1
|
Bergmann L, Greimeier S, Riethdorf S, Rohlfing T, Kaune M, Busenbender T, Strewinsky N, Dyshlovoy S, Joosse S, Peine S, Pantel K, von Amsberg G, Werner S. Transcriptional profiles of circulating tumor cells reflect heterogeneity and treatment resistance in advanced prostate cancer. J Exp Clin Cancer Res 2025; 44:111. [PMID: 40181402 PMCID: PMC11967125 DOI: 10.1186/s13046-025-03367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
PURPOSE New biomarkers for the detection and monitoring of aggressive variant prostate cancer (AVPC) including therapy-induced neuroendocrine prostate cancer (NEPC) are urgently needed, as measuring prostate-specific antigen (PSA) is not reliable in androgen-indifferent diseases. Molecular analysis of circulating tumor cells (CTC) enables repeated analysis for monitoring and allows to capture the heterogeneity of the disease. EXPERIMENTAL DESIGN 102 blood samples from 76 metastatic prostate cancer (mPC) patients, including 37 samples from histologically proven NEPC, were collected and CTCs were enriched using label-dependent and label-independent methods. Relevant transcripts were selected for CTC profiling using semi-quantitative RT-PCR analysis and validated in published datasets and cell lines. Transcriptional profiles in patient samples were analyzed using supervised and unsupervised methods. RESULTS CTC counts were increased in AVPC and NEPC as compared to metastatic hormone-sensitive prostate cancer (mHSPC). Gene expression profiles of CTCs showed a high degree of inter-patient heterogeneity, but NEPC-specific transcripts were significantly increased in patients with proven NEPC, while adenocarcinoma markers were decreased. Unsupervised analysis identified four distinct clusters of CTClow, ARhigh, amphicrine and pure NEPC gene expression profiles that reflected the clinical groups. Based on the transcript panel, NEPC could be distinguished from mHSPC or AVPC patients with a specificity of 95.5% and 88.2%, respectively. CONCLUSION Molecular subtypes of mPC can be distinguished by transcriptional profiling of CTCs. In the future, our convenient PCR-based analysis may complement the monitoring of advanced PCa patients and allow timely detection of resistance to androgen receptor pathway inhibitors.
Collapse
Affiliation(s)
- Lina Bergmann
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Sarah Greimeier
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Sabine Riethdorf
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Tina Rohlfing
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
- Department of Hematology and Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Moritz Kaune
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Tobias Busenbender
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
- Department of Hematology and Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Nadja Strewinsky
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
- Department of Hematology and Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sergey Dyshlovoy
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
- Department of Hematology and Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Simon Joosse
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
- Mildred Scheel Cancer Career Centre HaTriCS4, University Medical Centre Hamburg- Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Gunhild von Amsberg
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
- Department of Hematology and Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Stefan Werner
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
- Mildred Scheel Cancer Career Centre HaTriCS4, University Medical Centre Hamburg- Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
2
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
3
|
Ortega-Batista A, Jaén-Alvarado Y, Moreno-Labrador D, Gómez N, García G, Guerrero EN. Single-Cell Sequencing: Genomic and Transcriptomic Approaches in Cancer Cell Biology. Int J Mol Sci 2025; 26:2074. [PMID: 40076700 PMCID: PMC11901077 DOI: 10.3390/ijms26052074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
This article reviews the impact of single-cell sequencing (SCS) on cancer biology research. SCS has revolutionized our understanding of cancer and tumor heterogeneity, clonal evolution, and the complex interplay between cancer cells and tumor microenvironment. SCS provides high-resolution profiling of individual cells in genomic, transcriptomic, and epigenomic landscapes, facilitating the detection of rare mutations, the characterization of cellular diversity, and the integration of molecular data with phenotypic traits. The integration of SCS with multi-omics has provided a multidimensional view of cellular states and regulatory mechanisms in cancer, uncovering novel regulatory mechanisms and therapeutic targets. Advances in computational tools, artificial intelligence (AI), and machine learning have been crucial in interpreting the vast amounts of data generated, leading to the identification of new biomarkers and the development of predictive models for patient stratification. Furthermore, there have been emerging technologies such as spatial transcriptomics and in situ sequencing, which promise to further enhance our understanding of tumor microenvironment organization and cellular interactions. As SCS and its related technologies continue to advance, they are expected to drive significant advances in personalized cancer diagnostics, prognosis, and therapy, ultimately improving patient outcomes in the era of precision oncology.
Collapse
Affiliation(s)
- Ana Ortega-Batista
- Faculty of Science and Technology, Technological University of Panama, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama; (A.O.-B.)
| | - Yanelys Jaén-Alvarado
- Faculty of Science and Technology, Technological University of Panama, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama; (A.O.-B.)
- Gorgas Memorial Institute for Health Studies, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama
| | - Dilan Moreno-Labrador
- Faculty of Science and Technology, Technological University of Panama, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama; (A.O.-B.)
| | - Natasha Gómez
- Faculty of Science and Technology, Technological University of Panama, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama; (A.O.-B.)
| | - Gabriela García
- Faculty of Science and Technology, Technological University of Panama, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama; (A.O.-B.)
| | - Erika N. Guerrero
- Gorgas Memorial Institute for Health Studies, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama
- Sistema Nacional de Investigación, Secretaria Nacional de Ciencia y Tecnología, Edificio 205, Ciudad del Saber, Panama City, Panama
| |
Collapse
|
4
|
Salomon R, Razavi Bazaz S, Mutafopulos K, Gallego-Ortega D, Warkiani M, Weitz D, Jin D. Challenges in blood fractionation for cancer liquid biopsy: how can microfluidics assist? LAB ON A CHIP 2025; 25:1097-1127. [PMID: 39775440 DOI: 10.1039/d4lc00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Liquid biopsy provides a minimally invasive approach to characterise the molecular and phenotypic characteristics of a patient's individual tumour by detecting evidence of cancerous change in readily available body fluids, usually the blood. When applied at multiple points during the disease journey, it can be used to monitor a patient's response to treatment and to personalise clinical management based on changes in disease burden and molecular findings. Traditional liquid biopsy approaches such as quantitative PCR, have tended to look at only a few biomarkers, and are aimed at early detection of disease or disease relapse using predefined markers. With advances in the next generation sequencing (NGS) and single-cell genomics, simultaneous analysis of both circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) is now a real possibility. To realise this, however, we need to overcome issues with current blood collection and fractionation processes. These include overcoming the need to add a preservative to the collection tube or the need to rapidly send blood tubes to a centralised processing lab with the infrastructure required to fractionate and process the blood samples. This review focuses on outlining the current state of liquid biopsy and how microfluidic blood fractionation tools can be used in cancer liquid biopsy. We describe microfluidic devices that can separate plasma for ctDNA analysis, and devices that are important in isolating the cellular component(s) in liquid biopsy, i.e., individual CTCs and CTC clusters. To facilitate a better understanding of these devices, we propose a new categorisation system based on how these devices operate. The three categories being 1) solid Interaction devices, 2) fluid Interaction devices and 3) external force/active devices. Finally, we conclude that whilst some assays and some cancers are well suited to current microfluidic techniques, new tools are necessary to support broader, clinically relevant multiomic workflows in cancer liquid biopsy.
Collapse
Affiliation(s)
- Robert Salomon
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
| | - Sajad Razavi Bazaz
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
| | - Kirk Mutafopulos
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - David Gallego-Ortega
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Majid Warkiani
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - David Weitz
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
| |
Collapse
|
5
|
Bergmann L, Afflerbach AK, Yuan T, Pantel K, Smit DJ. Lessons (to be) learned from liquid biopsies: assessment of circulating cells and cell-free DNA in cancer and pregnancy-acquired microchimerism. Semin Immunopathol 2025; 47:14. [PMID: 39893314 PMCID: PMC11787191 DOI: 10.1007/s00281-025-01042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Tumors constantly shed cancer cells that are considered the mediators of metastasis via the blood stream. Analysis of circulating cells and circulating cell-free DNA (cfDNA) in liquid biopsies, mostly taken from peripheral blood, have emerged as powerful biomarkers in oncology, as they enable the detection of genomic aberrations. Similarly, liquid biopsies taken from pregnant women serve as prenatal screening test for an abnormal number of chromosomes in the fetus, e.g., via the analysis of microchimeric fetal cells and cfDNA circulating in maternal blood. Liquid biopsies are minimally invasive and, consequently, associated with reduced risks for the patients. However, different challenges arise in oncology and pregnancy-acquired liquid biopsies with regard to the analyte concentration and biological (background) noise among other factors. In this review, we highlight the unique biological properties of circulating tumor cells (CTC), summarize the various techniques that have been developed for the enrichment, detection and analysis of CTCs as well as for analysis of genetic and epigenetic aberrations in cfDNA and highlight the range of possible clinical applications. Lastly, the potential, but also the challenges of liquid biopsies in oncology as well as their translational value for the analysis of pregnancy-acquired microchimerism are discussed.
Collapse
Affiliation(s)
- Lina Bergmann
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Ann-Kristin Afflerbach
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Tingjie Yuan
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
6
|
Kumar N, Samanta B, Km J, Raghunathan V, Sen P, Bhat R. Demonstration of Enhancement of Tumor Intravasation by Dicarbonyl Stress Using a Microfluidic Organ-on-chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405998. [PMID: 39745135 DOI: 10.1002/smll.202405998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/28/2024] [Indexed: 02/13/2025]
Abstract
Cancer metastasis involves cell migration from their primary organ foci into vascular channels, followed by dissemination to prospective colonization sites. Vascular entry of tumor cells or intravasation involves their breaching stromal and endothelial extracellular matrix (ECM) and the endothelial barriers. How the kinetics of this breach are confounded by chronic inflammatory stresses seen in diabetes and aging remains ill-investigated. To study the problem, a histopathology-motivated, imaging-tractable, microfluidic multi-organ-on-chip platform is constructed, that seamlessly integrates a breast tumor-like compartment: invasive MDA-MB-231 in a 3D Collagen I scaffold, and a flow-implemented vascular channel: immortalized human aortic endothelia (TeloHAEC) on laminin-rich basement membrane (lrBM). The chip showcases the complexity of intravasation, wherein tumor cells and endothelia cooperate to form anastomotic structures, which facilitate cancer cell migration into the vascular channel. Upon entry, cancer cells adhere to and flow within the vascular channel. Exposure to methylglyoxal (MG), a dicarbonyl stressor associated with diabetic circulatory milieu increases cancer cell intravasation and adhesion through the vascular channel. This can be driven by MG-induced endothelial senescence and shedding, but also by the ability of MG to degrade lrBM and pathologically cross-link Collagen I, diminishing cell-ECM adhesion. Thus, dicarbonyl stress attenuates homeostatic barriers to cancer intravasation, exacerbating metastasis.
Collapse
Affiliation(s)
- Nilesh Kumar
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Bidita Samanta
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Jyothsna Km
- Department of Electrical and Communications Engineering, Bengaluru, 560012, India
| | - Varun Raghunathan
- Department of Electrical and Communications Engineering, Bengaluru, 560012, India
| | - Prosenjit Sen
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Ramray Bhat
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
7
|
Sabit H, Arneth B, Pawlik TM, Abdel-Ghany S, Ghazy A, Abdelazeem RM, Alqosaibi A, Al-Dhuayan IS, Almulhim J, Alrabiah NA, Hashash A. Leveraging Single-Cell Multi-Omics to Decode Tumor Microenvironment Diversity and Therapeutic Resistance. Pharmaceuticals (Basel) 2025; 18:75. [PMID: 39861138 PMCID: PMC11768313 DOI: 10.3390/ph18010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Recent developments in single-cell multi-omics technologies have provided the ability to identify diverse cell types and decipher key components of the tumor microenvironment (TME), leading to important advancements toward a much deeper understanding of how tumor microenvironment heterogeneity contributes to cancer progression and therapeutic resistance. These technologies are able to integrate data from molecular genomic, transcriptomic, proteomics, and metabolomics studies of cells at a single-cell resolution scale that give rise to the full cellular and molecular complexity in the TME. Understanding the complex and sometimes reciprocal relationships among cancer cells, CAFs, immune cells, and ECs has led to novel insights into their immense heterogeneity in functions, which can have important consequences on tumor behavior. In-depth studies have uncovered immune evasion mechanisms, including the exhaustion of T cells and metabolic reprogramming in response to hypoxia from cancer cells. Single-cell multi-omics also revealed resistance mechanisms, such as stromal cell-secreted factors and physical barriers in the extracellular matrix. Future studies examining specific metabolic pathways and targeting approaches to reduce the heterogeneity in the TME will likely lead to better outcomes with immunotherapies, drug delivery, etc., for cancer treatments. Future studies will incorporate multi-omics data, spatial relationships in tumor micro-environments, and their translation into personalized cancer therapies. This review emphasizes how single-cell multi-omics can provide insights into the cellular and molecular heterogeneity of the TME, revealing immune evasion mechanisms, metabolic reprogramming, and stromal cell influences. These insights aim to guide the development of personalized and targeted cancer therapies, highlighting the role of TME diversity in shaping tumor behavior and treatment outcomes.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldingerstr. 1, 35043 Marburg, Germany
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Aysha Ghazy
- Department of Agricultural Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Rawan M. Abdelazeem
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza 3237101, Egypt
| | - Amany Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ibtesam S. Al-Dhuayan
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Jawaher Almulhim
- Department of Biological Sciences, King Faisal University, Alahsa 31982, Saudi Arabia
| | - Noof A. Alrabiah
- Department of Biological Sciences, King Faisal University, Alahsa 31982, Saudi Arabia
| | - Ahmed Hashash
- Department of Biomedicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Alsaiari AA. Recent advances in the methods and clinical applications of next-generation sequencing in genomic profiling and precision cancer therapy. EXCLI JOURNAL 2025; 24:15-33. [PMID: 39967910 PMCID: PMC11830917 DOI: 10.17179/excli2024-7594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/17/2024] [Indexed: 02/20/2025]
Abstract
Cancer is a major cause of death worldwide. Next-generation sequencing (NGS) has dramatically increased the sequencing data output and transformed biomedical investigations. NGS enables the generations of genetic data specific to patients from tumor tissue samples so that targeted therapies can be used. The obtained data further allows the prioritization of effective therapies based on the tumor-specific genotype. Practitioners in the field of clinical genomics can make the best use of testing facilities while lessening the possible off-targets by choosing a priori gene set. Therefore, targeted sequencing has arisen as a more affordable technique for the genomic profiling of tumors. Drug resistance is commonly observed in cancer because of mutations. Thus, precise genetic and molecular profiling of tumors ought to be routinely done prior to the use of targeted therapy or precision cancer therapy. NGS already has the capacity to ameliorate genetic screening in families with previous histories of the high occurrence of various cancer-associated genes, including TP53, APC, BRCA2, and BRCA1. By using NGS system, researchers detected increased variants in cancer cells with greater specificity and sensitivity than conventional diagnostic approaches, which suggest the potential of NGS in diagnosis. The field of precision cancer therapy is continuously growing and because of their specificity at the molecular level has improved the management and treatment of numerous cancers. These therapies are less toxic and more efficient compared to conventional chemotherapies used in cancer treatment. The field of precision cancer therapy is likely to significantly expand as NGS system advances. This review provides extensive information regarding current advances in the NGS field in terms of methods, clinical applications, genomic profiling, and the role of NGS of precision cancer therapy.
Collapse
Affiliation(s)
- Ahad Amer Alsaiari
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
9
|
Ahmed F, Zhong J. Advances in DNA/RNA Sequencing and Their Applications in Acute Myeloid Leukemia (AML). Int J Mol Sci 2024; 26:71. [PMID: 39795930 PMCID: PMC11720148 DOI: 10.3390/ijms26010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/24/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy that poses significant challenges due to high rates of relapse and resistance to treatment, particularly in older populations. While therapeutic advances have been made, survival outcomes remain suboptimal. The evolution of DNA and RNA sequencing technologies, including whole-genome sequencing (WGS), whole-exome sequencing (WES), and RNA sequencing (RNA-Seq), has significantly enhanced our understanding of AML at the molecular level. These technologies have led to the discovery of driver mutations and transcriptomic alterations critical for improving diagnosis, prognosis, and personalized therapy development. Furthermore, single-cell RNA sequencing (scRNA-Seq) has uncovered rare subpopulations of leukemia stem cells (LSCs) contributing to disease progression and relapse. However, widespread clinical integration of these tools remains limited by costs, data complexity, and ethical challenges. This review explores recent advancements in DNA/RNA sequencing in AML and highlights both the potential and limitations of these techniques in clinical practice.
Collapse
Affiliation(s)
| | - Jiang Zhong
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| |
Collapse
|
10
|
Reduzzi C, Nicolo' E, Singhal S, Venetis K, Ortega-Franco A, de Miguel-Perez D, Dipasquale A, Gouda MA, Saldanha EF, Kasi PM, Jantus-Lewintre E, Fusco N, Malapelle U, Gandara DR, Rolfo C, Serrano MJ, Cristofanilli M. Unveiling the impact of circulating tumor cells: Two decades of discovery and clinical advancements in solid tumors. Crit Rev Oncol Hematol 2024; 203:104483. [PMID: 39159706 DOI: 10.1016/j.critrevonc.2024.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Circulating tumor cells (CTCs) enumeration and molecular profiling hold promise in revolutionizing the management of solid tumors. Their understanding has evolved significantly over the past two decades, encompassing pivotal biological discoveries and clinical studies across various malignancies. While for some tumor types, such as breast, prostate, and colorectal cancer, CTCs are ready to enter clinical practice, for others, additional research is required. CTCs serve as versatile biomarkers, offering insights into tumor biology, metastatic progression, and treatment response. This review summarizes the latest advancements in CTC research and highlights future directions of investigation. Special attention is given to concurrent evaluations of CTCs and other circulating biomarkers, particularly circulating tumor DNA. Multi-analyte assessment holds the potential to unlock the full clinical capabilities of liquid biopsy. In conclusion, CTCs represent a transformative biomarker in precision oncology, offering extraordinary opportunities to translate scientific discoveries into tangible improvements in patient care.
Collapse
Affiliation(s)
- Carolina Reduzzi
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Eleonora Nicolo'
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Surbhi Singhal
- Division of Hematology and Oncology, Department of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Konstantinos Venetis
- Division of Pathology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Ana Ortega-Franco
- Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Diego de Miguel-Perez
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Angelo Dipasquale
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mohamed A Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erick F Saldanha
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, ON, Canada
| | - Pashtoon M Kasi
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA
| | - Eloisa Jantus-Lewintre
- Department of Biotechnology, Universitat Politècnica de València, Unidad Mixta TRIAL (Fundación para la Investigación del Hospital General Universitario de Valencia y Centro de Investigación Príncipe Felipe) and CIBERONC, Valencia, Spain
| | - Nicola Fusco
- Division of Pathology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan 20121, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Napoli 80131, Italy
| | - David R Gandara
- Division of Hematology and Oncology, Department of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Maria Jose Serrano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and Cancer Interception group, PTS Granada, Avenida de la Ilustración 114, Granada 18016, Spain; Pathological Anatomy Unit, Molecular Pathology Laboratory,Virgen de las Nieves. University Hospital, Av. Dr. Olóriz 16, Granada 18012, Spain
| | - Massimo Cristofanilli
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA
| |
Collapse
|
11
|
Abou-Ghali NE, Giannakakou P. Advances in metastatic prostate cancer circulating tumor cell enrichment technologies and clinical studies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 392:151-175. [PMID: 40287219 DOI: 10.1016/bs.ircmb.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Circulating tumor cells (CTCs) have emerged as a pivotal tool that enables molecular interrogation of patient tumor cells and association with clinical outcomes. In prostate cancer specifically, where tumor biopsies from patients with bone metastasis are extremely challenging, CTCs offer a viable and established source of tumor "biopsy". While the prognostic value of CTC enumeration in metastatic prostate cancer is established, there is a compelling need for molecular CTC characterization for effective patient stratification and disease management. The clinical utility of CTCs has been advanced by the evolution of enrichment technologies and their molecular characterization. Enrichment technologies have evolved from strictly EpCAM-based enrichment to antigen-agnostic enrichment, while their clinical utility has evolved from enumeration to advanced downstream analyses including CTC proteomics, transcriptomics and genomics. This chapter offers a comprehensive overview of recent advancements in CTC enrichment and analytical technologies while highlighting pivotal clinical studies in prostate cancer, that utilize CTCs to determine the molecular basis of clinical response and resistance, to assist in disease management and treatment customization.
Collapse
|
12
|
Sementsov M, Ott L, Kött J, Sartori A, Lusque A, Degenhardt S, Segier B, Heidrich I, Volkmer B, Greinert R, Mohr P, Simon R, Stadler JC, Irwin D, Koch C, Andreas A, Deitert B, Thewes V, Trumpp A, Schneeweiss A, Belloum Y, Peine S, Wikman H, Riethdorf S, Schneider SW, Gebhardt C, Pantel K, Keller L. Mutation analysis in individual circulating tumor cells depicts intratumor heterogeneity in melanoma. EMBO Mol Med 2024; 16:1560-1578. [PMID: 38898234 PMCID: PMC11250829 DOI: 10.1038/s44321-024-00082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Circulating tumor DNA (ctDNA) is the cornerstone of liquid biopsy diagnostics, revealing clinically relevant genomic aberrations from blood of cancer patients. Genomic analysis of single circulating tumor cells (CTCs) could provide additional insights into intra-patient heterogeneity, but it requires whole-genome amplification (WGA) of DNA, which might introduce bias. Here, we describe a novel approach based on mass spectrometry for mutation detection from individual CTCs not requiring WGA and complex bioinformatics pipelines. After establishment of our protocol on tumor cell line-derived single cells, it was validated on CTCs of 33 metastatic melanoma patients and the mutations were compared to those obtained from tumor tissue and ctDNA. Although concordance with tumor tissue was superior for ctDNA over CTC analysis, a larger number of mutations were found within CTCs compared to ctDNA (p = 0.039), including mutations in melanoma driver genes, or those associated with resistance to therapy or metastasis. Thus, our results demonstrate proof-of-principle data that CTC analysis can provide clinically relevant genomic information that is not redundant to tumor tissue or ctDNA analysis.
Collapse
Affiliation(s)
- Mark Sementsov
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Ott
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Kött
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Amelie Lusque
- Biostatistics & Health Data Science Unit, Institut Claudius-Regaud, IUCT-Oncopole, Toulouse, France
| | - Sarah Degenhardt
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbe Kliniken Buxtehude, Buxtehude, Germany
| | - Bertille Segier
- Biostatistics & Health Data Science Unit, Institut Claudius-Regaud, IUCT-Oncopole, Toulouse, France
| | - Isabel Heidrich
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Beate Volkmer
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbe Kliniken Buxtehude, Buxtehude, Germany
| | - Rüdiger Greinert
- Department of Molecular Cell Biology, Skin Cancer Center Buxtehude, Elbe Kliniken Buxtehude, Buxtehude, Germany
| | - Peter Mohr
- Department of Dermatology, Elbe Kliniken Buxtehude, 21614, Buxtehude, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia-Christina Stadler
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Claudia Koch
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antje Andreas
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Deitert
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Verena Thewes
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Yassine Belloum
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriett Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Riethdorf
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoffer Gebhardt
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Laura Keller
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
| |
Collapse
|
13
|
Galletti G, Halima A, Gjyrezi A, Zhang J, Zimmerman B, Worroll D, Kallergi G, Barreja R, Ocean A, Saxena A, McGraw TE, Nanus DM, Elemento O, Altorki NK, Tagawa ST, Giannakakou P. Transferrin receptor-based circulating tumor cell enrichment provides a snapshot of the molecular landscape of solid tumors and correlates with clinical outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.16.24309003. [PMID: 38947080 PMCID: PMC11213041 DOI: 10.1101/2024.06.16.24309003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Circulating tumor cells (CTCs) captured from the bloodstream of patients with solid tumors have the potential to accelerate precision oncology by providing insight into tumor biology, disease progression and response to treatment. However, their potential is hampered by the lack of standardized CTC enrichment platforms across tumor types. EpCAM-based CTC enrichment, the most commonly used platform, is limited by EpCAM downregulation during metastasis and the low EpCAM expression in certain tumor types, including the highly prevalent and lethal NSCLC. In this study we demonstrate that Transferrin Receptor (TfR) is a selective, efficient biomarker for CTC identification and capture in patients with prostate, pancreatic and NSCLC. TfR identifies significantly higher CTC counts than EpCAM, and TfR + -CTC enumeration correlates with disease progression in metastatic prostate and pancreatic cancers, and overall survival and osimetrinib-resistance in non-small cell lung cancer (NSCLC). Profiling of TfR + -CTCs provides a snapshot of the molecular landscape of each respective tumor type and identifies potential mechanisms underlying treatment response to EGFR TKi and immune checkpoint inhibitors in NSCLC. One sentence summary Transferrin Receptor identifies circulating tumor cells in solid tumors.
Collapse
|
14
|
Zhang YW, Gvozdenovic A, Aceto N. A Molecular Voyage: Multiomics Insights into Circulating Tumor Cells. Cancer Discov 2024; 14:920-933. [PMID: 38581442 DOI: 10.1158/2159-8290.cd-24-0218] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Circulating tumor cells (CTCs) play a pivotal role in metastasis, the leading cause of cancer-associated death. Recent improvements of CTC isolation tools, coupled with a steady development of multiomics technologies at single-cell resolution, have enabled an extensive exploration of CTC biology, unlocking insights into their molecular profiles. A detailed molecular portrait requires CTC interrogation across various levels encompassing genomic, epigenetic, transcriptomic, proteomic and metabolic features. Here, we review how state-of-the-art multiomics applied to CTCs are shedding light on how cancer spreads. Further, we highlight the potential implications of CTC profiling for clinical applications aimed at enhancing cancer diagnosis and treatment. SIGNIFICANCE Exploring the complexity of cancer progression through cutting-edge multiomics studies holds the promise of uncovering novel aspects of cancer biology and identifying therapeutic vulnerabilities to suppress metastasis.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Ana Gvozdenovic
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
15
|
Feng DC, Zhu WZ, Wang J, Li DX, Shi X, Xiong Q, You J, Han P, Qiu S, Wei Q, Yang L. The implications of single-cell RNA-seq analysis in prostate cancer: unraveling tumor heterogeneity, therapeutic implications and pathways towards personalized therapy. Mil Med Res 2024; 11:21. [PMID: 38605399 PMCID: PMC11007901 DOI: 10.1186/s40779-024-00526-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
In recent years, advancements in single-cell and spatial transcriptomics, which are highly regarded developments in the current era, particularly the emerging integration of single-cell and spatiotemporal transcriptomics, have enabled a detailed molecular comprehension of the complex regulation of cell fate. The insights obtained from these methodologies are anticipated to significantly contribute to the development of personalized medicine. Currently, single-cell technology is less frequently utilized for prostate cancer compared with other types of tumors. Starting from the perspective of RNA sequencing technology, this review outlined the significance of single-cell RNA sequencing (scRNA-seq) in prostate cancer research, encompassing preclinical medicine and clinical applications. We summarize the differences between mouse and human prostate cancer as revealed by scRNA-seq studies, as well as a combination of multi-omics methods involving scRNA-seq to highlight the key molecular targets for the diagnosis, treatment, and drug resistance characteristics of prostate cancer. These studies are expected to provide novel insights for the development of immunotherapy and other innovative treatment strategies for castration-resistant prostate cancer. Furthermore, we explore the potential clinical applications stemming from other single-cell technologies in this review, paving the way for future research in precision medicine.
Collapse
Affiliation(s)
- De-Chao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Division of Surgery & Interventional Science, University College London, London, WC1E 6BT, UK.
| | - Wei-Zhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Deng-Xiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jia You
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shi Qiu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Ren L, Huang D, Liu H, Ning L, Cai P, Yu X, Zhang Y, Luo N, Lin H, Su J, Zhang Y. Applications of single‑cell omics and spatial transcriptomics technologies in gastric cancer (Review). Oncol Lett 2024; 27:152. [PMID: 38406595 PMCID: PMC10885005 DOI: 10.3892/ol.2024.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Gastric cancer (GC) is a prominent contributor to global cancer-related mortalities, and a deeper understanding of its molecular characteristics and tumor heterogeneity is required. Single-cell omics and spatial transcriptomics (ST) technologies have revolutionized cancer research by enabling the exploration of cellular heterogeneity and molecular landscapes at the single-cell level. In the present review, an overview of the advancements in single-cell omics and ST technologies and their applications in GC research is provided. Firstly, multiple single-cell omics and ST methods are discussed, highlighting their ability to offer unique insights into gene expression, genetic alterations, epigenomic modifications, protein expression patterns and cellular location in tissues. Furthermore, a summary is provided of key findings from previous research on single-cell omics and ST methods used in GC, which have provided valuable insights into genetic alterations, tumor diagnosis and prognosis, tumor microenvironment analysis, and treatment response. In summary, the application of single-cell omics and ST technologies has revealed the levels of cellular heterogeneity and the molecular characteristics of GC, and holds promise for improving diagnostics, personalized treatments and patient outcomes in GC.
Collapse
Affiliation(s)
- Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, P.R. China
| | - Danni Huang
- Department of Radiology, Central South University Xiangya School of Medicine Affiliated Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Hongjiang Liu
- School of Computer Science and Technology, Aba Teachers College, Aba, Sichuan 624099, P.R. China
| | - Lin Ning
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, P.R. China
| | - Peiling Cai
- School of Basic Medical Sciences, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| | - Xiaolong Yu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Material Science and Engineering Institute of Hainan University, Sanya, Hainan 572025, P.R. China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Nanchao Luo
- School of Computer Science and Technology, Aba Teachers College, Aba, Sichuan 624099, P.R. China
| | - Hao Lin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Jinsong Su
- Research Institute of Integrated Traditional Chinese Medicine and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yinghui Zhang
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, P.R. China
| |
Collapse
|
17
|
Gholamzad A, Khakpour N, Khosroshahi EM, Asadi S, Koohpar ZK, Matinahmadi A, Jebali A, Rashidi M, Hashemi M, Sadi FH, Gholamzad M. Cancer stem cells: The important role of CD markers, Signaling pathways, and MicroRNAs. Pathol Res Pract 2024; 256:155227. [PMID: 38490099 DOI: 10.1016/j.prp.2024.155227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
For the first time, a subset of small cancer cells identified in acute myeloid leukemia has been termed Cancer Stem Cells (CSCs). These cells are notorious for their robust proliferation, self-renewal abilities, significant tumor-forming potential, spread, and resistance to treatments. CSCs are a global concern, as it found in numerous types of cancer, posing a real-world challenge today. Our review encompasses research on key CSC markers, signaling pathways, and MicroRNA in three types of cancer: breast, colon, and liver. These factors play a critical role in either promoting or inhibiting cancer cell growth. The reviewed studies have shown that as cells undergo malignant transformation, there can be an increase or decrease in the expression of different Cluster of Differentiation (CD) markers on their surface. Furthermore, alterations in essential signaling pathways, such as Wnt and Notch1, may impact CSC proliferation, survival, and movement, while also providing potential targets for cancer therapies. Additionally, some research has focused on MicroRNAs due to their dual role as potential therapeutic biomarkers and their ability to enhance CSCs' response to anti-cancer drugs. MicroRNAs also regulate a wide array of cellular processes, including the self-renewal and pluripotency of CSCs, and influence gene transcription. Thus, these studies indicate that MicroRNAs play a significant role in the malignancy of various tumors. Although the gathered information suggests that specific CSC markers, signaling pathways, and MicroRNAs are influential in determining the destiny of cancer cells and could be advantageous for therapeutic strategies, their precise roles and impacts remain incompletely defined, necessitating further investigation.
Collapse
Affiliation(s)
- Amir Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch,Islamic Azad University, Tonekabon, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus,Torun,Poland
| | - Ali Jebali
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Deprtment of Medical Nanotechnology,Faculty of Advanced Sciences and Technology,Tehran Medical Sciences,Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | | | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
18
|
Wang Q, Tan L. Advances in the role of circulating tumor cell heterogeneity in metastatic small cell lung cancer. CANCER INNOVATION 2024; 3:e98. [PMID: 38946931 PMCID: PMC11212323 DOI: 10.1002/cai2.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/03/2023] [Accepted: 09/11/2023] [Indexed: 07/02/2024]
Abstract
Small cell lung cancer (SCLC), a highly aggressive malignancy, is rapidly at an extensive stage once diagnosed and is one of the leading causes of death from malignancy. In the past decade, the treatment of SCLC has largely remained unchanged, and chemotherapy remains the cornerstone of SCLC treatment. The therapeutic value of adding immune checkpoint inhibitors to chemotherapy for SCLC is low, and only a few SCLC patients have shown a response to immune checkpoint inhibitors. Circulating tumor cells (CTCs) are tumor cells shed from solid tumor masses into the peripheral circulation and are key to tumor metastasis. Single-cell sequencing has revealed that the genetic profiles of individual CTCs are highly heterogeneous and contribute to the poor outcome and prognosis of SCLC patients. Theoretically, phenotypic analysis of CTCs may be able to predict the diagnostic significance of new potential targets for metastatic tumors. In this paper, we will discuss in depth the heterogeneity of CTCs in SCLC and the value of CTCs for the diagnosis and prognosis of SCLC and as relevant tumor markers in metastatic SCLC.
Collapse
Affiliation(s)
- Qunxia Wang
- Department of Laboratory Medicine, Jiangxi Province's Key Laboratory of Laboratory MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Li‐Ming Tan
- Department of Laboratory Medicine, Jiangxi Province's Key Laboratory of Laboratory MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|
19
|
Inayatullah M, Mahesh A, Turnbull AK, Dixon JM, Natrajan R, Tiwari VK. Basal-epithelial subpopulations underlie and predict chemotherapy resistance in triple-negative breast cancer. EMBO Mol Med 2024; 16:823-853. [PMID: 38480932 PMCID: PMC11018633 DOI: 10.1038/s44321-024-00050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/18/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by extensive intratumoral heterogeneity, high metastasis, and chemoresistance, leading to poor clinical outcomes. Despite progress, the mechanistic basis of these aggressive behaviors remains poorly understood. Using single-cell and spatial transcriptome analysis, here we discovered basal epithelial subpopulations located within the stroma that exhibit chemoresistance characteristics. The subpopulations are defined by distinct signature genes that show a frequent gain in copy number and exhibit an activated epithelial-to-mesenchymal transition program. A subset of these genes can accurately predict chemotherapy response and are associated with poor prognosis. Interestingly, among these genes, elevated ITGB1 participates in enhancing intercellular signaling while ACTN1 confers a survival advantage to foster chemoresistance. Furthermore, by subjecting the transcriptional signatures to drug repurposing analysis, we find that chemoresistant tumors may benefit from distinct inhibitors in treatment-naive versus post-NAC patients. These findings shed light on the mechanistic basis of chemoresistance while providing the best-in-class biomarker to predict chemotherapy response and alternate therapeutic avenues for improved management of TNBC patients resistant to chemotherapy.
Collapse
Affiliation(s)
- Mohammed Inayatullah
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Arun Mahesh
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Arran K Turnbull
- Edinburgh Breast Cancer Now Research Group, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - J Michael Dixon
- Edinburgh Breast Cancer Now Research Group, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Vijay K Tiwari
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark.
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK.
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK.
- Danish Institute for Advanced Study (DIAS), Odense M, Denmark.
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
| |
Collapse
|
20
|
Liu Y, Zhao W, Hodgson J, Egan M, Cooper Pope CN, Hicks G, Nikolinakos PG, Mao L. CTC-Race: Single-Cell Motility Assay of Circulating Tumor Cells from Metastatic Lung Cancer Patients. ACS NANO 2024; 18:8683-8693. [PMID: 38465942 PMCID: PMC10976960 DOI: 10.1021/acsnano.3c09450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Distinctive subpopulations of circulating tumor cells (CTCs) with increased motility are considered to possess enhanced tumor-initiating potential and contribute to metastasis. Single-cell analysis of the migratory CTCs may increase our understanding of the metastatic process, yet most studies are limited by technical challenges associated with the isolation and characterization of these cells due to their extreme scarcity and heterogeneity. We report a microfluidic method based on CTCs' chemotactic motility, termed as CTC-Race assay, that can analyze migrating CTCs from metastatic non-small-cell lung cancer (NSCLC) patients with advanced tumor stages and enable concurrent biophysical and biochemical characterization of them with single-cell resolution. Analyses of motile CTCs in the CTC-Race assay, in synergy with other single cell characterization techniques, could provide insights into cancer metastasis.
Collapse
Affiliation(s)
- Yang Liu
- School
of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Wujun Zhao
- FCS
Technology, LLC, Athens, Georgia 30602, United States
| | - Jamie Hodgson
- University
Cancer and Blood Center, LLC, Athens, Georgia 30607, United States
| | - Mary Egan
- University
Cancer and Blood Center, LLC, Athens, Georgia 30607, United States
| | | | - Glenda Hicks
- University
Cancer and Blood Center, LLC, Athens, Georgia 30607, United States
| | | | - Leidong Mao
- School
of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
21
|
Xie Q, Liu S, Zhang S, Liao L, Xiao Z, Wang S, Zhang P. Research progress on the multi-omics and survival status of circulating tumor cells. Clin Exp Med 2024; 24:49. [PMID: 38427120 PMCID: PMC10907490 DOI: 10.1007/s10238-024-01309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
In the dynamic process of metastasis, circulating tumor cells (CTCs) emanate from the primary solid tumor and subsequently acquire the capacity to disengage from the basement membrane, facilitating their infiltration into the vascular system via the interstitial tissue. Given the pivotal role of CTCs in the intricate hematogenous metastasis, they have emerged as an essential resource for a deeper comprehension of cancer metastasis while also serving as a cornerstone for the development of new indicators for early cancer screening and new therapeutic targets. In the epoch of precision medicine, as CTC enrichment and separation technologies continually advance and reach full fruition, the domain of CTC research has transcended the mere straightforward detection and quantification. The rapid advancement of CTC analysis platforms has presented a compelling opportunity for in-depth exploration of CTCs within the bloodstream. Here, we provide an overview of the current status and research significance of multi-omics studies on CTCs, including genomics, transcriptomics, proteomics, and metabolomics. These studies have contributed to uncovering the unique heterogeneity of CTCs and identifying potential metastatic targets as well as specific recognition sites. We also review the impact of various states of CTCs in the bloodstream on their metastatic potential, such as clustered CTCs, interactions with other blood components, and the phenotypic states of CTCs after undergoing epithelial-mesenchymal transition (EMT). Within this context, we also discuss the therapeutic implications and potential of CTCs.
Collapse
Affiliation(s)
- Qingming Xie
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Shilei Liu
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Sai Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Liqiu Liao
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhi Xiao
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Shouman Wang
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
22
|
Auwal A, Hossain MM, Pronoy TUH, Rashel K, Nurujjaman M, Lam AKY, Islam F. Clinical significance of genomic sequencing of circulating tumour cells (CTCs) in cancer. THE JOURNAL OF LIQUID BIOPSY 2024; 3:100135. [PMID: 40026568 PMCID: PMC11863715 DOI: 10.1016/j.jlb.2023.100135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 03/05/2025]
Abstract
Circulating tumour cell (CTC), a rare subpopulations of tumour cells, plays a significant role in cancer metastasis and recurrence. The current review focuses on information of CTCs detection, enrichment, genome sequencing and investigating on clinical significance of CTCs sequencing in monitoring progress of patients with cancer. Tissue biopsy is not always favorable for monitoring cancer recurrence and metastases and can be difficult and risky for the patient's condition. On the other hand, enrichment and characterization of CTC could be effective in these circumstances. Accordingly, a number of detection (physical, immunological etc.), isolation (laser capture microdissection, DEPArray Di Electro phenetic array, fluorescence-activated cell sorting etc.) and enrichment platforms (Cellsearch, MagSwepeer, CTC-Chip etc.) have been developed. In addition, technologies for phenotypic characterization and genomic profiling (Tang's method, Smart-seq, Cel-seq etc.) at single-cell level has being established followed by genomic amplification. Importantly, numerous preclinical and clinical studies showed effective prognostic and predictive implications of molecular characterization of CTCs. CTC's sequencing has been successfully used as an effective tool to monitor genomic variations in the primary and metastatic tumours, thereby could predict the therapy resistance, recurrence of tumours. The genes expression profiles, stratification of cancers as well as identify the cancer cells with potential to undergo epithelial-mesenchymal transition (EMT) could also be identified. In addition, detection of mutational variants of CTCs by genome sequencing infer the therapeutic outcome and patient's survival. Therefore, CTC sequencing has potential to be used as a liquid biopsy tool for management of patients with cancers in clinical settings.
Collapse
Affiliation(s)
- Abdul Auwal
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6250, Bangladesh
| | - M. Matakabbir Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6250, Bangladesh
| | - Tasfik Ul Haque Pronoy
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6250, Bangladesh
| | - K.M. Rashel
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6250, Bangladesh
| | - Md Nurujjaman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6250, Bangladesh
| | - Alfred KY. Lam
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6250, Bangladesh
| |
Collapse
|
23
|
Andel D, Viergever BJ, Peters NA, Elisabeth Raats DA, Schenning-van Schelven SJ, Willem Intven MP, Zandvliet M, Hagendoorn J, Max Borel Rinkes IH, Kranenburg O. Pre-existing subclones determine radioresistance in rectal cancer organoids. Cell Rep 2024; 43:113735. [PMID: 38310513 DOI: 10.1016/j.celrep.2024.113735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
More than half of all patients with cancer receive radiation therapy, but resistance is commonly observed. Currently, it is unknown whether resistance to radiation therapy is acquired or inherently present. Here, we employed organoids derived from rectal cancer and single-cell whole-genome sequencing to investigate the long-term evolution of subclones in response to radiation. Comparing single-cell whole-genome karyotypes between in-vitro-unirradiated and -irradiated organoids revealed three patterns of subclonal evolution: (1) subclonal persistence, (2) subclonal extinction, and (3) subclonal expansion. Organoids in which subclonal shifts occurred (i.e., expansion or extinction) became more resistant to radiation. Although radioresistant subclones did not share recurrent copy-number alterations that could explain their radioresistance, resistance was associated with reduced chromosomal instability, an association that was also observed in 529 human cancer cell lines. These data suggest that resistance to radiation is inherently present and associated with reduced chromosomal instability.
Collapse
Affiliation(s)
- Daan Andel
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands; Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands
| | - Bas Jeroen Viergever
- Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands
| | - Niek Alexander Peters
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands; Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands
| | | | | | - Martijn Peter Willem Intven
- Department of Radiation Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands
| | - Maurice Zandvliet
- Department of Clinical Sciences - Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jeroen Hagendoorn
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands; Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands
| | - Inne Hilbrand Max Borel Rinkes
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands; Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands.
| | - Onno Kranenburg
- Department of Surgical Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands; Laboratory for Translational Oncology, University Medical Center Utrecht, Cancer Center, Utrecht, the Netherlands; Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
24
|
Radhakrishnan V, Kaifi JT, Suvilesh KN. Circulating Tumor Cells: How Far Have We Come with Mining These Seeds of Metastasis? Cancers (Basel) 2024; 16:816. [PMID: 38398206 PMCID: PMC10887304 DOI: 10.3390/cancers16040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that slough off from the tumor and circulate in the peripheral blood and lymphatic system as micro metastases that eventually results in macro metastases. Through a simple blood draw, sensitive CTC detection from clinical samples has proven to be a useful tool for determining the prognosis of cancer. Recent technological developments now make it possible to detect CTCs reliably and repeatedly from a simple and straightforward blood test. Multicenter trials to assess the clinical value of CTCs have demonstrated the prognostic value of these cancer cells. Studies on CTCs have filled huge knowledge gap in understanding the process of metastasis since their identification in the late 19th century. However, these rare cancer cells have not been regularly used to tailor precision medicine and or identify novel druggable targets. In this review, we have attempted to summarize the milestones of CTC-based research from the time of identification to molecular characterization. Additionally, the need for a paradigm shift in dissecting these seeds of metastasis and the possible future avenues to improve CTC-based discoveries are also discussed.
Collapse
Affiliation(s)
- Vijay Radhakrishnan
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA; (V.R.); (J.T.K.)
| | - Jussuf T. Kaifi
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA; (V.R.); (J.T.K.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Kanve N. Suvilesh
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA; (V.R.); (J.T.K.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| |
Collapse
|
25
|
Hao YJ, Chang LW, Yang CY, Lo LC, Lin CP, Jian YW, Jiang JK, Tseng FG. The rare circulating tumor microemboli as a biomarker contributes to predicting early colorectal cancer recurrences after medical treatment. Transl Res 2024; 263:1-14. [PMID: 37558203 DOI: 10.1016/j.trsl.2023.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Early prognosis of cancer recurrence remains difficult partially due to insufficient and ineffective screening biomarkers or regimes. This study evaluated the rare circulating tumor microemboli (CTM) from liquid biopsy individually and together with circulating tumor cells (CTCs) and serum CEA/CA19-9 in a panel, on early prediction of colorectal cancer (CRC) recurrence. Stained CTCs/CTM were detected by a microfluidic chip-based automatic rare-cell imaging platform. ROC, AUC, Kaplan-Meier survival, and Cox proportional hazard models regarding 4 selected biomarkers were analyzed. The relative risk, odds ratio, predictive accuracy, and positive/negative predictive value of biomarkers individually and in combination, to predict CRC recurrence were assessed and preliminarily validated. The EpCAM+Hochest+CD45- CTCs/CTM could be found in all cancer stages, where more recurrences were observed in late-stage cases. Significant correlations between CTCs/CTM with metastatic stages and clinical treatment were illustrated. CA19-9 and CTM could be seen as independent risk factors in patient survivals, while stratified patients by grouped biomarkers on the Kaplan-Meier analyses presented more significant differences in predicting CRC recurrences. By monitoring the panel of selected biomarkers, disease progressions of 4 CRC patients during follow-up visits after first treatments within 3 years were predicted successfully. This study unveiled the value of rare CTM on clinical studies and a panel of selected biomarkers on predicting CRC recurrences in patients at the early time after medical treatment, in which the CTM and serum CA19-9 could be applied in clinical surveillance and CRC management to improve the accuracy.
Collapse
Affiliation(s)
- Yun-Jie Hao
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Lu-Wey Chang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Yung Yang
- Department of Teaching and Research, Taipei City Hospital, Taipei, Taiwan; Commission for General Education, National United University, Miaoli, Taiwan; General Education Center, University of Taipei, Taipei, Taiwan
| | - Liang-Chuan Lo
- National Genomics Center for Clinical and Biotechnological Applications, Cancer and Immunology Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chien-Ping Lin
- Department of Surgery, Division of Colorectal Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Wei Jian
- Department of Surgery, Division of Colorectal Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jeng-Kai Jiang
- Department of Surgery, Division of Colorectal Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan; Department of Chemistry, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing-Hua University, Hsinchu, Taiwan; Research Center for Applied Sciences, Taipei, Taiwan.
| |
Collapse
|
26
|
Chen S, Zhou Z, Li Y, Du Y, Chen G. Application of single-cell sequencing to the research of tumor microenvironment. Front Immunol 2023; 14:1285540. [PMID: 37965341 PMCID: PMC10641410 DOI: 10.3389/fimmu.2023.1285540] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Single-cell sequencing is a technique for detecting and analyzing genomes, transcriptomes, and epigenomes at the single-cell level, which can detect cellular heterogeneity lost in conventional sequencing hybrid samples, and it has revolutionized our understanding of the genetic heterogeneity and complexity of tumor progression. Moreover, the tumor microenvironment (TME) plays a crucial role in the formation, development and response to treatment of tumors. The application of single-cell sequencing has ushered in a new age for the TME analysis, revealing not only the blueprint of the pan-cancer immune microenvironment, but also the heterogeneity and differentiation routes of immune cells, as well as predicting tumor prognosis. Thus, the combination of single-cell sequencing and the TME analysis provides a unique opportunity to unravel the molecular mechanisms underlying tumor development and progression. In this review, we summarize the recent advances in single-cell sequencing and the TME analysis, highlighting their potential applications in cancer research and clinical translation.
Collapse
Affiliation(s)
| | | | | | | | - Guoan Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
27
|
Chen S, Jiang W, Du Y, Yang M, Pan Y, Li H, Cui M. Single-cell analysis technologies for cancer research: from tumor-specific single cell discovery to cancer therapy. Front Genet 2023; 14:1276959. [PMID: 37900181 PMCID: PMC10602688 DOI: 10.3389/fgene.2023.1276959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Single-cell sequencing (SCS) technology is changing our understanding of cellular components, functions, and interactions across organisms, because of its inherent advantage of avoiding noise resulting from genotypic and phenotypic heterogeneity across numerous samples. By directly and individually measuring multiple molecular characteristics of thousands to millions of single cells, SCS technology can characterize multiple cell types and uncover the mechanisms of gene regulatory networks, the dynamics of transcription, and the functional state of proteomic profiling. In this context, we conducted systematic research on SCS techniques, including the fundamental concepts, procedural steps, and applications of scDNA, scRNA, scATAC, scCITE, and scSNARE methods, focusing on the unique clinical advantages of SCS, particularly in cancer therapy. We have explored challenging but critical areas such as circulating tumor cells (CTCs), lineage tracing, tumor heterogeneity, drug resistance, and tumor immunotherapy. Despite challenges in managing and analyzing the large amounts of data that result from SCS, this technique is expected to reveal new horizons in cancer research. This review aims to emphasize the key role of SCS in cancer research and promote the application of single-cell technologies to cancer therapy.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Weibo Jiang
- Department of Orthopaedic, The Second Hospital of Jilin University, Changchun, China
| | - Yanhui Du
- Department of Orthopaedics, Jilin Province People’s Hospital, Changchun, China
| | - Manshi Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yihan Pan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Huan Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Davoudi F, Moradi A, Becker TM, Lock JG, Abbey B, Fontanarosa D, Haworth A, Clements J, Ecker RC, Batra J. Genomic and Phenotypic Biomarkers for Precision Medicine Guidance in Advanced Prostate Cancer. Curr Treat Options Oncol 2023; 24:1451-1471. [PMID: 37561382 PMCID: PMC10547634 DOI: 10.1007/s11864-023-01121-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 08/11/2023]
Abstract
OPINION STATEMENT Prostate cancer (PCa) is the second most diagnosed malignant neoplasm and is one of the leading causes of cancer-related death in men worldwide. Despite significant advances in screening and treatment of PCa, given the heterogeneity of this disease, optimal personalized therapeutic strategies remain limited. However, emerging predictive and prognostic biomarkers based on individual patient profiles in combination with computer-assisted diagnostics have the potential to guide precision medicine, where patients may benefit from therapeutic approaches optimally suited to their disease. Also, the integration of genotypic and phenotypic diagnostic methods is supporting better informed treatment decisions. Focusing on advanced PCa, this review discusses polygenic risk scores for screening of PCa and common genomic aberrations in androgen receptor (AR), PTEN-PI3K-AKT, and DNA damage response (DDR) pathways, considering clinical implications for diagnosis, prognosis, and treatment prediction. Furthermore, we evaluate liquid biopsy, protein biomarkers such as serum testosterone levels, SLFN11 expression, total alkaline phosphatase (tALP), neutrophil-to-lymphocyte ratio (NLR), tissue biopsy, and advanced imaging tools, summarizing current phenotypic biomarkers and envisaging more effective utilization of diagnostic and prognostic biomarkers in advanced PCa. We conclude that prognostic and treatment predictive biomarker discovery can improve the management of patients, especially in metastatic stages of advanced PCa. This will result in decreased mortality and enhanced quality of life and help design a personalized treatment regimen.
Collapse
Affiliation(s)
- Fatemeh Davoudi
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Moradi
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| | - Therese M. Becker
- Ingham Institute for Applied Medical Research, University of Western Sydney and University of New South Wales, Liverpool, 2170 Australia
| | - John G. Lock
- Ingham Institute for Applied Medical Research, University of Western Sydney and University of New South Wales, Liverpool, 2170 Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, 2052 Australia
| | - Brian Abbey
- Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, VIC Australia
| | - Davide Fontanarosa
- School of Clinical Sciences, Queensland University of Technology, Gardens Point Campus, 2 George St, Brisbane, QLD 4000 Australia
- Centre for Biomedical Technologies (CBT), Queensland University of Technology, Brisbane, QLD 4000 Australia
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, NSW 2006 Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| | - Rupert C. Ecker
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
- TissueGnostics GmbH, EU 1020 Vienna, Austria
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| |
Collapse
|
29
|
Yaghoubi Naei V, Bordhan P, Mirakhorli F, Khorrami M, Shrestha J, Nazari H, Kulasinghe A, Ebrahimi Warkiani M. Advances in novel strategies for isolation, characterization, and analysis of CTCs and ctDNA. Ther Adv Med Oncol 2023; 15:17588359231192401. [PMID: 37692363 PMCID: PMC10486235 DOI: 10.1177/17588359231192401] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/19/2023] [Indexed: 09/12/2023] Open
Abstract
Over the past decade, the detection and analysis of liquid biopsy biomarkers such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) have advanced significantly. They have received recognition for their clinical usefulness in detecting cancer at an early stage, monitoring disease, and evaluating treatment response. The emergence of liquid biopsy has been a helpful development, as it offers a minimally invasive, rapid, real-time monitoring, and possible alternative to traditional tissue biopsies. In resource-limited settings, the ideal platform for liquid biopsy should not only extract more CTCs or ctDNA from a minimal sample volume but also accurately represent the molecular heterogeneity of the patient's disease. This review covers novel strategies and advancements in CTC and ctDNA-based liquid biopsy platforms, including microfluidic applications and comprehensive analysis of molecular complexity. We discuss these systems' operational principles and performance efficiencies, as well as future opportunities and challenges for their implementation in clinical settings. In addition, we emphasize the importance of integrated platforms that incorporate machine learning and artificial intelligence in accurate liquid biopsy detection systems, which can greatly improve cancer management and enable precision diagnostics.
Collapse
Affiliation(s)
- Vahid Yaghoubi Naei
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pritam Bordhan
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
- Faculty of Science, Institute for Biomedical Materials & Devices, University of Technology Sydney, Australia
| | - Fatemeh Mirakhorli
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Arutha Kulasinghe
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, 1, Broadway, Ultimo New South Wales 2007, Australia
| |
Collapse
|
30
|
Xing S, Zhu Y, You Y, Wang S, Wang H, Ning M, Jin H, Liu Z, Zhang X, Yu C, Lu ZJ. Cell-free RNA for the liquid biopsy of gastrointestinal cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1791. [PMID: 37086051 DOI: 10.1002/wrna.1791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Gastrointestinal (GI) cancer includes many cancer types, such as esophageal, liver, gastric, pancreatic, and colorectal cancer. As the cornerstone of personalized medicine for GI cancer, liquid biopsy based on noninvasive biomarkers provides promising opportunities for early diagnosis and dynamic treatment management. Recently, a growing number of studies have demonstrated the potential of cell-free RNA (cfRNA) as a new type of noninvasive biomarker in body fluids, such as blood, saliva, and urine. Meanwhile, transcriptomes based on high-throughput RNA detection technologies keep discovering new cfRNA biomarkers. In this review, we introduce the origins and applications of cfRNA, describe its detection and qualification methods in liquid biopsy, and summarize a comprehensive list of cfRNA biomarkers in different GI cancer types. Moreover, we also discuss perspective studies of cfRNA to overcome its current limitations in clinical applications. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Shaozhen Xing
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| | - Yumin Zhu
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Department of Maternal & Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yaxian You
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siqi Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hongke Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Meng Ning
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Heyue Jin
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Department of Maternal & Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhengxia Liu
- Department of General Surgery, SIR RUN RUN Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinhua Zhang
- Department of Health Care, Jiangsu Women and Children Health Hospital, the First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - Chunzhao Yu
- Department of General Surgery, SIR RUN RUN Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
31
|
Orrapin S, Thongkumkoon P, Udomruk S, Moonmuang S, Sutthitthasakul S, Yongpitakwattana P, Pruksakorn D, Chaiyawat P. Deciphering the Biology of Circulating Tumor Cells through Single-Cell RNA Sequencing: Implications for Precision Medicine in Cancer. Int J Mol Sci 2023; 24:12337. [PMID: 37569711 PMCID: PMC10418766 DOI: 10.3390/ijms241512337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Circulating tumor cells (CTCs) hold unique biological characteristics that directly involve them in hematogenous dissemination. Studying CTCs systematically is technically challenging due to their extreme rarity and heterogeneity and the lack of specific markers to specify metastasis-initiating CTCs. With cutting-edge technology, single-cell RNA sequencing (scRNA-seq) provides insights into the biology of metastatic processes driven by CTCs. Transcriptomics analysis of single CTCs can decipher tumor heterogeneity and phenotypic plasticity for exploring promising novel therapeutic targets. The integrated approach provides a perspective on the mechanisms underlying tumor development and interrogates CTCs interactions with other blood cell types, particularly those of the immune system. This review aims to comprehensively describe the current study on CTC transcriptomic analysis through scRNA-seq technology. We emphasize the workflow for scRNA-seq analysis of CTCs, including enrichment, single cell isolation, and bioinformatic tools applied for this purpose. Furthermore, we elucidated the translational knowledge from the transcriptomic profile of individual CTCs and the biology of cancer metastasis for developing effective therapeutics through targeting key pathways in CTCs.
Collapse
Affiliation(s)
- Santhasiri Orrapin
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Patcharawadee Thongkumkoon
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Sasimol Udomruk
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Sutpirat Moonmuang
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Songphon Sutthitthasakul
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Petlada Yongpitakwattana
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Dumnoensun Pruksakorn
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
- Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Parunya Chaiyawat
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| |
Collapse
|
32
|
Borrelli F, Behal J, Cohen A, Miccio L, Memmolo P, Kurelac I, Capozzoli A, Curcio C, Liseno A, Bianco V, Shaked NT, Ferraro P. AI-aided holographic flow cytometry for label-free identification of ovarian cancer cells in the presence of unbalanced datasets. APL Bioeng 2023; 7:026110. [PMID: 37305657 PMCID: PMC10250050 DOI: 10.1063/5.0153413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Liquid biopsy is a valuable emerging alternative to tissue biopsy with great potential in the noninvasive early diagnostics of cancer. Liquid biopsy based on single cell analysis can be a powerful approach to identify circulating tumor cells (CTCs) in the bloodstream and could provide new opportunities to be implemented in routine screening programs. Since CTCs are very rare, the accurate classification based on high-throughput and highly informative microscopy methods should minimize the false negative rates. Here, we show that holographic flow cytometry is a valuable instrument to obtain quantitative phase-contrast maps as input data for artificial intelligence (AI)-based classifiers. We tackle the problem of discriminating between A2780 ovarian cancer cells and THP1 monocyte cells based on the phase-contrast images obtained in flow cytometry mode. We compare conventional machine learning analysis and deep learning architectures in the non-ideal case of having a dataset with unbalanced populations for the AI training step. The results show the capacity of AI-aided holographic flow cytometry to discriminate between the two cell lines and highlight the important role played by the phase-contrast signature of the cells to guarantee accurate classification.
Collapse
Affiliation(s)
| | | | - A. Cohen
- Tel Aviv University, Ramat Aviv, 6997801 Tel Aviv, Israel
| | - L. Miccio
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” CNR-ISASI, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - P. Memmolo
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” CNR-ISASI, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | | | - A. Capozzoli
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione (DIETI), Università di Napoli Federico II, 80125 Napoli, Italy
| | - C. Curcio
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione (DIETI), Università di Napoli Federico II, 80125 Napoli, Italy
| | - A. Liseno
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione (DIETI), Università di Napoli Federico II, 80125 Napoli, Italy
| | - V. Bianco
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” CNR-ISASI, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - N. T. Shaked
- Tel Aviv University, Ramat Aviv, 6997801 Tel Aviv, Israel
| | - P. Ferraro
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello,” CNR-ISASI, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| |
Collapse
|
33
|
Armakolas A, Kotsari M, Koskinas J. Liquid Biopsies, Novel Approaches and Future Directions. Cancers (Basel) 2023; 15:1579. [PMID: 36900369 PMCID: PMC10000663 DOI: 10.3390/cancers15051579] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer is among the leading causes of death worldwide. Early diagnosis and prognosis are vital to improve patients' outcomes. The gold standard of tumor characterization leading to tumor diagnosis and prognosis is tissue biopsy. Amongst the constraints of tissue biopsy collection is the sampling frequency and the incomplete representation of the entire tumor bulk. Liquid biopsy approaches, including the analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating miRNAs, and tumor-derived extracellular vesicles (EVs), as well as certain protein signatures that are released in the circulation from primary tumors and their metastatic sites, present a promising and more potent candidate for patient diagnosis and follow up monitoring. The minimally invasive nature of liquid biopsies, allowing frequent collection, can be used in the monitoring of therapy response in real time, allowing the development of novel approaches in the therapeutic management of cancer patients. In this review we will describe recent advances in the field of liquid biopsy markers focusing on their advantages and disadvantages.
Collapse
Affiliation(s)
- Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Maria Kotsari
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - John Koskinas
- B' Department of Medicine, Hippokration Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
34
|
Ni Y, Liu X, Simeneh ZM, Yang M, Li R. Benchmarking of Nanopore R10.4 and R9.4.1 flow cells in single-cell whole-genome amplification and whole-genome shotgun sequencing. Comput Struct Biotechnol J 2023; 21:2352-2364. [PMID: 37025654 PMCID: PMC10070092 DOI: 10.1016/j.csbj.2023.03.038] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Third-generation sequencing can be used in human cancer genomics and epigenomic research. Oxford Nanopore Technologies (ONT) recently released R10.4 flow cell, which claimed an improved read accuracy compared to R9.4.1 flow cell. To evaluate the benefits and defects of R10.4 flow cell for cancer cell profiling on MinION devices, we used the human non-small-cell lung-carcinoma cell line HCC78 to construct libraries for both single-cell whole-genome amplification (scWGA) and whole-genome shotgun sequencing. The R10.4 and R9.4.1 reads were benchmarked in terms of read accuracy, variant detection, modification calling, genome recovery rate and compared with the next generation sequencing (NGS) reads. The results highlighted that the R10.4 outperforms R9.4.1 reads, achieving a higher modal read accuracy of over 99.1%, superior variation detection, lower false-discovery rate (FDR) in methylation calling, and comparable genome recovery rate. To achieve high yields scWGA sequencing in the ONT platform as NGS, we recommended multiple displacement amplification with a modified T7 endonuclease Ⅰ cutting procedure as a promising method. In addition, we provided a possible solution to filter the likely false positive sites among the whole genome region with R10.4 by using scWGA sequencing result as a negative control. Our study is the first benchmark of whole genome single-cell sequencing using ONT R10.4 and R9.4.1 MinION flow cells by clarifying the capacity of genomic and epigenomic profiling within a single flow cell. A promising method for scWGA sequencing together with the methylation calling results can benefit researchers who work on cancer cell genomic and epigenomic profiling using third-generation sequencing.
Collapse
Affiliation(s)
- Ying Ni
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Xudong Liu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Zemenu Mengistie Simeneh
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
- Corresponding author at: Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, Guangdong, China.
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Corresponding author at: Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
35
|
Rapid metabolomic screening of cancer cells via high-throughput static droplet microfluidics. Biosens Bioelectron 2023; 223:114966. [PMID: 36580816 DOI: 10.1016/j.bios.2022.114966] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
Effective isolation and in-depth analysis of Circulating Tumour Cells (CTCs) are greatly needed in diagnosis, prognosis and monitoring of the therapeutic response of cancer patients but have not been completely fulfilled by conventional approaches. The rarity of CTCs and the lack of reliable biomarkers to distinguish them from peripheral blood cells have remained outstanding challenges for their clinical implementation. Herein, we developed a high throughput Static Droplet Microfluidic (SDM) device with 38,400 chambers, capable of isolating and classifying the number of metabolically active CTCs in peripheral blood at single-cell resolution. Owing to the miniaturisation and compartmentalisation capability of our device, we first demonstrated the ability to precisely measure the lactate production of different types of cancer cells inside 125 pL droplets at single-cell resolution. Furthermore, we compared the metabolomic activity of leukocytes from healthy donors to cancer cells and showed the ability to differentiate them. To further prove the clinical relevance, we spiked cancer cell lines in human healthy blood and showed the possibility to detect the cancer cells from leukocytes. Lastly, we tested the workflow on 8 preclinical mammary mouse models including syngeneic 67NR (non-metastatic) and 4T1.2 (metastatic) models with Triple-Negative Breast Cancer (TNBC) as well as transgenic mouses (12-week-old MMTV-PyMT). The results have shown the ability to precisely distinguish metabolically active CTCs from the blood using the proposed SDM device. The workflow is simple and robust which can eliminate the need for specialised equipment and expertise required for single-cell analysis of CTCs and facilitate on-site metabolic screening of cancer cells.
Collapse
|
36
|
Ring A, Nguyen-Sträuli BD, Wicki A, Aceto N. Biology, vulnerabilities and clinical applications of circulating tumour cells. Nat Rev Cancer 2023; 23:95-111. [PMID: 36494603 PMCID: PMC9734934 DOI: 10.1038/s41568-022-00536-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 12/13/2022]
Abstract
In recent years, exceptional technological advances have enabled the identification and interrogation of rare circulating tumour cells (CTCs) from blood samples of patients, leading to new fields of research and fostering the promise for paradigm-changing, liquid biopsy-based clinical applications. Analysis of CTCs has revealed distinct biological phenotypes, including the presence of CTC clusters and the interaction between CTCs and immune or stromal cells, impacting metastasis formation and providing new insights into cancer vulnerabilities. Here we review the progress made in understanding biological features of CTCs and provide insight into exploiting these developments to design future clinical tools for improving the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Alexander Ring
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Bich Doan Nguyen-Sträuli
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Department of Gynecology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Andreas Wicki
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
37
|
Davies CR, Guo T, Burke E, Stankiewicz E, Xu L, Mao X, Scandura G, Rajan P, Tipples K, Alifrangis C, Wimalasingham AG, Galazi M, Crusz S, Powles T, Grey A, Oliver T, Kudahetti S, Shaw G, Berney D, Shamash J, Lu YJ. The potential of using circulating tumour cells and their gene expression to predict docetaxel response in metastatic prostate cancer. Front Oncol 2023; 12:1060864. [PMID: 36727071 PMCID: PMC9885040 DOI: 10.3389/fonc.2022.1060864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
Background Docetaxel improves overall survival (OS) in castration-resistant prostate cancer (PCa) (CRPC) and metastatic hormone-sensitive PCa (mHSPC). However, not all patients respond due to inherent and/or acquired resistance. There remains an unmet clinical need for a robust predictive test to stratify patients for treatment. Liquid biopsy of circulating tumour cell (CTCs) is minimally invasive, can provide real-time information of the heterogeneous tumour and therefore may be a potentially ideal docetaxel response prediction biomarker. Objective In this study we investigate the potential of using CTCs and their gene expression to predict post-docetaxel tumour response, OS and progression free survival (PFS). Methods Peripheral blood was sampled from 18 mCRPC and 43 mHSPC patients, pre-docetaxel treatment, for CTC investigation. CTCs were isolated using the epitope independent Parsortix® system and gene expression was determined by multiplex RT-qPCR. We evaluated CTC measurements for post-docetaxel outcome prediction using receiver operating characteristics and Kaplan Meier analysis. Results Detection of CTCs pre-docetaxel was associated with poor patient outcome post-docetaxel treatment. Combining total-CTC number with PSA and ALP predicted lack of partial response (PR) with an AUC of 0.90, p= 0.037 in mCRPC. A significantly shorter median OS was seen in mCRPC patients with positive CTC-score (12.80 vs. 37.33 months, HR= 5.08, p= 0.0005), ≥3 total-CTCs/7.5mL (12.80 vs. 37.33 months, HR= 3.84, p= 0.0053), ≥1 epithelial-CTCs/7.5mL (14.30 vs. 37.33 months, HR= 3.89, p= 0.0041) or epithelial to mesenchymal transitioning (EMTing)-CTCs/7.5mL (11.32 vs. 32.37 months, HR= 6.73, p= 0.0001). Significantly shorter PFS was observed in patients with ≥2 epithelial-CTCs/7.5mL (7.52 vs. 18.83 months, HR= 3.93, p= 0.0058). mHSPC patients with ≥5 CTCs/7.5mL had significantly shorter median OS (24.57 vs undefined months, HR= 4.14, p= 0.0097). In mHSPC patients, expression of KLK2, KLK4, ADAMTS1, ZEB1 and SNAI1 was significantly associated with shorter OS and/or PFS. Importantly, combining CTC measurements with clinical biomarkers increased sensitivity and specificity for prediction of patient outcome. Conclusion While it is clear that CTC numbers and gene expression were prognostic for PCa post-docetaxel treatment, and CTC subtype analysis may have additional value, their potential predictive value for docetaxel chemotherapy response needs to be further investigated in large patient cohorts.
Collapse
Affiliation(s)
- Caitlin R. Davies
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Tianyu Guo
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,Department of Cell Biology and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Edwina Burke
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Elzbieta Stankiewicz
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,Central Biobank, Medical University of Gdansk, Gdansk, Poland
| | - Lei Xu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xueying Mao
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Glenda Scandura
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Prabhakar Rajan
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom,Division of Surgery and Interventional Sciences, University College London, London, United Kingdom,University College London Hospitals, National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Karen Tipples
- Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom
| | - Constantine Alifrangis
- University College London Hospitals, National Health Service (NHS) Foundation Trust, London, United Kingdom,Department of Medical Oncology, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | | | - Myria Galazi
- Department of Medical Oncology, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | - Shanthini Crusz
- Department of Medical Oncology, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | - Thomas Powles
- Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom,Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Alistair Grey
- Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom,Division of Surgery and Interventional Sciences, University College London, London, United Kingdom,University College London Hospitals, National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Tim Oliver
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Sakunthala Kudahetti
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Greg Shaw
- Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom,Division of Surgery and Interventional Sciences, University College London, London, United Kingdom,University College London Hospitals, National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Daniel Berney
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jonathan Shamash
- Department of Medical Oncology, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | - Yong-Jie Lu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,*Correspondence: Yong-Jie Lu,
| |
Collapse
|
38
|
Li Y, Jiang X, Zhong M, Yu B, Yuan H. Whole Genome Sequencing of Single-Circulating Tumor Cell Ameliorates Unraveling Breast Cancer Heterogeneity. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:505-513. [PMID: 36597488 PMCID: PMC9805725 DOI: 10.2147/bctt.s388653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
Objective Because tumor tissues are most frequently heterogeneous and hard to characterize, the resulting therapeutic strategy could be misled. The most active and invasive tumor cells are circulating tumor cells (CTCs). In this study, we investigated the feasibility of individualized treatment of breast cancer patients based on whole genome sequencing (WGS) of single cell CTC. Methods Twenty-four CTCs were identified in three breast cancer patients. For each patient, one polyploid CTC was captured, and on which the WGS was performed. WGS was considered due to its sequencing robustness compared to conventional sequencing approaches. Based on the histopathological Her-2 status in tumor tissue and the HER2 gene status in WGS results of CTC, we adjusted treatment strategies and monitored disease progression. Results Patients ID1 and ID2 are found to be Her-2 positive in primary tumors and HER2 gene amplification in the DNA of CTCs. In-patient ID3, histopathological examination of the primary tumor and liver metastases revealed Her-2 negative, but the WGS analysis of CTC showed HER2 gene amplification. After adjusting treatment by adding Her-2 inhibitors according to the results of CTC sequencing, liver metastases and pleural effusion were significantly reduced two months later, CTC number and ctDNA burden were decreased, and 18-months progression-free survival (PFS) was recorded. In addition, some potential therapeutic targets and mutations in drug-resistant genes were detected. Conclusion The results of CTC sequencing effectively guided the treatment of a patient with HER2 gene amplification in CTC but with Her-2 negative on tumor tissue. Therefore, CTC sequencing could help resolve the heterogeneity of tumors and provide precision medicine for patients.
Collapse
Affiliation(s)
- Yongping Li
- Department of Breast Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Xiaofei Jiang
- Department of Breast Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Ming Zhong
- Department of Breast Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China
| | - Bo Yu
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China,Bo Yu, Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, People’s Republic of China, Tel +86 18918922698, Email
| | - Hao Yuan
- Department of Breast Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People’s Republic of China,Correspondence: Hao Yuan, Department of Breast Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, People’s Republic of China, Tel +86 18918790382, Email
| |
Collapse
|
39
|
O'Neill H, Lee H, Gupta I, Rodger EJ, Chatterjee A. Single-Cell DNA Methylation Analysis in Cancer. Cancers (Basel) 2022; 14:6171. [PMID: 36551655 PMCID: PMC9777108 DOI: 10.3390/cancers14246171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Morphological, transcriptomic, and genomic defects are well-explored parameters of cancer biology. In more recent years, the impact of epigenetic influences, such as DNA methylation, is becoming more appreciated. Aberrant DNA methylation has been implicated in many types of cancers, influencing cell type, state, transcriptional regulation, and genomic stability to name a few. Traditionally, large populations of cells from the tissue of interest are coalesced for analysis, producing averaged methylome data. Considering the inherent heterogeneity of cancer, analysing populations of cells as a whole denies the ability to discover novel aberrant methylation patterns, identify subpopulations, and trace cell lineages. Due to recent advancements in technology, it is now possible to obtain methylome data from single cells. This has both research and clinical implications, ranging from the identification of biomarkers to improved diagnostic tools. As with all emerging technologies, distinct experimental, bioinformatic, and practical challenges present themselves. This review begins with exploring the potential impact of single-cell sequencing on understanding cancer biology and how it could eventually benefit a clinical setting. Following this, the techniques and experimental approaches which made this technology possible are explored. Finally, the present challenges currently associated with single-cell DNA methylation sequencing are described.
Collapse
Affiliation(s)
- Hannah O'Neill
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Heather Lee
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
- School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Dehradun 248007, India
| |
Collapse
|
40
|
Que Z, Tian J. New strategy for antimetastatic treatment of lung cancer: a hypothesis based on circulating tumour cells. Cancer Cell Int 2022; 22:356. [PMCID: PMC9664634 DOI: 10.1186/s12935-022-02782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractMetastasis is the primary cause of death in lung cancer patients. However, until now, effective drugs and intervention strategies for treating lung cancer metastasis have been lacking. This hypothesis focuses on circulating tumour cells (CTCs) to develop a new antimetastatic therapeutic strategy for lung cancer. Here, we outline the role of CTCs in tumour metastasis and their functional effects during the treatment of lung cancer patients. Additionally, we hypothesized the possibility of CTCs as a novel biomarker and therapeutic target in preventing and treating metastasis in patients with early-stage lung cancer. We hope that the realization of this hypothesis will improve the overall survival of lung cancer.
Collapse
|
41
|
Wei J, Deng W, Weng J, Li M, Lan G, Li X, Ye L, Wang Y, Liu F, Ou H, Wei Y, Huang W, Xie S, Dong G, Qu S. Epithelial-mesenchymal transition classification of circulating tumor cells predicts clinical outcomes in progressive nasopharyngeal carcinoma. Front Oncol 2022; 12:988458. [PMID: 36212389 PMCID: PMC9532596 DOI: 10.3389/fonc.2022.988458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundLiquid biopsy facilitates the enrichment and isolation of circulating tumor cells (CTCs) in various human cancers, including nasopharyngeal carcinoma (NPC). Characterizing CTCs allows observation of the evolutionary process of single tumor cells undergoing blood-borne dissemination, such as epithelial-mesenchymal transition. However, the prognostic value of phenotypic classification of CTCs in predicting the clinical outcomes of NPC remains poorly understood.Patients and methodsA total of 92 patients who met the inclusion criteria were enrolled in the present study. The CanPatrol™ CTC technology platform was employed to isolate CTCs, and an RNA in situ hybridization-based system was used for phenotypic classification. Kaplan–Meier survival curves were used for univariate survival analysis, and the log-rank test was performed for between-group comparisons of the survival curves.ResultsCTCs were detected in 88.0% (81/92) of the enrolled patients with NPC. The total CTC number did not vary between the T and N stages or between Epstein–Barr virus DNA-positive and -negative cases. The numbers of total CTCs and epithelial/mesenchymal (E/M) hybrid CTCs decreased significantly at 3 months post concurrent chemoradiotherapy (P=0.008 and P=0.023, respectively), whereas the numbers of epithelial or mesenchymal CTCs did not decrease. E/M hybrid-predominant cases had lower disease-free survival (P=0.043) and distant metastasis-free survival (P=0.046) rates than non-E/M hybrid-predominant cases.ConclusionCTC classification enables a better understanding of the cellular phenotypic alterations responsible for locoregional invasion and distant metastasis in NPC. E/M hybrid-predominant CTC distribution predicts unfavorable clinical outcomes in patients with progressive NPC.
Collapse
Affiliation(s)
- Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education/Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Weiming Deng
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingjin Weng
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Min Li
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guiping Lan
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiang Li
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Linsong Ye
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yongli Wang
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Fei Liu
- Research Center of Medical Sciences, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Huashuang Ou
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yunzhong Wei
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wenlin Huang
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sifang Xie
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guohu Dong
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shenhong Qu
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, China
- *Correspondence: Shenhong Qu,
| |
Collapse
|
42
|
Xia F, Ma Y, Chen K, Duong B, Ahmed S, Atwal R, Philpott D, Ketela T, Pantea J, Lin S, Angers S, Kelley SO. Genome-wide in vivo screen of circulating tumor cells identifies SLIT2 as a regulator of metastasis. SCIENCE ADVANCES 2022; 8:eabo7792. [PMID: 36054348 PMCID: PMC10848953 DOI: 10.1126/sciadv.abo7792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Circulating tumor cells (CTCs) break free from primary tumors and travel through the circulation system to seed metastatic tumors, which are the major cause of death from cancer. The identification of the major genetic factors that enhance production and persistence of CTCs in the bloodstream at a whole genome level would enable more comprehensive molecular mechanisms of metastasis to be elucidated and the identification of novel therapeutic targets, but this remains a challenging task due to the heterogeneity and extreme rarity of CTCs. Here, we describe an in vivo genome-wide CRISPR knockout screen using CTCs directly isolated from a mouse xenograft. This screen elucidated SLIT2-a gene encoding a secreted protein acting as a cellular migration cue-as the most significantly represented gene knockout in the CTC population. SLIT2 knockout cells are highly metastatic with hypermigratory and mesenchymal phenotype, resulting in enhanced cancer progression in xenograft models.
Collapse
Affiliation(s)
- Fan Xia
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Yuan Ma
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P.R. China
| | - Kangfu Chen
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Bill Duong
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Randy Atwal
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - David Philpott
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Troy Ketela
- Princess Margret Genomics Centre, University Health Network, Toronto, Ontario, Canada
| | - Jennifer Pantea
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Sichun Lin
- Donnelly Centre for Cellular & Biomolecular Research, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Donnelly Centre for Cellular & Biomolecular Research, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, ON, Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
43
|
Kwan EM, Wyatt AW. Androgen receptor genomic alterations and treatment resistance in metastatic prostate cancer. Prostate 2022; 82 Suppl 1:S25-S36. [PMID: 35657159 DOI: 10.1002/pros.24356] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Genomic alterations to the androgen receptor (AR) are common in metastatic castration-resistant prostate cancer (mCRPC). AR copy number amplifications, ligand-binding domain missense mutations, and intronic structural rearrangements can all drive resistance to approved AR pathway inhibitors and their detection via tissue or liquid biopsy is linked to clinical outcomes. With an increasingly crowded treatment landscape, there is hope that AR genomic alterations can act as prognostic and/or predictive biomarkers to guide patient management. METHODS In this review, we evaluate the current evidence for AR genomic alterations as clinical biomarkers in mCRPC, focusing on correlative studies that have used plasma circulating tumor DNA to characterize AR genotype. RESULTS We highlight data that demonstrates the complexity of AR genotype within individual patients, and suggest that future studies should account for cancer clonal heterogeneity and variable tumor content in liquid biopsy samples. Given the potential for cooccurrence of multiple AR genomic alterations in the same or competing subclones of a patient, it is distinctly challenging to attribute blanket clinical significance to any individual alteration. This challenge is further complicated by the varied treatment exposures in contemporary patients, and the fact that AR genotype continues to evolve in the mCRPC setting across sequential lines of systemic therapy. CONCLUSIONS As treatment access and liquid biopsy technology continues to improve, we posit that real-time measures of AR biology are likely to play a key role in emerging precision oncology strategies for metastatic prostate cancer.
Collapse
Affiliation(s)
- Edmond M Kwan
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander W Wyatt
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| |
Collapse
|
44
|
Interrogating breast cancer heterogeneity using single and pooled circulating tumor cell analysis. NPJ Breast Cancer 2022; 8:79. [PMID: 35790747 PMCID: PMC9256697 DOI: 10.1038/s41523-022-00445-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Single cell technologies allow the interrogation of tumor heterogeneity, providing insights into tumor evolution and treatment resistance. To better understand whether circulating tumor cells (CTCs) could complement metastatic biopsies for tumor genomic profiling, we characterized 11 single CTCs and 10 pooled CTC samples at the mutational and copy number aberration (CNA) levels, and compared these results with matched synchronous tumor biopsies from 3 metastatic breast cancer patients with triple-negative (TNBC), HER2-positive and estrogen receptor-positive (ER+) tumors. Similar CNA profiles and the same patient-specific driver mutations were found in bulk tissue and CTCs for the HER2-positive and TNBC tumors, whereas different CNA profiles and driver mutations were identified for the ER+ tumor, which presented two distinct clones in CTCs defined by mutations in ESR1 Y537N and TP53, respectively. Furthermore, de novo mutational signatures derived from CTCs described patient-specific biological processes. These data suggest that tumor tissue and CTCs provide complementary clinically relevant information to map tumor heterogeneity and tumor evolution.
Collapse
|
45
|
Luo K, Wang X, Zhang X, Liu Z, Huang S, Li R. The Value of Circulating Tumor Cells in the Prognosis and Treatment of Pancreatic Cancer. Front Oncol 2022; 12:933645. [PMID: 35860591 PMCID: PMC9293050 DOI: 10.3389/fonc.2022.933645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 12/21/2022] Open
Abstract
In the past few decades, tumor diagnosis and treatment theory have developed in a variety of directions. The number of people dying from pancreatic cancer increases while the mortality rate of other common tumors decreases. Traditional imaging methods show the boundaries of pancreatic tumor, but they are not sufficient to judge early micrometastasis. Although carcinoembryonic antigen (CEA) and carbohydrate antigen19-9 (CA19-9) have the obvious advantages of simplicity and minimal invasiveness, these biomarkers obviously lack sensitivity and specificity. Circulating tumor cells (CTCs) have attracted attention as a non-invasive, dynamic, and real-time liquid biopsy technique for analyzing tumor characteristics. With the continuous development of new CTCs enrichment technologies, substantial progress has been made in the basic research of CTCs clinical application prospects. In many metastatic cancers, CTCs have been studied as an independent prognostic factor. This article reviews the research progress of CTCs in the treatment and prognosis of pancreatic cancer.
Collapse
|
46
|
Xu R, Du S, Zhu J, Meng F, Liu B. Neoantigen-targeted TCR-T cell therapy for solid tumors: How far from clinical application. Cancer Lett 2022; 546:215840. [DOI: 10.1016/j.canlet.2022.215840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/09/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
|
47
|
Chen VL, Huang Q, Harouaka R, Du Y, Lok AS, Parikh ND, Garmire LX, Wicha MS. A Dual-Filtration System for Single-Cell Sequencing of Circulating Tumor Cells and Clusters in HCC. Hepatol Commun 2022; 6:1482-1491. [PMID: 35068084 PMCID: PMC9134808 DOI: 10.1002/hep4.1900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide. Identification and sequencing of circulating tumor (CT) cells and clusters may allow for noninvasive molecular characterization of HCC, which is an unmet need, as many patients with HCC do not undergo biopsy. We evaluated CT cells and clusters, collected using a dual-filtration system in patients with HCC. We collected and filtered whole blood from patients with HCC and selected individual CT cells and clusters with a micropipette. Reverse transcription, polymerase chain reaction, and library preparation were performed using a SmartSeq2 protocol, followed by single-cell RNA sequencing (scRNAseq) on an Illumina MiSeq V3 platform. Of the 8 patients recruited, 6 had identifiable CT cells or clusters. Median age was 64 years old; 7 of 8 were male; and 7 of 8 had and Barcelona Clinic Liver Cancer stage C. We performed scRNAseq of 38 CT cells and 33 clusters from these patients. These CT cells and clusters formed two distinct groups. Group 1 had significantly higher expression than group 2 of markers associated with epithelial phenotypes (CDH1 [Cadherin 1], EPCAM [epithelial cell adhesion molecule], ASGR2 [asialoglycoprotein receptor 2], and KRT8 [Keratin 8]), epithelial-mesenchymal transition (VIM [Vimentin]), and stemness (PROM1 [CD133], POU5F1 [POU domain, class 5, transcription factor 1], NOTCH1, STAT3 [signal transducer and activator of transcription 3]) (P < 0.05 for all). Patients with identifiable group 1 cells or clusters had poorer prognosis than those without them (median overall survival 39 vs. 384 days; P = 0.048 by log-rank test). Conclusion: A simple dual-filtration system allows for isolation and sequencing of CT cells and clusters in HCC and may identify cells expressing candidate genes known to be involved in cancer biology. Presence of CT cells/clusters expressing candidate genes is associated with poorer prognosis in advanced-stage HCC.
Collapse
Affiliation(s)
- Vincent L. Chen
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineUniversity of MichiganAnn ArborMIUSA
| | - Qianhui Huang
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMIUSA
| | - Ramdane Harouaka
- Division of Hematology and OncologyDepartment of Internal MedicineUniversity of MichiganAnn ArborMIUSA
| | - Yuheng Du
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMIUSA
| | - Anna S. Lok
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineUniversity of MichiganAnn ArborMIUSA
| | - Neehar D. Parikh
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineUniversity of MichiganAnn ArborMIUSA
| | - Lana X. Garmire
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMIUSA
| | - Max S. Wicha
- Division of Hematology and OncologyDepartment of Internal MedicineUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
48
|
Cani AK, Dolce EM, Darga EP, Hu K, Liu C, Pierce J, Bradbury K, Kilgour E, Aung K, Schiavon G, Carroll D, Carr TH, Klinowska T, Lindemann J, Marshall G, Rowlands V, Harrington EA, Barrett JC, Sathiyayogan N, Morrow C, Sero V, Armstrong AC, Baird R, Hamilton E, Im S, Jhaveri K, Patel MR, Dive C, Tomlins SA, Udager AM, Hayes DF, Paoletti C. Serial monitoring of genomic alterations in circulating tumor cells of ER-positive/HER2-negative advanced breast cancer: feasibility of precision oncology biomarker detection. Mol Oncol 2022; 16:1969-1985. [PMID: 34866317 PMCID: PMC9120891 DOI: 10.1002/1878-0261.13150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/02/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022] Open
Abstract
Nearly all estrogen receptor (ER)-positive (POS) metastatic breast cancers become refractory to endocrine (ET) and other therapies, leading to lethal disease presumably due to evolving genomic alterations. Timely monitoring of the molecular events associated with response/progression by serial tissue biopsies is logistically difficult. Use of liquid biopsies, including circulating tumor cells (CTC) and circulating tumor DNA (ctDNA), might provide highly informative, yet easily obtainable, evidence for better precision oncology care. Although ctDNA profiling has been well investigated, the CTC precision oncology genomic landscape and the advantages it may offer over ctDNA in ER-POS breast cancer remain largely unexplored. Whole-blood (WB) specimens were collected at serial time points from patients with advanced ER-POS/HER2-negative (NEG) advanced breast cancer in a phase I trial of AZD9496, an oral selective ER degrader (SERD) ET. Individual CTC were isolated from WB using tandem CellSearch® /DEPArray™ technologies and genomically profiled by targeted single-cell DNA next-generation sequencing (scNGS). High-quality CTC (n = 123) from 12 patients profiled by scNGS showed 100% concordance with ctDNA detection of driver estrogen receptor α (ESR1) mutations. We developed a novel CTC-based framework for precision medicine actionability reporting (MI-CTCseq) that incorporates novel features, such as clonal predominance and zygosity of targetable alterations, both unambiguously identifiable in CTC compared to ctDNA. Thus, we nominated opportunities for targeted therapies in 73% of patients, directed at alterations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), fibroblast growth factor receptor 2 (FGFR2), and KIT proto-oncogene, receptor tyrosine kinase (KIT). Intrapatient, inter-CTC genomic heterogeneity was observed, at times between time points, in subclonal alterations. Our analysis suggests that serial monitoring of the CTC genome is feasible and should enable real-time tracking of tumor evolution during progression, permitting more combination precision medicine interventions.
Collapse
|
49
|
Wang H, Lv M, Huang Y, Pan X, Wei C. Identification of Circulating Tumor Cell Phenotype in Differentiated Thyroid Carcinoma. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective: Circulating tumor cells (CTCs) have been considered as the origin of tumor metastasis and recurrence, which always indicate a poor prognosis. There are three phenotypes of CTCs according on different epithelial-to-mesenchymal transition (EMT) markers, including epithelial,
mesenchymal, and epithelial/mesenchymal (mixed phenotypic) CTCs. We intended to explore the relationship among CTC phenotypes and the clinicopathological characteristics of patients with differentiated thyroid carcinoma (DTC). Methods: Peripheral blood samples from 58 patients with
DTC were collected, and CTCs were isolated by cell sizes. To identify phenotypes of CTCs, branched DNA signal amplification technology was adopted to capture and amplify target sequences, and then multiplex RNA-in situ hybridization (RNA-ISH) assay was used to identify CTC phenotypes
depended on epithelial-mesenchymal transition (EMT) markers. Results: The positive rate of CTCs was 77.59% in 58 DTC patients. Totally, 488 CTCs with detective phenotype were found. Among them, there were 121 (24.80%) epithelial CTCs, 67 (13.72%) mesenchymal CTCs, and 300 (61.48%) mixed
phenotypic CTCs. An obvious increased epithelial CTCs was observed in male patients compared with female. Notably, CTCs were more prevailing in younger male patients with ETI and bilateral focus. Conclusions: The CTCs are common in DTC patients, and mixed phenotypic is the major phenotype,
indicating that EMT is prevalent in DTC even though its prognosis was better than other epithelial tumors. Detection of CTC and its phenotypes might independently predict the prognosis of DTC.
Collapse
Affiliation(s)
- Huiling Wang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Mian Lv
- Department of Breast and Thyroid Surgery, The Second People’s Hospital of Nanning City, The Third Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning, 530021, P. R. China
| | - Yonghong Huang
- Department of Breast and Thyroid Surgery, The Second People’s Hospital of Nanning City, The Third Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning, 530021, P. R. China
| | - Xiaoming Pan
- Department of Breast and Thyroid Surgery, The Second People’s Hospital of Nanning City, The Third Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning, 530021, P. R. China
| | - Changyuan Wei
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
50
|
Stover EH, Oh C, Keskula P, Choudhury AD, Tseng YY, Adalsteinsson VA, Lohr JG, Thorner AR, Ducar M, Kryukov GV, Ha G, Rosenberg M, Freeman SS, Zhang Z, Wu X, Van Allen EM, Takeda DY, Loda M, Wu CL, Taplin ME, Garraway LA, Boehm JS, Huang FW. Implementation of a prostate cancer-specific targeted sequencing panel for credentialing of patient-derived cell lines and genomic characterization of patient samples. Prostate 2022; 82:584-597. [PMID: 35084050 PMCID: PMC8887817 DOI: 10.1002/pros.24305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Primary and metastatic prostate cancers have low mutation rates and recurrent alterations in a small set of genes, enabling targeted sequencing of prostate cancer-associated genes as an efficient approach to characterizing patient samples (compared to whole-exome and whole-genome sequencing). For example, targeted sequencing provides a flexible, rapid, and cost-effective method for genomic assessment of patient-derived cell lines to evaluate fidelity to initial patient tumor samples. METHODS We developed a prostate cancer-specific targeted next-generation sequencing (NGS) panel to detect alterations in 62 prostate cancer-associated genes as well as recurring gene fusions with ETS family members, representing the majority of common alterations in prostate cancer. We tested this panel on primary prostate cancer tissues and blood biopsies from patients with metastatic prostate cancer. We generated patient-derived cell lines from primary prostate cancers using conditional reprogramming methods and applied targeted sequencing to evaluate the fidelity of these cell lines to the original patient tumors. RESULTS The prostate cancer-specific panel identified biologically and clinically relevant alterations, including point mutations in driver oncogenes and ETS family fusion genes, in tumor tissues from 29 radical prostatectomy samples. The targeted panel also identified genomic alterations in cell-free DNA and circulating tumor cells (CTCs) from patients with metastatic prostate cancer, and in standard prostate cancer cell lines. We used the targeted panel to sequence our set of patient-derived cell lines; however, no prostate cancer-specific mutations were identified in the tumor-derived cell lines, suggesting preferential outgrowth of normal prostate epithelial cells. CONCLUSIONS We evaluated a prostate cancer-specific targeted NGS panel to detect common and clinically relevant alterations (including ETS family gene fusions) in prostate cancer. The panel detected driver mutations in a diverse set of clinical samples of prostate cancer, including fresh-frozen tumors, cell-free DNA, CTCs, and cell lines. Targeted sequencing of patient-derived cell lines highlights the challenge of deriving cell lines from primary prostate cancers and the importance of genomic characterization to credential candidate cell lines. Our study supports that a prostate cancer-specific targeted sequencing panel provides an efficient, clinically feasible approach to identify genetic alterations across a spectrum of prostate cancer samples and cell lines.
Collapse
Affiliation(s)
- Elizabeth H. Stover
- Dana-Farber Cancer Institute, Boston MA
- Broad Institute, Cambridge MA
- Harvard Medical School, Boston MA
| | - Coyin Oh
- Broad Institute, Cambridge MA
- Harvard Medical School, Boston MA
| | | | - Atish D. Choudhury
- Dana-Farber Cancer Institute, Boston MA
- Broad Institute, Cambridge MA
- Harvard Medical School, Boston MA
| | | | | | - Jens G. Lohr
- Dana-Farber Cancer Institute, Boston MA
- Broad Institute, Cambridge MA
- Harvard Medical School, Boston MA
| | | | | | - Gregory V. Kryukov
- Dana-Farber Cancer Institute, Boston MA
- Broad Institute, Cambridge MA
- Harvard Medical School, Boston MA
| | - Gavin Ha
- Fred Hutchinson Cancer Research Center, Seattle WA
| | | | | | - Zhenwei Zhang
- Dana-Farber Cancer Institute, Boston MA
- University of Massachusetts Memorial Medical Center, Worcester MA
| | | | - Eliezer M. Van Allen
- Dana-Farber Cancer Institute, Boston MA
- Broad Institute, Cambridge MA
- Harvard Medical School, Boston MA
| | | | - Massimo Loda
- Dana-Farber Cancer Institute, Boston MA
- Broad Institute, Cambridge MA
- New York-Presbyterian/Weill Cornell Medical Center, New York, NY
| | - Chin-Lee Wu
- Harvard Medical School, Boston MA
- Massachusetts General Hospital, Boston MA
| | - Mary-Ellen Taplin
- Dana-Farber Cancer Institute, Boston MA
- Harvard Medical School, Boston MA
| | | | | | | |
Collapse
|