1
|
Yang H, Zhang L, Kang X, Si Y, Song P, Su X. Reaction Pathway Differentiation Enabled Fingerprinting Signal for Single Nucleotide Variant Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412680. [PMID: 39903775 PMCID: PMC11948007 DOI: 10.1002/advs.202412680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/17/2025] [Indexed: 02/06/2025]
Abstract
Accurate identification of single-nucleotide variants (SNVs) is paramount for disease diagnosis. Despite the facile design of DNA hybridization probes, their limited specificity poses challenges in clinical applications. Here, a differential reaction pathway probe (DRPP) based on a dynamic DNA reaction network is presented. DRPP leverages differences in reaction intermediate concentrations between SNV and WT groups, directing them into distinct reaction pathways. This generates a strong pulse-like signal for SNV and a weak unidirectional increase signal for wild-type (WT). Through the application of machine learning to fluorescence kinetic data analysis, the classification of SNV and WT signals is automated with an accuracy of 99.6%, significantly exceeding the 80.7% accuracy of conventional methods. Additionally, sensitivity for variant allele frequency (VAF) is enhanced down to 0.1%, representing a ten-fold improvement over conventional approaches. DRPP accurately identified D614G and N501Y SNVs in the S gene of SARS-CoV-2 variants in patient swab samples with accuracy over 99% (n = 82). It determined the VAF of ovarian cancer-related mutations KRAS-G12R, NRAS-G12C, and BRAF-V600E in both tissue and blood samples (n = 77), discriminating cancer patients and healthy individuals with significant difference (p < 0.001). The potential integration of DRPP into clinical diagnostics, along with rapid amplification techniques, holds promise for early disease diagnostics and personalized diagnostics.
Collapse
Affiliation(s)
- Huixiao Yang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Key Laboratory of BioprocessBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Linghao Zhang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Key Laboratory of BioprocessBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Xinmiao Kang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Key Laboratory of BioprocessBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Yunpei Si
- School of Biomedical EngineeringZhangjiang Institute for Advanced Study and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Ping Song
- School of Biomedical EngineeringZhangjiang Institute for Advanced Study and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Xin Su
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Key Laboratory of BioprocessBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijing100191China
| |
Collapse
|
2
|
Bató C, Szabó I, Yousef M, Lenzinger D, Grébecz FK, Visnovitz T, Bősze SE, Bánóczi Z, Mező G. 1-Pyrene Carboxylic Acid: An Internalization Enhancer for Short Oligoarginines. Int J Mol Sci 2025; 26:2202. [PMID: 40076833 PMCID: PMC11900394 DOI: 10.3390/ijms26052202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Getting through the cell membrane is challenging, and transporting a therapeutic agent while entering the cell is even more complicated. Cell-penetrating peptides (CPPs) are valuable tools for solving this problem, although they have drawbacks. In this work, the synthesis and investigation of efficient CPPs are described. We used an aromatic group, 1-pyrene carboxylic acid (PCA), to enhance internalization. We designed oligoarginines to investigate the effect of PCA in different positions at the N-terminus or in the side chain. Our novel peptide derivatives showed remarkable internalization on tumor cell lines, and more than one endocytic pathway plays a role in their internalization mechanism. With this modification, there is an opportunity to design short oligoarginines that can rival well-known CPPs like octaarginine in internalization.
Collapse
Affiliation(s)
- Csaba Bató
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary;
- Hevesy György PhD School of Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary
| | - Ildikó Szabó
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (I.S.); or (S.E.B.)
- MTA-TTK Lendület “Momentum” Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Mo’ath Yousef
- Ecole Super Biotechnol Strasbourg ESBS, CNRS, UMR 7242, Biotechnol & Cellular Signalling, University Strasbourg, F-67400 Illkirch Graffenstaden, France;
| | - Dorina Lenzinger
- Department of Genetics, Cell- and Immunobiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (D.L.); (F.K.G.)
| | - Fülöp Károly Grébecz
- Department of Genetics, Cell- and Immunobiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (D.L.); (F.K.G.)
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (D.L.); (F.K.G.)
- Department of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary
| | - Szilvia E. Bősze
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (I.S.); or (S.E.B.)
- Department of Genetics, Cell- and Immunobiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (D.L.); (F.K.G.)
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary;
| | - Gábor Mező
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary;
- HUN-REN-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (I.S.); or (S.E.B.)
| |
Collapse
|
3
|
Feng Y, Liu G, Li H, Cheng L. The landscape of cell lineage tracing. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2751-6. [PMID: 40035969 DOI: 10.1007/s11427-024-2751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/30/2024] [Indexed: 03/06/2025]
Abstract
Cell fate changes play a crucial role in the processes of natural development, disease progression, and the efficacy of therapeutic interventions. The definition of the various types of cell fate changes, including cell expansion, differentiation, transdifferentiation, dedifferentiation, reprogramming, and state transitions, represents a complex and evolving field of research known as cell lineage tracing. This review will systematically introduce the research history and progress in this field, which can be broadly divided into two parts: prospective tracing and retrospective tracing. The initial section encompasses an array of methodologies pertaining to isotope labeling, transient fluorescent tracers, non-fluorescent transient tracers, non-fluorescent genetic markers, fluorescent protein, genetic marker delivery, genetic recombination, exogenous DNA barcodes, CRISPR-Cas9 mediated DNA barcodes, and base editor-mediated DNA barcodes. The second part of the review covers genetic mosaicism, genomic DNA alteration, TCR/BCR, DNA methylation, and mitochondrial DNA mutation. In the final section, we will address the principal challenges and prospective avenues of enquiry in the field of cell lineage tracing, with a particular focus on the sequencing techniques and mathematical models pertinent to single-cell genetic lineage tracing, and the value of pursuing a more comprehensive investigation at both the spatial and temporal levels in the study of cell lineage tracing.
Collapse
Affiliation(s)
- Ye Feng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China.
| | - Guang Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China.
| | - Haiqing Li
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Azeem S, Yoon KJ. Diagnostic Assays for Avian Influenza Virus Surveillance and Monitoring in Poultry. Viruses 2025; 17:228. [PMID: 40006983 PMCID: PMC11860460 DOI: 10.3390/v17020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Diagnostic testing plays a key role in a surveillance program as diagnostic testing aims to accurately determine the infection or disease status of an individual animal. Diagnostic assays for AIV can be categorized into four broad types: tests for detecting the virus, its antigen, its genomic material, and antibodies to the virus. Virus characterization almost always follows virus detection. The present article surveys the current literature on the goals, principles, test performance, advantages, and disadvantages of these diagnostic assays. Virus isolation can be achieved using embryonating eggs or cell cultures in a lab setting. Virus antigens can be detected by antigen-capturing immunoassays or tissue immunoassays. Viral RNA can be detected by PCR-based assays (gel-based reverse transcription-polymerase chain reaction (RT-PCR), or probe or SYBR® Green-based real-time RT-PCR), loop-mediated isothermal amplification, in situ hybridization, and nucleic acid sequence-based amplification. Antibodies to AIV can be detected by ELISA, agar gel immunodiffusion, hemagglutination inhibition, and microneutralization. Avian influenza virus can be characterized by hemagglutination inhibition, neuraminidase inhibition, sequencing (dideoxynucleotide chain-termination sequencing, next-generation sequencing), genetic sequence-based pathotype prediction, and pathogenicity testing. Novel and variant AIVs can be recognized by DNA microarrays, electron microscopy, mass spectroscopy, and Biological Microelectromechanical Systems. A variety of diagnostic tests are employed in AIV surveillance and monitoring. The choice of their use depends on the goal of testing (fit for purpose), the time of testing during the disease, the assay target, the sample matrix, assay performance, and the advantages and disadvantages of the assay. The article concludes with authors' perspective of the use of diagnostic assays in the surveillance and monitoring of AIV in poultry.
Collapse
Affiliation(s)
- Shahan Azeem
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Kyoung-Jin Yoon
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
5
|
Homer A, Knoll A, Gruber U, Seitz O. Light harvesting FIT DNA hybridization probes for brightness-enhanced RNA detection. Chem Sci 2025; 16:846-853. [PMID: 39650216 PMCID: PMC11622247 DOI: 10.1039/d4sc06729k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/26/2024] [Indexed: 12/11/2024] Open
Abstract
Fluorogenic hybridization probes are essential tools in modern molecular biology techniques. They allow detection of specific nucleic acid molecules without the need to separate target-bound from unbound probes. To enable detection of targets at low concentration, fluorogenic probes should have high brightness. Here, we report the development of RNA hybridization probes (RNA FIT probes) that use smart quenching and a light harvesting principle to enhance the brightness of fluorescence signaling. The signaling mechanism is based on FRET between brightly emitting donor dyes and a fluorescent base surrogate, such as quinoline blue (QB) or thiazole orange (TO). In the single-stranded state, QB/TO nucleotides fluoresce weakly and quench the fluorescence of the donor dyes. Upon target recognition, QB/TO stack with adjacent base pairs, resulting in enhanced fluorescence quantum yields. The donor dyes are blue-shifted by only 5-20 nm relative to the QB/TO nucleotides, allowing simultaneous excitation of both dye groups with efficient energy transfer. The combined photon absorption results in exceptionally bright FIT probes. This feature facilitated the detection of RNA target in undiluted cell lysates. The present study examines the utilization of probes to detect mRNA targets in live T cells using flow cytometry.
Collapse
Affiliation(s)
- Amal Homer
- Institut für Chemie, Humboldt-Universität zu Berlin 12489 Berlin Germany
| | - Andrea Knoll
- Institut für Chemie, Humboldt-Universität zu Berlin 12489 Berlin Germany
| | - Uschi Gruber
- Institut für Chemie, Humboldt-Universität zu Berlin 12489 Berlin Germany
| | - Oliver Seitz
- Institut für Chemie, Humboldt-Universität zu Berlin 12489 Berlin Germany
| |
Collapse
|
6
|
Wazahat R. Strategic diagnosis- Unraveling Tuberculosis- A comprehensive approach. Indian J Tuberc 2025; 72:112-132. [PMID: 39890361 DOI: 10.1016/j.ijtb.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 02/03/2025]
Abstract
Tuberculosis, an airborne-infectious disease caused by Mycobacterium tuberculosis remains a perpetual threat globally. It claims over 1.4 million lives per year. Various diagnostic strategies including smear microscopy, culture methods, immunochromatographic assays and molecular methods have paved the way for tuberculosis diagnosis. The Government of India has introduced National Strategic Plan (NSP) for TB elimination, aiming to achieve a rapid decline in the incidence, morbidity, and mortality of TB by the year 2030. In its quest for TB elimination, the plan is structured around four strategic pillars: "Detect-Treat-Prevent-Build." To achieve these pillars and progress towards TB elimination, the government encourages adoption of novel point-of- care diagnostics techniques.
Collapse
Affiliation(s)
- Rushna Wazahat
- Department of Biochemistry, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
7
|
Nestoros E, Sharma A, Kim E, Kim JS, Vendrell M. Smart molecular designs and applications of activatable organic photosensitizers. Nat Rev Chem 2025; 9:46-60. [PMID: 39506088 DOI: 10.1038/s41570-024-00662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Photodynamic therapy (PDT) - which combines light, oxygen and photosensitizers (PS) to generate reactive oxygen species - has emerged as an effective approach for targeted ablation of pathogenic cells with reduced risk of inducing resistance. Some organic PS are now being applied for PDT in the clinic or undergoing evaluation in clinical trials. A limitation of the first-generation organic PS was their potential off-target toxicity. This shortcoming prompted the design of constructs that can be activated by the presence of specific biomolecules - from small biomolecules to large enzymes - in the target cells. Here, we review advances in the design and synthesis of activatable organic PS and their contribution to PDT in the past decade. Important areas of research include novel synthetic methodologies to engineer smart PS with tuneable singlet oxygen generation, their integration into larger constructs such as bioconjugates, and finally, representative examples of their translational potential as antimicrobial and anticancer therapies.
Collapse
Affiliation(s)
- Eleni Nestoros
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Amit Sharma
- Amity School of Chemical Sciences, Amity University Punjab, Mohali, India
| | - Eunji Kim
- Department of Chemistry, Korea University, Seoul, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, Korea.
| | - Marc Vendrell
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
8
|
Hu PP, Zheng LL, Zhan L, Huang CZ. Imaging of Viral Genomic RNA Replication with Nanoprobes. Methods Mol Biol 2025; 2875:145-153. [PMID: 39535646 DOI: 10.1007/978-1-0716-4248-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Viruses are a great threat to human life and health. Different viruses have its unique mechanism to efficiently infect cells, and the entry process and the nucleic acid replication using cell machine are two critical processes related to the fate of virus progeny. Real-time and long-term imaging techniques can be used to thoroughly investigate the viral infection events. This chapter will present the labeling of viral genomic RNA (gRNA) replication by developing new nanoprobes, one-donor-two-acceptors one, for example, in which the synergistic coupling of multiple energy transfer strategy, so as that the journey of viruses in live cells could be monitored and imaged in real time. Methods of labeling as well as that used for fluorescent and dark field scattering imaging are outlined.
Collapse
Affiliation(s)
- Ping Ping Hu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Lin Ling Zheng
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Lei Zhan
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Cheng Zhi Huang
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Yang J, Quan Y, Ouyang Y, Tan KO, Weber RT, Griffin RG, Raines RT. Peptidic "Molecular Beacon" for Collagen. Biomacromolecules 2024; 25:6773-6779. [PMID: 39225003 PMCID: PMC11563731 DOI: 10.1021/acs.biomac.4c01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Collagen-mimetic peptides (CMP) have been invaluable tools for understanding the structure and function of collagen, which is the most abundant protein in animals. CMPs have also been developed as probes that detect damaged collagen because of the specificity required to form a collagen triple helix. These probes are not, however, ratiometric. Here, we used EPR spectroscopy to determine the end-to-end distances of CMPs that do not form stable homotrimeric helices. We found that those distances are shorter than the distances in the context of a collagen triple helix, suggesting their potential utility as a "molecular beacon" and guiding the choice and location of a pendant fluorophore-quencher pair. We then showed that a molecular beacon based on a glycine-(2S,4S)-4-fluoroproline-(2S,4R)-4-hydroxyproline tripeptide repeat and EDANS-DABCYL pair enabled the ratiometric detection of its binding to both other CMPs and natural mammalian collagen. These results provide guidance for the development of a new modality for detecting damaged collagen in physiological settings.
Collapse
Affiliation(s)
- Jinyi Yang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yifan Quan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yifu Ouyang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kong Ooi Tan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ralph T. Weber
- Bruker Biospin Corporation, Billerica, Massachusetts 01821, United States
| | - Robert G. Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Ferreira da Silva L, Valle Garay A, Queiroz PF, Garcia de Resende S, Gomide M, Moreira de Oliveira IC, Souza Bernasol A, Arce A, Canet Santos L, Torres F, Silva-Pereira I, de Freitas SM, Marques Coelho C. A novel viral RNA detection method based on the combined use of trans-acting ribozymes and HCR-FRET analyses. PLoS One 2024; 19:e0310171. [PMID: 39325749 PMCID: PMC11426510 DOI: 10.1371/journal.pone.0310171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
The diagnoses of retroviruses are essential for controlling the rapid spread of pandemics. However, the real-time Reverse Transcriptase quantitative Polymerase Chain Reaction (RT-qPCR), which has been the gold standard for identifying viruses such as SARS-CoV-2 in the early stages of infection, is associated with high costs and logistical challenges. To innovate in viral RNA detection a novel molecular approach for detecting SARS-CoV-2 viral RNA, as a proof of concept, was developed. This method combines specific viral gene analysis, trans-acting ribozymes, and Fluorescence Resonance Energy Transfer (FRET)-based hybridization of fluorescent DNA hairpins. In this molecular mechanism, SARS-CoV-2 RNA is specifically recognized and cleaved by ribozymes, releasing an initiator fragment that triggers a hybridization chain reaction (HCR) with DNA hairpins containing fluorophores, leading to a FRET process. A consensus SARS-CoV-2 RNA target sequence was identified, and specific ribozymes were designed and transcribed in vitro to cleave the viral RNA into fragments. DNA hairpins labeled with Cy3/Cy5 fluorophores were then designed and synthesized for HCR-FRET assays targeting the RNA fragment sequences resulting from ribozyme cleavage. The results demonstrated that two of the three designed ribozymes effectively cleaved the target RNA within 10 minutes. Additionally, DNA hairpins labeled with Cy3/Cy5 pairs efficiently detected target RNA specifically and triggered detectable HCR-FRET reactions. This method is versatile and can be adapted for use with other viruses. Furthermore, the design and construction of a DIY photo-fluorometer prototype enabled us to explore the development of a simple and cost-effective point-of-care detection method based on digital image analysis.
Collapse
Affiliation(s)
- Leonardo Ferreira da Silva
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Aisel Valle Garay
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Pedro Felipe Queiroz
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Sophia Garcia de Resende
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Mayna Gomide
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Izadora Cristina Moreira de Oliveira
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Amanda Souza Bernasol
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Anibal Arce
- Institute for biological and medical engineering, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Liem Canet Santos
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Fernando Torres
- Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Ildinete Silva-Pereira
- Laboratory of Molecular Biology of Pathogenic Fungi, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Sonia Maria de Freitas
- Laboratory of Molecular Biophysics, Department of Cell Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Cíntia Marques Coelho
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Federal District, Brazil
| |
Collapse
|
11
|
Torokaa PR, Majigo MV, Kileo H, Urio L, Mbwana MR, Monah MC, Ntibabara SS, Kimambo J, Seleman P, Franklin C, Balama R, Kisonga RM, Joachim A. The pattern of rpoB gene mutation of Mycobacterium tuberculosis and predictors of rifampicin resistance detected by GeneXpert MTB/RIF assay in Tanzania. PLoS One 2024; 19:e0296563. [PMID: 39186753 PMCID: PMC11346956 DOI: 10.1371/journal.pone.0296563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
INTRODUCTION Antimicrobial resistance in Mycobacterium tuberculosis (MTB) poses a significant challenge to tuberculosis (TB) management worldwide. Rifampicin resistance (RR) has been associated with the rpoB gene mutation. No study was conducted in Tanzania to determine the commonest mutation. The inconsistent findings from various studies support the need to determine whether reported mutation patterns are applicable in our setting. We determined the frequency of rpoB gene mutation and factors associated with RR, which were detected using GeneXpert MTB/RIF assay. METHODS We conducted a retrospective cross-sectional study involving data from the National Tuberculosis and Leprosy Program database from 2020 to 2022 for cases investigated using GeneXpert MTB/RIF assay. Descriptive analysis was performed to determine the frequency of categorical variables. The chi-square test and logistic regression analysis assessed the relationship between the independent variables and outcome. The 95% confidence interval and a significance level of p<0.05 were used to assess the strength of association. RESULTS A total of 56,004 participants had a status of MTB and RR, where 38,705/56,004 (69.11%) were males. Probe E mutation (codon 529-533), 89/219 (40.64%) was predominant. Human immunodeficiency virus (HIV)-positive patients had a higher gene mutation, 134/10601 (1.26%) than HIV-negative, 306/45016 (0.68%) (p<0.001). Patients with both pulmonary and extra-pulmonary TB had about four times greater odds of developing rifampicin resistance (AOR 3.88, 95%CI: 1.80-8.32). RR was nearly nine times higher in previously treated patients than new patients (AOR 8.66, 95% CI: 6.97-10.76). HIV-positive individuals had nearly twice the odds of developing RR than HIV-negative individuals (AOR 1.91, 95%CI: 1.51-2.42). CONCLUSION The rate of RR was lower compared to other studies in Tanzania, with probe E mutations the most prevalent. Patients with disseminated TB, HIV co-infection and those with prior exposure to anti-TB had more risk of RR. The findings highlight the need to strengthen surveillance of multidrug-resistant TB among high risk patients.
Collapse
Affiliation(s)
- Peter Richard Torokaa
- Muhimbili University of Health and Allied Sciences, School of Public Health and Social Sciences, Dar es Salaam, Tanzania
- Tanzania Field Epidemiology and Laboratory Training Program, Dar es Salaam, Tanzania
| | - Mtebe V. Majigo
- Muhimbili University of Health and Allied Sciences, School of Diagnostic Medicine, Dar es Salaam, Tanzania
| | - Heledy Kileo
- Muhimbili University of Health and Allied Sciences, School of Diagnostic Medicine, Dar es Salaam, Tanzania
| | - Loveness Urio
- Tanzania Field Epidemiology and Laboratory Training Program, Dar es Salaam, Tanzania
| | - Mariam R. Mbwana
- Muhimbili University of Health and Allied Sciences, School of Public Health and Social Sciences, Dar es Salaam, Tanzania
- Tanzania Field Epidemiology and Laboratory Training Program, Dar es Salaam, Tanzania
| | - Mariam C. Monah
- Muhimbili University of Health and Allied Sciences, School of Public Health and Social Sciences, Dar es Salaam, Tanzania
- Tanzania Field Epidemiology and Laboratory Training Program, Dar es Salaam, Tanzania
| | - Sephord Saul Ntibabara
- Muhimbili University of Health and Allied Sciences, School of Public Health and Social Sciences, Dar es Salaam, Tanzania
- Tanzania Field Epidemiology and Laboratory Training Program, Dar es Salaam, Tanzania
| | - Jasper Kimambo
- Muhimbili University of Health and Allied Sciences, School of Public Health and Social Sciences, Dar es Salaam, Tanzania
- Tanzania Field Epidemiology and Laboratory Training Program, Dar es Salaam, Tanzania
| | - Paschal Seleman
- Ministry of Health, National TB and Leprosy Programme, Dodoma, Tanzania
| | - Collins Franklin
- Ministry of Health, National TB and Leprosy Programme, Dodoma, Tanzania
| | - Robert Balama
- Ministry of Health, National TB and Leprosy Programme, Dodoma, Tanzania
| | - Riziki M. Kisonga
- Ministry of Health, National TB and Leprosy Programme, Dodoma, Tanzania
| | - Agricola Joachim
- Muhimbili University of Health and Allied Sciences, School of Diagnostic Medicine, Dar es Salaam, Tanzania
| |
Collapse
|
12
|
Meng X, Wen K, Zhao J, Han Y, Ghandhi SA, Kaur SP, Brenner DJ, Turner HC, Amundson SA, Lin Q. Microfluidic measurement of intracellular mRNA with a molecular beacon probe towards point-of-care radiation triage. SENSORS & DIAGNOSTICS 2024; 3:1344-1352. [PMID: 39129862 PMCID: PMC11308381 DOI: 10.1039/d4sd00079j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/26/2024] [Indexed: 08/13/2024]
Abstract
In large-scale radiation exposure events, the ability to triage potential victims by the received radiation dosage is crucial. This can be evaluated by radiation-induced biological changes. Radiation-responsive mRNA is a class of biomarkers that has been explored for dose-dependency with methods such as RT-qPCR. However, these methods are challenging to implement for point-of-care devices. We have designed and used molecular beacons as probes for the measurement of radiation-induced changes of intracellular mRNA in a microfluidic device towards determining radiation dosage. Our experiments, in which fixed TK6 cells labeled with a molecular beacon specific to BAX mRNA exhibited dose-dependent fluorescence in a manner consistent with RT-qPCR analysis, demonstrate that such intracellular molecular probes can potentially be used in point-of-care radiation biodosimetry. This proof of concept could readily be extended to any RNA-based test to provide direct measurements at the bedside.
Collapse
Affiliation(s)
- Xin Meng
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Kechun Wen
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Jingyang Zhao
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Yaru Han
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Salan P Kaur
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| |
Collapse
|
13
|
Deal BR, Ma R, Narum S, Ogasawara H, Duan Y, Kindt JT, Salaita K. Heteromultivalency enables enhanced detection of nucleic acid mutations. Nat Chem 2024; 16:229-238. [PMID: 37884668 DOI: 10.1038/s41557-023-01345-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
Detecting genetic mutations such as single nucleotide polymorphisms (SNPs) is necessary to prescribe effective cancer therapies, perform genetic analyses and distinguish similar viral strains. Traditionally, SNP sensing uses short oligonucleotide probes that differentially bind the SNP and wild-type targets. However, DNA hybridization-based techniques require precise tuning of the probe's binding affinity to manage the inherent trade-off between specificity and sensitivity. As conventional hybridization offers limited control over binding affinity, here we generate heteromultivalent DNA-functionalized particles and demonstrate optimized hybridization specificity for targets containing one or two mutations. By investigating the role of oligo lengths, spacer lengths and binding orientation, we reveal that heteromultivalent hybridization enables fine-tuned specificity for a single SNP and dramatic enhancements in specificity for two non-proximal SNPs empowered by highly cooperative binding. Capitalizing on these abilities, we demonstrate straightforward discrimination between heterozygous cis and trans mutations and between different strains of the SARS-CoV-2 virus. Our findings indicate that heteromultivalent hybridization offers substantial improvements over conventional monovalent hybridization-based methods.
Collapse
Affiliation(s)
- Brendan R Deal
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Rong Ma
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Steven Narum
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - Yuxin Duan
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - James T Kindt
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA.
| |
Collapse
|
14
|
Mir OI, Gupta UK, Bhat GA, Pandith AA, Mir FA. Vibrational, Optical, Electrochemical, and Electrical Analysis of Normal and Cancer DNA. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY 2023; 12:127006. [DOI: 10.1149/2162-8777/ad1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
In the current article, we did characterizations like Fourier Transform Infrared (FT-IR) Spectroscopy, UV-Visible (UV–vis) spectroscopy, Photoluminescence (PL) spectroscopy, Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS), Current-Voltage (I-V) characteristics, dielectric spectroscopy, and transient time spectroscopy on normal and cancerous (esophagus) DNA samples. FT-IR confirms the associated functional groups of DNA. Also a significant change in these groups with mutations is observed. From the analysis of UV data, the various optical parameters like optical band gap, disorder energy were estimated and discussed. PL data demonstrate the various emissions and are described as per the existing structure of the molecule. From the CV plots, the energy levels, like highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were also calculated. The EIS data interpretations show well developed changes in various parameters related with nature of the present molecules. Also from I-V characteristics, visible variations were observed and discussed. From the dielectric spectroscopy, a drastic change in the data were seen and described. Dynamic measurements like transient time demonstrates a vital impact on charge storage and hence on the rise and fall time of the molecules. The various calculated parameters related with these methods show changes with normal and mutated DNA. These observed properties shown by these techniques could be explored for further confirmation of the diagnostic of the disease.
Collapse
|
15
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
16
|
Weigert N, Schweiger AL, Gross J, Matthes M, Corbacioglu S, Sommer G, Heise T. Detection of a 7SL RNA-derived small non-coding RNA using Molecular Beacons in vitro and in cells. Biol Chem 2023; 404:1123-1136. [PMID: 37632732 DOI: 10.1515/hsz-2023-0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023]
Abstract
Small non-coding RNAs (sncRNA) are involved in many steps of the gene expression cascade and regulate processing and expression of mRNAs by the formation of ribonucleoprotein complexes (RNP) such as the RNA-induced silencing complex (RISC). By analyzing small RNA Seq data sets, we identified a sncRNA annotated as piR-hsa-1254, which is likely derived from the 3'-end of 7SL RNA2 (RN7SL2), herein referred to as snc7SL RNA. The 7SL RNA is an abundant long non-coding RNA polymerase III transcript and serves as structural component of the cytoplasmic signal recognition particle (SRP). To evaluate a potential functional role of snc7SL RNA, we aimed to define its cellular localization by live cell imaging. Therefore, a Molecular Beacon (MB)-based method was established to compare the subcellular localization of snc7SL RNA with its precursor 7SL RNA. We designed and characterized several MBs in vitro and tested those by live cell fluorescence microscopy. Using a multiplex approach, we show that 7SL RNA localizes mainly to the endoplasmic reticulum (ER), as expected for the SRP, whereas snc7SL RNA predominately localizes to the nucleus. This finding suggests a fundamentally different function of 7SL RNA and its derivate snc7SL RNA.
Collapse
Affiliation(s)
- Nina Weigert
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Anna-Lena Schweiger
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Jonas Gross
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Marie Matthes
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Selim Corbacioglu
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Gunhild Sommer
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| | - Tilman Heise
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053 Regensburg, Germany
| |
Collapse
|
17
|
Huang D, Deng H, Zhou J, Wang GA, Lei Q, Guo C, Peng W, Liang P, Shen C, Ying B, Li W, Li F. Mismatch-Guided Deoxyribonucleic Acid Assembly Enables Ultrasensitive and Multiplex Detection of Low-Allele-Fraction Variants in Clinical Samples. J Am Chem Soc 2023; 145:20412-20421. [PMID: 37651106 DOI: 10.1021/jacs.3c05879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Somatic mutations are important signatures in clinical cancer treatment. However, accurate detection of rare somatic mutations with low variant-allele frequencies (VAFs) in clinical samples is challenging because of the interference caused by high concentrations of wild-type (WT) sequences. Here, we report a post amplification SNV-specific DNA assembly (PANDA) technology that eliminates the high concentration pressure caused by WT through a mismatch-guided DNA assembly and enables the ultrasensitive detection of cancer mutations with VAFs as low as 0.1%. Because it generates an assembly product that only exposes a single-stranded domain with the minimal length for signal readout and thus eliminates possible interferences from secondary structures and cross-interactions among sequences, PANDA is highly versatile and expandable for multiplex testing. With ultrahigh sensitivity, PANDA enabled the quantitative analysis of EGFR mutations in cell-free DNA of 68 clinical plasma samples and four pleuroperitoneal fluid samples, with test results highly consistent with NGS deep sequencing. Compared to digital PCR, PANDA returned fewer false negatives and ambiguous cases of clinical tests. Meanwhile, it also offers much lower upfront instrumental and operational costs. The multiplexity was demonstrated by developing a 3-plex PANDA for the simultaneous analysis of three EGFR mutations in 54 pairs of tumor and the adjacent noncancerous tissue samples collected from lung cancer patients. Because of the ultrahigh sensitivity, multiplexity, and simplicity, we anticipate that PANDA will find wide applications for analyzing clinically important rare mutations in diverse devastating diseases.
Collapse
Affiliation(s)
- Dan Huang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610061, P. R. China
| | - Hui Deng
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guan A Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610061, P. R. China
| | - Qian Lei
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Chen Guo
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610061, P. R. China
| | - Wanting Peng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610061, P. R. China
| | - Peng Liang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Chenlan Shen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Feng Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610061, P. R. China
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
18
|
Han EJ, Lee SR, Townsend CA, Seyedsayamdost MR. Targeted Discovery of Cryptic Enediyne Natural Products via FRET-Coupled High-Throughput Elicitor Screening. ACS Chem Biol 2023; 18:1854-1862. [PMID: 37463302 PMCID: PMC11062413 DOI: 10.1021/acschembio.3c00281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Enediyne antibiotics are a striking family of DNA-cleaving natural products with high degrees of cytotoxicity and structural complexity. Microbial genome sequences, which have recently accumulated, point to an untapped trove of "cryptic" enediynes. Most of the cognate biosynthetic gene clusters (BGCs) are sparingly expressed under standard growth conditions, making it difficult to characterize their products. Herein, we report a fluorescence-based DNA cleavage assay coupled with high-throughput elicitor screening for the rapid, targeted discovery of cryptic enediyne metabolites. We applied the approach to Streptomyces clavuligerus, which harbors two such BGCs with unknown products, identified steroids as effective elicitors, and characterized 10 cryptic enediyne-derived natural products, termed clavulynes A-J with unusual carbonate and terminal olefin functionalities, with one of these congeners matching the recently reported jejucarboside. Our results contribute to the growing repertoire of enediynes and provide a blueprint for identifying additional ones in the future.
Collapse
Affiliation(s)
- Esther J Han
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Seoung Rak Lee
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Craig A Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
19
|
Bató C, Szabó I, Bánóczi Z. Enhancing Cell Penetration Efficiency of Cyclic Oligoarginines Using Rigid Scaffolds. Pharmaceutics 2023; 15:1736. [PMID: 37376184 DOI: 10.3390/pharmaceutics15061736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Delivering therapeutic agents into cells has always been a major challenge. In recent years, cyclization emerged as a tool for designing CPPs to increase their internalization and stability. Cyclic ring(s) can protect the peptide from enzymatic degradation, so cyclic peptides remain intact. Therefore they can be good carrier molecules. In this work, the preparation and investigation of efficient cyclic CPPs are described. Different oligoarginines were designed to conjugate with rigid aromatic scaffolds or form disulfide bonds. The reaction between the scaffolds and the peptides forms stable thioether bonds, constraining the peptide into a cyclic structure. The constructs presented very efficient internalization on cancerous cell lines. Our peptides use more than one endocytic pathway for cellular uptake. In this way, short peptides, which can compete with the penetration of well-known CPPs such as octaarginine (Arg8), may be synthesized through cyclization.
Collapse
Affiliation(s)
- Csaba Bató
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Ildikó Szabó
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
20
|
Xu Y, Mi W. Chiral-induced spin selectivity in biomolecules, hybrid organic-inorganic perovskites and inorganic materials: a comprehensive review on recent progress. MATERIALS HORIZONS 2023; 10:1924-1955. [PMID: 36989068 DOI: 10.1039/d3mh00024a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The two spin states of electrons are degenerate in nonmagnetic materials. The chiral-induced spin selectivity (CISS) effect provides a new strategy for manipulating electron's spin and a deeper understanding of spin selective processes in organisms. Here, we summarize the important discoveries and recent experiments performed during the development of the CISS effect, analyze the spin polarized transport in various types of materials and discuss the mechanisms, theoretical calculations, experimental techniques and biological significance of the CISS effect. The first part of this review concisely presents a general overview of the discoveries and importance of the CISS effect, laws and underlying mechanisms of which are discussed in the next section, where several classical experimental methods for detecting the CISS effect are also introduced. Based on the organic and inorganic properties of materials, the CISS effect of organic biomolecules, hybrid organic-inorganic perovskites and inorganic materials are reviewed in the third, fourth and fifth sections, especially the chiral transfer mechanism of hybrid materials and the relationship between the CISS effect and life science. In addition, conclusions and prospective future of the CISS effect are outlined at the end, where the development and applications of the CISS effect in spintronics are directly described, which is helpful for designing promising chiral spintronic devices and understanding the natural status of chirality from a new perspective.
Collapse
Affiliation(s)
- Yingdan Xu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China.
| | - Wenbo Mi
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
21
|
Flynn CD, Chang D, Mahmud A, Yousefi H, Das J, Riordan KT, Sargent EH, Kelley SO. Biomolecular sensors for advanced physiological monitoring. NATURE REVIEWS BIOENGINEERING 2023; 1:1-16. [PMID: 37359771 PMCID: PMC10173248 DOI: 10.1038/s44222-023-00067-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 06/28/2023]
Abstract
Body-based biomolecular sensing systems, including wearable, implantable and consumable sensors allow comprehensive health-related monitoring. Glucose sensors have long dominated wearable bioanalysis applications owing to their robust continuous detection of glucose, which has not yet been achieved for other biomarkers. However, access to diverse biological fluids and the development of reagentless sensing approaches may enable the design of body-based sensing systems for various analytes. Importantly, enhancing the selectivity and sensitivity of biomolecular sensors is essential for biomarker detection in complex physiological conditions. In this Review, we discuss approaches for the signal amplification of biomolecular sensors, including techniques to overcome Debye and mass transport limitations, and selectivity improvement, such as the integration of artificial affinity recognition elements. We highlight reagentless sensing approaches that can enable sequential real-time measurements, for example, the implementation of thin-film transistors in wearable devices. In addition to sensor construction, careful consideration of physical, psychological and security concerns related to body-based sensor integration is required to ensure that the transition from the laboratory to the human body is as seamless as possible.
Collapse
Affiliation(s)
- Connor D. Flynn
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Dingran Chang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada
| | - Alam Mahmud
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
| | - Hanie Yousefi
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
| | - Jagotamoy Das
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Kimberly T. Riordan
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Edward H. Sargent
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
- Department of Electrical and Computer Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
| | - Shana O. Kelley
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, IL USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL USA
| |
Collapse
|
22
|
Aran GC, Bayraç C. Simultaneous Dual-Sensing Platform Based on Aptamer-Functionalized DNA Hydrogels for Visual and Fluorescence Detection of Chloramphenicol and Aflatoxin M1. Bioconjug Chem 2023; 34:922-933. [PMID: 37080904 DOI: 10.1021/acs.bioconjchem.3c00130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
In this study, a chloramphenicol and aflatoxin M1 aptamer-functionalized DNA hydrogel was designed for the simultaneous detection of chloramphenicol and aflatoxin M1 for the first time. The acrydite-modified chloramphenicol aptamer sequence was used to synthesize the DNA hydrogel and for visual detection of chloramphenicol depending on the gel-to-sol transition of the target-responsive DNA hydrogel. The DNA hydrogel formulation was set as follows: 60% of each linear polyacrylamide-DNA conjugate and 40% of acrylamide and chloramphenicol aptamer/DNA strand-1 at a molar ratio of 1:1, and the lowest concentration of chloramphenicol leading to gel dissociation was 1.0 nM at 25 °C. Furthermore, the formalized aptamer-functionalized DNA hydrogel was used to detect aflatoxin M1 by measuring the recovery of the fluorescence signal that was quenched when the FAM-labeled aflatoxin M1 aptamer and BHQ1-labeled DNA strand-2 were hybridized to form a double-stranded DNA in the network of hydrogel. The detection platform was successfully applied to the detection of chloramphenicol and aflatoxin M1, both in aqueous solution and in milk. The aptamer-functionalized DNA hydrogel had detection (LOD) and quantification limits (LOQ) for aflatoxin M1 as 1.7 and 5.2 nM, respectively. Using two aptamer sequences with high affinity and specificity, the dual-sensing platform based on the DNA hydrogel achieved higher selectivity for chloramphenicol and aflatoxin M1, which demonstrated its potential as a reliable simultaneous detection platform against two different targets for monitoring food safety.
Collapse
Affiliation(s)
- Gülnur Camızcı Aran
- Department of Bioengineering, Karamanoğlu Mehmetbey University, Karaman 70100, Turkey
| | - Ceren Bayraç
- Department of Bioengineering, Karamanoğlu Mehmetbey University, Karaman 70100, Turkey
| |
Collapse
|
23
|
Park G, Ettles C, Charles M, Hudson RH. Nucleobase Intrinsic Quenchers: A Fluorescence Off Switch. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
24
|
Prajapati GK, Kumar A, Wany A, Pandey DM. Molecular Beacon Probe (MBP)-Based Real-Time PCR. Methods Mol Biol 2023; 2638:273-287. [PMID: 36781649 DOI: 10.1007/978-1-0716-3024-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
In the advancement of molecular biology techniques, several probe-based techniques, like molecular beacon probe (MBP) assay, TaqMan probe, and minor groove binder (MGB) probe assay, have been reported to identify specific sequences through real-time polymerase chain reaction (PCR). All probe-based methods are more sensitive than the conventional PCR for the detection and quantification of target genes. MBP is a hydrolysis probe that emits fluorescence when getting the specific sequences on the gene. Here, we describe the application of MBP for the identification of the motif sequences present in the promoters of differentially expressed genes.
Collapse
Affiliation(s)
- Gopal Kumar Prajapati
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.,R & D Biologics Division, Promea Therapeutics Pvt Ltd, Sultanpur, Hyderabad, India
| | - Ashutosh Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.,Department of Biotechnology, School of Sciences, PP Savani University, Kosamba, Surat, Gujarat, India
| | - Aakanksha Wany
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.,Department of Biotechnology, School of Sciences, PP Savani University, Kosamba, Surat, Gujarat, India
| | - Dev Mani Pandey
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
25
|
Chrysostomou AC, Aristokleous A, Rodosthenous JH, Christodoulou C, Stathi G, Kostrikis LG. Detection of Circulating SARS-CoV-2 Variants of Concern (VOCs) Using a Multiallelic Spectral Genotyping Assay. Life (Basel) 2023; 13:life13020304. [PMID: 36836661 PMCID: PMC9960118 DOI: 10.3390/life13020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Throughout the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continuously evolved, resulting in new variants, some of which possess increased infectivity, immune evasion, and virulence. Such variants have been denoted by the World Health Organization as variants of concern (VOC) because they have resulted in an increased number of cases, posing a strong risk to public health. Thus far, five VOCs have been designated, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529), including their sublineages. Next-generation sequencing (NGS) can produce a significant amount of information facilitating the study of variants; however, NGS is time-consuming and costly and not efficient during outbreaks, when rapid identification of VOCs is urgently needed. In such periods, there is a need for fast and accurate methods, such as real-time reverse transcription PCR in combination with probes, which can be used for monitoring and screening of the population for these variants. Thus, we developed a molecular beacon-based real-time RT-PCR assay according to the principles of spectral genotyping. This assay employs five molecular beacons that target ORF1a:ΔS3675/G3676/F3677, S:ΔH69/V70, S:ΔE156/F157, S:ΔΝ211, S:ins214EPE, and S:ΔL242/A243/L244, deletions and an insertion found in SARS-CoV-2 VOCs. This assay targets deletions/insertions because they inherently provide higher discrimination capacity. Here, the design process of the molecular beacon-based real-time RT-PCR assay for detection and discrimination of SARS-CoV-2 is presented, and experimental testing using SARS-CoV-2 VOC samples from reference strains (cultured virus) and clinical patient samples (nasopharyngeal samples), which have been previously classified using NGS, were evaluated. Based on the results, it was shown that all molecular beacons can be used under the same real-time RT-PCR conditions, consequently improving the time and cost efficiency of the assay. Furthermore, this assay was able to confirm the genotype of each of the tested samples from various VOCs, thereby constituting an accurate and reliable method for VOC detection and discrimination. Overall, this assay is a valuable tool that can be used for screening and monitoring the population for VOCs or other emerging variants, contributing to limiting their spread and protecting public health.
Collapse
Affiliation(s)
| | - Antonia Aristokleous
- Department of Biological Sciences, University of Cyprus, Aglantzia, 2109 Nicosia, Cyprus
| | | | | | - Georgia Stathi
- Department of Biological Sciences, University of Cyprus, Aglantzia, 2109 Nicosia, Cyprus
| | - Leondios G. Kostrikis
- Department of Biological Sciences, University of Cyprus, Aglantzia, 2109 Nicosia, Cyprus
- Cyprus Academy of Sciences, Letters, and Arts, 60-68 Phaneromenis Street, 1011 Nicosia, Cyprus
- Correspondence: ; Tel.: +35-72-289-2885
| |
Collapse
|
26
|
Yousef M, Szabó I, Murányi J, Illien F, Soltész D, Bató C, Tóth G, Batta G, Nagy P, Sagan S, Bánóczi Z. Cell-Penetrating Dabcyl-Containing Tetraarginines with Backbone Aromatics as Uptake Enhancers. Pharmaceutics 2022; 15:pharmaceutics15010141. [PMID: 36678772 PMCID: PMC9864790 DOI: 10.3390/pharmaceutics15010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Cell-penetrating peptides represent an emerging class of carriers capable of effective cellular delivery. This work demonstrates the preparation and investigation of efficient CPPs. We have already shown that the presence of 4-((4-(dimethylamino)phenyl)azo)benzoic acid (Dabcyl) and Trp greatly increase the uptake of oligoarginines. This work is a further step in that direction. We have explored the possibility of employing unnatural, aromatic amino acids, to mimic Trp properties and effects. The added residues allow the introduction of aromaticity, not as a side-chain group, but rather as a part of the sequence. The constructs presented exceptional internalization on various cell lines, with an evident structure-activity relationship. The CPPs were investigated for their entry mechanisms, and our peptides exploit favorable pathways, yet one of the peptides relies highly on direct penetration. Confocal microscopy studies have shown selectivity towards the cell lines, by showing diffuse uptake in FADU cells, while vesicular uptake takes place in SCC-25 cell line. These highly active CPPs have proved their applicability in cargo delivery by successfully delivering antitumor drugs into MCF-7 and MDA-MB-231 cells. The modifications in the sequences allow the preparation of short yet highly effective constructs able to rival the penetration of well-known CPPs such as octaarginine (Arg8).
Collapse
Affiliation(s)
- Mo’ath Yousef
- Department of Organic Chemistry, Eötvös L. University, 1117 Budapest, Hungary
| | - Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), 1117 Budapest, Hungary
| | - József Murányi
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
- MTA-SE Pathobiochemistry Research Group, 1094 Budapest, Hungary
| | - Françoise Illien
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Dóra Soltész
- Department of Organic Chemistry, Eötvös L. University, 1117 Budapest, Hungary
| | - Csaba Bató
- Department of Organic Chemistry, Eötvös L. University, 1117 Budapest, Hungary
| | - Gabriella Tóth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gyula Batta
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Sandrine Sagan
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Eötvös L. University, 1117 Budapest, Hungary
- Correspondence:
| |
Collapse
|
27
|
Narang A, Marras SAE, Kurepina N, Chauhan V, Shashkina E, Kreiswirth B, Varma-Basil M, Vinnard C, Subbian S. Ultrasensitive Detection of Multidrug-Resistant Mycobacterium tuberculosis Using SuperSelective Primer-Based Real-Time PCR Assays. Int J Mol Sci 2022; 23:ijms232415752. [PMID: 36555395 PMCID: PMC9779475 DOI: 10.3390/ijms232415752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The emergence of drug-resistant tuberculosis is a significant global health issue. The presence of heteroresistant Mycobacterium tuberculosis is critical to developing fully drug-resistant tuberculosis cases. The currently available molecular techniques may detect one copy of mutant bacterial genomic DNA in the presence of about 1-1000 copies of wild-type M. tuberculosis DNA. To improve the limit of heteroresistance detection, we developed SuperSelective primer-based real-time PCR assays, which, by their unique assay design, enable selective and exponential amplification of selected point mutations in the presence of abundant wild-type DNA. We designed SuperSelective primers to detect genetic mutations associated with M. tuberculosis resistance to the anti-tuberculosis drugs isoniazid and rifampin. We evaluated the efficiency of our assay in detecting heteroresistant M. tuberculosis strains using genomic DNA isolated from laboratory strains and clinical isolates from the sputum of tuberculosis patients. Results show that our assays detected heteroresistant mutations with a specificity of 100% in a background of up to 104 copies of wild-type M. tuberculosis genomic DNA, corresponding to a detection limit of 0.01%. Therefore, the SuperSelective primer-based RT-PCR assay is an ultrasensitive tool that can efficiently diagnose heteroresistant tuberculosis in clinical specimens and contributes to understanding the drug resistance mechanisms. This approach can improve the management of antimicrobial resistance in tuberculosis and other infectious diseases.
Collapse
Affiliation(s)
- Anshika Narang
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Salvatore A. E. Marras
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Correspondence: (S.A.E.M.); (S.S.)
| | | | - Varsha Chauhan
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110021, India
| | | | | | - Mandira Varma-Basil
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110021, India
| | | | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Correspondence: (S.A.E.M.); (S.S.)
| |
Collapse
|
28
|
Onukwugha NE, Kang YT, Nagrath S. Emerging micro-nanotechnologies for extracellular vesicles in immuno-oncology: from target specific isolations to immunomodulation. LAB ON A CHIP 2022; 22:3314-3339. [PMID: 35980234 PMCID: PMC9474625 DOI: 10.1039/d2lc00232a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Extracellular vesicles (EVs) have been hypothesized to incorporate a variety of crucial roles ranging from intercellular communication to tumor pathogenesis to cancer immunotherapy capabilities. Traditional EV isolation and characterization techniques cannot accurately and with specificity isolate subgroups of EVs, such as tumor-derived extracellular vesicles (TEVs) and immune-cell derived EVs, and are plagued with burdensome steps. To address these pivotal issues, multiplex microfluidic EV isolation/characterization and on-chip EV engineering may be imperative towards developing the next-generation EV-based immunotherapeutics. Henceforth, our aim is to expound the state of the art in EV isolation/characterization techniques and their limitations. Additionally, we seek to elucidate current work on total analytical system based technologies for simultaneous isolation and characterization and to summarize the immunogenic capabilities of EV subgroups, both innate and adaptive. In this review, we discuss recent state-of-art microfluidic/micro-nanotechnology based EV screening methods and EV engineering methods towards therapeutic use of EVs in immune-oncology. By venturing in this field of EV screening and immunotherapies, it is envisioned that transition into clinical settings can become less convoluted for clinicians.
Collapse
Affiliation(s)
- Nna-Emeka Onukwugha
- Department of Chemical Engineering and Biointerface Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI 48109, USA.
| | - Yoon-Tae Kang
- Department of Chemical Engineering and Biointerface Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI 48109, USA.
| | - Sunitha Nagrath
- Department of Chemical Engineering and Biointerface Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Lin Q, Han G, Fang X, Chen H, Weng W, Kong J. Programmable Analysis of MicroRNAs by Thermus thermophilus Argonaute-Assisted Exponential Isothermal Amplification for Multiplex Detection (TEAM). Anal Chem 2022; 94:11290-11297. [PMID: 35894425 DOI: 10.1021/acs.analchem.2c01945] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The simultaneous analysis of the levels of multiple microRNAs (miRNAs) is critical to the early diagnosis of cancer. However, this analysis is challenging because of the low concentrations of miRNAs and their high sequence homology. Here, we report a general and programmable diagnostic strategy for miRNA analysis: Thermus thermophilus Argonaute (TtAgo)-assisted exponential isothermal amplification for multiplex detection (TEAM). This system combines exponential isothermal amplification (EXPAR), for target amplification, with programmable TtAgo cleavage, for the generation of the reporting signal. The TEAM assay achieved attomolar sensitivity with a rapid turnaround time (30-35 min). Because of the single-nucleotide precision of TtAgo, the system demonstrated robust multiplex capability in the simultaneous detection of four miRNA targets and the classification of let-7 family members. The TEAM assay was superior in differentiating colorectal cancer patients from healthy individuals relative to the conventional EXPAR and reverse transcription polymerase chain reaction (RT-PCR) methods. This tunable and scalable approach is a powerful nucleic acid analysis tool that holds promise in scientific and clinical applications.
Collapse
Affiliation(s)
- Qiuyuan Lin
- Department of Chemistry, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Guobin Han
- Department of Chemistry, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Xueen Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Hui Chen
- Department of Chemistry, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| | - Wenhao Weng
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, 450 Tengyue Road, 200090 Shanghai, China
| | - Jilie Kong
- Department of Chemistry, Fudan University, 2005 Songhu Road, 200438 Shanghai, China
| |
Collapse
|
30
|
Chen L, Eriksson A, Weström S, Pandzic T, Lehmann S, Cavelier L, Landegren U. Ultra-sensitive monitoring of leukemia patients using superRCA mutation detection assays. Nat Commun 2022; 13:4033. [PMID: 35821208 PMCID: PMC9276831 DOI: 10.1038/s41467-022-31397-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
Rare tumor-specific mutations in patient samples serve as excellent markers to monitor the course of malignant disease and responses to therapy in clinical routine, and improved assay techniques are needed for broad adoption. We describe herein a highly sensitive and selective molecule amplification technology - superRCA assays - for rapid and highly specific detection of DNA sequence variants present at very low frequencies in DNA samples. Using a standard flow cytometer we demonstrate precise, ultra-sensitive detection of single-nucleotide mutant sequences from malignant cells against up to a 100,000-fold excess of DNA from normal cells in either bone marrow or peripheral blood, to follow the course of patients treated for acute myeloid leukemia (AML). We also demonstrate that sequence variants located in a high-GC region may be sensitively detected, and we illustrate the potential of the technology for early detection of disease recurrence as a basis for prompt change of therapy.
Collapse
Affiliation(s)
- Lei Chen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-752 37, Uppsala, Sweden. .,Rarity Bioscience AB, SE-752 37, Uppsala, Sweden.
| | - Anna Eriksson
- Department of Medical Sciences, Uppsala University, SE-751 05, Uppsala, Sweden
| | - Simone Weström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-752 37, Uppsala, Sweden
| | - Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-752 37, Uppsala, Sweden
| | - Sören Lehmann
- Department of Medical Sciences, Uppsala University, SE-751 05, Uppsala, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-752 37, Uppsala, Sweden
| | - Ulf Landegren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-752 37, Uppsala, Sweden.
| |
Collapse
|
31
|
Ren L, Ming Z, Zhang W, Liao Y, Tang X, Yan B, Lv H, Xiao X. Shared-probe system: An accurate, low-cost and general enzyme-assisted DNA probe system for detection of genetic mutation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Takehana S, Yang W, Tabata Y. Potential Method of Autophagy Imaging with Cationized Gelatin Nanospheres Incorporating Molecular Beacon. ACS APPLIED BIO MATERIALS 2022; 5:2965-2975. [PMID: 35609115 DOI: 10.1021/acsabm.2c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of this research is to develop an imaging method with cationized gelatin nanospheres incorporating molecular beacon (cGNSMB) to visualize an autophagy activity in living cells. Cationized gelatin nanospheres (cGNS) were prepared by the conventional coacervation method, and then molecular beacon (MB) was incorporated into them. The cGNSMB prepared were internalized into cells at a high efficiency. In this study, a starvation medium of serum and amino acids-free was used to induce autophagy. The autophagy activity was confirmed by an immunofluorescence staining for microtubule-associated proteins light chain 3B (LC3B) of an autophagy specific protein. With the autophagy induction time, the number of LC3 fluorescent dots increased, which indicated an increased autophagy activity. As the autophagy-related genes, sequestosome 1 (SQSTM1) and cathepsin F (CTSF), which up-regulate after autophagy induction, were chosen as the targets of cGNSMB. The fluorescence intensity of cGNSMB targeting to SQSTM1 and CTSF increased with the starvation treatment time, which well corresponded with the gene expression results. When applied to cells in different autophagy conditions, the cGNSMB visualized the autophagy activity corresponding with the autophagy condition of cells. From the results obtained, it was concluded that the cGNSMB provide a promising method to visualize the autophagy of cells. The advantage of cGNSMB visualization is to obtain the temporal and spatial information without destroying sample cells.
Collapse
Affiliation(s)
- Sho Takehana
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, Kawahara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Wenxuan Yang
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, Kawahara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, Kawahara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
33
|
Dikdan RJ, Marras SAE, Field AP, Brownlee A, Cironi A, Hill DA, Tyagi S. Multiplex PCR Assays for Identifying all Major Severe Acute Respiratory Syndrome Coronavirus 2 Variants. J Mol Diagn 2022; 24:309-319. [PMID: 35121139 PMCID: PMC8806714 DOI: 10.1016/j.jmoldx.2022.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
Variants of concern (VOC) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including alpha, beta, gamma, delta, and omicron, threaten to prolong the pandemic, leading to more global morbidity and mortality. Genome sequencing is the mainstay of tracking the evolution of the virus, but is costly, slow, and not easily accessible. Multiplex quantitative RT-PCR assays for SARS-CoV-2 have been developed that identify all VOCs as well as other mutations of interest in the viral genome, nine mutations in total, using single-nucleotide discriminating molecular beacons. The presented variant molecular beacon assays showed a limit of detection of 50 copies of viral RNA, with 100% specificity. Twenty-six SARS-CoV-2-positive patient samples were blinded and tested using a two-tube assay. When testing patient samples, the assay was in full agreement with results from deep sequencing with a sensitivity and specificity of 100% (26 of 26). We have used our design methodology to rapidly design an assay that detects the new omicron variant. This omicron assay was used to accurately identify this variant in 17 of 33 additional patient samples. These quantitative RT-PCR assays identify all currently circulating VOCs of SARS-CoV-2, as well as other important mutations in the spike protein coding sequence. These assays can be easily implemented on broadly available five-color thermal cyclers and will help track the spread of these variants.
Collapse
Affiliation(s)
- Ryan J Dikdan
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey.
| | - Salvatore A E Marras
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey; Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | | | | | | | | | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey; Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey
| |
Collapse
|
34
|
Vargas DY, Tyagi S, Marras SA, Moerzinger P, Abin-Carriquiry JA, Cuello M, Rodriguez C, Martinez A, Makhnin A, Farina A, Patel C, Chuang TL, Li BT, Kramer FR. Multiplex SuperSelective PCR Assays for the Detection and Quantitation of Rare Somatic Mutations in Liquid Biopsies. J Mol Diagn 2022; 24:189-204. [PMID: 34954118 PMCID: PMC8961470 DOI: 10.1016/j.jmoldx.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/11/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022] Open
Abstract
SuperSelective primers, by virtue of their unique design, enable the simultaneous identification and quantitation of inherited reference genes and rare somatic mutations in routine multiplex PCR assays, while virtually eliminating signals from abundant wild-type sequences closely related to the target mutations. These assays are sensitive, specific, rapid, and low cost, and can be performed in widely available spectrofluorometric thermal cyclers. Herein, we provide examples of SuperSelective PCR assays that target eight different somatic EGFR mutations, irrespective of whether they occur in the same codon, occur at separate sites within the same exon, or involve deletions. In addition, we provide examples of SuperSelective PCR assays that detect specific EGFR mutations in circulating tumor DNA present in the plasma of liquid biopsies obtained from patients with non-small-cell lung cancer. The results suggest that multiplex SuperSelective PCR assays may enable the choice, and subsequent modification, of effective targeted therapies for the treatment of an individual's cancer, utilizing frequent noninvasive liquid biopsies.
Collapse
Affiliation(s)
- Diana Y. Vargas
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Salvatore A.E. Marras
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | | | | | - Mauricio Cuello
- Servicio de Oncología Clínica, Hospital de Clínicas, Montevideo, Uruguay
| | - Clara Rodriguez
- Servicio de Oncología Clínica, Hospital de Clínicas, Montevideo, Uruguay
| | | | - Alex Makhnin
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrea Farina
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chintan Patel
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tuan L. Chuang
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bob T. Li
- Memorial Sloan Kettering Cancer Center, New York, New York,Weill-Cornell Medicine, New York, New York,Address correspondence to Fred R. Kramer, Ph.D., Public Health Research Institute, 225 Warren St., Newark, NJ 07103; or Bob T. Li, M.D., Thoracic Liquid Biopsy Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065.
| | - Fred R. Kramer
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey,Address correspondence to Fred R. Kramer, Ph.D., Public Health Research Institute, 225 Warren St., Newark, NJ 07103; or Bob T. Li, M.D., Thoracic Liquid Biopsy Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065.
| |
Collapse
|
35
|
Chen Y. Recent progress in fluorescent aptasensors for the detection of aflatoxin B1 in food. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:86-96. [PMID: 34897320 DOI: 10.1039/d1ay01714d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aflatoxin B1 pollution is one of the most critical issues of food safety and has been categorized as a group I carcinogen by the International Agency for Research on Cancer. Aflatoxin B1 exists in various foods and feedstuff products and can be produced and contaminate food products in all processes, including growth, harvest, storage, or processing. Therefore, it is of great value for detecting and on-site monitoring aflatoxin B1. Aptamers are short single-stranded DNA or RNA obtained from the nucleic acid molecular library through SELEX. With advantages of high specificity, large affinity, and easy modification, aptasensors have become popular in a wide range of promising applications. This review focuses on recent advances on fluorescent aptamer sensors for the detection of aflatoxin B1, including their design strategies, working mechanisms, and applications to on-site detection. Finally, the current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
36
|
Cui H, Fang J, Sun M, Liu Z, Li Z, Liu K, Liu M. Color-changing Fluorescent DNA Probe Containing Solvatochromic Dansyl-nucleoside Surrogate for Sensing Local Variation of DNA Duplex. Bioorg Med Chem Lett 2022; 59:128551. [DOI: 10.1016/j.bmcl.2022.128551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/27/2022]
|
37
|
Wan Y, Chai Q, Zou Y, Mao G, Chen J. A versatile fluorescent nanobeacon lighted by DNA-templated copper nanoparticles and the application in isothermal amplification detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120102. [PMID: 34198116 DOI: 10.1016/j.saa.2021.120102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
In this work, an environmentally-friendly and versatile nanobeacon was constructed by utilizing DNA-templated copper nanoparticles (CuNPs) as fluorescence signal source. As the key component of the nanobeacon, a hairpin DNA was designed to contain four segments: two segments for CuNPs template sequence, a target recognition segment and a blocking segment. At room temperature, the target recognition segment partly hybridizes with the blocking segment and thus prohibits the formation of double stranded DNA template, so that no CuNPs can be generated on the hairpin DNA. While a target is introduced, the specific binding of target with recognition sequence triggers off the conformational transformation of the hairpin DNA, which contributes to the formation of the CuNPs template. As a result, the in-situ generation of CuNPs gives birth to the fluorescence signal readout that can be used to identify the target. By reasonably varying the recognition sequence within hairpin DNA, a series of nanobeacons in response to corresponding targets, such as DNA, microRNA, thrombin, and ATP, were put forward with satisfactory sensitivity and selectivity. Moreover, this nanobeacon was also integrated with the strategy of enzyme-assisted target-recycling to realize signal amplification and ultrasensitive detection, which further demonstrated the versatility of the nanobeacon. This novel nanobeacon is expected to be a promising alternative to classical dye-labeled molecular beacon and provide new perspective on ultrasensitive fluorescence sensing.
Collapse
Affiliation(s)
- Yuqi Wan
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Qingli Chai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Yanyun Zou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Guobin Mao
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Jinyang Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, China.
| |
Collapse
|
38
|
Liu H, You Y, Zhu Y, Zheng H. Recent advances in the exonuclease III-assisted target signal amplification strategy for nucleic acid detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5103-5119. [PMID: 34664562 DOI: 10.1039/d1ay01275d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The detection of nucleic acids has become significantly important in molecular diagnostics, gene therapy, mutation analysis, forensic investigations and biomedical development, and so on. In recent years, exonuclease III (Exo III) as an enzyme in the 3'-5' exonuclease family has evolved as a frequently used technique for signal amplification of low level DNA target detection. Different from the traditional target amplification strategies, the Exo III-assisted amplification strategy has been used for target DNA detection through directly amplifying the amounts of signal reagents. The Exo III-assisted amplification strategy has its unique advantages and characters, because the character of non-specific recognition of Exo III can overcome the limitation of a target-to-probe ratio of 1 : 1 in the traditional nucleic acid hybridization assay and acquire higher sensitivity. In this review, we selectively discuss the recent advances in the Exo III-assisted amplification strategy, including the amplification strategy integrated with nanomaterials, biosensors, hairpin probes and other nucleic acid detection methods. We also discuss the strengths and limitations of each strategy and methods to overcome the limitations.
Collapse
Affiliation(s)
- Hongyu Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Yuhao You
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Youzhuo Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| |
Collapse
|
39
|
Yousef M, Szabó I, Biri‐Kovács B, Szeder B, Illien F, Sagan S, Bánóczi Z. Modification of Short Non‐Permeable Peptides to Increase Cellular Uptake and Cytostatic Activity of Their Conjugates. ChemistrySelect 2021. [DOI: 10.1002/slct.202103150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mo'ath Yousef
- Department of Organic Chemistry Eötvös L. University Budapest Hungary
| | - Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry Eötvös Loránd Research Network (ELKH) Budapest Hungary
| | - Beáta Biri‐Kovács
- MTA-ELTE Research Group of Peptide Chemistry Eötvös Loránd Research Network (ELKH) Budapest Hungary
| | - Bálint Szeder
- Research Centre for Natural Sciences Institute of Enzymology Budapest Hungary
| | - Françoise Illien
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Sandrine Sagan
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Zoltán Bánóczi
- Department of Organic Chemistry Eötvös L. University Budapest Hungary
| |
Collapse
|
40
|
Fluorescent functional nucleic acid: Principles, properties and applications in bioanalyzing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116292] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Shen L, Wang P, Ke Y. DNA Nanotechnology-Based Biosensors and Therapeutics. Adv Healthc Mater 2021; 10:e2002205. [PMID: 34085411 DOI: 10.1002/adhm.202002205] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Over the past few decades, DNA nanotechnology engenders a vast variety of programmable nanostructures utilizing Watson-Crick base pairing. Due to their precise engineering, unprecedented programmability, and intrinsic biocompatibility, DNA nanostructures cannot only interact with small molecules, nucleic acids, proteins, viruses, and cancer cells, but also can serve as nanocarriers to deliver different therapeutic agents. Such addressability innate to DNA nanostructures enables their use in various fields of biomedical applications such as biosensors and cancer therapy. This review is begun with a brief introduction of the development of DNA nanotechnology, followed by a summary of recent applications of DNA nanostructures in biosensors and therapeutics. Finally, challenges and opportunities for practical applications of DNA nanotechnology are discussed.
Collapse
Affiliation(s)
- Luyao Shen
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30322 USA
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Pengfei Wang
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30322 USA
| |
Collapse
|
42
|
Zhang Z, Liu N, Zhang Z, Xu D, Ma S, Wang X, Zhou T, Zhang G, Wang F. Construction of Aptamer-Based Molecular Beacons with Varied Blocked Structures and Targeted Detection of Thrombin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8738-8745. [PMID: 34270267 DOI: 10.1021/acs.langmuir.1c00994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A kind of blocked aptamer-functionalized molecular beacon (MB) was designed as fluorescence sensors to detect thrombins by binding-induced "turn on" structural transformation. Three MBs named MB(8 + 8), MB(15 + 8), and MB(15 + 6) consisted of two single-stranded oligonucleotides. One long single-stranded oligonucleotide (abbreviated as SS) contained a thrombin aptamer sequence and was modified with a fluorescence group and quenching group on each end side. Another short single-stranded oligonucleotide (written as cDNA) was partially complementary to the long SS. It was interesting to find that the complementary sequence length of cDNA greatly influenced the structure of the MBs. The construction of MB experiments proved that MB(8 + 8) and MB(15 + 8) could form the quenching MBs but MB(15 + 6) could not. MB(8 + 8) was composed of a SS strand paired with a complementary cDNA(8 + 8), which was called one-to-one combination, while MB(15 + 8) was two-to-two combination and MB(15 + 6) was one-to-two combination. When the ratio of SS and cDNA (15 + 8) was 1:1, the quenching efficiency reached maximum. But with the molar ratio of SS and cDNA(8 + 8) increasing, the quenching efficiency increased continuously. Under the optimal conditions that we studied, the detection limit of thrombin by MB(8 + 8) and MB(15 + 8) was 0.19 and 1.2 nM, respectively. In addition, the assay proved to be selective, and the average recovery of thrombin detected by MB(8 + 8) and MB(15 + 8) in diluted serum was 95.4 and 94.5%, respectively.
Collapse
Affiliation(s)
- Zhiqing Zhang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Nana Liu
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Zichen Zhang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Dongyan Xu
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Shuai Ma
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiufeng Wang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Ting Zhou
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Guodong Zhang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Fang Wang
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
43
|
Mancuso CP, Lu ZX, Qian J, Boswell SA, Springer M. A Semi-Quantitative Isothermal Diagnostic Assay Utilizing Competitive Amplification. Anal Chem 2021; 93:9541-9548. [PMID: 34180655 PMCID: PMC9837715 DOI: 10.1021/acs.analchem.1c01576] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Quantitative diagnostics that are rapid, inexpensive, sensitive, robust, and field-deployable are needed to contain the spread of infectious diseases and inform treatment strategies. While current gold-standard techniques are highly sensitive and quantitative, they are slow and require expensive equipment. Conversely, current rapid field-deployable assays available provide essentially binary information about the presence of the target analyte, not a quantitative measure of concentration. Here, we report the development of a molecular diagnostic test [quantitative recombinase polymerase amplification (qRPA)] that utilizes competitive amplification during a recombinase polymerase amplification (RPA) assay to provide semi-quantitative information on a target nucleic acid. We demonstrate that qRPA can quantify DNA, RNA, and viral titers in HIV and COVID-19 patient samples and that it is more robust to environmental perturbations than traditional RPA. These features make qRPA potentially useful for at-home testing to monitor the progress of viral infections or other diseases.
Collapse
Affiliation(s)
| | | | | | - Sarah A. Boswell
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States,Massachusetts Consortium on Pathogen Readiness, Boston, Massachusetts 20115, United States
| |
Collapse
|
44
|
Poly(A)+ Sensing of Hybridization-Sensitive Fluorescent Oligonucleotide Probe Characterized by Fluorescence Correlation Methods. Int J Mol Sci 2021; 22:ijms22126433. [PMID: 34208525 PMCID: PMC8234900 DOI: 10.3390/ijms22126433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
Ribonucleic acid (RNA) plays an important role in many cellular processes. Thus, visualizing and quantifying the molecular dynamics of RNA directly in living cells is essential to uncovering their role in RNA metabolism. Among the wide variety of fluorescent probes available for RNA visualization, exciton-controlled hybridization-sensitive fluorescent oligonucleotide (ECHO) probes are useful because of their low fluorescence background. In this study, we apply fluorescence correlation methods to ECHO probes targeting the poly(A) tail of mRNA. In this way, we demonstrate not only the visualization but also the quantification of the interaction between the probe and the target, as well as of the change in the fluorescence brightness and the diffusion coefficient caused by the binding. In particular, the uptake of ECHO probes to detect mRNA is demonstrated in HeLa cells. These results are expected to provide new insights that help us better understand the metabolism of intracellular mRNA.
Collapse
|
45
|
Harmon NM, Huang X, Hsiao CHC, Wiemer AJ, Wiemer DF. Incorporation of a FRET pair within a phosphonate diester. Bioorg Chem 2021; 114:105048. [PMID: 34126576 DOI: 10.1016/j.bioorg.2021.105048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Cell-cleavable protecting groups are an effective tactic for construction of biological probes because such compounds can improve problems with instability, solubility, and cellular uptake. Incorporation of fluorescent groups in the protecting groups may afford useful probes of cellular functions, especially for payloads containing phosphonates that would be highly charged if not protected, but little is known about the steric or electronic factors that impede release of the payload. In this report we present a strategy for the synthesis of a coumarin fluorophore and a 4-((4-(dimethylamino)phenyl)diazenyl)benzoic acid (DABCYL) ester chromophore incorporated as a FRET pair within a single phosphonate. Such compounds were designed to deliver a BTN3A1 ligand payload to its intracellular receptor. Both final products and some synthetic intermediates were evaluated for their ability to undergo metabolic activation in γδ T cell functional assays, and for their photophysical properties by spectrophotometry. One phosphonate bearing a DABCYL acyloxyester and a novel tyramine-linked coumarin fluorophore exhibited strong, rapid, and potent cellular activity for γδ T cell stimulation and also showed FRET interactions. This strategy demonstrates that bioactivatable phosphonates containing FRET pairs can be utilized to develop probes to monitor cellular uptake of otherwise charged payloads.
Collapse
Affiliation(s)
- Nyema M Harmon
- Department of Chemistry, The University of Iowa, Iowa City, IA 52245, United States
| | - Xueting Huang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States
| | | | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, United States
| | - David F Wiemer
- Department of Chemistry, The University of Iowa, Iowa City, IA 52245, United States; Department of Pharmacology, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
46
|
Szabó I, Illien F, Dókus LE, Yousef M, Baranyai Z, Bősze S, Ise S, Kawano K, Sagan S, Futaki S, Hudecz F, Bánóczi Z. Influence of the Dabcyl group on the cellular uptake of cationic peptides: short oligoarginines as efficient cell-penetrating peptides. Amino Acids 2021; 53:1033-1049. [PMID: 34032919 PMCID: PMC8241751 DOI: 10.1007/s00726-021-03003-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022]
Abstract
Cell-penetrating peptides (CPPs) are promising delivery vehicles. These short peptides can transport wide range of cargos into cells, although their usage has often limitations. One of them is the endosomatic internalisation and thus the vesicular entrapment. Modifications which increases the direct delivery into the cytosol is highly researched area. Among the oligoarginines the longer ones (n > 6) show efficient internalisation and they are well-known members of CPPs. Herein, we describe the modification of tetra- and hexaarginine with (4-((4-(dimethylamino)phenyl)azo)benzoyl) (Dabcyl) group. This chromophore, which is often used in FRET system increased the internalisation of both peptides, and its effect was more outstanding in case of hexaarginine. The modified hexaarginine may enter into cells more effectively than octaarginine, and showed diffuse distribution besides vesicular transport already at low concentration. The attachment of Dabcyl group not only increases the cellular uptake of the cell-penetrating peptides but it may affect the mechanism of their internalisation. Their conjugates with antitumor drugs were studied on different cells and showed antitumor activity.
Collapse
Affiliation(s)
- Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös L. University, Budapest, Hungary
| | - Françoise Illien
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005, Paris, France
| | - Levente E Dókus
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös L. University, Budapest, Hungary
| | - Mo'ath Yousef
- Department of Organic Chemistry, Eötvös L. University, Pázmány P. Setany 1/A, Budapest, 1117, Hungary
| | - Zsuzsa Baranyai
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös L. University, Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös L. University, Budapest, Hungary
| | - Shoko Ise
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kenichi Kawano
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Sandrine Sagan
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005, Paris, France
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Ferenc Hudecz
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös L. University, Budapest, Hungary
- Department of Organic Chemistry, Eötvös L. University, Pázmány P. Setany 1/A, Budapest, 1117, Hungary
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Eötvös L. University, Pázmány P. Setany 1/A, Budapest, 1117, Hungary.
| |
Collapse
|
47
|
Aoki H, Torimura M, Habe H. Spectroscopic Investigation of Increased Fluorescent Intensity of Fluorescent Dyes When Adsorbed onto Polystyrene Microparticles. ANAL SCI 2021; 37:773-779. [PMID: 33612557 DOI: 10.2116/analsci.20scp22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microplastics as environmental pollutants are increasingly a source of alarm. The characterization of microplastics will be necessary to discriminate microplastics from other types of particles. To discriminate specific microplastics, plastic-adsorbable fluorescent dyes are used, the stained microplastics are separated from the dye-microplastic mixture by filtration, and the type of fluorescent staining of the microplastics is analyzed by fluorescent microscopy. In this study, to realize the in situ analysis of fluorescent staining, i.e., to discriminate microplastics without any separation or filtration processes, we studied the change in the fluorescent properties after adsorption of the fluorescent dyes to the microplastic particle surfaces using a 3D excitation emission matrix fluorescence spectroscopy (the excitation wavelength-dependent emission spectrum). We used three fluorescent dyes: Fluorescein, Rhodamine 6G, and Methylene Blue, and polystyrene microparticles as our model microplastic. Fluorescein and Methylene Blue showed increases in the fluorescent intensity, while Rhodamine 6G showed negligible intensity changes. This is likely due to the degree of affinity of the dyes to the polystyrene particle surface, the structural stability of the dyes on the surface, and the changes in the environment around the dyes after the adsorption of each dye to the surface. We conclude that we have demonstrated the potential to look for appropriate fluorescent dyes using the method studied here to identify and estimate individual plastic materials.
Collapse
Affiliation(s)
- Hiroshi Aoki
- National Institute of Advanced Industrial Science and Technology (AIST)
| | - Masaki Torimura
- National Institute of Advanced Industrial Science and Technology (AIST)
| | - Hiroshi Habe
- National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
48
|
Jung Y, Song J, Park HG. Ultrasensitive nucleic acid detection based on phosphorothioated hairpin-assisted isothermal amplification. Sci Rep 2021; 11:8399. [PMID: 33863981 PMCID: PMC8052315 DOI: 10.1038/s41598-021-87948-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/24/2021] [Indexed: 02/02/2023] Open
Abstract
Herein, we describe a phosphorothioated hairpin-assisted isothermal amplification (PHAmp) method for detection of a target nucleic acid. The hairpin probe (HP) is designed to contain a 5' phosphorothioate (PS)-modified overhang, a target recognition site, and a 3' self-priming (SP) region. Upon binding to the target nucleic acid, the HP opens and the SP region is rearranged to serve as a primer. The subsequent process of strand displacement DNA synthesis recycles the bound target to open another HP and produces an extended HP (EP) with a PS-DNA/DNA duplex at the end, which would be readily denatured due to its reduced thermal stability. The trigger then binds to the denatured 3' end of the EP and is extended, producing an intermediate double-stranded (ds) DNA product (IP). The trigger also binds to the denatured 3' end of the IP, and its extension produces the final dsDNA product along with concomitant displacement and recycling of EP. By monitoring the dsDNA products, the target nucleic acid can be identified down to 0.29 fM with a wide dynamic range from 1 nM to 1 fM yielding an excellent specificity to discriminate even a single base-mismatched target. The unique design principle could provide new insights into the development of novel isothermal amplification methods for nucleic acid detection.
Collapse
Affiliation(s)
- Yujin Jung
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jayeon Song
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
49
|
Podder A, Lee HJ, Kim BH. Fluorescent Nucleic Acid Systems for Biosensors. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Arup Podder
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Ha Jung Lee
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Byeang Hyean Kim
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|
50
|
Kim HY, Song J, Park HG. Ultrasensitive isothermal method to detect microRNA based on target-induced chain amplification reaction. Biosens Bioelectron 2021; 178:113048. [PMID: 33550160 DOI: 10.1016/j.bios.2021.113048] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
We herein describe an ultrasensitive isothermal method to detect microRNA (miRNA) by utilizing target-induced chain amplification reaction (CAR). The hairpin probe (HP) employed in this strategy is designed to be opened upon binding to target miRNA. The exponential amplification reaction (EXPAR) template (ET) then binds to the exposed stem of HP and DNA polymerase (DP) promotes the extension reactions for both HP and ET, consequently producing intermediate double-stranded DNA product (IP) and concomitantly recycling target miRNA to open another intact HP. The IPs would produce a large number of target-mimicking probes (TMPs) and trigger probes (TPs) through the continuously repeated nicking and extension reactions at the two separated nicking sites within the IP. TMP triggers another CAR cycle by binding to intact HP as target miRNA did while TP promotes conventional EXPAR by independently binding to free ET. As a consequence of these interconnected reaction systems, a large number of final double-stranded DNA products (FPs) are produced, which can be monitored by measuring the fluorescent signal produced from duplex-specific fluorescent dye. Based on this unique design principle, the target miRNA was successfully determined down to even a single copy with high selectivity against non-specific miRNAs. The practical applicability of this method was also verified by reliably detecting target miRNA included in the total RNA extracted from the human cancer cell.
Collapse
Affiliation(s)
- Hyo Yong Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jayeon Song
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|