1
|
Liu X, Lian M, Zhao M, Huang M. Advances in recombinant protease production: current state and perspectives. World J Microbiol Biotechnol 2024; 40:144. [PMID: 38532149 DOI: 10.1007/s11274-024-03957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Proteases, enzymes that catalyze the hydrolysis of peptide bonds in proteins, are important in the food industry, biotechnology, and medical fields. With increasing demand for proteases, there is a growing emphasis on enhancing their expression and production through microbial systems. However, proteases' native hosts often fall short in high-level expression and compatibility with downstream applications. As a result, the recombinant production of proteases has become a significant focus, offering a solution to these challenges. This review presents an overview of the current state of protease production in prokaryotic and eukaryotic expression systems, highlighting key findings and trends. In prokaryotic systems, the Bacillus spp. is the predominant host for proteinase expression. Yeasts are commonly used in eukaryotic systems. Recent advancements in protease engineering over the past five years, including rational design and directed evolution, are also highlighted. By exploring the progress in both expression systems and engineering techniques, this review provides a detailed understanding of the current landscape of recombinant protease research and its prospects for future advancements.
Collapse
Affiliation(s)
- Xiufang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mulin Lian
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China.
| |
Collapse
|
2
|
Lambré C, Barat Baviera JM, Bolognesi C, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Steffensen I, Tlustos C, Van Loveren H, Vernis L, Zorn H, Aguilera J, Andryszkiewicz M, Di Piazza G, de Sousa RF, Kovalkovikova N, Liu Y, Chesson A. Safety evaluation of the food enzyme chymosin from the genetically modified Kluyveromyces lactis strain CIN. EFSA J 2022; 20:e07461. [PMID: 35978624 PMCID: PMC9367697 DOI: 10.2903/j.efsa.2022.7461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The food enzyme chymosin (EC 3.4.23.4) is produced with the genetically modified Kluyveromyces lactis strain CIN by DSM Food Specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its recombinant DNA. It is intended to be used in milk processing for cheese production and for the production of fermented milk products. Dietary exposure was estimated to be up to 0.73 mg total organic solids (TOS)/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1,000 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, results in a margin of exposure of at least 1,300. Similarity of the amino acid sequence of the food enzyme to those of known allergens was searched for and four matches were found. The Panel considered that under the intended conditions of use the risk of allergic sensitisation and elicitation reactions by dietary exposure, although unlikely, cannot be excluded, particularly for individuals sensitised to cedar pollen allergens. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
Collapse
|
3
|
Lambré C, Barat Baviera JM, Bolognesi C, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Steffensen I, Tlustos C, Van Loveren H, Vernis L, Zorn H, Aguilera J, Andryszkiewicz M, Di Piazza G, Kovalkovicova N, Liu Y, de Sousa RF, Chesson A. Safety evaluation of the food enzyme chymosin from the genetically modified Kluyveromyces lactis strain CHY. EFSA J 2022; 20:e07462. [PMID: 35949935 PMCID: PMC9358543 DOI: 10.2903/j.efsa.2022.7462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The food enzyme chymosin (EC 3.4.23.4) is produced with the genetically modified Kluyveromyces lactis strain CHY by DSM Food Specialties B.V. It is intended to be used in milk processing for cheese production and for production of fermented milk products. Dietary exposure was estimated to be up to 0.69 mg total organic solids (TOS)/kg body weight (bw) per day in European populations. The production strain contains multiple copies of known antimicrobial resistance genes and consequently, it does not fully fulfil the requirements for the qualified presumption of safety (QPS) approach to safety assessment. However, considering the absence of viable cells and DNA from the production organism in the food enzyme, this is not considered to be a risk. As no other concerns arising from the microbial source and its subsequent genetic modification or from the manufacturing process have been identified, the Panel considered that toxicological tests were not needed for the assessment of this food enzyme. Similarity of the amino acid sequence of the food enzyme to those of known allergens was searched and four matches were found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure, although unlikely, cannot be excluded, particularly for individuals sensitised to cedar pollen allergens. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
Collapse
|
4
|
Filkin SY, Chertova NV, Vavilova EA, Zatsepin SS, Eldarov MA, Sadykhov EG, Fedorov AN, Lipkin AV. Optimization of the Production Method for Recombinant Chymosin in the Methylotrophic Yeast Komagataella phaffii. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820060058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
A Novel Regulated Hybrid Promoter That Permits Autoinduction of Heterologous Protein Expression in Kluyveromyces lactis. Appl Environ Microbiol 2019; 85:AEM.00542-19. [PMID: 31053583 PMCID: PMC6606884 DOI: 10.1128/aem.00542-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/30/2019] [Indexed: 11/28/2022] Open
Abstract
The yeast Kluyveromyces lactis is an important host for the expression of recombinant proteins at both laboratory and industrial scales. However, the system lacks a tightly regulated promoter that permits controlled expression of heterologous proteins. In this study, we report the engineering of a highly regulated strong hybrid promoter (termed P350) for use in K. lactis. P350 is tightly repressed by glucose or glycerol in the medium but strongly promotes gene expression once the carbon source has been consumed by the cells. This feature permits heterologous protein expression to be “autoinduced” at any scale without the addition of a gratuitous inducer molecule or changing feed solutions. The yeast Kluyveromyces lactis has been a successful host for the production of heterologous proteins for over 30 years. Currently, the galactose-/lactose-inducible and glucose-repressible LAC4 promoter (PLAC4) is the most widely used promoter to drive recombinant protein expression in K. lactis. However, PLAC4 is not fully repressed in the presence of glucose and significant protein expression still occurs. Thus, PLAC4 is not suitable in processes where tight regulation of heterologous gene expression is required. In this study, we devised a novel K. lactis promoter system that is both strong and tightly controllable. We first tested several different endogenous K. lactis promoters for their ability to express recombinant proteins. A novel hybrid promoter (termed P350) was created by combining segments of two K. lactis promoters, namely, the strong constitutive PGAP1 promoter and the carbon source-sensitive PICL1 promoter. We demonstrate that P350 is tightly repressed in the presence of glucose or glycerol and becomes derepressed upon depletion of these compounds by the growing cells. We further illustrate the utility of P350-controlled protein expression in shake flask and high-cell-density bioreactor cultivation strategies. The P350 hybrid promoter is a strong derepressible promoter for use in autoinduction of one-step fermentation processes for the production of heterologous proteins in K. lactis. IMPORTANCE The yeast Kluyveromyces lactis is an important host for the expression of recombinant proteins at both laboratory and industrial scales. However, the system lacks a tightly regulated promoter that permits controlled expression of heterologous proteins. In this study, we report the engineering of a highly regulated strong hybrid promoter (termed P350) for use in K. lactis. P350 is tightly repressed by glucose or glycerol in the medium but strongly promotes gene expression once the carbon source has been consumed by the cells. This feature permits heterologous protein expression to be “autoinduced” at any scale without the addition of a gratuitous inducer molecule or changing feed solutions.
Collapse
|
6
|
Gündüz Ergün B, Hüccetoğulları D, Öztürk S, Çelik E, Çalık P. Established and Upcoming Yeast Expression Systems. Methods Mol Biol 2019; 1923:1-74. [PMID: 30737734 DOI: 10.1007/978-1-4939-9024-5_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yeast was the first microorganism used by mankind for biotransformation of feedstock that laid the foundations of industrial biotechnology. Long historical use, vast amount of data, and experience paved the way for Saccharomyces cerevisiae as a first yeast cell factory, and still it is an important expression platform as being the production host for several large volume products. Continuing special needs of each targeted product and different requirements of bioprocess operations have led to identification of different yeast expression systems. Modern bioprocess engineering and advances in omics technology, i.e., genomics, transcriptomics, proteomics, secretomics, and interactomics, allow the design of novel genetic tools with fine-tuned characteristics to be used for research and industrial applications. This chapter focuses on established and upcoming yeast expression platforms that have exceptional characteristics, such as the ability to utilize a broad range of carbon sources or remarkable resistance to various stress conditions. Besides the conventional yeast S. cerevisiae, established yeast expression systems including the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha, the dimorphic yeasts Arxula adeninivorans and Yarrowia lipolytica, the lactose-utilizing yeast Kluyveromyces lactis, the fission yeast Schizosaccharomyces pombe, and upcoming yeast platforms, namely, Kluyveromyces marxianus, Candida utilis, and Zygosaccharomyces bailii, are compiled with special emphasis on their genetic toolbox for recombinant protein production.
Collapse
Affiliation(s)
- Burcu Gündüz Ergün
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Damla Hüccetoğulları
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Sibel Öztürk
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Eda Çelik
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Pınar Çalık
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey.
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
7
|
Löbs AK, Schwartz C, Wheeldon I. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications. Synth Syst Biotechnol 2017; 2:198-207. [PMID: 29318200 PMCID: PMC5655347 DOI: 10.1016/j.synbio.2017.08.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/26/2022] Open
Abstract
Microbial production of chemicals and proteins from biomass-derived and waste sugar streams is a rapidly growing area of research and development. While the model yeast Saccharomyces cerevisiae is an excellent host for the conversion of glucose to ethanol, production of other chemicals from alternative substrates often requires extensive strain engineering. To avoid complex and intensive engineering of S. cerevisiae, other yeasts are often selected as hosts for bioprocessing based on their natural capacity to produce a desired product: for example, the efficient production and secretion of proteins, lipids, and primary metabolites that have value as commodity chemicals. Even when using yeasts with beneficial native phenotypes, metabolic engineering to increase yield, titer, and production rate is essential. The non-conventional yeasts Kluyveromyces lactis, K. marxianus, Scheffersomyces stipitis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris have been developed as eukaryotic hosts because of their desirable phenotypes, including thermotolerance, assimilation of diverse carbon sources, and high protein secretion. However, advanced metabolic engineering in these yeasts has been limited. This review outlines the challenges of using non-conventional yeasts for strain and pathway engineering, and discusses the developed solutions to these problems and the resulting applications in industrial biotechnology.
Collapse
Affiliation(s)
- Ann-Kathrin Löbs
- Department of Chemical and Environmental Engineering, UC Riverside, Riverside, USA
| | - Cory Schwartz
- Department of Chemical and Environmental Engineering, UC Riverside, Riverside, USA
| | - Ian Wheeldon
- Department of Chemical and Environmental Engineering, UC Riverside, Riverside, USA
| |
Collapse
|
8
|
Complete Genome Sequence of Kluyveromyces lactis Strain GG799, a Common Yeast Host for Heterologous Protein Expression. GENOME ANNOUNCEMENTS 2017; 5:5/30/e00623-17. [PMID: 28751387 PMCID: PMC5532825 DOI: 10.1128/genomea.00623-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the genome sequence of the dairy yeast Kluyveromyces lactis strain GG799 obtained using the Pacific Biosciences RS II platform. K. lactis strain GG799 is a common host for the expression of proteins at both laboratory and industrial scales.
Collapse
|
9
|
Wellenbeck W, Mampel J, Naumer C, Knepper A, Neubauer P. Fast-track development of a lactase production process with Kluyveromyces lactis by a progressive parameter-control workflow. Eng Life Sci 2016; 17:1185-1194. [PMID: 32624746 DOI: 10.1002/elsc.201600031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/12/2016] [Accepted: 09/07/2016] [Indexed: 11/12/2022] Open
Abstract
The time-to-market challenge is key to success for consumer goods affiliated industries. In recent years, the dairy industry faces a fast and constantly growing demand for enzymatically produced lactose-free milk products, mainly driven by emerging markets in South America and Asia. In order to take advantage of this opportunity, we developed a fermentation process for lactase (β-galactosidase) from Kluyveromyces lactis within short time. Here, we describe the process of stepwise increasing the level of control over relevant process parameters during scale-up that established a highly efficient and stable production system. Process development started with evolutionary engineering to generate catabolite-derepressed variants of the K. lactis wild-type strain. A high-throughput screening mimicking fed-batch cultivation identified a constitutive lactase overproducer with 260-fold improved activity of 4.4 U per milligram dry cell weight when cultivated in glucose minimal medium. During scale-up, process control was progressively increased up to the level of conventional, fully controlled fed-batch cultivations by simulating glucose feed, applying pH- and dissolved oxygen tension (DOT)-sensor technology to small scale, and by the use of a milliliter stirred tank bioreactor. Additionally, process development was assisted by design-of-experiments optimization of the growth medium employing the response surface methodology.
Collapse
Affiliation(s)
- Wenzel Wellenbeck
- BRAIN AG (Biotechnology Research and Information Network) Zwingenberg Germany
| | - Jörg Mampel
- BRAIN AG (Biotechnology Research and Information Network) Zwingenberg Germany
| | - Christian Naumer
- BRAIN AG (Biotechnology Research and Information Network) Zwingenberg Germany
| | - Andreas Knepper
- Bioprocess Engineering Department of Biotechnology Technische Universität Berlin Berlin Germany
| | - Peter Neubauer
- Bioprocess Engineering Department of Biotechnology Technische Universität Berlin Berlin Germany
| |
Collapse
|
10
|
Production in stirred-tank bioreactor of recombinant bovine chymosin B by a high-level expression transformant clone of Pichia pastoris. Protein Expr Purif 2016; 123:112-21. [DOI: 10.1016/j.pep.2016.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/18/2022]
|
11
|
Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances. Fungal Genet Biol 2016; 89:126-136. [DOI: 10.1016/j.fgb.2015.12.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/18/2015] [Accepted: 12/05/2015] [Indexed: 12/16/2022]
|
12
|
Spohner SC, Schaum V, Quitmann H, Czermak P. Kluyveromyces lactis: An emerging tool in biotechnology. J Biotechnol 2016; 222:104-16. [DOI: 10.1016/j.jbiotec.2016.02.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 02/04/2023]
|
13
|
Wang H, Zhang L, Shi G. Secretory expression of a phospholipase A2 from Lactobacillus casei DSM20011 in Kluyveromyces lactis. J Biosci Bioeng 2015; 120:601-7. [DOI: 10.1016/j.jbiosc.2015.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 03/09/2015] [Accepted: 03/31/2015] [Indexed: 11/29/2022]
|
14
|
Expression and characterization of camel chymosin in Pichia pastoris. Protein Expr Purif 2015; 111:75-81. [DOI: 10.1016/j.pep.2015.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/20/2015] [Accepted: 03/22/2015] [Indexed: 11/20/2022]
|
15
|
Noseda DG, Blasco M, Recúpero M, Galvagno MÁ. Bioprocess and downstream optimization of recombinant bovine chymosin B in Pichia (Komagataella) pastoris under methanol-inducible AOXI promoter. Protein Expr Purif 2014; 104:85-91. [PMID: 25278015 DOI: 10.1016/j.pep.2014.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/16/2014] [Accepted: 09/19/2014] [Indexed: 11/29/2022]
Abstract
A clone of the methylotrophic yeast Pichia pastoris strain GS115 transformed with the bovine prochymosin B gene was used to optimize the production and downstream of recombinant bovine chymosin expressed under the methanol-inducible AOXI promoter. Cell growth and recombinant chymosin production were analyzed in flask cultures containing basal salts medium with biodiesel-byproduct glycerol as the carbon source, obtaining values of biomass level and milk-clotting activity similar to those achieved with analytical glycerol. The effect of biomass level at the beginning of methanol-induction phase on cell growth and chymosin expression was evaluated, determining that a high concentration of cells at the start of such period generated an increase in the production of chymosin. The impact of the specific growth rate on chymosin expression was studied throughout the induction stage by methanol exponential feeding fermentations in a lab-scale stirred bioreactor, achieving the highest production of heterologous chymosin with a constant specific growth rate of 0.01h(-1). By gel filtration chromatography performed at a semi-preparative scale, recombinant chymosin was purified from exponential fed-batch fermentation cultures, obtaining a specific milk-clotting activity of 6400IMCU/mg of chymosin and a purity level of 95%. The effect of temperature and pH on milk-clotting activity was analyzed, establishing that the optimal temperature and pH values for the purified recombinant chymosin are 37°C and 5.5, respectively. This study reported the features of a sustainable bioprocess for the production of recombinant bovine chymosin in P. pastoris by fermentation in stirred-tank bioreactors using biodiesel-derived glycerol as a low-cost carbon source.
Collapse
Affiliation(s)
- Diego Gabriel Noseda
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, 1650, Buenos Aires, Argentina.
| | - Martín Blasco
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, 1650, Buenos Aires, Argentina
| | - Matías Recúpero
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, 1650, Buenos Aires, Argentina
| | - Miguel Ángel Galvagno
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, 1650, Buenos Aires, Argentina; Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Buenos Aires, Pabellón de Industrias, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| |
Collapse
|
16
|
Madhavan A, Sukumaran RK. Promoter and signal sequence from filamentous fungus can drive recombinant protein production in the yeast Kluyveromyces lactis. BIORESOURCE TECHNOLOGY 2014; 165:302-308. [PMID: 24661814 DOI: 10.1016/j.biortech.2014.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/26/2014] [Accepted: 03/01/2014] [Indexed: 06/03/2023]
Abstract
Cross-recognition of promoters from filamentous fungi in yeast can have important consequences towards developing fungal expression systems, especially for the rapid evaluation of their efficacy. A truncated 510bp inducible Trichoderma reesei cellobiohydrolase I (cbh1) promoter was tested for the expression of green fluorescent protein (GFP) in Kluyveromyces lactis after disrupting its native β-galactosidase (lac4) promoter. The efficiency of the CBH1 secretion signal was also evaluated by fusing it to the lac4 promoter of the yeast, which significantly increased the secretion of recombinant protein in K. lactis compared to the native α-mating factor secretion signal. The fungal promoter is demonstrated to have potential to drive heterologous protein production in K. lactis; and the small sized T. reesei cbh1 secretion signal can mediate the protein secretion in K. lactis with high efficiency.
Collapse
Affiliation(s)
- Aravind Madhavan
- Centre for Biofuels, Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate PO, Trivandrum 695 019, India
| | - Rajeev K Sukumaran
- Centre for Biofuels, Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate PO, Trivandrum 695 019, India.
| |
Collapse
|
17
|
Almeida CM, Gomes D, Faro C, Simões I. Engineering a cardosin B-derived rennet for sheep and goat cheese manufacture. Appl Microbiol Biotechnol 2014; 99:269-81. [DOI: 10.1007/s00253-014-5902-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 01/26/2023]
|
18
|
Weinhandl K, Winkler M, Glieder A, Camattari A. Carbon source dependent promoters in yeasts. Microb Cell Fact 2014; 13:5. [PMID: 24401081 PMCID: PMC3897899 DOI: 10.1186/1475-2859-13-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/16/2013] [Indexed: 11/22/2022] Open
Abstract
Budding yeasts are important expression hosts for the production of recombinant proteins. The choice of the right promoter is a crucial point for efficient gene expression, as most regulations take place at the transcriptional level. A wide and constantly increasing range of inducible, derepressed and constitutive promoters have been applied for gene expression in yeasts in the past; their different behaviours were a reflection of the different needs of individual processes. Within this review we summarize the majority of the large available set of carbon source dependent promoters for protein expression in yeasts, either induced or derepressed by the particular carbon source provided. We examined the most common derepressed promoters for Saccharomyces cerevisiae and other yeasts, and described carbon source inducible promoters and promoters induced by non-sugar carbon sources. A special focus is given to promoters that are activated as soon as glucose is depleted, since such promoters can be very effective and offer an uncomplicated and scalable cultivation procedure.
Collapse
Affiliation(s)
| | | | | | - Andrea Camattari
- Institute of Molecular Biotechnology, Technical University Graz, Graz, Austria.
| |
Collapse
|
19
|
Construction of a Kluyveromyces lactis ku80 − Host Strain for Recombinant Protein Production: Extracellular Secretion of Pectin Lyase and a Streptavidin–Pectin Lyase Chimera. Mol Biotechnol 2014; 56:319-28. [DOI: 10.1007/s12033-013-9711-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Luerce TD, Azevedo MSP, LeBlanc JG, Azevedo V, Miyoshi A, Pontes DS. Recombinant Lactococcus lactis fails to secrete bovine chymosine. Bioengineered 2014; 5:363-70. [PMID: 25482140 PMCID: PMC4601287 DOI: 10.4161/bioe.36327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 11/19/2022] Open
Abstract
Bovine chymosin is an important milk-clotting agent used in the manufacturing of cheeses. Currently, the production of recombinant proteins by genetically modified organisms is widespread, leading to greatly reduced costs. Lactococcus (L.) lactis, the model lactic acid bacterium, was considered a good candidate for heterologous chymosin production for the following reasons: (1) it is considered to be a GRAS (generally regarded as safe) microorganism, (2) only one protease is present on its surface, (3) it can secrete proteins of different sizes, and (4) it allows for the direct production of protein in fermented food products. Thus, three genetically modified L. lactis strains were constructed to produce and target the three different forms of bovine chymosin, prochymosin B, chymosin A and chymosin B to the extracellular medium. Although all three proteins were stably produced in L. lactis, none of the forms were detected in the extracellular medium or showed clotting activity in milk. Our hypothesis is that this secretion deficiency and lack of clotting activity can be explained by the recombinant protein being attached to the cell envelope. Thus, the development of other strategies is necessary to achieve both production and targeting of chymosin in L. lactis, which could facilitate the downstream processing and recovery of this industrially important protein.
Collapse
Affiliation(s)
- Tessália Diniz Luerce
- Department of General Biology; Institute of Biological Sciences; Federal University of Minas Gerais (UFMG-ICB); Belo Horizonte, Brazil
| | - Marcela Santiago Pacheco Azevedo
- Department of General Biology; Institute of Biological Sciences; Federal University of Minas Gerais (UFMG-ICB); Belo Horizonte, Brazil
| | | | - Vasco Azevedo
- Department of General Biology; Institute of Biological Sciences; Federal University of Minas Gerais (UFMG-ICB); Belo Horizonte, Brazil
| | - Anderson Miyoshi
- Department of General Biology; Institute of Biological Sciences; Federal University of Minas Gerais (UFMG-ICB); Belo Horizonte, Brazil
| | - Daniela Santos Pontes
- Centre of Biological and Applied Social Sciences; State University of Paraiba; Joao Pessoa, Brazil
| |
Collapse
|
21
|
Cloning, expression and optimized production in a bioreactor of bovine chymosin B in Pichia (Komagataella) pastoris under AOX1 promoter. Protein Expr Purif 2013; 92:235-44. [PMID: 24141135 DOI: 10.1016/j.pep.2013.08.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/24/2013] [Accepted: 08/26/2013] [Indexed: 11/21/2022]
Abstract
The codon sequence optimized bovine prochymosin B gene was cloned under the control of the alcohol oxidase 1 promoter (AOX1) in the vector pPIC9K and integrated into the genome of the methylotrophic yeast Pichia (Komagataella) pastoris (P. pastoris) strain GS115. A transformant clone that showed resistance to over 4 mg G418/ml and displayed the highest milk-clotting activity was selected. Cell growth and recombinant bovine chymosin production were optimized in flask cultures during methanol induction phase achieving the highest coagulant activity with low pH values, a temperature of 25°C and with the addition of sorbitol and ascorbic acid at the beginning of this period. The scaling up of the fermentation process to lab-scale stirred bioreactor using optimized conditions, allowed to reach 240 g DCW/L of biomass level and 96 IMCU/ml of milk-clotting activity. The enzyme activity corresponded to 53 mg/L of recombinant bovine chymosin production after 120 h of methanol induction. Western blot analysis of the culture supernatant showed that recombinant chymosin did not suffer degradation during the protein production phase. By a procedure that included high performance gel filtration chromatography and 3 kDa fast ultrafiltration, the recombinant bovine chymosin was purified and concentrated from fermentation cultures, generating a specific activity of 800 IMCU/Total Abs(280 nm) and a total activity recovery of 56%. This study indicated that P. pastoris is a suitable expression system for bioreactor based fed-batch fermentation process for the efficient production of recombinant bovine chymosin under methanol-inducible AOX1 promoter.
Collapse
|
22
|
Shin MK, Yoo HS. Animal vaccines based on orally presented yeast recombinants. Vaccine 2013; 31:4287-92. [DOI: 10.1016/j.vaccine.2013.07.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/08/2013] [Accepted: 07/13/2013] [Indexed: 11/29/2022]
|
23
|
Rodicio R, Heinisch JJ. Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast 2013; 30:165-77. [PMID: 23576126 DOI: 10.1002/yea.2954] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 11/08/2022] Open
Abstract
The milk yeast Kluyveromyces lactis has a life cycle similar to that of Saccharomyces cerevisiae and can be employed as a model eukaryote using classical genetics, such as the combination of desired traits, by crossing and tetrad analysis. Likewise, a growing set of vectors, marker cassettes and tags for fluorescence microscopy are available for manipulation by genetic engineering and investigating its basic cell biology. We here summarize these applications, as well as the current knowledge regarding its central metabolism, glucose and extracellular stress signalling pathways. A short overview on the biotechnological potential of K. lactis concludes this review.
Collapse
Affiliation(s)
- Rosaura Rodicio
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, Spain
| | | |
Collapse
|
24
|
Simon C, Schaepe S, Breunig K, Lilie H. PRODUCTION OF POLYOMAVIRUS-LIKE PARTICLES IN AKlgal80KNOCKOUT STRAIN OF THE YEASTKluyveromyces lactis. Prep Biochem Biotechnol 2013; 43:217-35. [DOI: 10.1080/10826068.2012.750613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Yegin S, Fernandez-Lahore M. A Thermolabile Aspartic Proteinase from Mucor mucedo DSM 809: Gene Identification, Cloning, and Functional Expression in Pichia pastoris. Mol Biotechnol 2012; 54:661-72. [DOI: 10.1007/s12033-012-9608-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Production of recombinant proteins by yeast cells. Biotechnol Adv 2012; 30:1108-18. [DOI: 10.1016/j.biotechadv.2011.09.011] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/12/2011] [Accepted: 09/17/2011] [Indexed: 01/14/2023]
|
27
|
Krijger JJ, Baumann J, Wagner M, Schulze K, Reinsch C, Klose T, Onuma OF, Simon C, Behrens SE, Breunig KD. A novel, lactase-based selection and strain improvement strategy for recombinant protein expression in Kluyveromyces lactis. Microb Cell Fact 2012; 11:112. [PMID: 22905717 PMCID: PMC3520740 DOI: 10.1186/1475-2859-11-112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/17/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Crabtree-negative yeast species Kluyveromyces lactis has been established as an attractive microbial expression system for recombinant proteins at industrial scale. Its LAC genes allow for utilization of the inexpensive sugar lactose as a sole source of carbon and energy. Lactose efficiently induces the LAC4 promoter, which can be used to drive regulated expression of heterologous genes. So far, strain manipulation of K. lactis by homologous recombination was hampered by the high rate of non-homologous end-joining. RESULTS Selection for growth on lactose was applied to target the insertion of heterologous genes downstream of the LAC4 promoter into the K. lactis genome and found to yield high numbers of positive transformants. Concurrent reconstitution of the β-galactosidase gene indicated the desired integration event of the expression cassette, and β-galactosidase activity measurements were used to monitor gene expression for strain improvement and fermentation optimization. The system was particularly improved by usage of a cell lysis resistant strain, VAK367-D4, which allowed for protein accumulation in long-term fermentation. Further optimization was achieved by increased gene dosage of KlGAL4 encoding the activator of lactose and galactose metabolic genes that led to elevated transcription rates. Pilot experiments were performed with strains expressing a single-chain antibody fragment (scFvox) and a viral envelope protein (BVDV-E2), respectively. scFvox was shown to be secreted into the culture medium in an active, epitope-binding form indicating correct processing and protein folding; the E2 protein could be expressed intracellularly. Further data on the influence of protein toxicity on batch fermentation and potential post-transcriptional bottlenecks in protein accumulation were obtained. CONCLUSIONS A novel Kluyveromyces lactis host-vector system was developed that places heterologous genes under the control of the chromosomal LAC4 promoter and that allows monitoring of its transcription rates by β-galactosidase measurement. The procedure is rapid and efficient, and the resulting recombinant strains contain no foreign genes other than the gene of interest. The recombinant strains can be grown non-selectively in rich medium and stably maintained even when the gene product exerts protein toxicity.
Collapse
Affiliation(s)
- Jorrit-Jan Krijger
- Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Monitoring single-cell bioenergetics via the coarsening of emulsion droplets. Proc Natl Acad Sci U S A 2012; 109:7181-6. [PMID: 22538813 DOI: 10.1073/pnas.1200894109] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microorganisms are widely used to generate valuable products, and their efficiency is a major industrial focus. Bioreactors are typically composed of billions of cells, and available measurements only reflect the overall performance of the population. However, cells do not equally contribute, and process optimization would therefore benefit from monitoring this intrapopulation diversity. Such monitoring has so far remained difficult because of the inability to probe concentration changes at the single-cell level. Here, we unlock this limitation by taking advantage of the osmotically driven water flux between a droplet containing a living cell toward surrounding empty droplets, within a concentrated inverse emulsion. With proper formulation, excreted products are far more soluble within the continuous hydrophobic phase compared to initial nutrients (carbohydrates and salts). Fast diffusion of products induces an osmotic mismatch, which further relaxes due to slower diffusion of water through hydrophobic interfaces. By measuring droplet volume variations, we can deduce the metabolic activity down to isolated single cells. As a proof of concept, we present the first direct measurement of the maintenance energy of individual yeast cells. This method does not require any added probes and can in principle apply to any osmotically sensitive bioactivity, opening new routes for screening, and sorting large libraries of microorganisms and biomolecules.
Collapse
|
29
|
Reuveni S, Meilijson I, Kupiec M, Ruppin E, Tuller T. Genome-scale analysis of translation elongation with a ribosome flow model. PLoS Comput Biol 2011; 7:e1002127. [PMID: 21909250 PMCID: PMC3164701 DOI: 10.1371/journal.pcbi.1002127] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/06/2011] [Indexed: 11/18/2022] Open
Abstract
We describe the first large scale analysis of gene translation that is based on a model that takes into account the physical and dynamical nature of this process. The Ribosomal Flow Model (RFM) predicts fundamental features of the translation process, including translation rates, protein abundance levels, ribosomal densities and the relation between all these variables, better than alternative ('non-physical') approaches. In addition, we show that the RFM can be used for accurate inference of various other quantities including genes' initiation rates and translation costs. These quantities could not be inferred by previous predictors. We find that increasing the number of available ribosomes (or equivalently the initiation rate) increases the genomic translation rate and the mean ribosome density only up to a certain point, beyond which both saturate. Strikingly, assuming that the translation system is tuned to work at the pre-saturation point maximizes the predictive power of the model with respect to experimental data. This result suggests that in all organisms that were analyzed (from bacteria to Human), the global initiation rate is optimized to attain the pre-saturation point. The fact that similar results were not observed for heterologous genes indicates that this feature is under selection. Remarkably, the gap between the performance of the RFM and alternative predictors is strikingly large in the case of heterologous genes, testifying to the model's promising biotechnological value in predicting the abundance of heterologous proteins before expressing them in the desired host.
Collapse
Affiliation(s)
- Shlomi Reuveni
- Department of Statistics and Operations Research, School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Israel
- School of Chemistry, Tel Aviv University, Ramat Aviv, Israel
| | - Isaac Meilijson
- Department of Statistics and Operations Research, School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Martin Kupiec
- Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Eytan Ruppin
- School of Computer Sciences, Tel Aviv University, Ramat Aviv, Israel
- School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Tamir Tuller
- Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
30
|
Pitts JE, Dhanaraj V, Dealwis CG, Mantafounis D, Nugent P, Orprayoon P, Cooper JB, Newman M, Blundell TL. Multidisciplinary cycles for protein engineering: Site-directed mutagenesis and X-ray structural studies of aspartic proteinases. Scandinavian Journal of Clinical and Laboratory Investigation 2011. [DOI: 10.1080/00365519209104653] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Ganatra MB, Vainauskas S, Hong JM, Taylor TE, Denson JPM, Esposito D, Read JD, Schmeisser H, Zoon KC, Hartley JL, Taron CH. A set of aspartyl protease-deficient strains for improved expression of heterologous proteins in Kluyveromyces lactis. FEMS Yeast Res 2010; 11:168-78. [PMID: 21166768 PMCID: PMC3041862 DOI: 10.1111/j.1567-1364.2010.00703.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Secretion of recombinant proteins is a common strategy for heterologous protein expression using the yeast Kluyveromyces lactis. However, a common problem is degradation of a target recombinant protein by secretory pathway aspartyl proteases. In this study, we identified five putative pfam00026 aspartyl proteases encoded by the K. lactis genome. A set of selectable marker-free protease deletion mutants was constructed in the prototrophic K. lactis GG799 industrial expression strain background using a PCR-based dominant marker recycling method based on the Aspergillus nidulans acetamidase gene (amdS). Each mutant was assessed for its secretion of protease activity, its health and growth characteristics, and its ability to efficiently produce heterologous proteins. In particular, despite having a longer lag phase and slower growth compared with the other mutants, a Δyps1 mutant demonstrated marked improvement in both the yield and the quality of Gaussia princeps luciferase and the human chimeric interferon Hy3, two proteins that experienced significant proteolysis when secreted from the wild-type parent strain.
Collapse
Affiliation(s)
- Mehul B Ganatra
- Division of Gene Expression, New England Biolabs, Ipswich, MA 01938-2723, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kumar A, Grover S, Sharma J, Batish VK. Chymosin and other milk coagulants: sources and biotechnological interventions. Crit Rev Biotechnol 2010; 30:243-58. [DOI: 10.3109/07388551.2010.483459] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Codon optimization of the calf prochymosin gene and its expression in Kluyveromyces lactis. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0249-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Ranieri D, Colao MC, Ruzzi M, Romagnoli G, Bianchi MM. Optimization of recombinant fungal laccase production with strains of the yeastKluyveromyces lactisâfrom the pyruvate decarboxylase promoter. FEMS Yeast Res 2009; 9:892-902. [DOI: 10.1111/j.1567-1364.2009.00532.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
35
|
Staneva D, Uccelletti D, Venkov P, Miloshev G, Palleschi C. The Kluyveromyces lactis CPY homologous genes: cloning and characterization of the KlPCL1 gene. Folia Microbiol (Praha) 2008; 53:325-32. [PMID: 18759117 DOI: 10.1007/s12223-008-0051-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 03/30/2008] [Indexed: 11/24/2022]
Abstract
A 3.85-kb genomic fragment containing the KlPCL1 gene, with an open reading frame (ORF) of 1359 bp, was isolated from Kluyveromyces lactis genomic library by heterologous colony hybridization using the Saccharomyces cerevisiae PRC1 (ScPRC1) gene as a probe. The KlPCL1 nucleotide sequence was identical to the KLLAOC17490g ORF of K. lactis and showed >55 % identity with S. cerevisiae YBR139w and PRC1 genes encoding carboxypeptidases. The deduced KlPcl1p amino acid sequence displayed strong similarities to yeast and higher eukaryotic carboxypeptidases. In silico analyses revealed that KlPcl1p contained several highly conserved regions characteristic of the serine-type carboxypeptidases, such as the catalytic triad in the active site and the LNGGPGCSS, FHIAGESYAGHYIP and ICNWLGN motifs involved in the substrate binding. All this suggests that the KlPCL1 gene product belongs to the serine carboxypeptidase family. Sporulation and ascus dissection of a diploid strain heterozygous for single-copy disruption of KlPCL1 revealed that this gene is not essential in K. lactis. Further analyses of haploid and diploid deletion mutants demonstrated that disruption of the KlPCL1 gene neither impaired sporulation nor affected growth abilities of K. lactis cells under a variety of physiological conditions, e.g., growth on different carbon sources, at various temperatures or pH of the medium, and under nitrogen depletion.
Collapse
Affiliation(s)
- D Staneva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | | | | | |
Collapse
|
36
|
Read JD, Colussi PA, Ganatra MB, Taron CH. Acetamide selection of Kluyveromyces lactis cells transformed with an integrative vector leads to high-frequency formation of multicopy strains. Appl Environ Microbiol 2007; 73:5088-96. [PMID: 17586678 PMCID: PMC1950971 DOI: 10.1128/aem.02253-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Accepted: 06/09/2007] [Indexed: 11/20/2022] Open
Abstract
The yeast Kluyveromyces lactis has been extensively used as a host for heterologous protein expression. A necessary step in the construction of a stable expression strain is the introduction of an integrative expression vector into K. lactis cells, followed by selection of transformed strains using either medium containing antibiotic (e.g., G418) or nitrogen-free medium containing acetamide. In this study, we show that selection using acetamide yields K. lactis transformant populations nearly completely comprised of strains bearing multiple tandem insertions of the expression vector pKLAC1 at the LAC4 chromosomal locus, whereas an average of 16% of G418-selected transformants are multiply integrated. Additionally, the average copy number within transformant populations doubled when acetamide was used for selection compared to G418. Finally, we demonstrate that the high frequency of multicopy integration associated with using acetamide selection can be exploited to rapidly construct expression strains that simultaneously produce multiple heterologous proteins or multisubunit proteins, such as Fab antibodies.
Collapse
Affiliation(s)
- Jeremiah D Read
- New England BioLabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | | | | | | |
Collapse
|
37
|
Leifso KR, Williams D, Hintz WE. Heterologous expression of cyan and yellow fluorescent proteins from the Kluyveromyces lactis KlMAL21-KlMAL22 bi-directional promoter. Biotechnol Lett 2007; 29:1233-41. [PMID: 17492252 DOI: 10.1007/s10529-007-9381-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 03/09/2007] [Accepted: 03/15/2007] [Indexed: 11/30/2022]
Abstract
We have identified the Kluyveromyces lactis maltase (KlMAL22) and maltose permease (KlMAL21) intergenic region as a candidate bi-directional promoter for heterologous gene expression. The expressions of cyan and yellow fluorescent proteins from, respectively, the KlMAL22 and KlMAL21 orientations of the promoter, were compared between two promoter variants during growth in media containing glucose, galactose or glycerol. Expression from both orientations of the native promoter was repressed during growth in glucose and galactose and was induced during growth in glycerol. Disruption of a putative Mig1p binding site caused some de-repression of the maltase orientation of the promoter by 48 h of growth in glucose. The KlMAL21-KlMAL22 bi-directional promoter can be used to carry out regulated expression of heterologous gene products.
Collapse
Affiliation(s)
- Kirk R Leifso
- Department of Biology, University of Victoria, PO Box 3020 STN CSC, Victoria, BC, Canada V8W 3N5
| | | | | |
Collapse
|
38
|
Kumar A, Sharma J, Grover S, Kumar Mohanty A, Kumar Batish V. Molecular Cloning and Expression of Goat (Capra hircus) Prochymosin inE.coli. FOOD BIOTECHNOL 2007. [DOI: 10.1080/08905430701191163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Olempska-Beer ZS, Merker RI, Ditto MD, DiNovi MJ. Food-processing enzymes from recombinant microorganisms--a review. Regul Toxicol Pharmacol 2006; 45:144-158. [PMID: 16769167 DOI: 10.1016/j.yrtph.2006.05.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Indexed: 11/17/2022]
Abstract
Enzymes are commonly used in food processing and in the production of food ingredients. Enzymes traditionally isolated from culturable microorganisms, plants, and mammalian tissues are often not well-adapted to the conditions used in modern food production methods. The use of recombinant DNA technology has made it possible to manufacture novel enzymes suitable for specific food-processing conditions. Such enzymes may be discovered by screening microorganisms sampled from diverse environments or developed by modification of known enzymes using modern methods of protein engineering or molecular evolution. As a result, several important food-processing enzymes such as amylases and lipases with properties tailored to particular food applications have become available. Another important achievement is improvement of microbial production strains. For example, several microbial strains recently developed for enzyme production have been engineered to increase enzyme yield by deleting native genes encoding extracellular proteases. Moreover, certain fungal production strains have been modified to reduce or eliminate their potential for production of toxic secondary metabolites. In this article, we discuss the safety of microorganisms used as hosts for enzyme-encoding genes, the construction of recombinant production strains, and methods of improving enzyme properties. We also briefly describe the manufacture and safety assessment of enzyme preparations and summarize options for submitting information on enzyme preparations to the US Food and Drug Administration.
Collapse
Affiliation(s)
- Zofia S Olempska-Beer
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, HFS-255, 5100 Paint Branch Parkway, College Park, MD 20740, USA.
| | | | | | | |
Collapse
|
40
|
Uccelletti D, Farina F, Rufini S, Magnelli P, Abeijon C, Palleschi C. The Kluyveromyces lactis alpha1,6-mannosyltransferase KlOch1p is required for cell-wall organization and proper functioning of the secretory pathway. FEMS Yeast Res 2006; 6:449-57. [PMID: 16630285 DOI: 10.1111/j.1567-1364.2006.00027.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mutants of Kluyveromyces lactis denominated vga (vanadate glycosylation affected) bear various combinations of glycosylation and cell-wall defects. The vga3 mutation of K. lactis was mapped in the KlOCH1 gene, encoding the functional homologue of the Saccharomyces cerevisiaealpha1,6-mannosyltransferase. Quantitative analysis of cell-wall components indicated a noticeable increase of chitin and beta1,6-glucans and a severe decrease of mannoproteins in the mutant cells as compared with the wild-type counterparts. Fine-structure determination of the beta1,6-glucan polymer indicated that, in the vga3-1 strain, the beta1,6-glucans are shorter and have more branches than in the wild-type strain. This suggests that cell-wall remodelling changes take place in K. lactis in the presence of glycosylation defects. Moreover, the vga3 cells showed a significantly improved capability of secreting heterologous proteins. Such a capability, accompanied by the highly reduced N-glycosylation, may be of biotechnological interest, especially when hyper-glycosylation of recombinant products must be avoided.
Collapse
Affiliation(s)
- Daniela Uccelletti
- Department of Developmental and Cell Biology, University La Sapienza, Rome, Italy
| | | | | | | | | | | |
Collapse
|
41
|
The use of the GDH gene for molecular identification and phylogenetic analysis of the yeast Kluyveromyces marxianus. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
van Ooyen AJJ, Dekker P, Huang M, Olsthoorn MMA, Jacobs DI, Colussi PA, Taron CH. Heterologous protein production in the yeastKluyveromyces lactis. FEMS Yeast Res 2006; 6:381-92. [PMID: 16630278 DOI: 10.1111/j.1567-1364.2006.00049.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Kluyveromyces lactis is both scientifically and biotechnologically one of the most important non-Saccharomyces yeasts. Its biotechnological significance builds on its history of safe use in the food industry and its well-known ability to produce enzymes like lactase and bovine chymosin on an industrial scale. In this article, we review the various strains, genetic techniques and molecular tools currently available for the use of K. lactis as a host for protein expression. Additionally, we present data illustrating the recent use of proteomics studies to identify cellular bottlenecks that impede heterologous protein expression.
Collapse
|
43
|
Colussi PA, Taron CH. Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis. Appl Environ Microbiol 2005; 71:7092-8. [PMID: 16269745 PMCID: PMC1287696 DOI: 10.1128/aem.71.11.7092-7098.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The strong LAC4 promoter (P(LAC4)) from Kluyveromyces lactis has been extensively used to drive expression of heterologous proteins in this industrially important yeast. A drawback of this expression method is the serendipitous ability of P(LAC4) to promote gene expression in Escherichia coli. This can interfere with the process of assembling expression constructs in E. coli cells prior to their introduction into yeast cells, especially if the cloned gene encodes a protein that is detrimental to bacteria. In this study, we created a series of P(LAC4) variants by targeted mutagenesis of three DNA sequences (PBI, PBII, and PBIII) that resemble the E. coli Pribnow box element of bacterial promoters and that reside immediately upstream of two E. coli transcription initiation sites associated with P(LAC4). Mutation of PBI reduced the bacterial expression of a reporter protein (green fluorescent protein [GFP]) by approximately 87%, whereas mutation of PBII and PBIII had little effect on GFP expression. Deletion of all three sequences completely eliminated GFP expression. Additionally, each promoter variant expressed human serum albumin in K. lactis cells to levels comparable to wild-type P(LAC4). We created a novel integrative expression vector (pKLAC1) containing the P(LAC4) variant lacking PBI and used it to successfully clone and express the catalytic subunit of bovine enterokinase, a protease that has historically been problematic in E. coli cells. The pKLAC1 vector should aid in the cloning of other potentially toxic genes in E. coli prior to their expression in K. lactis.
Collapse
Affiliation(s)
- Paul A Colussi
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | | |
Collapse
|
44
|
Colussi PA, Specht CA, Taron CH. Characterization of a nucleus-encoded chitinase from the yeast Kluyveromyces lactis. Appl Environ Microbiol 2005; 71:2862-9. [PMID: 15932978 PMCID: PMC1151841 DOI: 10.1128/aem.71.6.2862-2869.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 12/18/2004] [Indexed: 11/20/2022] Open
Abstract
Endogenous proteins secreted from Kluyveromyces lactis were screened for their ability to bind to or to hydrolyze chitin. This analysis resulted in identification of a nucleus-encoded extracellular chitinase (KlCts1p) with a chitinolytic activity distinct from that of the plasmid-encoded killer toxin alpha-subunit. Sequence analysis of cloned KlCTS1 indicated that it encodes a 551-amino-acid chitinase having a secretion signal peptide, an amino-terminal family 18 chitinase catalytic domain, a serine-threonine-rich domain, and a carboxy-terminal type 2 chitin-binding domain. The association of purified KlCts1p with chitin is stable in the presence of high salt concentrations and pH 3 to 10 buffers; however, complete dissociation and release of fully active KlCts1p occur in 20 mM NaOH. Similarly, secreted human serum albumin harboring a carboxy-terminal fusion with the chitin-binding domain derived from KlCts1p also dissociates from chitin in 20 mM NaOH, demonstrating the domain's potential utility as an affinity tag for reversible chitin immobilization or purification of alkaliphilic or alkali-tolerant recombinant fusion proteins. Finally, haploid K. lactis cells harboring a cts1 null mutation are viable but exhibit a cell separation defect, suggesting that KlCts1p is required for normal cytokinesis, probably by facilitating the degradation of septum-localized chitin.
Collapse
Affiliation(s)
- Paul A Colussi
- New England Biolabs, 32 Tozer Road, Beverly, Massachusetts 01915, USA
| | | | | |
Collapse
|
45
|
Vega-Hernández MC, Gómez-Coello A, Villar J, Claverie-Martín F. Molecular cloning and expression in yeast of caprine prochymosin. J Biotechnol 2005; 114:69-79. [PMID: 15464600 DOI: 10.1016/j.jbiotec.2004.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 06/03/2004] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
We cloned and characterized a preprochymosin cDNA from the abomasum of milk-fed kid goats. This cDNA contained an open reading frame that predicts a polypeptide of 381 amino acid residues, with a signal peptide and a proenzyme region of 16 and 42 amino acids, respectively. Comparison of the caprine preprochymosin sequence with the corresponding sequences of lamb and calf revealed 99 and 94% identity at the amino acid level. The cDNA fragment encoding the mature portion of caprine prochymosin was fused in frame both to the killer toxin signal sequence and to the alpha-factor signal sequence-FLAG in two different yeast expression vectors. The recombinant plasmids were transformed into Kluyveromyces lactis and Saccharomyces cerevisiae cells, respectively. Culture supernatants of both yeast transformants showed milk-clotting activity after activation at acid pH. The FLAG-prochymosin fusion was purified from S. cerevisiae culture supernatants by affinity chromatography. Proteolytic activity assayed toward casein fractions indicated that the recombinant caprine chymosin specifically hydrolysed kappa-casein.
Collapse
Affiliation(s)
- Maria C Vega-Hernández
- Molecular Biology Laboratory, Research Unit, Nuestra Señora de Candelaria University Hospital, 38010, Santa Cruz de Tenerife, Spain
| | | | | | | |
Collapse
|
46
|
Poza M, Prieto-Alcedo M, Sieiro C, Villa TG. Cloning and expression of clt genes encoding milk-clotting proteases from Myxococcus xanthus 422. Appl Environ Microbiol 2004; 70:6337-41. [PMID: 15466588 PMCID: PMC522063 DOI: 10.1128/aem.70.10.6337-6341.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The screening of a gene library of the milk-clotting strain Myxococcus xanthus 422 constructed in Escherichia coli allowed the description of eight positive clones containing 26 open reading frames. Only three of them (cltA, cltB, and cltC) encoded proteins that exhibited intracellular milk-clotting ability in E. coli, Saccharomyces cerevisiae, and Pichia pastoris expression systems.
Collapse
Affiliation(s)
- M Poza
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Campus Sur 15782, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
47
|
Muñoz R, García JL, Carrascosa AV, Gonzalez R. Cloning of the authentic bovine gene encoding pepsinogen a and its expression in microbial cells. Appl Environ Microbiol 2004; 70:2588-95. [PMID: 15128507 PMCID: PMC404421 DOI: 10.1128/aem.70.5.2588-2595.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine pepsin is the second major proteolytic activity of rennet obtained from young calves and is the main protease when it is extracted from adult animals, and it is well recognized that the proteolytic specificity of this enzyme improves the sensory properties of cheese during maturation. Pepsin is synthesized as an inactive precursor, pepsinogen, which is autocatalytically activated at the pH of calf abomasum. A cDNA coding for bovine pepsin was assembled by fusing the cDNA fragments from two different bovine expressed sequence tag libraries to synthetic DNA sequences based on the previously described N-terminal sequence of pepsinogen. The sequence of this cDNA clearly differs from the previously described partial bovine pepsinogen sequences, which actually are rabbit pepsinogen sequences. By cloning this cDNA in different vectors we produced functional bovine pepsinogen in Escherichia coli and Saccharomyces cerevisiae. The recombinant pepsinogen is activated by low pH, and the resulting mature pepsin has milk-clotting activity. Moreover, the mature enzyme generates digestion profiles with alpha-, beta-, or kappa-casein indistinguishable from those obtained with a natural pepsin preparation. The potential applications of this recombinant enzyme include cheese making and bioactive peptide production. One remarkable advantage of the recombinant enzyme for food applications is that there is no risk of transmission of bovine spongiform encephalopathy.
Collapse
Affiliation(s)
- Rosario Muñoz
- Department of Microbiology, Instituto de Fermentaciones Industriales, Madrid, Spain
| | | | | | | |
Collapse
|
48
|
Donnini C, Farina F, Neglia B, Compagno MC, Uccelletti D, Goffrini P, Palleschi C. Improved production of heterologous proteins by a glucose repression-defective mutant of Kluyveromyces lactis. Appl Environ Microbiol 2004; 70:2632-8. [PMID: 15128512 PMCID: PMC404430 DOI: 10.1128/aem.70.5.2632-2638.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The secreted production of heterologous proteins in Kluyveromyces lactis was studied. A glucoamylase (GAA) from the yeast Arxula adeninivorans was used as a reporter protein for the study of the secretion efficiencies of several wild-type and mutant strains of K. lactis. The expression of the reporter protein was placed under the control of the strong promoter of the glyceraldehyde-3-phosphate dehydrogenase of Saccharomyces cerevisiae. Among the laboratory strains tested, strain JA6 was the best producer of GAA. Since this strain is known to be highly sensitive to glucose repression and since this is an undesired trait for biomass-oriented applications, we examined heterologous protein production by using glucose repression-defective mutants isolated from this strain. One of them, a mutant carrying a dgr151-1 mutation, showed a significantly improved capability of producing heterologous proteins such as GAA, human serum albumin, and human interleukin-1beta compared to the parent strain. dgr151-1 is an allele of RAG5, the gene encoding the only hexokinase present in K. lactis (a homologue of S. cerevisiae HXK2). The mutation in this strain was mapped to nucleotide position +527, resulting in a change from glycine to aspartic acid within the highly conserved kinase domain. Cells carrying the dgr151-1 allele also showed a reduction in N- and O-glycosylation. Therefore, the dgr151 strain may be a promising host for the production of heterologous proteins, especially when the hyperglycosylation of recombinant proteins must be avoided.
Collapse
Affiliation(s)
- Claudia Donnini
- Department of Genetics Anthropology Evolution, University of Parma, Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
49
|
Schmidt FR. Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 2004; 65:363-72. [PMID: 15480623 DOI: 10.1007/s00253-004-1656-9] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 05/05/2004] [Accepted: 05/07/2004] [Indexed: 10/26/2022]
Abstract
In terms of downstream processing efficiency, secretory expression systems offer potential advantages for the production of recombinant proteins, compared with inclusion body forming cytosolic systems. However, for high-volume therapeutics like insulin, the product yields of the majority of the potentially available secretory systems is not yet fully competitive. Current strategies to improve productivity and secretion efficiency comprise: (1) enhancement of gene expression rates, (2) optimization of secretion signal sequences, (3) coexpression of chaperones and foldases, (4) creation of protease deficient mutants to avoid premature product degradation and (5) subsequent breeding and mutagenesis. For the production of non-glycosylated proteins and proteins, which are natively glycosylated but are also pharmacologically active without glycosylation, prokaryotes, which usually lack metabolic pathways for glycosylation, are theoretically the most suitable organisms and offer two alternatives: either Escherichia coli strains are conditioned to be efficient secreters or efficient native secreters like Bacillus species are accordingly developed. To fully exploit the secretory capacity of fungal species, a deeper understanding of their posttranslational modification physiology will be necessary to steer the degree and pattern of glycosylation, which influences both folding and secretion efficiency. Insect and mammalian cells display posttranslational modification patterns very similar or identical to humans, but in view of the entailed expenditures, their employment can only be justified if their modification machinery is required to ensure a desired pharmacological activity.
Collapse
Affiliation(s)
- F R Schmidt
- Aventis Pharma Deutschland, Biocenter H 780, Industriepark Höchst, 65926, Frankfurt am Main, Germany.
| |
Collapse
|
50
|
Uccelletti D, Farina F, Mancini P, Palleschi C. KlPMR1 inactivation and calcium addition enhance secretion of non-hyperglycosylated heterologous proteins in Kluyveromyces lactis. J Biotechnol 2004; 109:93-101. [PMID: 15063617 DOI: 10.1016/j.jbiotec.2003.10.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2002] [Accepted: 10/14/2003] [Indexed: 11/17/2022]
Abstract
The Kluyveromyces lactis KlPMR1 gene is the functional homologue of Saccharomyces cerevisiae PMR1 which encodes a Ca(2+)-ATPase localized in the Golgi apparatus. We studied the effects of KlPMR1 inactivation on the glycosylation and secretion of native and heterologous proteins in K. lactis. We used acid phosphatase, recombinant human serum albumin and alpha-glucoamylase from Arxula adeninivorans as reporter proteins. The Klpmr1Delta strain showed enhanced secretion of the heterologous proteins analyzed; the improved rHSA production did not result from enhanced transcription but rather involved increased translation and/or secretion efficiency. The growth rate of mutant cells resulted slower as compared to that of wild-type strain. The addition of 10mM calcium to the culture medium, however, not only completely relieved the growth defect of the mutant cells but also improved the rate of heterologous proteins production. Moreover, the addition of this ion in the culture medium of K. lactis did not suppress the glycosylation defects; this is an important difference with respect to S. cerevisiae where the glycosylation is partially restored by Ca(2+) addition. The Klpmr1Delta strain as a host offers thus an additional advantage for those cases requiring that the produced recombinant protein would not result hyperglycosylated.
Collapse
Affiliation(s)
- D Uccelletti
- Department of Developmental and Cell Biology, University of Rome La Sapienza P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | |
Collapse
|