1
|
Lin L, Kightlinger W, Warfel KF, Jewett MC, Mrksich M. Using High-Throughput Experiments To Screen N-Glycosyltransferases with Altered Specificities. ACS Synth Biol 2024; 13:1290-1302. [PMID: 38526141 DOI: 10.1021/acssynbio.3c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The important roles that protein glycosylation plays in modulating the activities and efficacies of protein therapeutics have motivated the development of synthetic glycosylation systems in living bacteria and in vitro. A key challenge is the lack of glycosyltransferases that can efficiently and site-specifically glycosylate desired target proteins without the need to alter primary amino acid sequences at the acceptor site. Here, we report an efficient and systematic method to screen a library of glycosyltransferases capable of modifying comprehensive sets of acceptor peptide sequences in parallel. This approach is enabled by cell-free protein synthesis and mass spectrometry of self-assembled monolayers and is used to engineer a recently discovered prokaryotic N-glycosyltransferase (NGT). We screened 26 pools of site-saturated NGT libraries to identify relevant residues that determine polypeptide specificity and then characterized 122 NGT mutants, using 1052 unique peptides and 52,894 unique reaction conditions. We define a panel of 14 NGTs that can modify 93% of all sequences within the canonical X-1-N-X+1-S/T eukaryotic glycosylation sequences as well as another panel for many noncanonical sequences (with 10 of 17 non-S/T amino acids at the X+2 position). We then successfully applied our panel of NGTs to increase the efficiency of glycosylation for three protein therapeutics. Our work promises to significantly expand the substrates amenable to in vitro and bacterial glycoengineering.
Collapse
Affiliation(s)
- Liang Lin
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Weston Kightlinger
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Katherine F Warfel
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Milan Mrksich
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Veth TS, Kannegieter NM, de Graaf EL, Ruijtenbeek R, Joore J, Ressa A, Altelaar M. Innovative strategies for measuring kinase activity to accelerate the next wave of novel kinase inhibitors. Drug Discov Today 2024; 29:103907. [PMID: 38301799 DOI: 10.1016/j.drudis.2024.103907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
The development of protein kinase inhibitors (PKIs) has gained significance owing to their therapeutic potential for diseases like cancer. In addition, there has been a rise in refining kinase activity assays, each possessing unique biological and analytical characteristics crucial for PKI development. However, the PKI development pipeline experiences high attrition rates and approved PKIs exhibit unexploited potential because of variable patient responses. Enhancing PKI development efficiency involves addressing challenges related to understanding the PKI mechanism of action and employing biomarkers for precision medicine. Selecting appropriate kinase activity assays for these challenges can overcome these attrition rate issues. This review delves into the current obstacles in kinase inhibitor development and elucidates kinase activity assays that can provide solutions.
Collapse
Affiliation(s)
- Tim S Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | | | - Erik L de Graaf
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | | | - Jos Joore
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | - Anna Ressa
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands.
| |
Collapse
|
3
|
Hou Z, Liu H. Mapping the Protein Kinome: Current Strategy and Future Direction. Cells 2023; 12:cells12060925. [PMID: 36980266 PMCID: PMC10047437 DOI: 10.3390/cells12060925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The kinome includes over 500 different protein kinases, which form an integrated kinase network that regulates cellular phosphorylation signals. The kinome plays a central role in almost every cellular process and has strong linkages with many diseases. Thus, the evaluation of the cellular kinome in the physiological environment is essential to understand biological processes, disease development, and to target therapy. Currently, a number of strategies for kinome analysis have been developed, which are based on monitoring the phosphorylation of kinases or substrates. They have enabled researchers to tackle increasingly complex biological problems and pathological processes, and have promoted the development of kinase inhibitors. Additionally, with the increasing interest in how kinases participate in biological processes at spatial scales, it has become urgent to develop tools to estimate spatial kinome activity. With multidisciplinary efforts, a growing number of novel approaches have the potential to be applied to spatial kinome analysis. In this paper, we review the widely used methods used for kinome analysis and the challenges encountered in their applications. Meanwhile, potential approaches that may be of benefit to spatial kinome study are explored.
Collapse
Affiliation(s)
- Zhanwu Hou
- Center for Mitochondrial Biology and Medicine, Douglas C. Wallace Institute for Mitochondrial and Epigenetic Information Sciences, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huadong Liu
- School of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| |
Collapse
|
4
|
Bruschi M, Angeletti A, Kajana X, Moroni G, Sinico RA, Fredi M, Vaglio A, Cavagna L, Pratesi F, Migliorini P, Locatelli F, Pazzola G, Pesce G, Bagnasco M, Manfredi A, Ramirez GA, Esposito P, Negrini S, Bui F, Trezzi B, Emmi G, Cavazzana I, Binda V, Fenaroli P, Pisani I, Montecucco C, Santoro D, Scolari F, Volpi S, Mosca M, Tincani A, Candiano G, Verrina E, Franceschini F, Ravelli A, Prunotto M, Meroni PL, Ghiggeri GM. Evidence for charge-based mimicry in anti dsDNA antibody generation. J Autoimmun 2022; 132:102900. [PMID: 36087539 DOI: 10.1016/j.jaut.2022.102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
Abstract
Mechanisms for the generation of anti-dsDNA autoantibodies are still not completely elucidated. One theory states that dsDNA interacts for mimicry with antibodies raised versus other antigens but molecular features for mimicry are unknown. Here we show that, at physiological acid-base balance, anti-Annexin A1 binds IgG2 dsDNA in a competitive and dose-dependent way with Annexin A1 and that the competition between the two molecules is null at pH 9. On the other hand, these findings also show that dsDNA and Annexin A1 interact with their respective antibodies on a strictly pH-dependent basis: in both cases, the binding was minimal at pH 4 and maximal at pH9-10. The anionic charge of dsDNA is mainly conferred by the numerous phosphatidic residues. The epitope binding site of Annexin A1 for anti-Annexin A1 IgG2 was here characterized as a string of 34 amino acids at the NH2 terminus, 10 of which are anionic. Circulating levels of anti-dsDNA and anti-Annexin A1 IgG2 antibodies were strongly correlated in patients with systemic lupus erythematosus (n 496) and lupus nephritis (n 425) stratified for age, sex, etc. These results show that dsDNA competes with Annexin A1 for the binding with anti-Annexin A1 IgG2 on a dose and charged mediated base, being able to display an inhibition up to 75%. This study provides the first demonstration that dsDNA may interact with antibodies raised versus other anionic molecules (anti-Annexin A1 IgG2) because of charge mimicry and this interaction may contribute to anti-dsDNA antibodies generation.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Angeletti
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Xhuliana Kajana
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gabriella Moroni
- Department of Biomedical Sciences, Humanitas University and IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Micaela Fredi
- Rheumatology and Clinical Immunology, ASST Spedali Civili and University of Brescia, Italy
| | - Augusto Vaglio
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, And Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
| | - Lorenzo Cavagna
- Division of Rheumatology, University and IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Federico Pratesi
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Italy
| | - Francesco Locatelli
- Division of Rheumatology, University and IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Giulia Pazzola
- Nephrology and Dialysis, Arciospedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Giampaola Pesce
- Medical and Radiometabolic Therapy Unit, Department of Internal Medicine, University of Genoa, Italy
| | - Marcello Bagnasco
- Medical and Radiometabolic Therapy Unit, Department of Internal Medicine, University of Genoa, Italy
| | - Angelo Manfredi
- Unit of Internal Medicine and Immunology, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Pasquale Esposito
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Simone Negrini
- Department of Internal Medicine, University of Genoa, Italy
| | - Federica Bui
- Division of Nephrology, University of Genoa and Policlinico San Martino, Genoa, Italy
| | - Barbara Trezzi
- Department of Medicine and Surgery, University of Milan, Bicocca, Italy
| | - Giacomo Emmi
- Lupus Clinic Department of Biomedicine, University of Florence, University Hospital Careggi, Florence, Italy
| | - Ilaria Cavazzana
- Rheumatology and Clinical Immunology, ASST Spedali Civili and University of Brescia, Italy
| | - Valentina Binda
- Department of Biomedical Sciences, Humanitas University and IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paride Fenaroli
- Nephrology Unit, University Hospital, University of Parma, Parma, Italy
| | - Isabella Pisani
- Nephrology Unit, University Hospital, University of Parma, Parma, Italy
| | | | - Domenico Santoro
- Nephrology and Dialysis Unit, University of Messina and G Martino Hospital, Messina, Italy
| | - Francesco Scolari
- Division of Nephrology and Dialysis, University of Brescia and Ospedale di Montichiari, Brescia, Italy
| | - Stefano Volpi
- Division of Pediatric Rheumatology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marta Mosca
- Rheumatologu Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Angela Tincani
- Rheumatology and Clinical Immunology, ASST Spedali Civili and University of Brescia, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Enrico Verrina
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Franco Franceschini
- Rheumatology and Clinical Immunology, ASST Spedali Civili and University of Brescia, Italy
| | - Angelo Ravelli
- Division of Pediatric Rheumatology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Prunotto
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Pier Luigi Meroni
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| |
Collapse
|
5
|
Discovery of anti-Formin-like 1 protein (FMNL1) antibodies in membranous nephropathy and other glomerular diseases. Sci Rep 2022; 12:13659. [PMID: 35953506 PMCID: PMC9372176 DOI: 10.1038/s41598-022-17696-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/29/2022] [Indexed: 12/28/2022] Open
Abstract
Evidence has shown that podocyte-directed autoantibodies can cause membranous nephropathy (MN). In the present work we investigated sera of MN patients using a high-density peptide array covering the whole coding sequences of the human genome encompassing 7,499,126 tiled peptides. A panel of 21 proteins reactive to MN sera were identified. We focused our attention on Formin-like 1 (FMNL1), a protein expressed by macrophages in MN patients tissues. High levels of anti-FMNL1 IgG4 were demonstrated in sera of MN patients with an orthogonal methodology (ELISA) contemporary demonstrating FMNL1 positive cells in kidney co-staining with CD68 in glomeruli. High levels of circulating anti-FMNL1 IgG4 were associated with lack of remission of proteinuria, potentially indicating that autoantibodies directed against cells other than podocytes, involved in tissue repair, might play a role in MN disease progression. High serum levels of anti-FMNL1 IgGs were also observed in other non-autoimmune glomerolonephrites, i.e. idiopathic and genetic FSGS, IgAGN. These findings are suggestive of a broader role of those autoantibodies in other glomerular disease conditions.
Collapse
|
6
|
Ting CY, Kolbeck PT, Colombo R, Chakiath C, Rice M, Marelli M, Christie RJ. Cyclopentadiene as a Multifunctional Reagent for Normal- and Inverse-Electron Demand Diels-Alder Bioconjugation. Bioconjug Chem 2022; 33:1609-1619. [PMID: 35943835 DOI: 10.1021/acs.bioconjchem.2c00222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Optimizing the Diels-Alder (DA) reaction for aqueous coupling has resulted in practical methods to link molecules such as drugs and diagnostic agents to proteins. Both normal electron demand (NED) and inverse electron demand (IED) DA coupling schemes have been employed, but neither mechanism entails a common multipurpose reactive group. This report focuses on expanding the bioconjugation toolbox for cyclopentadiene through the identification of reactive groups that couple through NED or IED mechanisms in aqueous solution. Dienophiles and tetrazine derivatives were screened for reactivity and selectivity toward antibodies bearing cyclopentadiene amino acids to yield bioconjugates. Twelve NED dienophiles and four tetrazine-based IED substrates were identified as capable of practical biocoupling. Furthermore, tetrazine ligation to cyclopentadiene occurred at a rate of 3.3 ± 0.5 M-1 s-1 and was capable of bioorthogonal transformations, as evidenced by the selective protein labeling in serum. Finally, an antibody-drug conjugate (ADC)-bearing monomethyl auristatin E was prepared via tetrazine conjugation to cyclopentadiene. The resulting ADC was stable and demonstrated potent activity in vitro. These findings expand the utility of cyclopentadiene as a tool to couple entities to proteins via dual DA addition mechanisms.
Collapse
Affiliation(s)
- Cheng-Yueh Ting
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| | - Paul T Kolbeck
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| | - Raffaele Colombo
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| | - Chacko Chakiath
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| | - Megan Rice
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| | - Marcello Marelli
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| | - R James Christie
- AstraZeneca R&D, Biologics Engineering, Gaithersburg, Maryland 20878, United States
| |
Collapse
|
7
|
García‐Castro M, Moscoso A, Sarabia F, López‐Romero JM, Contreras‐Cáceres R, Díaz A. Nanoscale Biocompatible Structures Generated from Fluorinated Tripodal Phenylenes on Gold Nanoprisms. ChemistryOpen 2022; 11:e202200007. [PMID: 35324086 PMCID: PMC8944223 DOI: 10.1002/open.202200007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/09/2022] [Indexed: 11/06/2022] Open
Abstract
Modification of gold substrates with a stable, uniform and ultrathin layer of biocompatible materials is of tremendous interest for the development of bio-devices. We present the fabrication of hybrid systems consisting of triangular prism gold nanoparticles (Au@NTPs) covalently covered with tripod-shaped oligo(p-phenylenes) featuring trifluoromethyl groups. Their synthesis is accomplished using a biphenyl boronic ester as the key compound. Au@NTPs were prepared through a seedless procedure using 3-butenoic acid and benzyldimethyl ammonium chloride, and modified with aminothiol groups. Coverage of this amine-modified gold substrate with a self-assembled monolayer (SAM) of tripod-shaped molecules is carried out in ethanolic solution. The hybrid system avoids up to 70 % of protein corona formation, and allows unspecific attachment for bulky adsorbates, providing an optimal biosensing platform. Chemical composition and morphology are analyzed by transmission electron microscopy (TEM), UV-visible spectroscopy and field emission scanning electron microscopy (FESEM).
Collapse
Affiliation(s)
- Miguel García‐Castro
- Departamento de Química OrgánicaUniversidad de MálagaFacultad de Ciencias29071MálagaSpain
| | - Ana Moscoso
- Departamento de Química OrgánicaUniversidad de MálagaFacultad de Ciencias29071MálagaSpain
| | - Francisco Sarabia
- Departamento de Química OrgánicaUniversidad de MálagaFacultad de Ciencias29071MálagaSpain
| | | | | | - Amelia Díaz
- Departamento de Química OrgánicaUniversidad de MálagaFacultad de Ciencias29071MálagaSpain
| |
Collapse
|
8
|
Fu J, Nguyen K. Reduction of Promiscuous Peptides-Enzyme Inhibition and Aggregation by Negatively Charged Biopolymers. ACS APPLIED BIO MATERIALS 2022; 5:1839-1845. [PMID: 34995072 DOI: 10.1021/acsabm.1c01128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, peptides selected from a microarray were found to inhibit β-gal with promiscuous mechanisms. Peptides inhibited the enzyme in a noncompetitive kinetics, and the inhibition of enzyme activities was reduced under high enzyme concentrations and the addition of detergent. Dynamic light scattering and atomic force microscope revealed that peptide/enzyme aggregation was related to inhibited enzyme activities. Positively charged residues of arginine and lysine were critical for the enzyme inhibition. The preincubation of peptide inhibitors with negatively charged biopolymers of polyphosphates, ssDNA, and low pI peptides could increase the residual activity of peptide-inhibited enzyme, possibly due to the disruption of the electrostatic interaction between positively charged peptide residues and the β-gal surface. Further, negative biopolymers were able to recover the activity of the aggregated peptide/β-gal complex. Negatively charged biopolymers could be used in high-throughput screening assays to reduce peptides/protein aggregation and thereby minimize promiscuous inhibitions.
Collapse
Affiliation(s)
- Jinglin Fu
- Department of Chemistry, Rutgers University-Camden, Camden, New Jersey 08102, United States.,Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, New Jersey 08103, United States
| | - Kaitlyn Nguyen
- Department of Chemistry, Rutgers University-Camden, Camden, New Jersey 08102, United States
| |
Collapse
|
9
|
|
10
|
Li Y, Liu Y, Huang X, Ren J. Analysis of protein phosphorylation combining capillary electrophoresis with ATP analog labeling technique. Electrophoresis 2021; 43:548-558. [PMID: 34783369 DOI: 10.1002/elps.202100251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023]
Abstract
Protein phosphorylation is one of the most basic mechanisms for regulating and controlling protein biological activity and function, and it is also a very important posttranslational modification process. Protein phosphorylation participates in and regulates many life activities such as signal transduction, gene expression, cell cycle, and so on. In this paper, we propose a method for the determination of the protein phosphorylation combining capillary electrophoresis (CE) with ATP analog labeling technique. We synthesized two new ATP analogs (ATP-NB and ATP-TATD-NB) functionalized by norbornene. Using Abl kinase as a model, we established a method for the determination of the kinase activity in solution and lysate by CE with laser-induced fluorescence detection (CE-LIF). This method was used to evaluate the efficiencies of kinase inhibitors. The IC50 values obtained are basically consistent with the reports. By D-A reaction (inverse electron demand Diels-Alder reaction) to label TZ-BODIPY fluorescence, we also realized the phosphorylation fluorescence detection of substrate peptide. Then, we used fluorescence confocal microscopy imaging technology to study the phosphorylation of proteins in vivo by the D-A reaction of ATP-NB and TZ-BODIPY. Our preliminary results documented that the combination of CE-LIF with analog ATP-NB labeling technique is an effective strategy for the determination of the protein phosphorylation and the kinase activity and for screening of kinase inhibitors. The D-A reaction of ATP-NB and TZ-BODIPY also laid the foundation for the subsequent in situ study of protein phosphorylation.
Collapse
Affiliation(s)
- Yue Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yaoqi Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
11
|
Li Y, Liu Q, Cui L, Liu W, Qiu JG, Zhang CY. Zirconium ion-mediated assembly of a single quantum dot-based nanosensor for kinase assay. Chem Commun (Camb) 2021; 57:6376-6379. [PMID: 34081069 DOI: 10.1039/d1cc02035h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate the zirconium ion-mediated assembly of a single quantum dot (QD)-based nanosensor for accurate detection of protein kinases (PKA) and polynucleotide kinases (PNK). This nanosensor is very sensitive with a detection limit of 8.82 × 10-4 U mL-1 for PKA and 1.40 × 10-5 U mL-1 for PNK. Moreover, it can be used to analyze the enzyme kinetic parameters and screen the inhibitors of PKA and PNK, with potential applications in drug discovery and clinical diagnosis.
Collapse
Affiliation(s)
- Yueying Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | - Qian Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | - Wenjing Liu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.
| | - Jian-Ge Qiu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
12
|
Li Y, Huang X, Ren J. Analysis of protein phosphorylation in solution and in cells by using an ATP analogue in combination with fluorescence techniques. Analyst 2021; 146:4506-4514. [PMID: 34190230 DOI: 10.1039/d1an00742d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein phosphorylation is a very important mechanism for regulating and controlling the activity and function of proteins, and is closely associated with signal transduction, gene expression, cell cycle and other life activities in organisms. In this paper, we proposed a new strategy for studying protein phosphorylation in living cells by combining fluorescence resonance energy transfer (FRET) with a small molecule adenosine 5'-triphosphate (ATP) analogue. We synthesized a new ATP analogue functionalized by norbornene (ATP-NB), and a tetrazine modified fluorescent probe Cyanine3 (TZ-Cy3). Based on the inverse electron demand Diels-Alder (D-A) reaction, ATP-NB phosphorylated proteins in solution and in living cells were in situ labelled with TZ-Cy3. By combining FRET with fluorescence correlation spectroscopy (FRET-FCS) and imaging technology, we established an efficient method for studying the phosphorylation of proteins in solution and in living cells using an ATP analogue instead of natural ATP. We studied the effects of phosphatase inhibitors on the phosphorylation of proteins in living cells. Our results documented that ATP-NB is a small molecule ATP analogue with hydrophobicity, which can penetrate cells and efficiently phosphorylate proteins in living cells. This strategy is well suitable for in situ study of protein phosphorylation in living cells.
Collapse
Affiliation(s)
- Yue Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| |
Collapse
|
13
|
Abstract
Cyclopentadiene is one of the most reactive dienes in normal electron-demand Diels-Alder reactions. The high reactivities and yields of cyclopentadiene cycloadditions make them ideal as click reactions. In this review, we discuss the history of the cyclopentadiene cycloaddition as well as applications of cyclopentadiene click reactions. Our emphasis is on experimental and theoretical studies on the reactivity and stability of cyclopentadiene and cyclopentadiene derivatives.
Collapse
Affiliation(s)
- Brian J. Levandowski
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
The impact of antifouling layers in fabricating bioactive surfaces. Acta Biomater 2021; 126:45-62. [PMID: 33727195 DOI: 10.1016/j.actbio.2021.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Bioactive surfaces modified with functional peptides are critical for both fundamental research and practical application of implant materials and tissue repair. However, when bioactive molecules are tethered on biomaterial surfaces, their functions can be compromised due to unwanted fouling (mainly nonspecific protein adsorption and cell adhesion). In recent years, researchers have continuously studied antifouling strategies to obtain low background noise and effectively present the function of bioactive molecules. In this review, we describe several commonly used antifouling strategies and analyzed their advantages and drawbacks. Among these strategies, antifouling molecules are widely used to construct the antifouling layer of various bioactive surfaces. Subsequently, we summarize various structures of antifouling molecules and their surface grafting methods and characteristics. Application of these functionalized surfaces in microarray, biosensors, and implants are also introduced. Finally, we discuss the primary challenges associated with antifouling layers in fabricating bioactive surfaces and provide prospects for the future development of this field. STATEMENT OF SIGNIFICANCE: The nonspecific protein adsorption and cell adhesion will cause unwanted background "noise" on the surface of biological materials and detecting devices and compromise the performance of functional molecules and, therefore, impair the performance of materials and the sensitivity of devices. In addition, the selection of antifouling surfaces with proper chain length and high grafting density is also of great importance and requires further studies. Otherwise, the surface-tethered bioactive molecules may not function in their optimal status or even fail to display their functions. Based on these two critical issues, we summarize antifouling molecules with different structures, variable grafting methods, and diverse applications in biomaterials and biomedical devices reported in literature. Overall, we expect to shed some light on choosing the appropriate antifouling molecules in fabricating bioactive surfaces.
Collapse
|
15
|
Wang J, Liu X, Wang C, Liu D, Li F, Wang L, Liu S. An Integral Recognition and Signaling for Electrochemical Assay of Protein Kinase Activity and Inhibitor by Reduced Graphene Oxide-Polydopamine-Silver Nanoparticle-Ti 4+ Nanocomposite. Front Bioeng Biotechnol 2020; 8:603083. [PMID: 33282854 PMCID: PMC7691532 DOI: 10.3389/fbioe.2020.603083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/27/2020] [Indexed: 11/23/2022] Open
Abstract
A novel electrochemical biosensing method for protein kinase (PKA) activity was demonstrated by using a reduced graphene oxide-polydopamine-silver nanoparticle-Ti4+ (rGO-PDA-AgNPs-Ti4+) nanocomposite. The obtained nanocomposite possessed an integral capability for phosphopeptide recognition and signal readout. The polydopamine modified reduced graphene oxide (rGO-PDA) was firstly prepared based on a self-polymerization method of dopamine. The silver ions were adsorbed onto polydopamine (PDA) layer and directly reduced into silver nanoparticles (AgNPs), which was used for electrochemical signal reporting. Then, the Ti4+ cations were attached onto the PDA layer for phosphopeptide recognition according to the strong coordination ability of PDA with Ti4+ and phosphate group. The prepared rGO-PDA-AgNPs-Ti4+ nanocomposites were characterized with different methods. The developed rGO-PDA-AgNPs-Ti4+ nanocomposites were then employed for electrochemical analysis of PKA-catalyzed kemptide phosphorylation. The sensitive detection toward PKA activity was realized with an experimental detection limit of about 0.01 U/mL. It may be also extended for the inhibitor evaluation. Thus, it provided a facile and sensitive means for electrochemical analysis of PKA activity and inhibitor screening.
Collapse
Affiliation(s)
- Jialong Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xueqian Liu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Chao Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Dengren Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Fang Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Li Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Shufeng Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Lee T, Lim J, Park K, Lim EK, Lee JJ. Peptidoglycan-Binding Protein Metamaterials Mediated Enhanced and Selective Capturing of Gram-Positive Bacteria and Their Specific, Ultra-Sensitive, and Reproducible Detection via Surface-Enhanced Raman Scattering. ACS Sens 2020; 5:3099-3108. [PMID: 32786378 DOI: 10.1021/acssensors.0c01139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biological metamaterials with a specific size and spacing are necessary for developing highly sensitive and selective sensing systems to detect hazardous bacteria in complex solutions. Herein, the construction of peptidoglycan-binding protein (PGBP)-based metamaterials to selectively capture Gram-positive cells with high efficacy is reported. Nanoimprint lithography was used to generate a nanohole pattern as a template, the inside of which was modified with nickel(II)-nitrilotriacetic acid (Ni-NTA). Then, PGBP metamaterials were fabricated by immobilizing PGBP via chelation between Ni-NTA and six histidines on PGBP. Compared to the flat and spread PGBP-covered bare substrates, the PGBP-based metamaterials enabled selective capturing of Gram-positive bacteria with high efficacy, owing to enhanced interactions between the metamaterials and bacterial surface not shown in bulk materials. Thereafter, the specific strain and quantitative information of the captured bacteria was obtained by surface-enhanced Raman scattering mapping analysis in the 1 to 1 × 106 cfu/mL range within 30 min. It should be noted that no additional signal amplification process was required for lowly abundant bacteria, even at the single-bacterium level. The PGBP-based metamaterials could be regenerated multiple times with preserved sensing efficiency. Finally, this assay can detect specific Gram-positive bacteria, such as Staphylococcus aureus, in human plasma.
Collapse
Affiliation(s)
- Taeksu Lee
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Republic of Korea
| | - Jaewoo Lim
- Bionano Technology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Kyoungsook Park
- BioNano Health Guard Research Center, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
- Department of General Education, Daejeon Health Institute of Technology, 21 Chungjeong-ro, Dong-gu, Daejeon 34504, Korea
| | - Eun-Kyung Lim
- Bionano Technology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jae-Jong Lee
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Republic of Korea
| |
Collapse
|
17
|
Dobrydnev AV, Tkachuk TM, Atamaniuk VP, Popova MV. Quercetin-Amino Acid Conjugates are Promising Anti-Cancer Agents in Drug Discovery Projects. Mini Rev Med Chem 2020; 20:107-122. [PMID: 31595850 DOI: 10.2174/1389557519666191009152007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/14/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
Quercetin is a plant flavonoid with great potential for the prevention and treatment of disease. Despite the curative application of quercetin is hampered by low bioavailability, its core serves as a scaffold for generating more potent compounds with amplified therapeutic window. This review aims to describe recent advances in the improvement of the pharmacokinetic profile of quercetin via the amino acid prodrug approach which offers wide structural diversity, physicochemical and biological properties improvement. According to the findings, conjugation of quercetin with amino acids results in increased solubility, stability, cellular permeability as well as biological activity. In particular quercetin- amino acid conjugates exhibited potent anticancer, MDR-reversal and antibiotic resistance reversal activities. The synthetic pathways and examples of quercetin-amino acid conjugates are considered. Practical considerations and challenges associated with the development of these prodrugs are also discussed. This mini-review covers the literature on quercetin-amino acid conjugates since 2001 when the first thematic work was published.
Collapse
Affiliation(s)
- Alexey V Dobrydnev
- SMC Ecopharm Ltd., Naberezhno-Korchuvatska Street 136-B, Kyiv 03045, Ukraine
| | - Tetiana M Tkachuk
- SMC Ecopharm Ltd., Naberezhno-Korchuvatska Street 136-B, Kyiv 03045, Ukraine
| | - Viktor P Atamaniuk
- SMC Ecopharm Ltd., Naberezhno-Korchuvatska Street 136-B, Kyiv 03045, Ukraine
| | - Maria V Popova
- Chemistry Department, National Taras Shevchenko University of Kyiv, Lva Tolstoho Street 12, Kyiv 01033, Ukraine
| |
Collapse
|
18
|
Li M, Xiong Y, Lu W, Wang X, Liu Y, Na B, Qin H, Tang M, Qin H, Ye M, Liang X, Qing G. Functional Nanochannels for Sensing Tyrosine Phosphorylation. J Am Chem Soc 2020; 142:16324-16333. [PMID: 32894673 DOI: 10.1021/jacs.0c06510] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tyrosine phosphorylation (pTyr), much of which occurred on localized multiple sites, initiates cellular signaling, governs cellular functions, and its dysregulation is implicated in many diseases, especially cancers. pTyr-specific sensing is of great significance for understanding disease states and developing targeted anticancer drugs, however, it is very challenging due to the slight difference from serine (pSer) or threonine phosphorylation (pThr). Here we present polyethylenimine-g-phenylguanidine (PEI-PG)-modified nanochannels that can address the challenge. Rich guanidinium groups enabled PEI-PG to form multiple interactions with phosphorylated residues, especially pTyr residue, which triggered the conformational change of PEI-PG. By taking advantage of the "OFF-ON" change of the ion flux arising from the conformational shrinkage of the grafted PEI-PG, the nanochannels could distinguish phosphorylated peptide (PP) from nonmodified peptide, recognize PPs with pSer, pThr, or pTyr residue and PPs with different numbers of identical residues, and importantly could sense pTyr peptides in a biosample. Benefiting from the strong interaction between the guanidinium group and the pTyr side-chain, the specific sensing of pTyr peptide was achieved by performing a simple logic operation based on PEI-PG-modified nanochannels when Ca2+ was introduced as an interferent. The excellent pTyr sensing capacity makes the nanochannels available for real-time monitoring of the pTyr process by c-Abl kinase on a peptide substrate, even under complicated conditions, and the proof-of-concept study of monitoring the kinase activity demonstrates its potential in kinase inhibitor screening.
Collapse
Affiliation(s)
- Minmin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, P. R. China
| | - Yuting Xiong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, P. R. China
| | - Wenqi Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yunhai Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, P. R. China
| | - Bing Na
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Mingliang Tang
- College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
19
|
Wang L, Song J, Wang X, Qi H, Gao Q, Zhang C. Monitoring casein kinase II at subcellular level via bio-bar-code-based electrochemiluminescence biosensing method. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.06.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Mapping proteome-wide targets of protein kinases in plant stress responses. Proc Natl Acad Sci U S A 2020; 117:3270-3280. [PMID: 31992638 DOI: 10.1073/pnas.1919901117] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein kinases are major regulatory components in almost all cellular processes in eukaryotic cells. By adding phosphate groups, protein kinases regulate the activity, localization, protein-protein interactions, and other features of their target proteins. It is known that protein kinases are central components in plant responses to environmental stresses such as drought, high salinity, cold, and pathogen attack. However, only a few targets of these protein kinases have been identified. Moreover, how these protein kinases regulate downstream biological processes and mediate stress responses is still largely unknown. In this study, we introduce a strategy based on isotope-labeled in vitro phosphorylation reactions using in vivo phosphorylated peptides as substrate pools and apply this strategy to identify putative substrates of nine protein kinases that function in plant abiotic and biotic stress responses. As a result, we identified more than 5,000 putative target sites of osmotic stress-activated SnRK2.4 and SnRK2.6, abscisic acid-activated protein kinases SnRK2.6 and casein kinase 1-like 2 (CKL2), elicitor-activated protein kinase CDPK11 and MPK6, cold-activated protein kinase MPK6, H2O2-activated protein kinase OXI1 and MPK6, and salt-induced protein kinase SOS1 and MPK6, as well as the low-potassium-activated protein kinase CIPK23. These results provide comprehensive information on the role of these protein kinases in the control of cellular activities and could be a valuable resource for further studies on the mechanisms underlying plant responses to environmental stresses.
Collapse
|
21
|
Piletska EV, Guerreiro A, Mersiyanova M, Cowen T, Canfarotta F, Piletsky S, Karim K, Piletsky S. Probing Peptide Sequences on Their Ability to Generate Affinity Sites in Molecularly Imprinted Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:279-283. [PMID: 31829602 DOI: 10.1021/acs.langmuir.9b03410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An array of 4000 defined and addressable tripeptides on a polymer-coated glass slide is used to synthesize molecularly imprinted polymer (MIP) nanoparticles. This work is undertaken to systematically probe the impact of the peptide sequence on the ability to generate affinity MIPs. The polymer affinity is assessed by measuring the fluorescence of bound MIP nanoparticles at each peptide spot on the surface after washing the array to remove any low-affinity polymer. The generic composition commonly used in the preparation of MIPs against proteins seems to be equally suitable for imprinting hydrophobic and hydrophilic tripeptides. The amino acids frequently contributing to the formation of high-affinity MIPs include T, F, D, N, Y, W, and P. The amino acids that rarely contribute to the formation of high-affinity interactions with MIPs are G, V, A, L, I, and M. These observations are confirmed by computational modeling. The basic technique proposed here may be applicable in optimizing polymer compositions for the production of high-affinity MIPs or, more specifically, for the selection of appropriate amino acid sequences when peptide epitopes are used instead of whole protein imprinting.
Collapse
Affiliation(s)
- Elena V Piletska
- Chemistry Department , University of Leicester , Leicester LE1 7RH , United Kingdom
| | - Antonio Guerreiro
- MIP Diagnostics Ltd , University of Leicester , Fielding Johnson Building , Leicester LE1 7RH , United Kingdom
| | | | - Todd Cowen
- Chemistry Department , University of Leicester , Leicester LE1 7RH , United Kingdom
| | - Francesco Canfarotta
- MIP Diagnostics Ltd , University of Leicester , Fielding Johnson Building , Leicester LE1 7RH , United Kingdom
| | - Stanislav Piletsky
- Department of Chemistry , Imperial College , London SW7 2AZ , United Kingdom
| | - Kal Karim
- Chemistry Department , University of Leicester , Leicester LE1 7RH , United Kingdom
| | - Sergey Piletsky
- Chemistry Department , University of Leicester , Leicester LE1 7RH , United Kingdom
| |
Collapse
|
22
|
Gurdal Y. Aromatic versus aliphatic thiols on Au(111) surface: a DFT exploration of adsorption registry and electronic structure. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1663844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yeliz Gurdal
- Department of Bioengineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| |
Collapse
|
23
|
Theoretical investigation of metalated and unmetalated pyrphyrins immobilized on Ag(111) surface. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00942-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Pachathundikandi SK, Gutiérrez-Escobar AJ, Tegtmeyer N. Tailor-Made Detection of Individual Phosphorylated and Non-Phosphorylated EPIYA-Motifs of Helicobacter pylori Oncoprotein CagA. Cancers (Basel) 2019; 11:cancers11081163. [PMID: 31412675 PMCID: PMC6721621 DOI: 10.3390/cancers11081163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/25/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
The gastric pathogen and carcinogen Helicobacter pylori(H. pylori) encodes a type IV secretion system for translocation of the effector protein CagA into host cells. Injected CagA becomes tyrosine-phosphorylated at the five amino acid residue Glutamate-Proline- Isoleucine-Tyrosine-Alanine (EPIYA)-sequence motifs. These phosphorylated EPIYA-sites represent recognition motifs for binding of multiple host factors, which then manipulate signaling pathways to trigger gastric disease. Thus, efficient detection of single phosphorylated EPIYA-motifs in CagA is required. Detection of phospho-CagA is primarily performed using commercial pan-phosphotyrosine antibodies. However, those antibodies were originally generated to recognize many phosphotyrosines in various mammalian proteins and are not optimized for use in bacteria. To address this important limitation, we synthesized 11-mer phospho- and non-phospho-peptides from EPIYA-motifs A, B, and C, and produced three phospho-specific and three non-phospho-specific rabbit polyclonal CagA antibodies. These antibodies specifically recognized the corresponding phosphorylated and non-phosphorylated EPIYA-motifs, while the EPIYA-C antibodies also recognized the related East-Asian EPIYA-D motif. Otherwise, no cross-reactivity of the antibodies among EPIYAs was observed. Western blotting demonstrated that each EPIYA-motif can be predominantly phosphorylated during H. pylori infection. This represents the first complete set of phospho-specific antibodies for an effector protein in bacteria, providing useful tools to gather information for the categorization of CagA phosphorylation, cancer signaling, and gastric disease progression.
Collapse
Affiliation(s)
- Suneesh Kumar Pachathundikandi
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Andrés Julián Gutiérrez-Escobar
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany.
| |
Collapse
|
25
|
Coppé JP, Mori M, Pan B, Yau C, Wolf DM, Ruiz-Saenz A, Brunen D, Prahallad A, Cornelissen-Steijger P, Kemper K, Posch C, Wang C, Dreyer CA, Krijgsman O, Lee PRE, Chen Z, Peeper DS, Moasser MM, Bernards R, van 't Veer LJ. Mapping phospho-catalytic dependencies of therapy-resistant tumours reveals actionable vulnerabilities. Nat Cell Biol 2019; 21:778-790. [PMID: 31160710 DOI: 10.1038/s41556-019-0328-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/09/2019] [Indexed: 12/21/2022]
Abstract
Phosphorylation networks intimately regulate mechanisms of response to therapies. Mapping the phospho-catalytic profile of kinases in cells or tissues remains a challenge. Here, we introduce a practical high-throughput system to measure the enzymatic activity of kinases using biological peptide targets as phospho-sensors to reveal kinase dependencies in tumour biopsies and cell lines. A 228-peptide screen was developed to detect the activity of >60 kinases, including ABLs, AKTs, CDKs and MAPKs. Focusing on BRAFV600E tumours, we found mechanisms of intrinsic resistance to BRAFV600E-targeted therapy in colorectal cancer, including targetable parallel activation of PDPK1 and PRKCA. Furthermore, mapping the phospho-catalytic signatures of melanoma specimens identifies RPS6KB1 and PIM1 as emerging druggable vulnerabilities predictive of poor outcome in BRAFV600E patients. The results show that therapeutic resistance can be caused by the concerted upregulation of interdependent pathways. Our kinase activity-mapping system is a versatile strategy that innovates the exploration of actionable kinases for precision medicine.
Collapse
Affiliation(s)
- Jean-Philippe Coppé
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Miki Mori
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Breast Surgical Oncology, Showa University, Tokyo, Japan
| | - Bo Pan
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Christina Yau
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Denise M Wolf
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Ana Ruiz-Saenz
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Diede Brunen
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anirudh Prahallad
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Kristel Kemper
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Christian Posch
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany.,School of Medicine, Sigmund Freud University, Vienna, Austria
| | - Changjun Wang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Courtney A Dreyer
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Oscar Krijgsman
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Pei Rong Evelyn Lee
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Zhongzhong Chen
- The State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Daniel S Peeper
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mark M Moasser
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - René Bernards
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Laura J van 't Veer
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
26
|
Mattes DS, Jung N, Weber LK, Bräse S, Breitling F. Miniaturized and Automated Synthesis of Biomolecules-Overview and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806656. [PMID: 31033052 DOI: 10.1002/adma.201806656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Chemical synthesis is performed by reacting different chemical building blocks with defined stoichiometry, while meeting additional conditions, such as temperature and reaction time. Such a procedure is especially suited for automation and miniaturization. Life sciences lead the way to synthesizing millions of different oligonucleotides in extremely miniaturized reaction sites, e.g., pinpointing active genes in whole genomes, while chemistry advances different types of automation. Recent progress in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging could match miniaturized chemical synthesis with a powerful analytical tool to validate the outcome of many different synthesis pathways beyond applications in the life sciences. Thereby, due to the radical miniaturization of chemical synthesis, thousands of molecules can be synthesized. This in turn should allow ambitious research, e.g., finding novel synthesis routes or directly screening for photocatalysts. Herein, different technologies are discussed that might be involved in this endeavor. A special emphasis is given to the obstacles that need to be tackled when depositing tiny amounts of materials to many different extremely miniaturized reaction sites.
Collapse
Affiliation(s)
- Daniela S Mattes
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nicole Jung
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Laura K Weber
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Frank Breitling
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
27
|
Valles DJ, Naeem Y, Carbonell C, Wong AM, Mootoo DR, Braunschweig AB. Maskless Photochemical Printing of Multiplexed Glycan Microarrays for High-Throughput Binding Studies. ACS Biomater Sci Eng 2019; 5:3131-3138. [DOI: 10.1021/acsbiomaterials.9b00033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel J. Valles
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Yasir Naeem
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Carlos Carbonell
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Alexa M. Wong
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - David R. Mootoo
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Adam B. Braunschweig
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
- The Advanced Science Research Center at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
28
|
Tian T, Yao Y, Yang B, Zhang K, Liu B. Ultrasensitive amplification-free detection of protein kinase based on catalyzed assembly and enumeration of gold nanoparticles. Chem Commun (Camb) 2019; 55:2505-2508. [PMID: 30741307 DOI: 10.1039/c9cc00131j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A single-particle enumeration method based on phosphorylation-directed in situ assembly of gold nanoparticles is developed for the ultrasensitive sensing of cellular protein kinase A activity. In comparison to existing strategies, the proposed new method demonstrates five orders of linear range and improves the detection limit up to 10-to-1000 fold without the involvement of target amplification.
Collapse
Affiliation(s)
- Tongtong Tian
- Department of Chemistry, Shanghai Stomatological Hospital, and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| | | | | | | | | |
Collapse
|
29
|
Pagel M. Inverse electron demand Diels-Alder (IEDDA) reactions in peptide chemistry. J Pept Sci 2019; 25:e3141. [PMID: 30585397 DOI: 10.1002/psc.3141] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 01/05/2023]
Abstract
Click chemistry is applied to selectively modify, lable and ligate peptides for their use as therapeutics, in biomaterials or analytical investigations. The inverse electron demand Diels-Alder (IEDDA) reaction is a catalyst-free click reaction with pronounced chemoselectivity and fast reaction rates. Applications and achievements of the IEDDA reaction in peptide chemistry since 2008 are described in this review.
Collapse
Affiliation(s)
- Mareen Pagel
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Leipzig, Germany
| |
Collapse
|
30
|
Yan Y, Sun N, Wang H, Kobayashi M, Ladd JJ, Long JP, Lo KC, Patel J, Sullivan E, Albert T, Goodman GE, Do KA, Hanash SM. Whole Genome-Derived Tiled Peptide Arrays Detect Prediagnostic Autoantibody Signatures in Non-Small-Cell Lung Cancer. Cancer Res 2019; 79:1549-1557. [PMID: 30723114 DOI: 10.1158/0008-5472.can-18-1536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/26/2018] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
The majority of non-small-cell lung cancer (NSCLC) cases are diagnosed at advanced stages, primarily because earlier stages of the disease are either asymptomatic or may be attributed to other causes such as infection or long-term effects from smoking. Therefore, early detection of NSCLC would likely increase response and survival rates due to timely intervention. Here, we utilize a novel approach based on whole genome-derived tiled peptide arrays to identify epitopes associated with autoantibody reactivity in NSCLC as a potential means for early detection. Arrays consisted of 2,781,902 tiled peptides representing 20,193 proteins encoded in the human genome. Analysis of 86 prediagnostic samples and 86 matched normal controls from a high-risk cohort revealed 48 proteins with three or more reactive epitopes in NSCLC samples relative to controls. Independent mass spectrometry analysis identified 40 of the 48 proteins in prediagnostic sera from NSCLC samples, of which, 21 occurred in the immunoglobulin-bound fraction. In addition, 63 and 34 proteins encompassed three or more epitopes that were distinct for squamous cell lung cancer and lung adenocarcinoma, respectively. Collectively, these data show that tiled peptide arrays provide a means to delineate epitopes encoded across the genome that trigger an autoantibody response associated with tumor development. SIGNIFICANCE: This study provides a modality for early diagnosis of NSCLC for precision oncology that can be applied to other cancer types.
Collapse
Affiliation(s)
- Yuanqing Yan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nan Sun
- Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Wang
- Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Makoto Kobayashi
- Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jon J Ladd
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - James P Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ken C Lo
- Roche Diagnostics, Madison, Wisconsin
| | | | | | | | - Gary E Goodman
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir M Hanash
- Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
31
|
Chen JQ, Yu LD, Zhang L, Liang RP, Cao SP, Qiu JD. Ultrasensitive detection of protein kinase activity based on the Au NPs mediated electrochemiluminescence amplification of S2O82−–O2 system. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Chen Z, Liu Y, Hao L, Zhu Z, Li F, Liu S. Reduced Graphene Oxide-Zirconium Dioxide–Thionine Nanocomposite Integrating Recognition, Amplification, and Signaling for an Electrochemical Assay of Protein Kinase Activity and Inhibitor Screening. ACS APPLIED BIO MATERIALS 2018; 1:1557-1565. [DOI: 10.1021/acsabm.8b00451] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiqiang Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Ying Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Lijie Hao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Zhencai Zhu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Fang Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Shufeng Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| |
Collapse
|
33
|
Vauthier M, Jierry L, Boulmedais F, Oliveira JC, Clancy KFA, Simet C, Roucoules V, Bally-Le Gall F. Control of Interfacial Diels-Alder Reactivity by Tuning the Plasma Polymer Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11960-11970. [PMID: 30173512 DOI: 10.1021/acs.langmuir.8b02045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Functionalizing the surface of a material with a smart plasma polymer coating is an interesting alternative strategy to obtain a thermoresponsive material without changing its formulation. On the basis of a low-pressure plasma polymerization process, the present work first aims to fabricate polymer thin films that react via the well-known thermoreversible Diels-Alder (DA) reaction (diene/dienophile cycloaddition). A two-step surface modification process based on (pulsed) plasma polymerization enables the design of functional coatings that contain furan (diene) groups. The reactivity of these surfaces with maleic anhydride (dienophile) in solution is thoroughly investigated, mainly by studying the kinetics of the DA reaction by advancing contact angle measurements. The determination of rate constants of reactions at various temperatures leads to the quantification of thermodynamic parameters such as the activation energy of the reaction as well as the enthalpy and entropy of activation related to the formation of the transition-state complex involved in the DA reaction. More interestingly, the design of furan-functionalized coatings with various physicochemical properties enables the understanding of the role played by the density of functional groups and the cross-linking rate of the polymer on the interfacial reactivity. Thus, we show in this work how to control the interfacial DA reaction on plasma coatings by tailoring the operating conditions of plasma polymerization.
Collapse
Affiliation(s)
- Madeline Vauthier
- Université de Haute-Alsace, CNRS, IS2M UMR 7361 , F-68100 Mulhouse , France
- Université de Strasbourg , F-67081 Strasbourg , France
| | - Loïc Jierry
- Institut Charles Sadron, CNRS, UPR 022 , F-67034 Strasbourg , France
| | - Fouzia Boulmedais
- Institut Charles Sadron, CNRS, UPR 022 , F-67034 Strasbourg , France
| | - Jamerson C Oliveira
- Chair of Forest Biomaterials, Faculty of Environment and Natural Resources , University of Freiburg , D-79085 Freiburg , Germany
- Freiburg Materials Research Center , University of Freiburg , D-79104 Freiburg , Germany
| | - Kathryn F A Clancy
- Université de Haute-Alsace, CNRS, IS2M UMR 7361 , F-68100 Mulhouse , France
- Université de Strasbourg , F-67081 Strasbourg , France
| | - Chloé Simet
- Université de Haute-Alsace, CNRS, IS2M UMR 7361 , F-68100 Mulhouse , France
- Université de Strasbourg , F-67081 Strasbourg , France
| | - Vincent Roucoules
- Université de Haute-Alsace, CNRS, IS2M UMR 7361 , F-68100 Mulhouse , France
- Université de Strasbourg , F-67081 Strasbourg , France
| | - Florence Bally-Le Gall
- Université de Haute-Alsace, CNRS, IS2M UMR 7361 , F-68100 Mulhouse , France
- Université de Strasbourg , F-67081 Strasbourg , France
| |
Collapse
|
34
|
Jia LP, Zhao RN, Wang LJ, Ma RN, Zhang W, Shang L, Wang HS. Aptamer based electrochemical assay for protein kinase activity by coupling hybridization chain reaction. Biosens Bioelectron 2018; 117:690-695. [PMID: 30014942 DOI: 10.1016/j.bios.2018.06.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/08/2023]
Abstract
The present work reported a simple, lable-free and sensitive electrochemical method for the detection of protein kinase A (PKA) activity. This method was based on the specific recognition of aptamer and the aptamer-induced hybridization chain reaction (HCR) amplification strategy. The aptasensor was constructed by immobilizing capture probe on a gold electrode via an Au-S bond. When adenosine triphosphate (ATP) aptamer was introduced, its one terminus hybridized with capture probe and the other hybridized with the complementary region of an auxiliary probe, which other region triggered HCR between two hairpin DNA (H1 and H2) to form a long DNA concatamer. At last a large number of electroactive methyle blue (MB) molecules were assembled on the dsDNA concatamer, which generated a significantly amplified electrochemical signal. In the presence of ATP, the HCR would not be performed because the aptamer specifically bond to ATP and the electrochemical response would decrease. However, when ATP and PKA coexisted, the electrochemical response would recovery because that ATP had been translated into ADP by PKA. So the activity of PKA could be effectively monitored according to the change of electrochemical signal. Based on the HCR amplification strategy, the aptasensor showed a wide linear range (4 - 4 ×105 U L-1) and a low detection limit (1.5 U L-1) for the detection of PKA. Furthermore, the method was applied to study the inhibitory effect of H-89 on PKA activity. The developed aptasensor was also used to the analysis of drug-induced PKA activity in cell lysates, indicating the potential application of the developed method in the fields of clinical diagnostics and discovery of new targeted drugs.
Collapse
Affiliation(s)
- Li-Ping Jia
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ruo-Nan Zhao
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Li-Juan Wang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Rong-Na Ma
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Wei Zhang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Lei Shang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Huai-Sheng Wang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
35
|
Sakaguchi I, Fukasawa T, Fujimoto K, Inouye M. Immobilization of Crosslinked Peptides that Possess High Helical Contents and Their Binding to Target DNAs on Au Surfaces. CHEM LETT 2018. [DOI: 10.1246/cl.171153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ikumi Sakaguchi
- Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Toshiaki Fukasawa
- Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Kazuhisa Fujimoto
- Department of Applied Chemistry and Biochemistry, Kyushu Sangyo University, Fukuoka 813-8503, Japan
| | - Masahiko Inouye
- Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
36
|
Yi F, Huang X, Ren J. Simple and Sensitive Method for Determination of Protein Kinase Activity Based on Surface Charge Change of Peptide-Modified Gold Nanoparticles As Substrates. Anal Chem 2018; 90:3871-3877. [DOI: 10.1021/acs.analchem.7b04569] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Fang Yi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People’s Republic of China
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People’s Republic of China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People’s Republic of China
| |
Collapse
|
37
|
Affiliation(s)
- Lindsey C. Szymczak
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hsin-Yu Kuo
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
38
|
Seo J, Shin JY, Leijten J, Jeon O, Camci-Unal G, Dikina AD, Brinegar K, Ghaemmaghami AM, Alsberg E, Khademhosseini A. High-throughput approaches for screening and analysis of cell behaviors. Biomaterials 2018; 153:85-101. [PMID: 29079207 PMCID: PMC5702937 DOI: 10.1016/j.biomaterials.2017.06.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023]
Abstract
The rapid development of new biomaterials and techniques to modify them challenge our capability to characterize them using conventional methods. In response, numerous high-throughput (HT) strategies are being developed to analyze biomaterials and their interactions with cells using combinatorial approaches. Moreover, these systematic analyses have the power to uncover effects of delivered soluble bioactive molecules on cell responses. In this review, we describe the recent developments in HT approaches that help identify cellular microenvironments affecting cell behaviors and highlight HT screening of biochemical libraries for gene delivery, drug discovery, and toxicological studies. We also discuss HT techniques for the analyses of cell secreted biomolecules and provide perspectives on the future utility of HT approaches in biomedical engineering.
Collapse
Affiliation(s)
- Jungmok Seo
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Center for Biomaterials, Korea Institute of Science and Technology, 14 Hwarang-ro, Seongbuk-gu, Seoul, 02792, South Korea
| | - Jung-Youn Shin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jeroen Leijten
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Oju Jeon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Gulden Camci-Unal
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Ave, Lowell, MA, 01854-2827, USA
| | - Anna D Dikina
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Katelyn Brinegar
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Amir M Ghaemmaghami
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH, 44106, USA; National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA; Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia.
| |
Collapse
|
39
|
Wang L, Whittemore K, Johnston SA, Stafford P. Entropy is a Simple Measure of the Antibody Profile and is an Indicator of Health Status: A Proof of Concept. Sci Rep 2017; 7:18060. [PMID: 29273777 PMCID: PMC5741721 DOI: 10.1038/s41598-017-18469-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/12/2017] [Indexed: 01/30/2023] Open
Abstract
We have previously shown that the diversity of antibodies in an individual can be displayed on chips on which 130,000 peptides chosen from random sequence space have been synthesized. This immunosignature technology is unbiased in displaying antibody diversity relative to natural sequence space, and has been shown to have diagnostic and prognostic potential for a wide variety of diseases and vaccines. Here we show that a global measure such as Shannon's entropy can be calculated for each immunosignature. The immune entropy was measured across a diverse set of 800 people and in 5 individuals over 3 months. The immune entropy is affected by some population characteristics and varies widely across individuals. We find that people with infections or breast cancer, generally have higher entropy values than non-diseased individuals. We propose that the immune entropy as measured from immunosignatures may be a simple method to monitor health in individuals and populations.
Collapse
Affiliation(s)
- Lu Wang
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, United States
| | - Kurt Whittemore
- Centro Nacional de Investigaciones Oncologicas, Madrid, 28029, Spain
| | - Stephen Albert Johnston
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, United States
| | - Phillip Stafford
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, United States.
| |
Collapse
|
40
|
Swaggerty CL, Kogut MH, He H, Genovese KJ, Johnson C, Arsenault RJ. Differential Levels of Cecal Colonization by Salmonella Enteritidis in Chickens Triggers Distinct Immune Kinome Profiles. Front Vet Sci 2017; 4:214. [PMID: 29322049 PMCID: PMC5733560 DOI: 10.3389/fvets.2017.00214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/28/2017] [Indexed: 01/18/2023] Open
Abstract
Salmonella enterica serovar Enteritidis are facultative intracellular bacteria that cause disease in numerous species. Salmonella-related infections originating from poultry and/or poultry products are a major cause of human foodborne illness with S. Enteritidis the leading cause worldwide. Despite the importance of Salmonella to human health and chickens being a reservoir, little is known of the response to infection within the chicken gastrointestinal tract. Using chicken-specific kinome immune peptide arrays we compared a detailed kinomic analysis of the chicken jejunal immune response in a single line of birds with high and low Salmonella loads. Four-day-old chicks were challenged with S. Enteritidis (105 cfu) and cecal content and a section of jejunum collected at three times: early [4-7 days post-infection (dpi)], middle (10-17 dpi), and late (24-37 dpi). Salmonella colonization was enumerated and birds with the highest (n = 4) and lowest (n = 4) loads at each time were selected for kinomic analyses. Key biological processes associated with lower loads of Salmonella clustered around immune responses, including cell surface receptor signaling pathway, positive regulation of cellular processes, defense response, innate immune response, regulation of immune response, immune system process, and regulation of signaling. Further evaluation showed specific pathways including chemokine, Jak-Stat, mitogen activated protein kinase, and T cell receptor signaling pathways were also associated with increased resistance. Collectively, these findings demonstrate that it is possible to identify key mechanisms and pathways that are associated with increased resistance against S. Enteritidis cecal colonization in chickens. Therefore, providing a foundation for future studies to identify specific proteins within these pathways that are associated with resistance, which could provide breeders additional biomarkers to identify birds naturally more resistant to this important foodborne pathogen.
Collapse
Affiliation(s)
- Christina L Swaggerty
- U.S. Department of Agriculture, Agricultural Research Service, College Station, TX, United States
| | - Michael H Kogut
- U.S. Department of Agriculture, Agricultural Research Service, College Station, TX, United States
| | - Haiqi He
- U.S. Department of Agriculture, Agricultural Research Service, College Station, TX, United States
| | - Kenneth J Genovese
- U.S. Department of Agriculture, Agricultural Research Service, College Station, TX, United States
| | - Casey Johnson
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
41
|
Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017; 117:12942-13038. [DOI: 10.1021/acs.chemrev.7b00088] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuaidi Zhang
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Ren Geryak
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Jeffrey Geldmeier
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Sunghan Kim
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Vladimir V. Tsukruk
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
42
|
Altissimo M, Kiskinova M, Mincigrucci R, Vaccari L, Guarnaccia C, Masciovecchio C. Perspective: A toolbox for protein structure determination in physiological environment through oriented, 2D ordered, site specific immobilization. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044017. [PMID: 28428974 PMCID: PMC5392127 DOI: 10.1063/1.4981224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/05/2017] [Indexed: 05/19/2023]
Abstract
Revealing the structure of complex biological macromolecules, such as proteins, is an essential step for understanding the chemical mechanisms that determine the diversity of their functions. Synchrotron based X-ray crystallography and cryo-electron microscopy have made major contributions in determining thousands of protein structures even from micro-sized crystals. They suffer from some limitations that have not been overcome, such as radiation damage, the natural inability to crystallize a number of proteins, and experimental conditions for structure determination that are incompatible with the physiological environment. Today, the ultra-short and ultra-bright pulses of X-ray free-electron lasers have made attainable the dream to determine protein structures before radiation damage starts to destroy the samples. However, the signal-to-noise ratio remains a great challenge to obtain usable diffraction patterns from a single protein molecule. With the perspective to overcome these challenges, we describe here a new methodology that has the potential to overcome the signal-to-noise-ratio and protein crystallization limits. Using a multidisciplinary approach, we propose to create ordered, two dimensional protein arrays with defined orientation attached on a self-assembled-monolayer. We develop a literature-based flexible toolbox capable of assembling different kinds of proteins on a functionalized surface and consider using a graphene cover layer that will allow performing experiments with proteins in physiological conditions.
Collapse
Affiliation(s)
- M Altissimo
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| | - M Kiskinova
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| | - R Mincigrucci
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| | - L Vaccari
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| | - C Guarnaccia
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - C Masciovecchio
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| |
Collapse
|
43
|
Fu Q, Wu Z, Du D, Zhu C, Lin Y, Tang Y. Versatile Barometer Biosensor Based on Au@Pt Core/Shell Nanoparticle Probe. ACS Sens 2017; 2:789-795. [PMID: 28723117 DOI: 10.1021/acssensors.7b00156] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
There is a high global demand for sensitive, portable, user-friendly, and cost-effective biosensors. In this work, we introduce a barometer-based biosensor for the detection of a broad range of targets. The device is operated by measuring the pressure change produced by oxygen (O2) generation in a limited chamber using a portable barometer. The design employs core-shell Au@Pt nanoparticles (Au@PtNPs) as the bioassay probe to catalyze the decomposition of H2O2 and the release of O2. As a proof of concept, we developed barometer-based immunosensors to detect carcinoembryonic antigen (CEA) and ractopamine (Rac). In addition, barometer-based aptasensors for sensitive detection of thrombin and mercury ion (Hg2+) were also developed. In order to facilitate the analysis of results, we have developed smartphone software to calculate, save, and wirelessly trsnsmit the results. Linear detection ranges for detection of CEA, Rac, thrombin, and Hg2+ were 0.025-1.6 ng/mL, 0.0625-4 ng/mL, 4-128 U/L, and 0.25-16 ng/mL, respectively. The detection limit of these four analytes is 0.021 ng/mL, 0.051 ng/mL, 2.4 U/L, and 0.22 ng/mL, respectively. Furthermore, the developed barometer-based biosensors exhibited high specificities for these four analytes. CEA in serum samples, Rac in urine samples, thrombin in serum samples, and Hg2+ in river water samples were measured by the barometer-based biosensors. Obtained results of these targets from barometer-based biosensors were consistent with detection results from traditional methods, indicating that barometer-based biosensors are widely applicable.
Collapse
Affiliation(s)
- Qiangqiang Fu
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | | | - Dan Du
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yuehe Lin
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | | |
Collapse
|
44
|
Liu Q, Na W, Wang L, Su X. Gold nanocluster-based fluorescent assay for label-free detection of protein kinase and its inhibitors. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2349-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Adibi-Motlagh B, Lotfi AS, Rezaei A, Hashemi E. Cell attachment evaluation of the immobilized bioactive peptide on a nanographene oxide composite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 82:323-329. [PMID: 29025665 DOI: 10.1016/j.msec.2017.05.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 04/25/2017] [Accepted: 05/07/2017] [Indexed: 11/27/2022]
Abstract
The immobilization of bioactive peptides as key molecules in numerous biological and physiological functions holds promise for designing advanced biomaterials. Graphene and its derivatives, having unique physicochemical properties, have brought considerable attention in the life sciences. In this regard, the chemical manipulation of the graphene surface with bioactive peptides opens a new horizon to design bioactive materials for a variety of future nanobiotechnologies. In this study, the first straightforward strategy for the covalent immobilization of the cell-adhesion peptide onto the graphene surface based on the Ugi four-component assembly process (Ugi 4-CAP) will be presented. The modified adhesion motif peptide, as an amine component in the presence of formaldehyde, cyclohexylisocyanide and carboxylated-graphene (G-COOH), was adopted in a four component reaction to fabricate a peptide-graphene (Peptide-G) biomaterial in water as a green solvent at an ambient temperature. The amino functional groups corresponded to the modified adhesion motif peptide and were immobilized onto the graphene sheets, which were quantified by the Kaiser test. The sheets were characterized by further analyses with FT-IR, AFM, UV-vis, Raman and thermogravimetric analyses. The Peptide-G biomaterial showed excellent biocompatibility. In addition, the Peptide-G treated surface, due to the presence of RGD on the surface of the graphene, significantly accelerated the proliferation of human mesenchymal stem cells (hMSCs) at a better rate regarding the tissue plate.
Collapse
Affiliation(s)
- Behzad Adibi-Motlagh
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Abbas Sahebghadam Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| | - Aram Rezaei
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Hashemi
- National Research Center for Transgenic Mouse, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965-161, Tehran, Iran
| |
Collapse
|
46
|
Pantaine L, Humblot V, Coeffard V, Vallée A. Sulfamide chemistry applied to the functionalization of self-assembled monolayers on gold surfaces. Beilstein J Org Chem 2017; 13:648-658. [PMID: 28487759 PMCID: PMC5389194 DOI: 10.3762/bjoc.13.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/13/2017] [Indexed: 01/10/2023] Open
Abstract
Aniline-terminated self-assembled monolayers (SAMs) on gold surfaces have successfully reacted with ArSO2NHOSO2Ar (Ar = 4-MeC6H4 or 4-FC6H4) resulting in monolayers with sulfamide moieties and different end groups. Moreover, the sulfamide groups on the SAMs can be hydrolyzed showing the partial regeneration of the aniline surface. SAMs were characterized by water contact angle (WCA) measurements, Fourier-transform infrared reflection absorption spectroscopy (IRRAS) and X-ray photoelectron spectroscopy (XPS).
Collapse
Affiliation(s)
- Loïc Pantaine
- Institut Lavoisier de Versailles, UMR 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Vincent Humblot
- Sorbonne Universités, UPMC Univ. Paris 06, Laboratoire de Réactivité de Surface, UMR CNRS 7197, 4 place Jussieu, 75005 Paris, France
| | - Vincent Coeffard
- Université de Nantes, CNRS, CEISAM, UMR 6230, Faculté des Sciences et des Techniques, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Anne Vallée
- Institut Lavoisier de Versailles, UMR 8180, Université Paris-Saclay, Université de Versailles Saint-Quentin, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
| |
Collapse
|
47
|
Long XY, Li JY, Sheng D, Lian HZ. Spinel-type manganese ferrite (MnFe 2 O 4 ) microspheres: A novel affinity probe for selective and fast enrichment of phosphopeptides. Talanta 2017; 166:36-45. [DOI: 10.1016/j.talanta.2017.01.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/01/2017] [Accepted: 01/06/2017] [Indexed: 02/02/2023]
|
48
|
Sun K, Chang Y, Zhou B, Wang X, Liu L. Gold nanoparticles-based electrochemical method for the detection of protein kinase with a peptide-like inhibitor as the bioreceptor. Int J Nanomedicine 2017; 12:1905-1915. [PMID: 28331314 PMCID: PMC5352234 DOI: 10.2147/ijn.s127957] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This article presents a general method for the detection of protein kinase with a peptide-like kinase inhibitor as the bioreceptor, and it was done by converting gold nanoparticles (AuNPs)-based colorimetric assay into sensitive electrochemical analysis. In the colorimetric assay, the kinase-specific aptameric peptide triggered the aggregation of AuNPs in solution. However, the specific binding of peptide to the target protein (kinase) inhibited its ability to trigger the assembly of AuNPs. In the electrochemical analysis, peptides immobilized on a gold electrode and presented as solution triggered together the in situ formation of AuNPs-based network architecture on the electrode surface. Nevertheless, the formation of peptide-kinase complex on the electrode surface made the peptide-triggered AuNPs assembly difficult. Electrochemical impedance spectroscopy was used to measure the change in surface property in the binding events. When a ferrocene-labeled peptide (Fc-peptide) was used in this design, the network of AuNPs/Fc-peptide produced a good voltammetric signal. The competitive assay allowed for the detection of protein kinase A with a detection limit of 20 mU/mL. This work should be valuable for designing novel optical or electronic biosensors and likely lead to many detection applications.
Collapse
Affiliation(s)
- Kai Sun
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People’s Republic of China
| | - Yong Chang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People’s Republic of China
| | - Binbin Zhou
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People’s Republic of China
| | - Xiaojin Wang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People’s Republic of China
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People’s Republic of China
| |
Collapse
|
49
|
Reversible Covalent and Supramolecular Functionalization of Water-Soluble Gold(I) Complexes. Chemistry 2017; 23:6048-6055. [DOI: 10.1002/chem.201700588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Indexed: 11/07/2022]
|
50
|
Qafari SM, Ahmadian G, Mohammadi M. One-step purification and oriented attachment of protein A on silica and graphene oxide nanoparticles using sortase-mediated immobilization. RSC Adv 2017. [DOI: 10.1039/c7ra12128h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One-step purification and oriented immobilization of protein A on functionalized carriers.
Collapse
Affiliation(s)
- Seyed Mehdi Qafari
- Systems Biotechnology Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| | - Gholamreza Ahmadian
- Systems Biotechnology Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| | - Mehdi Mohammadi
- Bioprocess Engineering Department
- Institute of Industrial and Environmental Biotechnology
- National Institute of Genetic Engineering and Biotechnology (NIGEB)
- Tehran
- Iran
| |
Collapse
|