1
|
Guo J, Sun D, Li K, Dai Q, Geng S, Yang Y, Mo M, Zhu Z, Shao C, Wang W, Song J, Yang C, Zhang H. Metabolic Labeling and Digital Microfluidic Single-Cell Sequencing for Single Bacterial Genotypic-Phenotypic Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402177. [PMID: 39077951 DOI: 10.1002/smll.202402177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/23/2024] [Indexed: 07/31/2024]
Abstract
Accurate assessment of phenotypic and genotypic characteristics of bacteria can facilitate comprehensive cataloguing of all the resistance factors for better understanding of antibiotic resistance. However, current methods primarily focus on individual phenotypic or genotypic profiles across different colonies. Here, a Digital microfluidic-based automated assay for whole-genome sequencing of single-antibiotic-resistant bacteria is reported, enabling Genotypic and Phenotypic Analysis of antibiotic-resistant strains (Digital-GPA). Digital-GPA can efficiently isolate and sequence antibiotic-resistant bacteria illuminated by fluorescent D-amino acid (FDAA)-labeling, producing high-quality single-cell amplified genomes (SAGs). This enables identifications of both minor and major mutations, pinpointing substrains with distinctive resistance mechanisms. Digital-GPA can directly process clinical samples to detect and sequence resistant pathogens without bacterial culture, subsequently provide genetic profiles of antibiotic susceptibility, promising to expedite the analysis of hard-to-culture or slow-growing bacteria. Overall, Digital-GPA opens a new avenue for antibiotic resistance analysis by providing accurate and comprehensive molecular profiles of antibiotic resistance at single-cell resolution.
Collapse
Affiliation(s)
- Junnan Guo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Di Sun
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Kunjie Li
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Qi Dai
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Shichen Geng
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Yuanyuan Yang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Mengwu Mo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Zhi Zhu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Chen Shao
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jia Song
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chaoyong Yang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huimin Zhang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Life Sciences, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| |
Collapse
|
2
|
Kalef-Ezra E, Turan ZG, Perez-Rodriguez D, Bomann I, Behera S, Morley C, Scholz SW, Jaunmuktane Z, Demeulemeester J, Sedlazeck FJ, Proukakis C. Single-cell somatic copy number variants in brain using different amplification methods and reference genomes. Commun Biol 2024; 7:1288. [PMID: 39384904 PMCID: PMC11464624 DOI: 10.1038/s42003-024-06940-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
The presence of somatic mutations, including copy number variants (CNVs), in the brain is well recognized. Comprehensive study requires single-cell whole genome amplification, with several methods available, prior to sequencing. Here we compare PicoPLEX with two recent adaptations of multiple displacement amplification (MDA): primary template-directed amplification (PTA) and droplet MDA, across 93 human brain cortical nuclei. We demonstrate different properties for each, with PTA providing the broadest amplification, PicoPLEX the most even, and distinct chimeric profiles. Furthermore, we perform CNV calling on two brains with multiple system atrophy and one control brain using different reference genomes. We find that 20.6% of brain cells have at least one Mb-scale CNV, with some supported by bulk sequencing or single-cells from other brain regions. Our study highlights the importance of selecting whole genome amplification method and reference genome for CNV calling, while supporting the existence of somatic CNVs in healthy and diseased human brain.
Collapse
Affiliation(s)
- Ester Kalef-Ezra
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Zeliha Gozde Turan
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Diego Perez-Rodriguez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Ida Bomann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Sairam Behera
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Caoimhe Morley
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Jonas Demeulemeester
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Oncology, KU Leuven, Leuven, Belgium
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Fritz J Sedlazeck
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
3
|
Xiong X, Wang X, Liu CC, Shao ZM, Yu KD. Deciphering breast cancer dynamics: insights from single-cell and spatial profiling in the multi-omics era. Biomark Res 2024; 12:107. [PMID: 39294728 PMCID: PMC11411917 DOI: 10.1186/s40364-024-00654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
As one of the most common tumors in women, the pathogenesis and tumor heterogeneity of breast cancer have long been the focal point of research, with the emergence of tumor metastasis and drug resistance posing persistent clinical challenges. The emergence of single-cell sequencing (SCS) technology has introduced novel approaches for gaining comprehensive insights into the biological behavior of malignant tumors. SCS is a high-throughput technology that has rapidly developed in the past decade, providing high-throughput molecular insights at the individual cell level. Furthermore, the advent of multitemporal point sampling and spatial omics also greatly enhances our understanding of cellular dynamics at both temporal and spatial levels. The paper provides a comprehensive overview of the historical development of SCS, and highlights the most recent advancements in utilizing SCS and spatial omics for breast cancer research. The findings from these studies will serve as valuable references for future advancements in basic research, clinical diagnosis, and treatment of breast cancer.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cui-Cui Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ke-Da Yu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Lin S, Feng D, Han X, Li L, Lin Y, Gao H. Microfluidic platform for omics analysis on single cells with diverse morphology and size: A review. Anal Chim Acta 2024; 1294:342217. [PMID: 38336406 DOI: 10.1016/j.aca.2024.342217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Microfluidic techniques have emerged as powerful tools in single-cell research, facilitating the exploration of omics information from individual cells. Cell morphology is crucial for gene expression and physiological processes. However, there is currently a lack of integrated analysis of morphology and single-cell omics information. A critical challenge remains: what platform technologies are the best option to decode omics data of cells that are complex in morphology and size? RESULTS This review highlights achievements in microfluidic-based single-cell omics and isolation of cells based on morphology, along with other cell sorting methods based on physical characteristics. Various microfluidic platforms for single-cell isolation are systematically presented, showcasing their diversity and adaptability. The discussion focuses on microfluidic devices tailored to the distinct single-cell isolation requirements in plants and animals, emphasizing the significance of considering cell morphology and cell size in optimizing single-cell omics strategies. Simultaneously, it explores the application of microfluidic single-cell sorting technologies to single-cell sequencing, aiming to effectively integrate information about cell shape and size. SIGNIFICANCE AND NOVELTY The novelty lies in presenting a comprehensive overview of recent accomplishments in microfluidic-based single-cell omics, emphasizing the integration of different microfluidic platforms and their implications for cell morphology-based isolation. By underscoring the pivotal role of the specialized morphology of different cells in single-cell research, this review provides robust support for delving deeper into the exploration of single-cell omics data.
Collapse
Affiliation(s)
- Shujin Lin
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China; Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, China
| | - Dan Feng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Ling Li
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China; The First Clinical Medical College of Fujian Medical University, Fuzhou, 350004, China; Hepatopancreatobiliary Surgery Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, China; Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, China.
| | - Haibing Gao
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China.
| |
Collapse
|
5
|
Zolzaya S, Narumoto A, Katsuyama Y. Genomic variation in neurons. Dev Growth Differ 2024; 66:35-42. [PMID: 37855730 DOI: 10.1111/dgd.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023]
Abstract
Neurons born during the fetal period have extreme longevity and survive until the death of the individual because the human brain has highly limited tissue regeneration. The brain is comprised of an enormous variety of neurons each exhibiting different morphological and physiological characteristics and recent studies have further reported variations in their genome including chromosomal abnormalities, copy number variations, and single nucleotide mutations. During the early stages of brain development, the increasing number of neurons generated at high speeds has been proposed to lead to chromosomal instability. Additionally, mutations in the neuronal genome can occur in the mature brain. This observed genomic mosaicism in the brain can be produced by multiple endogenous and environmental factors and careful analyses of these observed variations in the neuronal genome remain central for our understanding of the genetic basis of neurological disorders.
Collapse
Affiliation(s)
- Sunjidmaa Zolzaya
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | - Ayano Narumoto
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | - Yu Katsuyama
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
6
|
Utagawa Y, Ino K, Takinoue M, Shiku H. Fabrication and Cell Culture Applications of Core-Shell Hydrogel Fibers Composed of Chitosan/DNA Interfacial Polyelectrolyte Complexation and Calcium Alginate: Straight and Beaded Core Variations. Adv Healthc Mater 2023; 12:e2302011. [PMID: 37478383 PMCID: PMC11468996 DOI: 10.1002/adhm.202302011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 07/23/2023]
Abstract
Core-shell hydrogel fibers are widely used in cell culture applications. A simple and rapid method is presented for fabricating core-shell hydrogel fibers, consisting of straight or beaded core fibers, for cell culture applications. The core fibers are prepared using interfacial polyelectrolyte complexation (IPC) with chitosan and DNA. Briefly, two droplets of chitosan and DNA are brought in contact to form an IPC film, which is dragged to prepare an IPC fiber. The incubation time and DNA concentration are adjusted to prepare straight and beaded IPC fibers. The fibers with Ca2+ are immersed in an alginate solution to form calcium alginate shell hydrogels around the core IPC fibers. To the best of the knowledge, this is the first report of core-shell hydrogel fibers with IPC fiber cores. To demonstrate cell culture, straight hydrogel fibers are applied to fabricate hepatic models consisting of HepG2 and 3T3 fibroblasts, and vascular models consisting of human umbilical vein endothelial cells and 3T3 fibroblasts. To evaluate the effect of co-culture, albumin secretion, and angiogenesis are evaluated. Beaded hydrogel fibers are used to fabricate many size-controlled spheroids for fiber and cloning applications. This method can be widely applied in tissue engineering and cell analysis.
Collapse
Affiliation(s)
| | - Kosuke Ino
- Graduate School of EngineeringTohoku UniversitySendai980–8579Japan
| | - Masahiro Takinoue
- Department of Computer ScienceTokyo Institute of TechnologyYokohama226–8502Japan
| | - Hitoshi Shiku
- Graduate School of EngineeringTohoku UniversitySendai980–8579Japan
- Graduate School of Environmental StudiesTohoku UniversitySendai980–8579Japan
| |
Collapse
|
7
|
Kalef-Ezra E, Turan ZG, Perez-Rodriguez D, Bomann I, Behera S, Morley C, Scholz SW, Jaunmuktane Z, Demeulemeester J, Sedlazeck FJ, Proukakis C. Single-cell somatic copy number variants in brain using different amplification methods and reference genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552289. [PMID: 37609320 PMCID: PMC10441336 DOI: 10.1101/2023.08.07.552289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The presence of somatic mutations, including copy number variants (CNVs), in the brain is well recognized. Comprehensive study requires single-cell whole genome amplification, with several methods available, prior to sequencing. We compared PicoPLEX with two recent adaptations of multiple displacement amplification (MDA): primary template-directed amplification (PTA) and droplet MDA, across 93 human brain cortical nuclei. We demonstrated different properties for each, with PTA providing the broadest amplification, PicoPLEX the most even, and distinct chimeric profiles. Furthermore, we performed CNV calling on two brains with multiple system atrophy and one control brain using different reference genomes. We found that 38% of brain cells have at least one Mb-scale CNV, with some supported by bulk sequencing or single-cells from other brain regions. Our study highlights the importance of selecting whole genome amplification method and reference genome for CNV calling, while supporting the existence of somatic CNVs in healthy and diseased human brain.
Collapse
Affiliation(s)
- Ester Kalef-Ezra
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Zeliha Gozde Turan
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Diego Perez-Rodriguez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Ida Bomann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Sairam Behera
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA
| | - Caoimhe Morley
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Jonas Demeulemeester
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Oncology, KU Leuven, Leuven, Belgium
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Fritz J Sedlazeck
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, TX, USA
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, USA
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
8
|
Albert O, Sun S, Huttner A, Zhang Z, Suh Y, Campisi J, Vijg J, Montagna C. Chromosome instability and aneuploidy in the mammalian brain. Chromosome Res 2023; 31:32. [PMID: 37910282 PMCID: PMC10833588 DOI: 10.1007/s10577-023-09740-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023]
Abstract
This review investigates the role of aneuploidy and chromosome instability (CIN) in the aging brain. Aneuploidy refers to an abnormal chromosomal count, deviating from the normal diploid set. It can manifest as either a deficiency or excess of chromosomes. CIN encompasses a broader range of chromosomal alterations, including aneuploidy as well as structural modifications in DNA. We provide an overview of the state-of-the-art methodologies utilized for studying aneuploidy and CIN in non-tumor somatic tissues devoid of clonally expanded populations of aneuploid cells.CIN and aneuploidy, well-established hallmarks of cancer cells, are also associated with the aging process. In non-transformed cells, aneuploidy can contribute to functional impairment and developmental disorders. Despite the importance of understanding the prevalence and specific consequences of aneuploidy and CIN in the aging brain, these aspects remain incompletely understood, emphasizing the need for further scientific investigations.This comprehensive review consolidates the present understanding, addresses discrepancies in the literature, and provides valuable insights for future research efforts.
Collapse
Affiliation(s)
- Olivia Albert
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Shixiang Sun
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Anita Huttner
- Yale Brain Tumor Center, Smilow Cancer Hospital, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Zhengdong Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Yousin Suh
- Departments of Obstetrics and Gynecology, and Genetics and Development, Columbia University, New York, NY, USA
| | | | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, New York, NY, USA
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
9
|
Pan J, Chang Z, Zhang X, Dong Q, Zhao H, Shi J, Wang G. Research progress of single-cell sequencing in tuberculosis. Front Immunol 2023; 14:1276194. [PMID: 37901241 PMCID: PMC10611525 DOI: 10.3389/fimmu.2023.1276194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Tuberculosis is a major infectious disease caused by Mycobacterium tuberculosis infection. The pathogenesis and immune mechanism of tuberculosis are not clear, and it is urgent to find new drugs, diagnosis, and treatment targets. A useful tool in the quest to reveal the enigmas related to Mycobacterium tuberculosis infection and disease is the single-cell sequencing technique. By clarifying cell heterogeneity, identifying pathogenic cell groups, and finding key gene targets, the map at the single cell level enables people to better understand the cell diversity of complex organisms and the immune state of hosts during infection. Here, we briefly reviewed the development of single-cell sequencing, and emphasized the different applications and limitations of various technologies. Single-cell sequencing has been widely used in the study of the pathogenesis and immune response of tuberculosis. We review these works summarizing the most influential findings. Combined with the multi-molecular level and multi-dimensional analysis, we aim to deeply understand the blank and potential future development of the research on Mycobacterium tuberculosis infection using single-cell sequencing technology.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingwei Shi
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences/China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Guoqing Wang
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences/China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
10
|
Lu N, Qiao Y, An P, Luo J, Bi C, Li M, Lu Z, Tu J. Exploration of whole genome amplification generated chimeric sequences in long-read sequencing data. Brief Bioinform 2023; 24:bbad275. [PMID: 37529913 DOI: 10.1093/bib/bbad275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
MOTIVATION Multiple displacement amplification (MDA) has become the most commonly used method of whole genome amplification, generating a vast amount of DNA with higher molecular weight and greater genome coverage. Coupling with long-read sequencing, it is possible to sequence the amplicons of over 20 kb in length. However, the formation of chimeric sequences (chimeras, expressed as structural errors in sequencing data) in MDA seriously interferes with the bioinformatics analysis but its influence on long-read sequencing data is unknown. RESULTS We sequenced the phi29 DNA polymerase-mediated MDA amplicons on the PacBio platform and analyzed chimeras within the generated data. The 3rd-ChimeraMiner has been constructed as a pipeline for recognizing and restoring chimeras into the original structures in long-read sequencing data, improving the efficiency of using TGS data. Five long-read datasets and one high-fidelity long-read dataset with various amplification folds were analyzed. The result reveals that the mis-priming events in amplification are more frequently occurring than widely perceived, and the propor tion gradually accumulates from 42% to over 78% as the amplification continues. In total, 99.92% of recognized chimeric sequences were demonstrated to be artifacts, whose structures were wrongly formed in MDA instead of existing in original genomes. By restoring chimeras to their original structures, the vast majority of supplementary alignments that introduce false-positive structural variants are recycled, removing 97% of inversions on average and contributing to the analysis of structural variation in MDA-amplified samples. The impact of chimeras in long-read sequencing data analysis should be emphasized, and the 3rd-ChimeraMiner can help to quantify and reduce the influence of chimeras. AVAILABILITY AND IMPLEMENTATION The 3rd-ChimeraMiner is available on GitHub, https://github.com/dulunar/3rdChimeraMiner.
Collapse
Affiliation(s)
- Na Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Pengfei An
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Monash University-Southeast University Joint Research Institute, Suzhou 215123, China
| | - Jiajian Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Changwei Bi
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Musheng Li
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89511, USA
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
11
|
Kim J, Kim S, Yeom H, Song SW, Shin K, Bae S, Ryu HS, Kim JY, Choi A, Lee S, Ryu T, Choi Y, Kim H, Kim O, Jung Y, Kim N, Han W, Lee HB, Lee AC, Kwon S. Barcoded multiple displacement amplification for high coverage sequencing in spatial genomics. Nat Commun 2023; 14:5261. [PMID: 37644058 PMCID: PMC10465490 DOI: 10.1038/s41467-023-41019-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Determining mutational landscapes in a spatial context is essential for understanding genetically heterogeneous cell microniches. Current approaches, such as Multiple Displacement Amplification (MDA), offer high genome coverage but limited multiplexing, which hinders large-scale spatial genomic studies. Here, we introduce barcoded MDA (bMDA), a technique that achieves high-coverage genomic analysis of low-input DNA while enhancing the multiplexing capabilities. By incorporating cell barcodes during MDA, bMDA streamlines library preparation in one pot, thereby overcoming a key bottleneck in spatial genomics. We apply bMDA to the integrative spatial analysis of triple-negative breast cancer tissues by examining copy number alterations, single nucleotide variations, structural variations, and kataegis signatures for each spatial microniche. This enables the assessment of subclonal evolutionary relationships within a spatial context. Therefore, bMDA has emerged as a scalable technology with the potential to advance the field of spatial genomics significantly.
Collapse
Affiliation(s)
- Jinhyun Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sungsik Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Huiran Yeom
- Division of Data Science, College of Information and Communication Technology, The University of Suwon, Hwaseong, 18323, Republic of Korea
| | - Seo Woo Song
- Basic Science and Engineering Initiative, Children's Heart Center, Stanford University, Stanford, CA, USA
| | - Kyoungseob Shin
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangwook Bae
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Han Suk Ryu
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ji Young Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Ahyoun Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sumin Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Meteor Biotech, Co. Ltd., Seoul, 08826, Republic of Korea
| | - Taehoon Ryu
- ATG Lifetech Inc., Seoul, 08507, Republic of Korea
| | - Yeongjae Choi
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hamin Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Okju Kim
- ATG Lifetech Inc., Seoul, 08507, Republic of Korea
| | - Yushin Jung
- ATG Lifetech Inc., Seoul, 08507, Republic of Korea
| | - Namphil Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wonshik Han
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Han-Byoel Lee
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Amos C Lee
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
- Meteor Biotech, Co. Ltd., Seoul, 08826, Republic of Korea.
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
- Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
Boßelmann CM, Leu C, Lal D. Technological and computational approaches to detect somatic mosaicism in epilepsy. Neurobiol Dis 2023:106208. [PMID: 37343892 DOI: 10.1016/j.nbd.2023.106208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
Lesional epilepsy is a common and severe disease commonly associated with malformations of cortical development, including focal cortical dysplasia and hemimegalencephaly. Recent advances in sequencing and variant calling technologies have identified several genetic causes, including both short/single nucleotide and structural somatic variation. In this review, we aim to provide a comprehensive overview of the methodological advancements in this field while highlighting the unresolved technological and computational challenges that persist, including ultra-low variant allele fractions in bulk tissue, low availability of paired control samples, spatial variability of mutational burden within the lesion, and the issue of false-positive calls and validation procedures. Information from genetic testing in focal epilepsy may be integrated into clinical care to inform histopathological diagnosis, postoperative prognosis, and candidate precision therapies.
Collapse
Affiliation(s)
- Christian M Boßelmann
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T., Cambridge, MA, USA; Cologne Center for Genomics (CCG), University of Cologne, Cologne, DE, USA
| |
Collapse
|
13
|
Zhang J, Xue J, Luo N, Chen F, Chen B, Zhao Y. Microwell array chip-based single-cell analysis. LAB ON A CHIP 2023; 23:1066-1079. [PMID: 36625143 DOI: 10.1039/d2lc00667g] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Single-cell profiling is key to uncover the cellular heterogeneity and drives deep understanding of cell fate. In recent years, microfluidics has become an ideal tool for single-cell profiling owing to its benefits of high throughput and automation. Among various microfluidic platforms, microwell has the advantages of simple operation and easy integration with in situ analysis ability, making it an ideal technique for single-cell studies. Herein, recent advances of single-cell analysis based on microwell array chips are summarized. We first introduce the design and preparation of different microwell chips. Then microwell-based cell capture and lysis strategies are discussed. We finally focus on advanced microwell-based analysis of single-cell proteins, nucleic acids, and metabolites. The challenges and opportunities for the development of microwell-based single-cell analysis are also presented.
Collapse
Affiliation(s)
- Jin Zhang
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Ningfeng Luo
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Badong Chen
- Institute of Artificial Intelligence and Robotics and the College of Artificial Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| |
Collapse
|
14
|
Lu N, Qiao Y, Lu Z, Tu J. Chimera: The spoiler in multiple displacement amplification. Comput Struct Biotechnol J 2023; 21:1688-1696. [PMID: 36879882 PMCID: PMC9984789 DOI: 10.1016/j.csbj.2023.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/18/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Multiple displacement amplification (MDA) based on isothermal random priming and high fidelity phi29 DNA polymerase-mediated processive extension has revolutionized the field of whole genome amplification by enabling the amplification of minute amounts of DNA, such as from a single cell, generating vast amounts of DNA with high genome coverage. Despite its advantages, MDA has its own challenges, one of the grandest being the formation of chimeric sequences (chimeras), which presents in all MDA products and seriously disturbs the downstream analysis. In this review, we provide a comprehensive overview of current research on MDA chimeras. We first reviewed the mechanisms of chimera formation and chimera detection methods. We then systematically summarized the characteristics of chimeras, including overlap, chimeric distance, chimeric density, and chimeric rate, as found in independently published sequencing data. Finally, we reviewed the methods used to process chimeric sequences and their impacts on the improvement of data utilization efficiency. The information presented in this review will be useful for those interested in understanding the challenges with MDA and in improving its performance.
Collapse
Affiliation(s)
- Na Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
15
|
Back to Basics: A Simplified Improvement to Multiple Displacement Amplification for Microbial Single-Cell Genomics. Int J Mol Sci 2023; 24:ijms24054270. [PMID: 36901710 PMCID: PMC10002425 DOI: 10.3390/ijms24054270] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/23/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Microbial single-cell genomics (SCG) provides access to the genomes of rare and uncultured microorganisms and is a complementary method to metagenomics. Due to the femtogram-levels of DNA in a single microbial cell, sequencing the genome requires whole genome amplification (WGA) as a preliminary step. However, the most common WGA method, multiple displacement amplification (MDA), is known to be costly and biased against specific genomic regions, preventing high-throughput applications and resulting in uneven genome coverage. Thus, obtaining high-quality genomes from many taxa, especially minority members of microbial communities, becomes difficult. Here, we present a volume reduction approach that significantly reduces costs while improving genome coverage and uniformity of DNA amplification products in standard 384-well plates. Our results demonstrate that further volume reduction in specialized and complex setups (e.g., microfluidic chips) is likely unnecessary to obtain higher-quality microbial genomes. This volume reduction method makes SCG more feasible for future studies, thus helping to broaden our knowledge on the diversity and function of understudied and uncharacterized microorganisms in the environment.
Collapse
|
16
|
Perez-Rodriguez D, Kalyva M, Santucci C, Proukakis C. Somatic CNV Detection by Single-Cell Whole-Genome Sequencing in Postmortem Human Brain. Methods Mol Biol 2023; 2561:205-230. [PMID: 36399272 DOI: 10.1007/978-1-0716-2655-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The evidence for a role of somatic mutations, including copy-number variants (CNVs), in neurodegeneration has increased in the last decade. However, the understanding of the types and origins of these mutations, and their exact contributions to disease onset and progression, is still in its infancy. The use of single-cell (or nuclear) whole-genome sequencing (scWGS) has emerged as a powerful tool to answer these questions. In the present chapter, we provide laboratory and bioinformatic protocols used successfully in our lab to detect megabase-scale CNVs in single cells from multiple system atrophy (MSA) human postmortem brains, using immunolabeling prior to selection of nuclei for whole-genome amplification (WGA). We also present an unpublished comparison of scWGS generated from the same control substantia nigra (SN) sample, using the latest versions of popular WGA chemistries, MDA and PicoPLEX. We have used this protocol to focus on brain cell types most relevant to synucleinopathies (dopaminergic [DA] neurons in Parkinson's disease [PD] and oligodendrocytes in MSA), but it can be applied to any tissue and/or cell type with appropriate markers.
Collapse
Affiliation(s)
- Diego Perez-Rodriguez
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Maria Kalyva
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Catherine Santucci
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
17
|
Xu T, Li Y, Han X, Kan L, Ren J, Sun L, Diao Z, Ji Y, Zhu P, Xu J, Ma B. Versatile, facile and low-cost single-cell isolation, culture and sequencing by optical tweezer-assisted pool-screening. LAB ON A CHIP 2022; 23:125-135. [PMID: 36477690 DOI: 10.1039/d2lc00888b] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Real-time image-based sorting of target cells in a precisely indexed manner is desirable for sequencing or cultivating individual human or microbial cells directly from clinical or environmental samples; however, the versatility of existing methods is limited as they are usually not broadly applicable to all cell sizes. Here, an optical tweezer-assisted pool-screening and single-cell isolation (OPSI) system is established for precise, indexed isolation of individual bacterial, yeast or human-cancer cells. A controllable static flow field that acts as a cell pool is achieved in a microfluidics chip, to enable precise and ready screening of cells of 1 to 40 μm in size by bright-field, fluorescence, or Raman imaging. The target cell is then captured by a 1064 nm optical tweezer and deposited as one-cell-harboring nanoliter microdroplets in a one-cell-one-tube manner. For bacterial, yeast and human cells, OPSI achieves a >99.7% target-cell sorting purity and a 10-fold elevated speed of 10-20 cells per min. Moreover, OPSI-based one-cell RNA-seq of human cancer cells yields high quality and reproducible single-cell transcriptome profiles. The versatility, facileness, flexibility, modularized design, and low cost of OPSI suggest its broad applications for image-based sorting of target cells.
Collapse
Affiliation(s)
- Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Yuandong Li
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xiao Han
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Lingyan Kan
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Jing Ren
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Luyang Sun
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Zhidian Diao
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
- Single-Cell Biotechnology Ltd., Qingdao, Shandong, China
| | - Pengfei Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
- Single-Cell Biotechnology Ltd., Qingdao, Shandong, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
18
|
Recent progress in microfluidic biosensors with different driving forces. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Zeng L, Yang K, Zhang T, Zhu X, Hao W, Chen H, Ge J. Research progress of single-cell transcriptome sequencing in autoimmune diseases and autoinflammatory disease: A review. J Autoimmun 2022; 133:102919. [PMID: 36242821 DOI: 10.1016/j.jaut.2022.102919] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/07/2022]
Abstract
Autoimmunity refers to the phenomenon that the body's immune system produces antibodies or sensitized lymphocytes to its own tissues to cause an immune response. Immune disorders caused by autoimmunity can mediate autoimmune diseases. Autoimmune diseases have complicated pathogenesis due to the many types of cells involved, and the mechanism is still unclear. The emergence of single-cell research technology can solve the problem that ordinary transcriptome technology cannot be accurate to cell type. It provides unbiased results through independent analysis of cells in tissues and provides more mRNA information for identifying cell subpopulations, which provides a novel approach to study disruption of immune tolerance and disturbance of pro-inflammatory pathways on a cellular basis. It may fundamentally change the understanding of molecular pathways in the pathogenesis of autoimmune diseases and develop targeted drugs. Single-cell transcriptome sequencing (scRNA-seq) has been widely applied in autoimmune diseases, which provides a powerful tool for demonstrating the cellular heterogeneity of tissues involved in various immune inflammations, identifying pathogenic cell populations, and revealing the mechanism of disease occurrence and development. This review describes the principles of scRNA-seq, introduces common sequencing platforms and practical procedures, and focuses on the progress of scRNA-seq in 41 autoimmune diseases, which include 9 systemic autoimmune diseases and autoinflammatory diseases (rheumatoid arthritis, systemic lupus erythematosus, etc.) and 32 organ-specific autoimmune diseases (5 Skin diseases, 3 Nervous system diseases, 4 Eye diseases, 2 Respiratory system diseases, 2 Circulatory system diseases, 6 Liver, Gallbladder and Pancreas diseases, 2 Gastrointestinal system diseases, 3 Muscle, Bones and joint diseases, 3 Urinary system diseases, 2 Reproductive system diseases). This review also prospects the molecular mechanism targets of autoimmune diseases from the multi-molecular level and multi-dimensional analysis combined with single-cell multi-omics sequencing technology (such as scRNA-seq, Single cell ATAC-seq and single cell immune group library sequencing), which provides a reference for further exploring the pathogenesis and marker screening of autoimmune diseases and autoimmune inflammatory diseases in the future.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
| | - Tianqing Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaofei Zhu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Chen
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
20
|
Liu Y, Wang S, Lyu M, Xie R, Guo W, He Y, Shi X, Wang Y, Qi J, Zhu Q, Zhang H, Luo T, Chen H, Zhu Y, Dong X, Li Z, Gu Y, Liu L, Xu X, Liu Y. Droplet Microfluidics Enables Tracing of Target Cells at the Single-Cell Transcriptome Resolution. Bioengineering (Basel) 2022; 9:674. [PMID: 36354585 PMCID: PMC9687293 DOI: 10.3390/bioengineering9110674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2023] Open
Abstract
The rapid promotion of single-cell omics in various fields has begun to help solve many problems encountered in research, including precision medicine, prenatal diagnosis, and embryo development. Meanwhile, single-cell techniques are also constantly updated with increasing demand. For some specific target cells, the workflow from droplet screening to single-cell sequencing is a preferred option and should reduce the impact of operation steps, such as demulsification and cell recovery. We developed an all-in-droplet method integrating cell encapsulation, target sorting, droplet picoinjection, and single-cell transcriptome profiling on chips to achieve labor-saving monitoring of TCR-T cells. As a proof of concept, in this research, TCR-T cells were encapsulated, sorted, and performed single-cell transcriptome sequencing (scRNA-seq) by injecting reagents into droplets. It avoided the tedious operation of droplet breakage and re-encapsulation between droplet sorting and scRNA-seq. Moreover, convenient device operation will accelerate the progress of chip marketization. The strategy achieved an excellent recovery performance of single-cell transcriptome with a median gene number over 4000 and a cross-contamination rate of 8.2 ± 2%. Furthermore, this strategy allows us to develop a device with high integrability to monitor infused TCR-T cells, which will promote the development of adoptive T cell immunotherapy and their clinical application.
Collapse
Affiliation(s)
- Yang Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Shiyu Wang
- BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Menghua Lyu
- BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run Xie
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Weijin Guo
- Department of Biomedical Engineering, Shantou University, Shantou 515063, China
| | - Ying He
- Department of Gynaecological Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen 518116, China
| | - Xuyang Shi
- BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jingyu Qi
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Hui Zhang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Tao Luo
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361101, China
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Xuan Dong
- BGI-Shenzhen, Shenzhen 518083, China
| | - Zida Li
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Ya Liu
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518100, China
| |
Collapse
|
21
|
Aoki H, Masahiro Y, Shimizu M, Hongoh Y, Ohkuma M, Yamagata Y. Agarose gel microcapsules enable easy-to-prepare, picolitre-scale, single-cell genomics, yielding high-coverage genome sequences. Sci Rep 2022; 12:17014. [PMID: 36257967 PMCID: PMC9579161 DOI: 10.1038/s41598-022-20923-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
A novel type of agarose gel microcapsule (AGM), consisting of an alginate picolitre sol core and an agarose gel shell, was developed to obtain high-quality, single-cell, amplified genomic DNA of bacteria. The AGM is easy to prepare in a stable emulsion with oil of water-equivalent density, which prevents AGM aggregation, with only standard laboratory equipment. Single cells from a pure culture of Escherichia coli, a mock community comprising 15 strains of human gut bacteria, and a termite gut bacterial community were encapsulated within AGMs, and their genomic DNA samples were prepared with massively parallel amplifications in a tube. The genome sequencing did not need second-round amplification and showed an average genome completeness that was much higher than that obtained using a conventional amplification method on the microlitre scale, regardless of the genomic guanine-cytosine content. Our novel method using AGM will allow many researchers to perform single-cell genomics easily and effectively, and can accelerate genomic analysis of yet-uncultured microorganisms.
Collapse
Affiliation(s)
- Hiroyoshi Aoki
- grid.509457.aUltrahigh Precision Optics Technology Team, Advanced Photonics Technology Group, RIKEN Center for Advanced Photonics, 3-1, Hirosawa, Wako, Saitama 351-0198 Japan
| | - Yuki Masahiro
- grid.509462.cJapan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3-1-1, Koyadai, Tsukuba, Ibaraki 305-0074 Japan
| | - Michiru Shimizu
- grid.509462.cJapan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3-1-1, Koyadai, Tsukuba, Ibaraki 305-0074 Japan
| | - Yuichi Hongoh
- grid.509462.cJapan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3-1-1, Koyadai, Tsukuba, Ibaraki 305-0074 Japan ,grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Moriya Ohkuma
- grid.509462.cJapan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, 3-1-1, Koyadai, Tsukuba, Ibaraki 305-0074 Japan
| | - Yutaka Yamagata
- grid.509457.aUltrahigh Precision Optics Technology Team, Advanced Photonics Technology Group, RIKEN Center for Advanced Photonics, 3-1, Hirosawa, Wako, Saitama 351-0198 Japan
| |
Collapse
|
22
|
Chun J. Somatic genomic mosaicism in the brain: Identified mutations provide challenges and opportunities for the clinic. MED 2022; 3:648-650. [PMID: 36242998 DOI: 10.1016/j.medj.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recent work by Bae et al.1 represents a major next-generation sequencing effort to identify somatic genomic mosaicism in normal and diseased human brains. Some samples displayed age-associated hypermutability, and the general possibility that somatic mutations can drive brain disease has implications for new therapeutic strategies, disease staging, biomarkers, and cohort selection for clinical trials.
Collapse
Affiliation(s)
- Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, USA.
| |
Collapse
|
23
|
Nishikawa Y, Kogawa M, Hosokawa M, Wagatsuma R, Mineta K, Takahashi K, Ide K, Yura K, Behzad H, Gojobori T, Takeyama H. Validation of the application of gel beads-based single-cell genome sequencing platform to soil and seawater. ISME COMMUNICATIONS 2022; 2:92. [PMID: 37938694 PMCID: PMC9723564 DOI: 10.1038/s43705-022-00179-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 04/26/2023]
Abstract
Single-cell genomics is applied to environmental samples as a method to solve the problems of current metagenomics. However, in the fluorescence-activated cell sorting-based cell isolation and subsequent whole genome amplification, the sorting efficiency and the sequence quality are greatly affected by the type of target environment, limiting its adaptability. Here, we developed an improved single-cell genomics platform, named SAG-gel, which utilizes gel beads for single-cell isolation, lysis, and whole genome amplification. To validate the versatility of SAG-gel, single-cell genome sequencing was performed with model bacteria and microbial samples collected from eight environmental sites, including soil and seawater. Gel beads enabled multiple lysis treatments. The genome coverage with model bacteria was improved by 9.1-25%. A total of 734 single amplified genomes were collected from the diverse environmental samples, and almost full-length 16S rRNA genes were recovered from 57.8% of them. We also revealed two marine Rhodobacter strains harboring nearly identical 16S rRNA genes but having different genome contents. In addition, searching for viral sequences elucidated the virus-host linkage over the sampling sites, revealing the geographic distribution and diverse host range of viruses.
Collapse
Affiliation(s)
- Yohei Nishikawa
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Masato Kogawa
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Masahito Hosokawa
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| | - Ryota Wagatsuma
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Katsuhiko Mineta
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kai Takahashi
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Keigo Ide
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kei Yura
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Hayedeh Behzad
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Haruko Takeyama
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda tsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
24
|
Bawn M, Hernandez J, Trampari E, Thilliez G, Quince C, Webber MA, Kingsley RA, Hall N, Macaulay IC. Single-cell genomics reveals population structures from in vitro evolutionary studies of Salmonella. Microb Genom 2022; 8:mgen000871. [PMID: 36125951 PMCID: PMC9676037 DOI: 10.1099/mgen.0.000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Single-cell DNA sequencing has the potential to reveal detailed hierarchical structures in evolving populations of cells. Single cell approaches are increasingly used to study clonal evolution in human ageing and cancer but have not yet been deployed to study evolving clonal microbial populations. Here, we present an approach for single bacterial genomic analysis for in vitro evolution experiments using FACS isolation of individual bacteria followed by whole-genome amplification and sequencing. We apply this to the experimental evolution of a hypermutator strain of Salmonella in response to antibiotic stress (ciprofloxacin). By analysing sequence polymorphisms in individual cells from populations we identified the presence and prevalence of sub-populations which have acquired polymorphisms in genes previously demonstrated to be associated with ciprofloxacin susceptibility. We were also able to identify that the population exposed to antibiotic stress was able to develop resistance whilst maintaining diversity. This population structure could not be resolved from bulk sequence data, and our results show how high-throughput single-cell sequencing can enhance experimental studies of bacterial evolution.
Collapse
Affiliation(s)
- Matt Bawn
- Earlham Institute, Norwich Research Park, Norwich, NR1 7UZ, UK
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
| | | | | | - Gaetan Thilliez
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Christopher Quince
- Earlham Institute, Norwich Research Park, Norwich, NR1 7UZ, UK
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Mark A. Webber
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
- Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Robert A. Kingsley
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, NR1 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | - Iain C. Macaulay
- Earlham Institute, Norwich Research Park, Norwich, NR1 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| |
Collapse
|
25
|
Kihara Y, Zhu Y, Jonnalagadda D, Romanow W, Palmer C, Siddoway B, Rivera R, Dutta R, Trapp BD, Chun J. Single-Nucleus RNA-seq of Normal-Appearing Brain Regions in Relapsing-Remitting vs. Secondary Progressive Multiple Sclerosis: Implications for the Efficacy of Fingolimod. Front Cell Neurosci 2022; 16:918041. [PMID: 35783097 PMCID: PMC9247150 DOI: 10.3389/fncel.2022.918041] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease that alters central nervous system (CNS) functions. Relapsing-remitting MS (RRMS) is the most common form, which can transform into secondary-progressive MS (SPMS) that is associated with progressive neurodegeneration. Single-nucleus RNA sequencing (snRNA-seq) of MS lesions identified disease-related transcriptomic alterations; however, their relationship to non-lesioned MS brain regions has not been reported and which could identify prodromal or other disease susceptibility signatures. Here, snRNA-seq was used to generate high-quality RRMS vs. SPMS datasets of 33,197 nuclei from 8 normal-appearing MS brains, which revealed divergent cell type-specific changes. Notably, SPMS brains downregulated astrocytic sphingosine kinases (SPHK1/2) - the enzymes required to phosphorylate and activate the MS drug, fingolimod. This reduction was modeled with astrocyte-specific Sphk1/2 null mice in which fingolimod lost activity, supporting functionality of observed transcriptomic changes. These data provide an initial resource for studies of single cells from non-lesioned RRMS and SPMS brains.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Yunjiao Zhu
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Deepa Jonnalagadda
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - William Romanow
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Carter Palmer
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Benjamin Siddoway
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Richard Rivera
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Bruce D. Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
26
|
Luo X, Chen JY, Ataei M, Lee A. Microfluidic Compartmentalization Platforms for Single Cell Analysis. BIOSENSORS 2022; 12:58. [PMID: 35200319 PMCID: PMC8869497 DOI: 10.3390/bios12020058] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
Many cellular analytical technologies measure only the average response from a cell population with an assumption that a clonal population is homogenous. The ensemble measurement often masks the difference among individual cells that can lead to misinterpretation. The advent of microfluidic technology has revolutionized single-cell analysis through precise manipulation of liquid and compartmentalizing single cells in small volumes (pico- to nano-liter). Due to its advantages from miniaturization, microfluidic systems offer an array of capabilities to study genomics, transcriptomics, and proteomics of a large number of individual cells. In this regard, microfluidic systems have emerged as a powerful technology to uncover cellular heterogeneity and expand the depth and breadth of single-cell analysis. This review will focus on recent developments of three microfluidic compartmentalization platforms (microvalve, microwell, and microdroplets) that target single-cell analysis spanning from proteomics to genomics. We also compare and contrast these three microfluidic platforms and discuss their respective advantages and disadvantages in single-cell analysis.
Collapse
Affiliation(s)
- Xuhao Luo
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA; (X.L.); (J.-Y.C.)
| | - Jui-Yi Chen
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA; (X.L.); (J.-Y.C.)
| | - Marzieh Ataei
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA;
| | - Abraham Lee
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA; (X.L.); (J.-Y.C.)
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA;
| |
Collapse
|
27
|
Gupta P, Shinde A, Illath K, Kar S, Nagai M, Tseng FG, Santra TS. Microfluidic platforms for single neuron analysis. Mater Today Bio 2022; 13:100222. [PMID: 35243297 PMCID: PMC8866890 DOI: 10.1016/j.mtbio.2022.100222] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
Single-neuron actions are the basis of brain function, as clinical sequelae, neuronal dysfunction or failure for most of the central nervous system (CNS) diseases and injuries can be identified via tracing single-neurons. The bulk analysis methods tend to miscue critical information by assessing the population-averaged outcomes. However, its primary requisite in neuroscience to analyze single-neurons and to understand dynamic interplay of neurons and their environment. Microfluidic systems enable precise control over nano-to femto-liter volumes via adjusting device geometry, surface characteristics, and flow-dynamics, thus facilitating a well-defined micro-environment with spatio-temporal control for single-neuron analysis. The microfluidic platform not only offers a comprehensive landscape to study brain cell diversity at the level of transcriptome, genome, and/or epigenome of individual cells but also has a substantial role in deciphering complex dynamics of brain development and brain-related disorders. In this review, we highlight recent advances of microfluidic devices for single-neuron analysis, i.e., single-neuron trapping, single-neuron dynamics, single-neuron proteomics, single-neuron transcriptomics, drug delivery at the single-neuron level, single axon guidance, and single-neuron differentiation. Moreover, we also emphasize limitations and future challenges of single-neuron analysis by focusing on key performances of throughput and multiparametric activity analysis on microfluidic platforms.
Collapse
|
28
|
Grubb ML, Caliari SR. Fabrication approaches for high-throughput and biomimetic disease modeling. Acta Biomater 2021; 132:52-82. [PMID: 33716174 PMCID: PMC8433272 DOI: 10.1016/j.actbio.2021.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
There is often a tradeoff between in vitro disease modeling platforms that capture pathophysiologic complexity and those that are amenable to high-throughput fabrication and analysis. However, this divide is closing through the application of a handful of fabrication approaches-parallel fabrication, automation, and flow-driven assembly-to design sophisticated cellular and biomaterial systems. The purpose of this review is to highlight methods for the fabrication of high-throughput biomaterial-based platforms and showcase examples that demonstrate their utility over a range of throughput and complexity. We conclude with a discussion of future considerations for the continued development of higher-throughput in vitro platforms that capture the appropriate level of biological complexity for the desired application. STATEMENT OF SIGNIFICANCE: There is a pressing need for new biomedical tools to study and understand disease. These platforms should mimic the complex properties of the body while also permitting investigation of many combinations of cells, extracellular cues, and/or therapeutics in high-throughput. This review summarizes emerging strategies to fabricate biomimetic disease models that bridge the gap between complex tissue-mimicking microenvironments and high-throughput screens for personalized medicine.
Collapse
Affiliation(s)
- Mackenzie L Grubb
- Department of Biomedical Engineering, University of Virginia, Unites States
| | - Steven R Caliari
- Department of Biomedical Engineering, University of Virginia, Unites States; Department of Chemical Engineering, University of Virginia, Unites States.
| |
Collapse
|
29
|
Li C, Gong Y, Wang X, Xu J, Ma B. Integrated Addressable Dynamic Droplet Array (aDDA) as Sub-Nanoliter Reactors for High-Coverage Genome Sequencing of Single Yeast Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100325. [PMID: 34296526 DOI: 10.1002/smll.202100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/25/2021] [Indexed: 06/13/2023]
Abstract
An addressable dynamic droplet array (aDDA) is presented that combines the advantages of static droplet arrays and continuous-flow droplet platforms. Modular fabrication is employed to create a self-contained integrated aDDA. All the sample preparation steps, including single-cell isolation, cell lysis, amplification, and product retrieval, are performed in sequence within a sub-nanoliter (≈300 pL) droplet. Sequencing-based validation suggests that aDDA reduces the amplification bias of multiple displacement amplification (MDA) and elevates the percentage of one-yeast-cell genome recovery to 91%, as compared to the average of 26% using conventional, 20 µL volume MDA reactions. Thus, aDDA is a valuable addition to the toolbox for high-genome-coverage sequencing of single microbial cells.
Collapse
Affiliation(s)
- Chunyu Li
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
| | - Xixian Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China
| |
Collapse
|
30
|
Xu J, Liao K, Yang X, Wu C, Wu W, Han S. Using single-cell sequencing technology to detect circulating tumor cells in solid tumors. Mol Cancer 2021; 20:104. [PMID: 34412644 PMCID: PMC8375060 DOI: 10.1186/s12943-021-01392-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022] Open
Abstract
Circulating tumor cells are tumor cells with high vitality and high metastatic potential that invade and shed into the peripheral blood from primary solid tumors or metastatic foci. Due to the heterogeneity of tumors, it is difficult for high-throughput sequencing analysis of tumor tissues to find the genomic characteristics of low-abundance tumor stem cells. Single-cell sequencing of circulating tumor cells avoids interference from tumor heterogeneity by comparing the differences between single-cell genomes, transcriptomes, and epigenetic groups among circulating tumor cells, primary and metastatic tumors, and metastatic lymph nodes in patients' peripheral blood, providing a new perspective for understanding the biological process of tumors. This article describes the identification, biological characteristics, and single-cell genome-wide variation in circulating tumor cells and summarizes the application of single-cell sequencing technology to tumor typing, metastasis analysis, progression detection, and adjuvant therapy.
Collapse
Affiliation(s)
- Jiasheng Xu
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District Zhejiang Province, Huzhou, China.,Department of Vascular Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Kaili Liao
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Xi Yang
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District Zhejiang Province, Huzhou, China
| | - Chengfeng Wu
- Department of Vascular Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Wei Wu
- Department of Gastroenterology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District Zhejiang Province, 313000, Huzhou, China
| | - Shuwen Han
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District Zhejiang Province, Huzhou, China.
| |
Collapse
|
31
|
Tao L, Raz O, Marx Z, Ghosh MS, Huber S, Greindl-Junghans J, Biezuner T, Amir S, Milo L, Adar R, Levy R, Onn A, Chapal-Ilani N, Berman V, Ben Arie A, Rom G, Oron B, Halaban R, Czyz ZT, Werner-Klein M, Klein CA, Shapiro E. Retrospective cell lineage reconstruction in humans by using short tandem repeats. CELL REPORTS METHODS 2021; 1:None. [PMID: 34341783 PMCID: PMC8313865 DOI: 10.1016/j.crmeth.2021.100054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/17/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Cell lineage analysis aims to uncover the developmental history of an organism back to its cell of origin. Recently, novel in vivo methods utilizing genome editing enabled important insights into the cell lineages of animals. In contrast, human cell lineage remains restricted to retrospective approaches, which still lack resolution and cost-efficient solutions. Here, we demonstrate a scalable platform based on short tandem repeats targeted by duplex molecular inversion probes. With this human cell lineage tracing method, we accurately reproduced a known lineage of DU145 cells and reconstructed lineages of healthy and metastatic single cells from a melanoma patient who matched the anatomical reference while adding further refinements. This platform allowed us to faithfully recapitulate lineages of developmental tissue formation in healthy cells. In summary, our lineage discovery platform can profile informative somatic mutations efficiently and provides solid lineage reconstructions even in challenging low-mutation-rate healthy single cells.
Collapse
Affiliation(s)
- Liming Tao
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Ofir Raz
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Zipora Marx
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Manjusha S. Ghosh
- Experimental Medicine and Therapy Research, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Sandra Huber
- Experimental Medicine and Therapy Research, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Julia Greindl-Junghans
- Experimental Medicine and Therapy Research, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Tamir Biezuner
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Shiran Amir
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Lilach Milo
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Rivka Adar
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Ron Levy
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Amos Onn
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Noa Chapal-Ilani
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Veronika Berman
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Asaf Ben Arie
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Guy Rom
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Barak Oron
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520-8059, USA
| | - Zbigniew T. Czyz
- Experimental Medicine and Therapy Research, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Melanie Werner-Klein
- Experimental Medicine and Therapy Research, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Christoph A. Klein
- Experimental Medicine and Therapy Research, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Experimental Medicine and Toxicology Regensburg, Am Biopark 9, 93053 Regensburg, Germany
| | - Ehud Shapiro
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| |
Collapse
|
32
|
Costantino I, Nicodemus J, Chun J. Genomic Mosaicism Formed by Somatic Variation in the Aging and Diseased Brain. Genes (Basel) 2021; 12:1071. [PMID: 34356087 PMCID: PMC8305509 DOI: 10.3390/genes12071071] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Over the past 20 years, analyses of single brain cell genomes have revealed that the brain is composed of cells with myriad distinct genomes: the brain is a genomic mosaic, generated by a host of DNA sequence-altering processes that occur somatically and do not affect the germline. As such, these sequence changes are not heritable. Some processes appear to occur during neurogenesis, when cells are mitotic, whereas others may also function in post-mitotic cells. Here, we review multiple forms of DNA sequence alterations that have now been documented: aneuploidies and aneusomies, smaller copy number variations (CNVs), somatic repeat expansions, retrotransposons, genomic cDNAs (gencDNAs) associated with somatic gene recombination (SGR), and single nucleotide variations (SNVs). A catch-all term of DNA content variation (DCV) has also been used to describe the overall phenomenon, which can include multiple forms within a single cell's genome. A requisite step in the analyses of genomic mosaicism is ongoing technology development, which is also discussed. Genomic mosaicism alters one of the most stable biological molecules, DNA, which may have many repercussions, ranging from normal functions including effects of aging, to creating dysfunction that occurs in neurodegenerative and other brain diseases, most of which show sporadic presentation, unlinked to causal, heritable genes.
Collapse
Affiliation(s)
- Isabel Costantino
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
- Neurosciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Juliet Nicodemus
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
- Neurosciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
| |
Collapse
|
33
|
Khoshkhoo S, Lal D, Walsh CA. Application of single cell genomics to focal epilepsies: A call to action. Brain Pathol 2021; 31:e12958. [PMID: 34196990 PMCID: PMC8412079 DOI: 10.1111/bpa.12958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
Focal epilepsies are the largest epilepsy subtype and associated with significant morbidity. Somatic variation is a newly recognized genetic mechanism underlying a subset of focal epilepsies, but little is known about the processes through which somatic mosaicism causes seizures, the cell types carrying the pathogenic variants, or their developmental origin. Meanwhile, the inception of single cell biology has completely revolutionized the study of neurological diseases and has the potential to answer some of these key questions. Focusing on single cell genomics, transcriptomics, and epigenomics in focal epilepsy research, circumvents the averaging artifact associated with studying bulk brain tissue and offers the kind of granularity that is needed for investigating the consequences of somatic mosaicism. Here we have provided a brief overview of some of the most developed single cell techniques and the major considerations around applying them to focal epilepsy research.
Collapse
Affiliation(s)
- Sattar Khoshkhoo
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dennis Lal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Takahashi H, Yasui T, Baba Y. Nanobiodevices for the Isolation of Circulating Nucleic Acid for Biomedical Applications. CHEM LETT 2021. [DOI: 10.1246/cl.210066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hiromi Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Takao Yasui
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
35
|
One-Cell Metabolic Phenotyping and Sequencing of Soil Microbiome by Raman-Activated Gravity-Driven Encapsulation (RAGE). mSystems 2021; 6:e0018121. [PMID: 34042466 PMCID: PMC8269212 DOI: 10.1128/msystems.00181-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Soil harbors arguably the most metabolically and genetically heterogeneous microbiomes on Earth, yet establishing the link between metabolic functions and genome at the precisely one-cell level has been difficult. Here, for mock microbial communities and then for soil microbiota, we established a Raman-activated gravity-driven single-cell encapsulation and sequencing (RAGE-Seq) platform, which identifies, sorts, and sequences precisely one bacterial cell via its anabolic (incorporating D from heavy water) and physiological (carotenoid-containing) functions. We showed that (i) metabolically active cells from numerically rare soil taxa, such as Corynebacterium spp., Clostridium spp., Moraxella spp., Pantoea spp., and Pseudomonas spp., can be readily identified and sorted based on D2O uptake, and their one-cell genome coverage can reach ∼93% to allow high-quality genome-wide metabolic reconstruction; (ii) similarly, carotenoid-containing cells such as Pantoea spp., Legionella spp., Massilia spp., Pseudomonas spp., and Pedobacter spp. were identified and one-cell genomes were generated for tracing the carotenoid-synthetic pathways; and (iii) carotenoid-producing cells can be either metabolically active or inert, suggesting culture-based approaches can miss many such cells. As a Raman-activated cell sorter (RACS) family member that can establish a metabolism-genome link at exactly one-cell resolution from soil, RAGE-Seq can help to precisely pinpoint “who is doing what” in complex ecosystems. IMPORTANCE Soil is home to an enormous and complex microbiome that features arguably the highest genomic diversity and metabolic heterogeneity of cells on Earth. Their in situ metabolic activities drive many natural processes of pivotal ecological significance or underlie industrial production of numerous valuable bioactivities. However, pinpointing “who is doing what” in a soil microbiome, which consists of mainly yet-to-be-cultured species, has remained a major challenge. Here, for soil microbiota, we established a Raman-activated gravity-driven single-cell encapsulation and sequencing (RAGE-Seq) method, which identifies, sorts, and sequences at the resolution of precisely one microbial cell via its catabolic and anabolic functions. As a Raman-activated cell sorter (RACS) family member that can establish a metabolism-genome link at one-cell resolution from soil, RAGE-Seq can help to precisely pinpoint “who is doing what” in complex ecosystems.
Collapse
|
36
|
Nakamura IT, Ikegami M, Hasegawa N, Hayashi T, Ueno T, Kawazu M, Yagishita S, Goto Y, Shinno Y, Kojima Y, Takamochi K, Takahashi F, Takahashi K, Mano H, Kohsaka S. Development of an optimal protocol for molecular profiling of tumor cells in pleural effusions at single-cell level. Cancer Sci 2021; 112:2006-2019. [PMID: 33484069 PMCID: PMC8088920 DOI: 10.1111/cas.14821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsy analyzes the current status of primary tumors and their metastatic regions. We aimed to develop an optimized protocol for single-cell sequencing of floating tumor cells (FTCs) in pleural effusion as a laboratory test. FTCs were enriched using a negative selection of white blood cells by a magnetic-activated cell sorting system, and CD45-negative and cytokeratin-positive selection using a microfluidic cell separation system with a dielectrophoretic array. The enriched tumor cells were subjected to whole-genome amplification (WGA) followed by genome sequencing. The FTC analysis detected an EGFR exon 19 deletion in Case 1 (12/19 cells, 63.2%), and EML4-ALK fusion (17/20 cells, 85%) with an alectinib-resistant mutation of ALK (p.G1202R) in Case 2. To eliminate WGA-associated errors and increase the uniformity of the WGA product, the protocol was revised to sequence multiple single FTCs individually. An analytical pipeline, accurate single-cell mutation detector (ASMD), was developed to identify somatic mutations of FTCs. The large numbers of WGA-associated errors were cleaned up, and the somatic mutations detected in FTCs by ASMD were concordant with those found in tissue specimens. This protocol is applicable to circulating tumor cells analysis of peripheral blood and expands the possibility of utilizing molecular profiling of cancers.
Collapse
Affiliation(s)
- Ikuko Takeda Nakamura
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Masachika Ikegami
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Orthopedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuhiko Hasegawa
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Orthopedic Surgery, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Shigehiro Yagishita
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuki Shinno
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuki Kojima
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
37
|
Liu L, Dong X, Tu Y, Miao G, Zhang Z, Zhang L, Wei Z, Yu D, Qiu X. Methods and platforms for analysis of nucleic acids from single-cell based on microfluidics. MICROFLUIDICS AND NANOFLUIDICS 2021; 25:87. [PMID: 34580578 PMCID: PMC8457033 DOI: 10.1007/s10404-021-02485-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 05/14/2023]
Abstract
Single-cell nucleic acid analysis aims at discovering the genetic differences between individual cells which is well known as the cellular heterogeneity. This technology facilitates cancer diagnosis, stem cell research, immune system analysis, and other life science applications. The conventional platforms for single-cell nucleic acid analysis more rely on manual operation or bulky devices. Recently, the emerging microfluidic technology has provided a perfect platform for single-cell nucleic acid analysis with the characteristic of accurate and automatic single-cell manipulation. In this review, we briefly summarized the procedure of single-cell nucleic acid analysis including single-cell isolation, single-cell lysis, nucleic acid amplification, and genetic analysis. And then, three representative microfluidic platforms for single-cell nucleic acid analysis are concluded as valve-, microwell-, and droplet-based platforms. Furthermore, we described the state-of-the-art integrated single-cell nucleic acid analysis systems based on the three platforms. Finally, the future development and challenges of microfluidics-based single-cell nucleic acid analysis are discussed as well.
Collapse
Affiliation(s)
- Luyao Liu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Xiaobin Dong
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Yunping Tu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Guijun Miao
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zhongping Zhang
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Lulu Zhang
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zewen Wei
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, 100081 China
| | - Duli Yu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing, 100029 China
| | - Xianbo Qiu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| |
Collapse
|
38
|
Long N, Qiao Y, Xu Z, Tu J, Lu Z. Recent advances and application in whole-genome multiple displacement amplification. QUANTITATIVE BIOLOGY 2020. [DOI: 10.1007/s40484-020-0217-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Ruan Q, Ruan W, Lin X, Wang Y, Zou F, Zhou L, Zhu Z, Yang C. Digital-WGS: Automated, highly efficient whole-genome sequencing of single cells by digital microfluidics. SCIENCE ADVANCES 2020; 6:6/50/eabd6454. [PMID: 0 PMCID: PMC7725457 DOI: 10.1126/sciadv.abd6454] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/23/2020] [Indexed: 05/03/2023]
Abstract
Single-cell whole-genome sequencing (WGS) is critical for characterizing dynamic intercellular changes in DNA. Current sample preparation technologies for single-cell WGS are complex, expensive, and suffer from high amplification bias and errors. Here, we describe Digital-WGS, a sample preparation platform that streamlines high-performance single-cell WGS with automatic processing based on digital microfluidics. Using the method, we provide high single-cell capture efficiency for any amount and types of cells by a wetted hydrodynamic structure. The digital control of droplets in a closed hydrophobic interface enables the complete removal of exogenous DNA, sufficient cell lysis, and lossless amplicon recovery, achieving the low coefficient of variation and high coverage at multiple scales. The single-cell genomic variations profiling performs the excellent detection of copy number variants with the smallest bin of 150 kb and single-nucleotide variants with allele dropout rate of 5.2%, holding great promise for broader applications of single-cell genomics.
Collapse
Affiliation(s)
- Qingyu Ruan
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Weidong Ruan
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Xiaoye Lin
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Yang Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Fenxiang Zou
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Leiji Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Zhi Zhu
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Chaoyong Yang
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China.
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
40
|
Sekar S, Tomasini L, Proukakis C, Bae T, Manlove L, Jang Y, Scuderi S, Zhou B, Kalyva M, Amiri A, Mariani J, Sedlazeck FJ, Urban AE, Vaccarino FM, Abyzov A. Complex mosaic structural variations in human fetal brains. Genome Res 2020; 30:1695-1704. [PMID: 33122304 PMCID: PMC7706730 DOI: 10.1101/gr.262667.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 09/12/2020] [Indexed: 11/24/2022]
Abstract
Somatic mosaicism, manifesting as single nucleotide variants (SNVs), mobile element insertions, and structural changes in the DNA, is a common phenomenon in human brain cells, with potential functional consequences. Using a clonal approach, we previously detected 200-400 mosaic SNVs per cell in three human fetal brains (15-21 wk postconception). However, structural variation in the human fetal brain has not yet been investigated. Here, we discover and validate four mosaic structural variants (SVs) in the same brains and resolve their precise breakpoints. The SVs were of kilobase scale and complex, consisting of deletion(s) and rearranged genomic fragments, which sometimes originated from different chromosomes. Sequences at the breakpoints of these rearrangements had microhomologies, suggesting their origin from replication errors. One SV was found in two clones, and we timed its origin to ∼14 wk postconception. No large scale mosaic copy number variants (CNVs) were detectable in normal fetal human brains, suggesting that previously reported megabase-scale CNVs in neurons arise at later stages of development. By reanalysis of public single nuclei data from adult brain neurons, we detected an extrachromosomal circular DNA event. Our study reveals the existence of mosaic SVs in the developing human brain, likely arising from cell proliferation during mid-neurogenesis. Although relatively rare compared to SNVs and present in ∼10% of neurons, SVs in developing human brain affect a comparable number of bases in the genome (∼6200 vs. ∼4000 bp), implying that they may have similar functional consequences.
Collapse
Affiliation(s)
- Shobana Sekar
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Livia Tomasini
- Child Study Center and Department of Neuroscience, Yale University, New Haven, Connecticut 06520, USA
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London NW3 2PF, United Kingdom
| | - Taejeong Bae
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Logan Manlove
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Yeongjun Jang
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Soraya Scuderi
- Child Study Center and Department of Neuroscience, Yale University, New Haven, Connecticut 06520, USA
| | - Bo Zhou
- Departments of Psychiatry and Genetics, Stanford University, Palo Alto, California 94305, USA
| | - Maria Kalyva
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London NW3 2PF, United Kingdom
| | - Anahita Amiri
- Child Study Center and Department of Neuroscience, Yale University, New Haven, Connecticut 06520, USA
| | - Jessica Mariani
- Child Study Center and Department of Neuroscience, Yale University, New Haven, Connecticut 06520, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Alexander E Urban
- Departments of Psychiatry and Genetics, Stanford University, Palo Alto, California 94305, USA
| | - Flora M Vaccarino
- Child Study Center and Department of Neuroscience, Yale University, New Haven, Connecticut 06520, USA
| | - Alexej Abyzov
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
41
|
Kaeser G, Chun J. Brain cell somatic gene recombination and its phylogenetic foundations. J Biol Chem 2020; 295:12786-12795. [PMID: 32699111 PMCID: PMC7476723 DOI: 10.1074/jbc.rev120.009192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
A new form of somatic gene recombination (SGR) has been identified in the human brain that affects the Alzheimer's disease gene, amyloid precursor protein (APP). SGR occurs when a gene sequence is cut and recombined within a single cell's genomic DNA, generally independent of DNA replication and the cell cycle. The newly identified brain SGR produces genomic complementary DNAs (gencDNAs) lacking introns, which integrate into locations distinct from germline loci. This brief review will present an overview of likely related recombination mechanisms and genomic cDNA-like sequences that implicate evolutionary origins for brain SGR. Similarities and differences exist between brain SGR and VDJ recombination in the immune system, the first identified SGR form that now has a well-defined enzymatic machinery. Both require gene transcription, but brain SGR uses an RNA intermediate and reverse transcriptase (RT) activity, which are characteristics shared with endogenous retrotransposons. The identified gencDNAs have similarities to other cDNA-like sequences existing throughout phylogeny, including intron-less genes and inactive germline processed pseudogenes, with likely overlapping biosynthetic processes. gencDNAs arise somatically in an individual to produce multiple copies; can be functional; appear most frequently within postmitotic cells; have diverse sequences; change with age; and can change with disease state. Normally occurring brain SGR may represent a mechanism for gene optimization and long-term cellular memory, whereas its dysregulation could underlie multiple brain disorders and, potentially, other diseases like cancer. The involvement of RT activity implicates already Food and Drug Administration-approved RT inhibitors as possible near-term interventions for managing SGR-associated diseases and suggest next-generation therapeutics targeting SGR elements.
Collapse
Affiliation(s)
- Gwendolyn Kaeser
- Degenerative Disease Program at the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jerold Chun
- Degenerative Disease Program at the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
42
|
Microbial single-cell omics: the crux of the matter. Appl Microbiol Biotechnol 2020; 104:8209-8220. [PMID: 32845367 PMCID: PMC7471194 DOI: 10.1007/s00253-020-10844-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 01/10/2023]
Abstract
Abstract Single-cell genomics and transcriptomics can provide reliable context for assembled genome fragments and gene expression activity on the level of individual prokaryotic genomes. These methods are rapidly emerging as an essential complement to cultivation-based, metagenomics, metatranscriptomics, and microbial community-focused research approaches by allowing direct access to information from individual microorganisms, even from deep-branching phylogenetic groups that currently lack cultured representatives. Their integration and binning with environmental ‘omics data already provides unprecedented insights into microbial diversity and metabolic potential, enabling us to provide information on individual organisms and the structure and dynamics of natural microbial populations in complex environments. This review highlights the pitfalls and recent advances in the field of single-cell omics and its importance in microbiological and biotechnological studies. Key points • Single-cell omics expands the tree of life through the discovery of novel organisms, genes, and metabolic pathways. • Disadvantages of metagenome-assembled genomes are overcome by single-cell omics. • Functional analysis of single cells explores the heterogeneity of gene expression. • Technical challenges still limit this field, thus prompting new method developments.
Collapse
|
43
|
Bae J, Ju J, Kim D, Kim T. Double-Sided Microwells with a Stepped Through-Hole Membrane for High-Throughput Microbial Assays. Anal Chem 2020; 92:9501-9510. [PMID: 32571023 DOI: 10.1021/acs.analchem.0c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To improve the throughput of microwell arrays for identifying immense cellular diversities even at a single-bacteria level, further miniaturization or densification of the microwells has been an obvious breakthrough. However, controlling millions of nanoliter samples or more at the microscale remains technologically difficult and has been spatially restricted to a single open side of the microwells. Here we employed a stepped through-hole membrane to utilize the bottom as well as top side of a high-density nanoliter microwell array, thus improving spatial efficiency. The stepped structure shows additional effectiveness for handling several millions of nanoliter bacterial samples in the overall perspectives of controllability, throughput, simplicity, versatility, and automation by using novel methods for three representative procedures in bacterial assays: partitioning cells, manipulating the chemical environment, and extracting selected cells. As a potential application, we show proof-of-concept isolation of rare cells in a mixed ratio of 1 to around 106 using a single chip. Our device can be further applied to various biological studies pertaining to synthetic biology, drug screening, mutagenesis, and single-cell heterogeneity.
Collapse
Affiliation(s)
- Juyeol Bae
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Janghyun Ju
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Dahyun Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Taesung Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
44
|
Zhou X, Xu Y, Zhu L, Su Z, Han X, Zhang Z, Huang Y, Liu Q. Comparison of Multiple Displacement Amplification (MDA) and Multiple Annealing and Looping-Based Amplification Cycles (MALBAC) in Limited DNA Sequencing Based on Tube and Droplet. MICROMACHINES 2020; 11:mi11070645. [PMID: 32610698 PMCID: PMC7407204 DOI: 10.3390/mi11070645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 01/04/2023]
Abstract
Whole genome amplification (WGA) is crucial for whole genome sequencing to investigate complex genomic alteration at the single-cell or even single-molecule level. Multiple displacement amplification (MDA) and multiple annealing and looping based amplification cycles (MALBAC) are two most widely applied WGA methods, which have different advantages and disadvantages, dependent on research objectives. Herein, we compared the MDA and MALBAC to provide more information on their performance in droplets and tubes. We observed that the droplet method could dramatically reduce the amplification bias and retain the high accuracy of replication than the conventional tube method. Furthermore, the droplet method exhibited higher efficiency and sensitivity for both homozygous and heterozygous single nucleotide variants (SNVs) at the low sequencing depth. In addition, we also found that MALBAC offered a greater uniformity and reproducibility and MDA showed a better efficiency of genomic coverage and SNV detection. Our results provided insights that will allow future decision making.
Collapse
|
45
|
Abstract
The human oral cavity is one of the first environments where microbes have been discovered and studied since the dawn of microbiology. Nevertheless, approximately 200 types of bacteria from the oral microbiota have remained uncultured in the laboratory. Some are associated with a healthy oral microbial community, while others are linked to oral diseases, from dental caries to gum disease. Single-cell genomics has enabled inferences on the physiology, virulence, and evolution of such uncultured microorganisms and has further enabled isolation and cultivation of several novel oral bacteria, including the discovery of novel interspecies interactions. This review summarizes some of the more recent advances in this field, which is rapidly moving toward physiologic characterization of single cells and ultimately cultivation of the yet uncultured. A combination of traditional microbiological approaches with genomic-based physiologic predictions and isolation strategies may lead to the oral microbiome being the first complex microbial community to have all its members cultivable in the laboratory. Studying the biology of the individual microbes when in association with other members of the community, in controlled laboratory conditions and in vivo, should lead to a better understanding of oral dysbiosis and its prevention and reversion.
Collapse
Affiliation(s)
- M Balachandran
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - K L Cross
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - M Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
46
|
Su X, Gong Y, Gou H, Jing X, Xu T, Zheng X, Chen R, Li Y, Ji Y, Ma B, Xu J. Rational Optimization of Raman-Activated Cell Ejection and Sequencing for Bacteria. Anal Chem 2020; 92:8081-8089. [PMID: 32401011 DOI: 10.1021/acs.analchem.9b05345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In Raman-activated cell ejection and sequencing (RACE-Seq), success rate and sequence coverage have generally been low for shotgun sequencing of individual post-RACE cells. Here we quantitatively evaluated the influence of cell lysis condition, nucleic acid amplification condition, and parameters of Raman measurement on RACE-Seq performance. Variations in laser energy input during Raman signal acquisition, but not duration of alkaline lysate lysis, temperature, or measurement under dry or aqueous conditions, are vital to the success of multiple displacement amplification (MDA). In fact, laser irradiation is reversely linked to MDA product quality. However, introduction of oils prior to MDA, by mitigating such negative effects of Raman irradiation, elevates genome coverage of post-RACE Escherichia coli cells from <20% to ∼50%, while greatly improving the success rate of RACE-Seq for soil microbiota. Our findings provide a practical solution for enhancing RACE-Seq performance and pinpoint protection of cells from laser irradiation as a priority in method development.
Collapse
Affiliation(s)
- Xiaolu Su
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Honglei Gou
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.,University of Chinese Academy of Sciences, Beijing 100000, China
| | - Xiaoshan Zheng
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Rongze Chen
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.,University of Chinese Academy of Sciences, Beijing 100000, China
| | - Yuandong Li
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.,University of Chinese Academy of Sciences, Beijing 100000, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.,University of Chinese Academy of Sciences, Beijing 100000, China
| |
Collapse
|
47
|
Lodato MA, Walsh CA. Genome aging: somatic mutation in the brain links age-related decline with disease and nominates pathogenic mechanisms. Hum Mol Genet 2020; 28:R197-R206. [PMID: 31578549 DOI: 10.1093/hmg/ddz191] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/19/2022] Open
Abstract
Aging is a mysterious process, not only controlled genetically but also subject to random damage that can accumulate over time. While DNA damage and subsequent mutation in somatic cells were first proposed as drivers of aging more than 60 years ago, whether and to what degree these processes shape the neuronal genome in the human brain could not be tested until recent technological breakthroughs related to single-cell whole-genome sequencing. Indeed, somatic single-nucleotide variants (SNVs) increase with age in the human brain, in a somewhat stochastic process that may nonetheless be controlled by underlying genetic programs. Evidence from the literature suggests that in addition to demonstrated increases in somatic SNVs during aging in normal brains, somatic mutation may also play a role in late-onset, sporadic neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. In this review, we will discuss somatic mutation in the human brain, mechanisms by which somatic mutations occur and can be controlled, and how this process can impact human health.
Collapse
Affiliation(s)
- Michael A Lodato
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
48
|
Zheng Z, Chen E, Lu W, Mouradian G, Hodges M, Liang M, Liu P, Lu Y. Single-Cell Transcriptomic Analysis. Compr Physiol 2020; 10:767-783. [PMID: 32163201 DOI: 10.1002/cphy.c190037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Single-cell sequencing measures the sequence information from individual cells using optimized single-cell isolation protocols and next-generation sequencing technologies. Recent advancement in single-cell sequencing has transformed biomedical research, providing insights into diverse biological processes such as mammalian development, immune system function, cellular diversity and heterogeneity, and disease pathogenesis. In this article, we introduce and describe popular commercial platforms for single-cell RNA sequencing, general workflow for data analysis, repositories and databases, and applications for these approaches in biomedical research. © 2020 American Physiological Society. Compr Physiol 10:767-783, 2020.
Collapse
Affiliation(s)
- Zhihong Zheng
- Department of Gynecologic Oncology, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Enguo Chen
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gary Mouradian
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Matthew Hodges
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mingyu Liang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Pengyuan Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China.,Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yan Lu
- Department of Gynecologic Oncology, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
49
|
Casamassa A, Ferrari D, Gelati M, Carella M, Vescovi AL, Rosati J. A Link between Genetic Disorders and Cellular Impairment, Using Human Induced Pluripotent Stem Cells to Reveal the Functional Consequences of Copy Number Variations in the Central Nervous System-A Close Look at Chromosome 15. Int J Mol Sci 2020; 21:ijms21051860. [PMID: 32182809 PMCID: PMC7084702 DOI: 10.3390/ijms21051860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
Recent cutting-edge human genetics technology has allowed us to identify copy number variations (CNVs) and has provided new insights for understanding causative mechanisms of human diseases. A growing number of studies show that CNVs could be associated with physiological mechanisms linked to evolutionary trigger, as well as to the pathogenesis of various diseases, including cancer, autoimmune disease and mental disorders such as autism spectrum disorders, schizophrenia, intellectual disabilities or attention-deficit/hyperactivity disorder. Their incomplete penetrance and variable expressivity make diagnosis difficult and hinder comprehension of the mechanistic bases of these disorders. Additional elements such as co-presence of other CNVs, genomic background and environmental factors are involved in determining the final phenotype associated with a CNV. Genetically engineered animal models are helpful tools for understanding the behavioral consequences of CNVs. However, the genetic background and the biology of these animal model systems have sometimes led to confusing results. New cellular models obtained through somatic cellular reprogramming technology that produce induced pluripotent stem cells (iPSCs) from human subjects are being used to explore the mechanisms involved in the pathogenic consequences of CNVs. Considering the vast quantity of CNVs found in the human genome, we intend to focus on reviewing the current literature on the use of iPSCs carrying CNVs on chromosome 15, highlighting advantages and limits of this system with respect to mouse model systems.
Collapse
Affiliation(s)
- Alessia Casamassa
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy;
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Viale Abramo Lincoln 5, 81100 Caserta, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy;
| | - Maurizio Gelati
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
| | - Massimo Carella
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
| | - Angelo Luigi Vescovi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy;
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
- Correspondence: (A.L.V.); (J.R.)
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy;
- Correspondence: (A.L.V.); (J.R.)
| |
Collapse
|
50
|
Xu X, Wang J, Wu L, Guo J, Song Y, Tian T, Wang W, Zhu Z, Yang C. Microfluidic Single-Cell Omics Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903905. [PMID: 31544338 DOI: 10.1002/smll.201903905] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/26/2019] [Indexed: 05/27/2023]
Abstract
The commonly existing cellular heterogeneity plays a critical role in biological processes such as embryonic development, cell differentiation, and disease progress. Single-cell omics-based heterogeneous studies have great significance for identifying different cell populations, discovering new cell types, revealing informative cell features, and uncovering significant interrelationships between cells. Recently, microfluidics has evolved to be a powerful technology for single-cell omics analysis due to its merits of throughput, sensitivity, and accuracy. Herein, the recent advances of microfluidic single-cell omics analysis, including different microfluidic platform designs, lysis strategies, and omics analysis techniques, are reviewed. Representative applications of microfluidic single-cell omics analysis in complex biological studies are then summarized. Finally, a few perspectives on the future challenges and development trends of microfluidic-assisted single-cell omics analysis are discussed.
Collapse
Affiliation(s)
- Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Junxia Wang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jingjing Guo
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanling Song
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tian Tian
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|