022; 190:2706-2721. [PMID: 36063057 PMCID: PMC9706435 DOI: 10.1093/plphys/kiac412] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/12/2022] [Indexed: 05/19/2023]
Abstract
While moderately elevated ambient temperatures do not trigger stress responses in plants, they do substantially stimulate the growth of specific organs through a process known as thermomorphogenesis. The basic helix-loop-helix transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) plays a central role in regulating thermomorphogenetic hypocotyl elongation in various plant species, including Arabidopsis (Arabidopsis thaliana). Although it is well known that PIF4 and its co-activator HEMERA (HMR) promote plant thermosensory growth by activating genes involved in the biosynthesis and signaling of the phytohormone auxin, the detailed molecular mechanism of such transcriptional activation is not clear. In this report, we investigated the role of the Mediator complex in the PIF4/HMR-mediated thermoresponsive gene expression. Through the characterization of various mutants of the Mediator complex, a tail subunit named MED14 was identified as an essential factor for thermomorphogenetic hypocotyl growth. MED14 was required for the thermal induction of PIF4 target genes but had a marginal effect on the levels of PIF4 and HMR. Further transcriptomic analyses confirmed that the expression of numerous PIF4/HMR-dependent, auxin-related genes required MED14 at warm temperatures. Moreover, PIF4 and HMR physically interacted with MED14 and both were indispensable for the association of MED14 with the promoters of these thermoresponsive genes. While PIF4 did not regulate MED14 levels, HMR was required for the transcript abundance of MED14. Taken together, these results unveil an important thermomorphogenetic mechanism, in which PIF4 and HMR recruit the Mediator complex to activate auxin-related growth-promoting genes when plants sense moderate increases in ambient temperature.
Collapse
Affiliation(s)
| | - Jing Xi
- Natural Products Utilization Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Oxford, Mississippi, USA
| | - Karlie F Grace
- Department of Biology, University of Mississippi, Oxford, Mississippi 38677, USA
| | - Eden E Bayer
- Department of Biology, University of Mississippi, Oxford, Mississippi 38677, USA
| | - Chloe A Grant
- Department of Biology, University of Mississippi, Oxford, Mississippi 38677, USA
| | - Caroline H Clutton
- Department of Biology, University of Mississippi, Oxford, Mississippi 38677, USA
| | - Scott R Baerson
- Natural Products Utilization Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Oxford, Mississippi, USA
| | - Ameeta K Agarwal
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
- Division of Pharmacology, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
| | | |
Collapse
|
49
|
Krasikova YS, Lavrik OI, Rechkunova NI. The XPA Protein-Life under Precise Control. Cells 2022; 11:cells11233723. [PMID: 36496984 PMCID: PMC9739396 DOI: 10.3390/cells11233723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Nucleotide excision repair (NER) is a central DNA repair pathway responsible for removing a wide variety of DNA-distorting lesions from the genome. The highly choreographed cascade of core NER reactions requires more than 30 polypeptides. The xeroderma pigmentosum group A (XPA) protein plays an essential role in the NER process. XPA interacts with almost all NER participants and organizes the correct NER repair complex. In the absence of XPA's scaffolding function, no repair process occurs. In this review, we briefly summarize our current knowledge about the XPA protein structure and analyze the formation of contact with its protein partners during NER complex assembling. We focus on different ways of regulation of the XPA protein's activity and expression and pay special attention to the network of post-translational modifications. We also discuss the data that is not in line with the currently accepted hypothesis about the functioning of the XPA protein.
Collapse
Affiliation(s)
- Yuliya S. Krasikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nadejda I. Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Correspondence:
| |
Collapse
|
50
|
Lapierre J, Hub JS. DNA opening during transcription initiation by RNA polymerase II in atomic detail. Biophys J 2022; 121:4299-4310. [PMID: 36230000 PMCID: PMC9703100 DOI: 10.1016/j.bpj.2022.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/01/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022] Open
Abstract
RNA polymerase II (RNAP II) synthesizes RNA by reading the DNA code. During transcription initiation, RNAP II opens the double-stranded DNA to expose the DNA template to the active site. The molecular interactions driving and controlling DNA opening are not well understood. We used all-atom steered molecular dynamics simulations to derive a continuous pathway of DNA opening in human RNAP II, involving a 55 Å DNA strand displacement and a nearly 360° DNA helix rotation. To drive such large-scale transitions, we used a combination of RMSD-based collective variables, a newly designed rotational coordinate, and a path collective variable. The simulations reveal extensive interactions of the DNA with three conserved protein loops near the active site, namely with the rudder, fork loop 1, and fork loop 2. According to the simulations, DNA-protein interactions support DNA opening by a twofold mechanism; they catalyze DNA opening by attacking Watson-Crick hydrogen bonds, and they stabilize the open DNA bubble by the formation of a wide set of DNA-protein salt bridges.
Collapse
Affiliation(s)
- Jeremy Lapierre
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|