1
|
A low-molecular-weight chitosan fluorometric-based assay for evaluating antiangiogenic drugs. Int J Biol Macromol 2022; 224:927-937. [DOI: 10.1016/j.ijbiomac.2022.10.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
2
|
Hawley TS, Hawley RG, Telford WG. Fluorescent Proteins for Flow Cytometry. ACTA ACUST UNITED AC 2017; 80:9.12.1-9.12.20. [PMID: 28369764 DOI: 10.1002/cpcy.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fluorescent proteins have become standard tools for cell and molecular biologists. The color palette of fluorescent proteins spans the ultraviolet, visible, and near-infrared spectrum. Utility of fluorescent proteins has been greatly facilitated by the availability of compact and affordable solid state lasers capable of providing various excitation wavelengths. In theory, the plethora of fluorescent proteins and lasers make it easy to detect multiple fluorescent proteins simultaneously. However, in practice, heavy spectral overlap due to broad excitation and emission spectra presents a challenge. In conventional flow cytometry, careful selection of excitation wavelengths and detection filters is necessary. Spectral flow cytometry, an emerging methodology that is not confined by the "one color, one detector" paradigm, shows promise in the facile detection of multiple fluorescent proteins. This chapter provides a synopsis of fluorescent protein development, a list of commonly used fluorescent proteins, some practical considerations and strategies for detection, and examples of applications. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Teresa S Hawley
- Flow Cytometry Core Facility, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert G Hawley
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, D.C
| | - William G Telford
- Flow Cytometry Core Facility, Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Hajjari M, Sadeghi I, Salavaty A, Nasiri H, Birgani MT. Tissue Specific Expression Levels of Apoptosis Involved Genes Have Correlations with Codon and Amino Acid Usage. Genomics Inform 2016; 14:234-240. [PMID: 28154517 PMCID: PMC5287130 DOI: 10.5808/gi.2016.14.4.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mohammadreza Hajjari
- Department of Genetics, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz 61357-83151, Iran
| | - Iman Sadeghi
- Department of Molecular Genetics, Faculty of Biosciences, Tarbiat Modares University of Tehran, Tehran 14115116, Iran
| | - Abbas Salavaty
- Department of Genetics, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz 61357-83151, Iran
| | - Habib Nasiri
- Department of Medical Genetics, Nika Center of Preventive Medicine and Health Promotion, Tehran 1418944711, Iran
| | - Maryam Tahmasebi Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| |
Collapse
|
4
|
Smurthwaite CA, Hilton BJ, O'Hanlon R, Stolp ZD, Hancock BM, Abbadessa D, Stotland A, Sklar LA, Wolkowicz R. Fluorescent genetic barcoding in mammalian cells for enhanced multiplexing capabilities in flow cytometry. Cytometry A 2013; 85:105-13. [DOI: 10.1002/cyto.a.22406] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 01/19/2023]
Affiliation(s)
| | - Brett J. Hilton
- Department of Biology; San Diego State University; San Diego California 92182
| | - Ryan O'Hanlon
- Department of Biology; San Diego State University; San Diego California 92182
| | - Zachary D. Stolp
- Department of Biology; San Diego State University; San Diego California 92182
| | - Bryan M. Hancock
- Department of Biology; San Diego State University; San Diego California 92182
| | - Darin Abbadessa
- Department of Biology; San Diego State University; San Diego California 92182
| | - Aleksandr Stotland
- Department of Biology; San Diego State University; San Diego California 92182
| | - Larry A. Sklar
- UNM Center for Molecular Discovery; University of New Mexico School of Medicine; Albuquerque New Mexico 87131
- Department of Pathology; University of New Mexico School of Medicine; Albuquerque New Mexico 87131
| | - Roland Wolkowicz
- Department of Biology; San Diego State University; San Diego California 92182
| |
Collapse
|
5
|
Differential expression of HPV16 L2 gene in cervical cancers harboring episomal HPV16 genomes: influence of synonymous and non-coding region variations. PLoS One 2013; 8:e65647. [PMID: 23762404 PMCID: PMC3675152 DOI: 10.1371/journal.pone.0065647] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/26/2013] [Indexed: 01/28/2023] Open
Abstract
We tested the hypothesis that (i) synonymous variations within the coding regions, and (ii) variations within the non-coding regions of HPV, influence cervical cancer (CaCx) pathogenesis under the impact of intact HPV16 genomes. Whole genome sequence analysis of HPV16 isolates within 70 CaCx cases and 25 non-malignant samples revealed that synonymous variations were significantly higher within the E6 (p = 0.014), E5 (p = 0.001) and L2 (p = 0.0002) genes of HPV16 isolates within cases, compared to isolates within non-malignant samples. All of the 25 (100%) humanized codons identified within L2 ORF of the samples analyzed, were harbored by CaCx cases, while 8 out of 25 (32%) were harbored by HPV16 positive non-malignant samples (p = 3.87105E-07). L2 (mRNA and protein) expression was evident only among cases with episomal viral genomes and L2 mRNA expression correlated significantly with E2 gene copy numbers suggesting expression from all episomal genomes. Among such cases, Asian American (AA) isolates portrayed all of the humanized codons (100%; 4–6/sample) recorded within L2, which was significantly higher (p = 2.02E-7) compared to the European (E) isolates (22.8%; none or 1–2/sample). Additionally, majority of E variant isolates within cases (54/57; 94.7%) portrayed a variation (T4228C) within the short non-coding region (NCR2) between E5 and L2 genes, which portrays a weak promoter activity specific for L2 mRNA expression. This resulted in loss of 9 out of 14 miRNA binding sites (hsa-miR-548 family), despite the significant overexpression of miR548a-5p and miR548d-5p among such cases (28.64 and 36.25 folds, respectively), in comparison to HPV negative control samples. The findings exemplify the biological relevance of sequence variations in HPV16 genomes and highlight that episomal HPV16 in CaCx cases employ multiple mechanisms to sustain L2 expression, thereby justifying the potential role of L2 in such cancers, as opposed to those harboring viral integration.
Collapse
|
6
|
Sachse R, Wüstenhagen D, Šamalíková M, Gerrits M, Bier FF, Kubick S. Synthesis of membrane proteins in eukaryotic cell‐free systems. Eng Life Sci 2012. [DOI: 10.1002/elsc.201100235] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Rita Sachse
- Fraunhofer Institute for Biomedical Engineering (IBMT) Potsdam Germany
| | | | - Mária Šamalíková
- Fraunhofer Institute for Biomedical Engineering (IBMT) Potsdam Germany
| | | | - Frank F. Bier
- Fraunhofer Institute for Biomedical Engineering (IBMT) Potsdam Germany
- University of Potsdam Institute for Biochemistry and Biology Potsdam Germany
| | - Stefan Kubick
- Fraunhofer Institute for Biomedical Engineering (IBMT) Potsdam Germany
| |
Collapse
|
7
|
Zhou JH, Zhang J, Chen HT, Ma LN, Ding YZ, Pejsak Z, Liu YS. The codon usage model of the context flanking each cleavage site in the polyprotein of foot-and-mouth disease virus. INFECTION GENETICS AND EVOLUTION 2011; 11:1815-9. [PMID: 21801856 DOI: 10.1016/j.meegid.2011.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/03/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022]
Abstract
To investigate the codon usage pattern of the contexts flanking 11 cleavage sites of foot-and-mouth disease virus (FMDV) polyprotein, the codon usage model of the corresponding codon position and the synonymous codon usage in the target contexts of 66 strains were characterized by two simple methods based on the relative synonymous codon usage value. The synonymous codons usage pattern was also compared between this virus and two species of hosts (cattle and domestic pig). It is indicated that FMDV bore a general resemblance to the hosts in terms of the synonymous codon usage pattern. This feature may help FMDV to utilize translational resources of host efficiently. The two amino acid residues constituting each cleavage site contain at least one conserved residue. It was noticed that the codon usage model with the strong bias appeared in some specific positions in the target contexts, and the under-represented synonymous codons, AUA for Ile, CUA for Leu, UUA for Leu and GUA for Val, are preferentially used in these positions. These under-represented synonymous codons likely play role in regulating the translation rate and influencing the secondary structure of the contexts flanking the cleavage sites.
Collapse
Affiliation(s)
- Jian-Hua Zhou
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | | | | | | | | | | | | |
Collapse
|
8
|
Fath S, Bauer AP, Liss M, Spriestersbach A, Maertens B, Hahn P, Ludwig C, Schäfer F, Graf M, Wagner R. Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS One 2011; 6:e17596. [PMID: 21408612 PMCID: PMC3048298 DOI: 10.1371/journal.pone.0017596] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/30/2011] [Indexed: 01/31/2023] Open
Abstract
Autologous expression of recombinant human proteins in human cells for biomedical research and product development is often hampered by low expression yields limiting subsequent structural and functional analyses. Following RNA and codon optimization, 50 candidate genes representing five classes of human proteins – transcription factors, ribosomal and polymerase subunits, protein kinases, membrane proteins and immunomodulators – all showed reliable, and 86% even elevated expression. Analysis of three representative examples showed no detrimental effect on protein solubility while unaltered functionality was demonstrated for JNK1, JNK3 and CDC2 using optimized constructs. Molecular analysis of a sequence-optimized transgene revealed positive effects at transcriptional, translational, and mRNA stability levels. Since improved expression was consistent in HEK293T, CHO and insect cells, it was not restricted to distinct mammalian cell systems. Additionally, optimized genes represent powerful tools in functional genomics, as demonstrated by the successful rescue of an siRNA-mediated knockdown using a sequence-optimized counterpart. This is the first large-scale study addressing the influence of multiparameter optimization on autologous human protein expression.
Collapse
Affiliation(s)
| | - Asli Petra Bauer
- Molecular Microbiology and Gene Therapy Unit, Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | - Ralf Wagner
- Geneart AG, BioPark, Regensburg, Germany
- Molecular Microbiology and Gene Therapy Unit, Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
9
|
Hu CC, Ji HM, Chen SL, Zhang HW, Wang BQ, Zhou LY, Zhang ZP, Sun XL, Chen ZZ, Cai YQ, Qin LS, Lu L, Jiang XD, Xu RX, Ke YQ. Investigation of a plasmid containing a novel immunotoxin VEGF165-PE38 gene for antiangiogenic therapy in a malignant glioma model. Int J Cancer 2010; 127:2222-9. [PMID: 20127864 DOI: 10.1002/ijc.25217] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inhibition of tumor neovascularization has profound effects on the growth of solid tumors. Our previous studies have shown the effect of VEGF165-PE38 recombinant immunotoxin on proliferation and apoptosis in human umbilical vein endothelial cells in vitro. In this study, we explored the direct inhibition of angiogenesis in chick chorioallantoic membrane and antiangiogenic therapy in a malignant glioma model. HEK293 cells were transfected with the pVEGF165PE38-IRES2-EGFP plasmid. ELISA was used to confirm the expression of VEGF165-PE38 in the transfected cells. These cells released 1396 + or - 131.9 pg VEGF165-PE38/1x10(4) cells/48 h into the culture medium and the supernatant was capable of inhibiting the growth of capillary-like structures in chick chorioallantoic membrane assay. In a murine malignant glioma model, plasmid was directly administered via multiple local intratumoral delivery. After day 16 the tumor volume in mice treated with pVEGF165PE38-IRES2-EGFP was significantly lower than that in mice in the control groups. Immunohistochemistry studies showed that the treated group had decreased expression of CD31. Quantitative analysis of microvessel density in the treated group was 1.99 + or - 0.69/0.74 mm(2), and was significantly lower than that in the control groups (9.33 + or - 1.99/0.74 mm(2), 8.09 + or - 1.39/0.74 mm(2) and 8.49 + or - 1.69/0.74 mm(2)). Immunohistochemistry analysis indicated that immunotoxin VEGF165-PE38 was distributed in the treated group in malignant glioma tissue. Our findings provide evidence that the in vivo production of VEGF165-PE38 through gene therapy using a eukaryotic expression plasmid had potential antiangiogenic activity in malignant glioma in vivo.
Collapse
Affiliation(s)
- Chang-chen Hu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hajjari M, Saffar B, Khoshnevisan A. Translational selection on SHH genes. Genet Mol Biol 2010; 33:408-10. [PMID: 21637502 PMCID: PMC3036852 DOI: 10.1590/s1415-47572010005000035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 11/17/2009] [Indexed: 11/21/2022] Open
Abstract
Codon usage bias has been observed in various organisms. In this study, the correlation between SHH genes expression in some tissues and codon usage features was analyzed by bioinformatics. We found that translational selection may act on compositional features of this set of genes.
Collapse
Affiliation(s)
| | - Behnaz Saffar
- Shahrekord University, Iran; Shahrekord University, Iran
| | | |
Collapse
|
11
|
Abstract
We have established a novel production process which allows up to fourfold higher production of a model secreted protein, the human secreted alkaline phosphatase (SEAP), in Chinese hamster ovary (CHO) cells. A cytostatic production phase is established in which cell proliferation is inhibited or completely abolished. Such a cytostatic production phase is established by overexpression of the tumor suppressor genes p21, p27, or p53175P (a p53 mutant showing specific loss of apoptotic function) under transcriptional control of a tetracycline-repressible promoter (P(hCMV*-1)). In order to minimize complications due to possible clonal variation of selected, stable cell lines, our investigations are based on transiently transfected subpopulations, that have become a useful tool in industrial R&D. These subpopulations have been selected by flow cytometry for the expression of genes encoded on a dicistronic expression vector. These vectors contain a dicistronic expression unit consisting of the genes encoding the green fluorescent protein (GFP) or SEAP, followed by one of the cytostatic genes p21, p27 or p53175P encoded by the second cistron. p21, p27 as well as p53175P block the cell cycle of CHO cells in the G1-phase for a prolonged period. However, these G1-arrested cells remain viable and proliferation proficient upon repression of expression of the cytostatic gene. All three of the cytostatic genes studied provided similar regulation of proliferation, and also similar enhancements in SEAP production, suggesting that higher productivity may be a general and intrinsic feature of G1-phase arrested CHO cells. Overall productivity is most likely enhanced because growth-arrested cells do not need to devote cellular resources to biomass production.
Collapse
Affiliation(s)
- M Fussenegger
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
12
|
Rasko JE. Reporters of gene expression: autofluorescent proteins. CURRENT PROTOCOLS IN CYTOMETRY 2008; Chapter 9:Unit 9.12. [PMID: 18770749 DOI: 10.1002/0471142956.cy0912s07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This unit on GFP provides clear, detailed, easy-to-follow directions for successful transduction of GFP into appropriate cell lines, as well as carefully detailed strategy and trouble-shooting sections. Instructions for sorting and purification of successfully transduced cells and for analysis and re-analysis of cells together with sample data are all included. The discussion provides data on multiple GFP mutants and lists relevant sources and suggested reading material.
Collapse
Affiliation(s)
- J E Rasko
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney, Australia
| |
Collapse
|
13
|
Han SW, Nakamura C, Imai Y, Nakamura N, Miyake J. Monitoring of hormonal drug effect in a single breast cancer cell using an estrogen responsive GFP reporter vector delivered by a nanoneedle. Biosens Bioelectron 2008; 24:1219-22. [PMID: 18722104 DOI: 10.1016/j.bios.2008.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/01/2008] [Accepted: 07/10/2008] [Indexed: 10/21/2022]
Abstract
In this study, we have evaluated a sensor system for a hormonal drug effect in a single cell level using a novel low invasive single cell DNA delivery technology using a nanoneedle. An estrogen responsive GFP reporter vector (pEREGFP9) was constructed and its estrogenic response activity was confirmed in breast cancer cells (MCF-7) using lipofection as the means of transferring the vector to the cells. The pEREGFP9 vector was delivered to a single MCF-7 using a nanoneedle and the effect of ICI 182,780, which is an antagonist of estrogen, was observed using the GFP expression level. By ICI 182,780 treatment, the fluorescence intensity of the GFP was decreased by 30-50% within 24h. This technology is the very first trial of single cell diagnosis and we are looking forward to applying it to precious single cell diagnosis in medical fields.
Collapse
Affiliation(s)
- Sung-Woong Han
- Research Institute for Cell Engineering (RICE), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | | | | | | | | |
Collapse
|
14
|
Robinson F, Jackson RJ, Smith CWJ. Expression of human nPTB is limited by extreme suboptimal codon content. PLoS One 2008; 3:e1801. [PMID: 18335065 PMCID: PMC2258417 DOI: 10.1371/journal.pone.0001801] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/13/2008] [Indexed: 11/18/2022] Open
Abstract
Background The frequency of synonymous codon usage varies widely between organisms. Suboptimal codon content limits expression of viral, experimental or therapeutic heterologous proteins due to limiting cognate tRNAs. Codon content is therefore often adjusted to match codon bias of the host organism. Codon content also varies between genes within individual mammalian species. However, little attention has been paid to the consequences of codon content upon translation of host proteins. Methodology/Principal Findings In comparing the splicing repressor activities of transfected human PTB and its two tissue-restricted paralogs–nPTB and ROD1–we found that the three proteins were expressed at widely varying levels. nPTB was expressed at 1–3% the level of PTB despite similar levels of mRNA expression and 74% amino acid identity. The low nPTB expression was due to the high proportion of codons with A or U at the third codon position, which are suboptimal in human mRNAs. Optimization of the nPTB codon content, akin to the “humanization” of foreign ORFs, allowed efficient translation in vivo and in vitro to levels comparable with PTB. We were then able to demonstrate that all three proteins act as splicing repressors. Conclusions/Significance Our results provide a striking illustration of the importance of mRNA codon content in determining levels of protein expression, even within cells of the natural host species.
Collapse
Affiliation(s)
- Fiona Robinson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Richard J. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
15
|
Abstract
Non-invasive in-vivo molecular genetic imaging developed over the past decade and predominantly utilises radiotracer (PET, gamma camera, autoradiography), magnetic resonance and optical imaging technology. Molecular genetic imaging has its roots in both molecular biology and cell biology. The convergence of these disciplines and imaging modalities has provided the opportunity to address new research questions, including oncogenesis, tumour maintenance and progression, as well as responses to molecular-targeted therapy. Three different imaging strategies are described: (1) "bio-marker" or "surrogate" imaging; (2) "direct" imaging of specific molecules and pathway activity; (3) "indirect" reporter gene imaging. Examples of each imaging strategy are presented and discussed. Several applications of PET- and optical-based reporter imaging are demonstrated, including signal transduction pathway monitoring, oncogenesis in genetic mouse models, endogenous molecular genetic/biological processes and the response to therapy in animal models of human disease. Molecular imaging studies will compliment established ex-vivo molecular-biological assays that require tissue sampling by providing a spatial and a temporal dimension to our understanding of disease development and progression, as well as response to treatment. Although molecular imaging studies are currently being performed primarily in experimental animals, we optimistically expect they will be translated to human subjects with cancer and other diseases in the near future.
Collapse
Affiliation(s)
- Inna Serganova
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
16
|
Ren L, Gao G, Zhao D, Ding M, Luo J, Deng H. Developmental stage related patterns of codon usage and genomic GC content: searching for evolutionary fingerprints with models of stem cell differentiation. Genome Biol 2007; 8:R35. [PMID: 17349061 PMCID: PMC1868930 DOI: 10.1186/gb-2007-8-3-r35] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/08/2007] [Accepted: 03/12/2007] [Indexed: 11/26/2022] Open
Abstract
Developmental-stage-related patterns of gene expression correlate with codon usage and genomic GC content in stem cell hierarchies. Background The usage of synonymous codons shows considerable variation among mammalian genes. How and why this usage is non-random are fundamental biological questions and remain controversial. It is also important to explore whether mammalian genes that are selectively expressed at different developmental stages bear different molecular features. Results In two models of mouse stem cell differentiation, we established correlations between codon usage and the patterns of gene expression. We found that the optimal codons exhibited variation (AT- or GC-ending codons) in different cell types within the developmental hierarchy. We also found that genes that were enriched (developmental-pivotal genes) or specifically expressed (developmental-specific genes) at different developmental stages had different patterns of codon usage and local genomic GC (GCg) content. Moreover, at the same developmental stage, developmental-specific genes generally used more GC-ending codons and had higher GCg content compared with developmental-pivotal genes. Further analyses suggest that the model of translational selection might be consistent with the developmental stage-related patterns of codon usage, especially for the AT-ending optimal codons. In addition, our data show that after human-mouse divergence, the influence of selective constraints is still detectable. Conclusion Our findings suggest that developmental stage-related patterns of gene expression are correlated with codon usage (GC3) and GCg content in stem cell hierarchies. Moreover, this paper provides evidence for the influence of natural selection at synonymous sites in the mouse genome and novel clues for linking the molecular features of genes to their patterns of expression during mammalian ontogenesis.
Collapse
Affiliation(s)
- Lichen Ren
- College of Life Sciences, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ge Gao
- Center for Bioinformatics, College of Life Sciences, National Laboratory of Protein Engineering and Plant Genetics Engineering, Peking University, Beijing, 100871, PR China
| | - Dongxin Zhao
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing, 100871, PR China
| | - Mingxiao Ding
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing, 100871, PR China
| | - Jingchu Luo
- Center for Bioinformatics, College of Life Sciences, National Laboratory of Protein Engineering and Plant Genetics Engineering, Peking University, Beijing, 100871, PR China
| | - Hongkui Deng
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing, 100871, PR China
| |
Collapse
|
17
|
Abstract
Noninvasive in vivo molecular-genetic imaging uses nuclear, magnetic resonance, and optical imaging techniques. Described and discussed are "direct" imaging of specific molecules and pathway activity, "indirect" reporter gene imaging, and "bio-marker" or "surrogate" imaging. Applications of PET- and optical-based reporter imaging are demonstrated, including imaging of oncogenesis in genetic mouse models, endogenous molecular-genetic-biological properties, and response to therapy in animal models of human disease. Molecular imaging studies complement established ex vivo molecular-biological assays that require tissue sampling by providing a spatial as well as temporal dimension to our understanding of oncogenesis, and the progression and treatment of cancer. Molecular imaging studies being performed in experimental animals will be translated to animals in the near future.
Collapse
Affiliation(s)
- Inna Serganova
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
18
|
Puppo M, Bosco MC, Federico M, Pastorino S, Varesio L. Hypoxia inhibits Moloney murine leukemia virus expression in activated macrophages. J Leukoc Biol 2006; 81:528-38. [PMID: 17062606 DOI: 10.1189/jlb.0506361] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hypoxia, a local decrease in oxygen tension, occurring in many pathological processes, modifies macrophage (Mphi) gene expression and function. Here, we provide the first evidence that hypoxia inhibits transgene expression driven by the Moloney murine leukemia virus-long terminal repeats (MoMLV-LTR) in IFN-gamma-activated Mphi. Hypoxia silenced the expression of several MoMLV-LTR-driven genes, including v-myc, enhanced green fluorescence protein, and env, and was effective in different mouse Mphi cell lines and on distinct MoMLV backbone-based viruses. Down-regulation of MoMLV mRNA occurred at the transcriptional level and was associated with decreased retrovirus production, as determined by titration experiments, suggesting that hypoxia may control MoMLV retroviral spread through the suppression of LTR activity. In contrast, genes driven by the CMV or the SV40 promoter were up-regulated or unchanged by hypoxia, indicating a selective inhibitory activity on the MoMLV promoter. It is interesting that hypoxia was ineffective in suppressing MoMLV-LTR-controlled gene expression in T or fibroblast cell lines, suggesting a Mphi lineage-selective action. Finally, we found that MoMLV-mediated gene expression in Mphi was also inhibited by picolinic acid, a tryptophan catabolite with hypoxia-like activity and Mphi-activating properties, suggesting a pathophysiological role of this molecule in viral resistance and its possible use as an antiviral agent.
Collapse
Affiliation(s)
- Maura Puppo
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, Padiglione 2, L go Gerolamo Gaslini 5, 16147 Genova Quarto, Italy
| | | | | | | | | |
Collapse
|
19
|
Press WH, Robins H. Isochores exhibit evidence of genes interacting with the large-scale genomic environment. Genetics 2006; 174:1029-40. [PMID: 16951086 PMCID: PMC1602094 DOI: 10.1534/genetics.105.054445] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genomes of mammals and birds can be partitioned into megabase-long regions, termed isochores, with consistently high, or low, average C + G content. Isochores with high CG contain a mixture of CG-rich and AT-rich genes, while high-AT isochores contain predominantly AT-rich genes. The two gene populations in the high-CG isochores are functionally distinguishable by statistical analysis of their gene ontology categories. However, the aggregate of the two populations in CG isochores is not statistically distinct from AT-rich genes in AT isochores. Genes tend to be located at local extrema of composition within the isochores, indicating that the CG-enriching mechanism acted differently when near to genes. On the other hand, maximum-likelihood reconstruction of molecular phylogenetic trees shows that branch lengths (evolutionary distances) for third codon positions in CG-rich genes are not substantially larger than those for AT-rich genes. In the context of neutral mutation theory this argues against any strong positive selection. Disparate features of isochores might be explained by a model in which about half of all genes functionally require AT richness, while, in warm-blooded organisms, about half the genome (in large coherent blocks) acquired a strong bias for mutations to CG. Using mutations in CG-rich genes as convenient indicators, we show that approximately 20% of amino acids in proteins are broadly substitutable, without regard to chemical similarity.
Collapse
|
20
|
Kudla G, Lipinski L, Caffin F, Helwak A, Zylicz M. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol 2006; 4:e180. [PMID: 16700628 PMCID: PMC1463026 DOI: 10.1371/journal.pbio.0040180] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 03/29/2006] [Indexed: 02/05/2023] Open
Abstract
Mammalian genes are highly heterogeneous with respect to their nucleotide composition, but the functional consequences of this heterogeneity are not clear. In the previous studies, weak positive or negative correlations have been found between the silent-site guanine and cytosine (GC) content and expression of mammalian genes. However, previous studies disregarded differences in the genomic context of genes, which could potentially obscure any correlation between GC content and expression. In the present work, we directly compared the expression of GC-rich and GC-poor genes placed in the context of identical promoters and UTR sequences. We performed transient and stable transfections of mammalian cells with GC-rich and GC-poor versions of Hsp70, green fluorescent protein, and IL2 genes. The GC-rich genes were expressed several-fold to over a 100-fold more efficiently than their GC-poor counterparts. This effect was not due to different translation rates of GC-rich and GC-poor mRNA. On the contrary, the efficient expression of GC-rich genes resulted from their increased steady-state mRNA levels. mRNA degradation rates were not correlated with GC content, suggesting that efficient transcription or mRNA processing is responsible for the high expression of GC-rich genes. We conclude that silent-site GC content correlates with gene expression efficiency in mammalian cells. The effect of nucleotide composition on gene transcription is investigated for Hsp70, GFP, and IL-2, which all show increased expression to correlate with increased GC content at codon position 3.
Collapse
Affiliation(s)
- Grzegorz Kudla
- International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
21
|
Chamary JV, Parmley JL, Hurst LD. Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat Rev Genet 2006; 7:98-108. [PMID: 16418745 DOI: 10.1038/nrg1770] [Citation(s) in RCA: 590] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although the assumption of the neutral theory of molecular evolution - that some classes of mutation have too small an effect on fitness to be affected by natural selection - seems intuitively reasonable, over the past few decades the theory has been in retreat. At least in species with large populations, even synonymous mutations in exons are not neutral. By contrast, in mammals, neutrality of these mutations is still commonly assumed. However, new evidence indicates that even some synonymous mutations are subject to constraint, often because they affect splicing and/or mRNA stability. This has implications for understanding disease, optimizing transgene design, detecting positive selection and estimating the mutation rate.
Collapse
Affiliation(s)
- J V Chamary
- Center for Integrative Genomics, University of Lausanne, Switzerland.
| | | | | |
Collapse
|
22
|
Zhao KN, Gu W, Fang NX, Saunders NA, Frazer IH. Gene codon composition determines differentiation-dependent expression of a viral capsid gene in keratinocytes in vitro and in vivo. Mol Cell Biol 2005; 25:8643-55. [PMID: 16166644 PMCID: PMC1265747 DOI: 10.1128/mcb.25.19.8643-8655.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By establishing mouse primary keratinocytes (KCs) in culture, we were able, for the first time, to express papillomavirus major capsid (L1) proteins by transient transfection of authentic or codon-modified L1 gene expression plasmids. We demonstrate in vitro and in vivo that gene codon composition is in part responsible for differentiation-dependent expression of L1 protein in KCs. L1 mRNA was present in similar amounts in differentiated and undifferentiated KCs transfected with authentic or codon-modified L1 genes and had a similar half-life, demonstrating that L1 protein production is posttranscriptionally regulated. We demonstrate further that KCs substantially change their tRNA profiles upon differentiation. Aminoacyl-tRNAs from differentiated KCs but not undifferentiated KCs enhanced the translation of authentic L1 mRNA, suggesting that differentiation-associated change to tRNA profiles enhances L1 expression in differentiated KCs. Thus, our data reveal a novel mechanism for regulation of gene expression utilized by a virus to direct viral capsid protein expression to the site of virion assembly in mature KCs. Analysis of two structural proteins of KCs, involucrin and keratin 14, suggests that translation of their mRNAs is also regulated, in association with KC differentiation in vitro, by a similar mechanism.
Collapse
MESH Headings
- Animals
- Biolistics
- Blotting, Northern
- Blotting, Western
- Capsid/chemistry
- Cell Differentiation
- Cells, Cultured
- Chromatography, High Pressure Liquid
- Codon
- DNA/metabolism
- Dactinomycin/pharmacology
- Gene Expression Regulation, Viral
- In Vitro Techniques
- Keratin-14
- Keratinocytes/cytology
- Keratinocytes/virology
- Keratins/metabolism
- Mice
- Mice, Inbred BALB C
- Microscopy, Fluorescence
- Nucleic Acid Hybridization
- Papillomaviridae/genetics
- Plasmids/metabolism
- Protein Biosynthesis
- Protein Precursors/metabolism
- RNA/metabolism
- RNA, Messenger/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transfection
- Viruses/metabolism
Collapse
Affiliation(s)
- Kong-Nan Zhao
- Centre for Immunology and Cancer Research, The University of Queensland, Research Extension, Building 1, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Queensland 4102, Australia.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Multi-modality, noninvasive in vivo imaging is increasingly being used in molecular-genetic studies and will soon become the standard approach for reporter gene imaging studies in small animals. The coupling of nuclear and optical reporter genes, as described here, represents only the beginning of a far wider application of this technology in the future. Optical imaging and optical reporter systems are cost-effective and time-efficient; they require less resources and space than PET or MRI, and are particularly well suited for imaging small animals, such as mice. Optical reporter systems are also very useful for the quantification and selection of transduced cells using FACS, and for performing in vitro assays to validate the function and sensitivity of constitutive and specific-inducible reporter systems. However, optical imaging techniques are limited by depth of light penetration and do not yet provide optimal quantitative or tomographic information. These issues are not limiting for PET- or MRI-based reporter systems, and PET- and MRI-based animal studies are more easily generalized to human applications. Many of the shortcomings of each modality alone can be overcome by the use of dual- or triple-modality reporter constructs that incorporate the opportunity for PET, fluorescence and bioluminescence imaging.
Collapse
Affiliation(s)
- Ronald G Blasberg
- Memorial Sloan Kettering Cancer Center, Nueurology and Radiology, 1275 York Ave, Box 52, New York, NY 10021, USA.
| |
Collapse
|
24
|
Plotkin JB, Robins H, Levine AJ. Tissue-specific codon usage and the expression of human genes. Proc Natl Acad Sci U S A 2004; 101:12588-91. [PMID: 15314228 PMCID: PMC515101 DOI: 10.1073/pnas.0404957101] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A diverse array of mechanisms regulate tissue-specific protein levels. Most research, however, has focused on the role of transcriptional regulation. Here we report systematic differences in synonymous codon usage between genes selectively expressed in six adult human tissues. Furthermore, we show that the codon usage of brain-specific genes has been selectively preserved throughout the evolution of human and mouse from their common ancestor. Our findings suggest that codon-mediated translational control may play an important role in the differentiation and regulation of tissue-specific gene products in humans.
Collapse
Affiliation(s)
- Joshua B Plotkin
- Harvard Society of Fellows and Bauer Center for Genomics Research, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
25
|
Affiliation(s)
- Michael Doubrovin
- Cotzias Neuro-Oncology Lab, Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
26
|
Ponomarev V, Doubrovin M, Serganova I, Vider J, Shavrin A, Beresten T, Ivanova A, Ageyeva L, Tourkova V, Balatoni J, Bornmann W, Blasberg R, Gelovani Tjuvajev J. A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nucl Med Mol Imaging 2004; 31:740-51. [PMID: 15014901 DOI: 10.1007/s00259-003-1441-5] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Two genetic reporter systems were developed for multimodality reporter gene imaging of different molecular-genetic processes using fluorescence, bioluminescence (BLI), and nuclear imaging techniques. The eGFP cDNA was fused at the N-terminus with HSV1-tk cDNA bearing a nuclear export signal from MAPKK (NES-HSV1-tk) or with truncation at the N-terminus of the first 45 amino acids (Delta45HSV1-tk) and with firefly luciferase at the C-terminus. A single fusion protein with three functional subunits is formed following transcription and translation from a single open reading frame. The NES-TGL (NES-TGL) or Delta45HSV1-tk/GFP/luciferase (Delta45-TGL) triple-fusion gene cDNAs were cloned into a MoMLV-based retrovirus, which was used for transduction of U87 human glioma cells. The integrity, fluorescence, bioluminescence, and enzymatic activity of the TGL reporter proteins were assessed in vitro. The predicted molecular weight of the fusion proteins (~130 kDa) was confirmed by western blot. The U87-NES-TGL and U87-Delta45-TGL cells had cytoplasmic green fluorescence. The in vitro BLI was 7- and 13-fold higher in U87-NES-TGL and U87-Delta45-TGL cells compared to nontransduced control cells. The Ki of (14)C-FIAU was 0.49+/-0.02, 0.51+/-0.03, and 0.003+/-0.001 ml/min/g in U87-NES-TGL, U87-Delta45-TGL, and wild-type U87 cells, respectively. Multimodality in vivo imaging studies were performed in nu/ nu mice bearing multiple s.c. xenografts established from U87-NES-TGL, U87-Delta45-TGL, and wild-type U87 cells. BLI was performed after administration of d-luciferin (150 mg/kg i.v.). Gamma camera or PET imaging was conducted at 2 h after i.v. administration of [(131)I]FIAU (7.4 MBq/animal) or [(124)I]FIAU (7.4 MBq/animal), respectively. Whole-body fluorescence imaging was performed in parallel with the BLI and radiotracer imaging studies. In vivo BLI and gamma camera imaging showed specific localization of luminescence and radioactivity to the TGL transduced xenografts with background levels of activity in the wild-type xenografts. Tissue sampling yielded values of 0.47%+/-0.08%, 0.86%+/-0.06%, and 0.03%+/-0.01%dose/g [(131)I]FIAU in U87-NES-TGL, U87-Delta45-TGL, and U87 xenografts, respectively. The TGL triple-fusion reporter gene preserves the functional activity of its subunits and is very effective for multimodality imaging. It provides for the seamless transition from fluorescence microscopy and FACS to whole-body bioluminescence imaging, to nuclear (PET, SPET, gamma camera) imaging, and back to in situ fluorescence image analysis.
Collapse
Affiliation(s)
- Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
As the efficacy of natural selection is expected to be a function of population size, in humans it is usually presumed that selection is a weak force and hence that gene characteristics are mostly determined by stochastic forces. In contrast, in species with large population sizes, selection is expected to be a much more effective force. Evidence for this has come from examining how genic parameters vary with expression level, which appears to determine many of a gene's features, such as codon bias, amino acid composition, and size. However, not until now has it been possible to examine whether human genes show the signature of selection mediated by expression level. Here, then, to investigate this issue, we gathered expression data for >10,000 human genes from public data sets obtained by different technologies (SAGE and high-density oligonucleotide chip arrays) and compared them with gene parameters. We find that, even after controlling for regional effects, highly expressed genes code for smaller proteins, have less intronic DNA, and higher codon and amino acid biases. We conclude that, contrary to the usual supposition, human genes show signatures consistent with selection mediated by expression level.
Collapse
Affiliation(s)
- Araxi O Urrutia
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | |
Collapse
|
28
|
Affiliation(s)
- R M Hoffman
- AntiCancer, Inc., San Diego, California 92111, USA
| |
Collapse
|
29
|
Affiliation(s)
- G J Palm
- Department of Stuctural Biology and Crystallography, Institute of Molecular Biotechnology, D-07745 Jena, Germany
| | | |
Collapse
|
30
|
Link CJ, Wang S, Muldoon RR, Seregina T, Levy JP. Use of codon-modified, red-shifted variants of green fluorescent protein genes to study virus-mediated gene transfer. Methods Enzymol 2003; 302:424-37. [PMID: 12876790 DOI: 10.1016/s0076-6879(99)02037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- C J Link
- Molecular Oncology Laboratory, Human Gene Therapy Research Institute, Iowa Health System, Des Moines, Iowa 50309-3202, USA
| | | | | | | | | |
Collapse
|
31
|
Mazo IA, Levy JP, Muldoon RR, Link CJ, Kain SR. Retroviral expression of green fluorescent protein. Methods Enzymol 2003; 302:329-41. [PMID: 12876783 DOI: 10.1016/s0076-6879(99)02030-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- I A Mazo
- CLONTECH Laboratories, Inc., Palo Alto, California 94303-4230, USA
| | | | | | | | | |
Collapse
|
32
|
Levy JP, Muldoon RR, Mazo IA, Kain SR, Link CJ. In vivo retroviral transduction and expression of green fluorescent protein. Methods Enzymol 2003; 302:358-69. [PMID: 12876785 DOI: 10.1016/s0076-6879(99)02032-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- J P Levy
- Molecular Oncology Laboratory, Human Gene Therapy Research Institute, Iowa Health System, Des Moines, Iowa 50309-3202, USA
| | | | | | | | | |
Collapse
|
33
|
Ponomarev V, Doubrovin M, Serganova I, Beresten T, Vider J, Shavrin A, Ageyeva L, Balatoni J, Blasberg R, Tjuvajev JG. Cytoplasmically retargeted HSV1-tk/GFP reporter gene mutants for optimization of noninvasive molecular-genetic imaging. Neoplasia 2003; 5:245-54. [PMID: 12869307 PMCID: PMC1502405 DOI: 10.1016/s1476-5586(03)80056-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To optimize the sensitivity of imaging HSV1-tk/GFP reporter gene expression, a series of HSV1-tk/GFP mutants was developed with altered nuclear localization and better cellular enzymatic activity, compared to that of the native HSV1-tk/GFP fusion protein (HSV1-tk/GFP). Several modifications of HSV1-tk/GFP reporter gene were performed, including targeted inactivating mutations in the nuclear localization signal (NLS), the addition of a nuclear export signal (NES), a combination of both mutation types, and a truncation of the first 135 bp of the native hsv1-tk coding sequence containing a "cryptic" testicular promoter and the NLS. A recombinant HSV1-tk/GFP protein and a highly sensitive sandwich enzyme-linked immunosorbent assay for HSV1-tk/GFP were developed to quantitate the amount of reporter gene product in different assays to allow normalization of the data. These different mutations resulted in various degrees of nuclear clearance, predominant cytoplasmic distribution, and increased total cellular enzymatic activity of the HSV1-tk/GFP mutants, compared to native HSV1-tk/GFP when expressed at the same levels. This appears to be the result of improved metabolic bioavailability of cytoplasmically retargeted mutant HSV1-tk/GFP enzymes for reaction with the radiolabeled probe (e.g., FIAU). The analysis of enzymatic properties of different HSV1-tk/GFP mutants using FIAU as a substrate revealed no significant differences from that of the native HSV1-tk/GFP. Improved total cellular enzymatic activity of cytoplasmically retargeted HSV1-tk/GFP mutants observed in vitro was confirmed by noninvasive imaging of transduced subcutaneous tumor xenografts bearing these reporters using [(131)I]FIAU and a gamma-camera.
Collapse
Affiliation(s)
- Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Heltemes LM, Hagan CR, Mitrofanova EE, Panchal RG, Guo J, Link CJ. The rat sodium iodide symporter gene permits more effective radioisotope concentration than the human sodium iodide symporter gene in human and rodent cancer cells. Cancer Gene Ther 2003; 10:14-22. [PMID: 12489024 DOI: 10.1038/sj.cgt.7700525] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2002] [Indexed: 11/09/2022]
Abstract
Expression of the sodium iodide symporter (NIS) gene in tumor cells may provide a novel mechanism for treating cancer. The NIS mediates the normal physiological transport of iodide across the thyroid cell membrane. This mechanism of iodide uptake has been used to both diagnose and treat thyroid cancer. Tissue expression of the NIS is largely limited to the thyroid; therefore, expression of the NIS gene in cancer cells would allow for specific iodine uptake, radioisotope accumulation, and treatment. In this study, we directly compared the human and rat NIS (rNIS) for their ability to concentrate radioisotope into human and rodent cancer cells. Perchlorate-sensitive (125)I uptake in multiple cell lines was demonstrated following transduction with retroviral vectors expressing either the human or rNIS gene. Surprisingly, iodine uptake was consistently higher with the rNIS gene, up to 5-fold greater, when compared to the human gene, even within a variety of human tumor cell lines. This iodine uptake allowed for cell killing following (131)I treatment in NIS-transduced cells when assayed by in vitro clonogenic assays. These results demonstrate that the rNIS gene provides superior iodine uptake ability, and may be preferable for use in designing anticancer gene therapy approaches.
Collapse
Affiliation(s)
- Lynn M Heltemes
- Stoddard Cancer Research Institute, Des Moines, Iowa 50309, USA
| | | | | | | | | | | |
Collapse
|
35
|
Urrutia AO, Hurst LD. Codon usage bias covaries with expression breadth and the rate of synonymous evolution in humans, but this is not evidence for selection. Genetics 2001; 159:1191-9. [PMID: 11729162 PMCID: PMC1461876 DOI: 10.1093/genetics/159.3.1191] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In numerous species, from bacteria to Drosophila, evidence suggests that selection acts even on synonymous codon usage: codon bias is greater in more abundantly expressed genes, the rate of synonymous evolution is lower in genes with greater codon bias, and there is consistency between genes in the same species in which codons are preferred. In contrast, in mammals, while nonequal use of alternative codons is observed, the bias is attributed to the background variance in nucleotide concentrations, reflected in the similar nucleotide composition of flanking noncoding and exonic third sites. However, a systematic examination of the covariants of codon usage controlling for background nucleotide content has yet to be performed. Here we present a new method to measure codon bias that corrects for background nucleotide content and apply this to 2396 human genes. Nearly all (99%) exhibit a higher amount of codon bias than expected by chance. The patterns associated with selectively driven codon bias are weakly recovered: Broadly expressed genes have a higher level of bias than do tissue-specific genes, the bias is higher for genes with lower rates of synonymous substitutions, and certain codons are repeatedly preferred. However, while these patterns are suggestive, the first two patterns appear to be methodological artifacts. The last pattern reflects in part biases in usage of nucleotide pairs. We conclude that we find no evidence for selection on codon usage in humans.
Collapse
Affiliation(s)
- A O Urrutia
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | | |
Collapse
|
36
|
Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci 2001. [PMID: 11517261 DOI: 10.1523/jneurosci.21-17-06718.2001] [Citation(s) in RCA: 366] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural progenitor cells persist throughout the adult forebrain subependyma, and neurons generated from them respond to brain-derived neurotrophic factor (BDNF) with enhanced maturation and survival. To induce neurogenesis from endogenous progenitors, we overexpressed BDNF in the adult ventricular zone by transducing the forebrain ependyma to constitutively express BDNF. We constructed a bicistronic adenovirus bearing BDNF under cytomegalovirus (CMV) control, and humanized green fluorescent protein (hGFP) under internal ribosomal entry site (IRES) control. This AdCMV:BDNF:IRES:hGFP (AdBDNF) was injected into the lateral ventricles of adult rats, who were treated for 18 d thereafter with the mitotic marker bromodeoxyuridine (BrdU). Three weeks after injection, BDNF averaged 1 microg/gm in the CSF of AdBDNF-injected animals but was undetectable in control CSF. In situ hybridization demonstrated BDNF and GFP mRNA expression restricted to the ventricular wall. In AdBDNF-injected rats, the olfactory bulb exhibited a >2.4-fold increase in the number of BrdU(+)-betaIII-tubulin(+) neurons, confirmed by confocal imaging, relative to AdNull (AdCMV:hGFP) controls. Importantly, AdBDNF-associated neuronal recruitment to the neostriatum was also noted, with the treatment-induced addition of BrdU(+)-NeuN(+)-betaIII-tubulin(+) neurons to the caudate putamen. Many of these cells also expressed glutamic acid decarboxylase, cabindin-D28, and DARPP-32 (dopamine and cAMP-regulated phosphoprotein of 32 kDa), markers of medium spiny neurons of the neostriatum. These newly generated neurons survived at least 5-8 weeks after viral induction. Thus, a single injection of adenoviral BDNF substantially augmented the recruitment of new neurons into both neurogenic and non-neurogenic sites in the adult rat brain. The intraventricular delivery of, and ependymal infection by, viral vectors encoding neurotrophic agents may be a feasible strategy for inducing neurogenesis from resident progenitor cells in the adult brain.
Collapse
|
37
|
Pastorino S, Massazza S, Cilli M, Varesio L, Bosco MC. Generation of high-titer retroviral vector-producing macrophages as vehicles for in vivo gene transfer. Gene Ther 2001; 8:431-41. [PMID: 11313821 DOI: 10.1038/sj.gt.3301405] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2000] [Accepted: 11/30/2000] [Indexed: 11/09/2022]
Abstract
The goal of this project was to develop a novel gene transfer system based on macrophages (Mphi) as shuttles of recombinant retroviral vectors carrying therapeutic or marker genes. The murine Mphi cell line WGL5 was used as a source of Mphi for this study. We generated retrovirus-producing Mphi by transducing the WGL5 cells with a replication-defective retroviral vector carrying the enhanced green fluorescent protein (EGFP) reporter gene and the Moloney murine leukemia virus (MoMLV) as helper virus. We demonstrated stable integration of the recombinant retrovirus in the Mphi genome, efficient recombinant retrovirus production, and EGFP gene delivery to different cell lines in vitro. To evaluate Mphi-mediated EGFP gene transfer in vivo, allogeneic mice were injected s.c. with the retrovirus-producing WGL5 Mphi, that gave rise to solid tumor masses at the injection site, highly infiltrated with host leukocytes. We observed EGFP fluorescence in tumor-infiltrating CD4(+) and CD8(+) host T lymphocytes, providing direct evidence of the ability of engineered Mphi to mediate EGFP gene delivery to host cells in vivo. Moreover, we showed that retrovirus-producing Mphi could home to different organs in vivo following i.v. injection into mice. These data demonstrate that Mphi can be engineered as cellular vehicles for recombinant retroviruses carrying heterologous genes and suggest potential applications of this novel vector system for gene therapy.
Collapse
Affiliation(s)
- S Pastorino
- Laboratory of Molecular Biology, G Gaslini Institute, Largo G Gaslini 5, 16147, Genova, Italy
| | | | | | | | | |
Collapse
|
38
|
Roy NS, Wang S, Jiang L, Kang J, Benraiss A, Harrison-Restelli C, Fraser RA, Couldwell WT, Kawaguchi A, Okano H, Nedergaard M, Goldman SA. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med 2000; 6:271-7. [PMID: 10700228 DOI: 10.1038/73119] [Citation(s) in RCA: 449] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurogenesis persists in the adult mammalian hippocampus. To identify and isolate neuronal progenitor cells of the adult human hippocampus, we transfected ventricular zone-free dissociates of surgically-excised dentate gyrus with DNA encoding humanized green fluorescent protein (hGFP), placed under the control of either the nestin enhancer (E/nestin) or the Talpha1 tubulin promoter (P/Talpha1), two regulatory regions that direct transcription in neural progenitor cells. The resultant P/Talpha1:hGFP+ and E/nestin:enhanced (E)GFP+ cells expressed betaIII-tubulin or microtubule-associated protein-2; many incorporated bromodeoxyuridine, indicating their genesis in vitro. Using fluorescence-activated cell sorting, the E/nestin:EGFP+ and P/Talpha1:hGFP+ cells were isolated to near purity, and matured antigenically and physiologically as neurons. Thus, the adult human hippocampus contains mitotically competent neuronal progenitors that can be selectively extracted. The isolation of these cells may provide a cellular substrate for re-populating the damaged or degenerated adult hippocampus.
Collapse
Affiliation(s)
- N S Roy
- Departments of Neurology and Neuroscience, Cornell University Medical College, 1300 York Ave. Room E607, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hitt DC, Booth JL, Dandapani V, Pennington LR, Gimble JM, Metcalf J. A flow cytometric protocol for titering recombinant adenoviral vectors containing the green fluorescent protein. Mol Biotechnol 2000; 14:197-203. [PMID: 10890010 DOI: 10.1385/mb:14:3:197] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As the use of adenoviral vectors in gene therapy protocols increases, there is a corresponding need for rapid, accurate, and reproducible titer methods. Multiple methods currently exist for determining titers of recombinant adenoviral vector, including optical absorbance, electron microscopy, fluorescent focus assay, and the "gold standard" plaque assay. This paper introduces a novel flow cytometric method for direct titer determination that relies on the expression of the green fluorescent protein (GFP), a tracking marker incorporated into several adenoviral vectors. This approach was compared to the plaque assay using 10(-4)- to 10(-6)-fold dilutions of a cesium-chloride-purified, GFP expressing adenovirus (AdEasy + GFP + GAL). The two approaches yielded similar titers: 3.25 +/- 1.85 x 10(9) PFU/mL versus 3.46 +/- 0.76 x 10(9) green fluorescent units/(gfu/mL). The flow cytometric method is complete within 24 h in contrast to the 7 x 10 days required by the plaque assay. These results indicate that the GFU/mL is an alternative functional titer method for fluorescent-tagged adenoviral vectors.
Collapse
Affiliation(s)
- D C Hitt
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Klein D, Bugl B, Günzburg WH, Salmons B. Accurate estimation of transduction efficiency necessitates a multiplex real-time PCR. Gene Ther 2000; 7:458-63. [PMID: 10757018 DOI: 10.1038/sj.gt.3301112] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transduction efficiency can be easily monitored during pre-clinical trials by inclusion of marker genes. However, the use of such marker genes should be avoided in the final clinical gene therapy application since their products are often immunogenic, making it difficult to monitor transduction, especially if the vector is applied in vivo. In these cases PCR-based methods like the real-time PCR might provide a powerful tool to estimate biodistribution. To investigate the accuracy of this method, we have developed and tested a real-time PCR assay for the quantification of the enhanced green fluorescent protein (EGFP) gene and compared the results with transduction efficiencies estimated by FACS analysis. Although our real-time PCR assay itself was characterized by a high precision over a wide dynamic range of quantification, significant differences in the transduction efficiency compared with FACS data were initially observed. Accurate determination could only be achieved using an optimized multiplex real-time PCR assay, which allows the simultaneous calculation of cell number and EGFP copy number in the same tube. In view of future needs for methods allowing precise and accurate analysis of biodistribution in gene therapy trials, our data highlight the necessity critically to check both parameters in the implemented assay.
Collapse
Affiliation(s)
- D Klein
- Institute of Virology, University of Veterinary Sciences, Vienna, Austria
| | | | | | | |
Collapse
|
41
|
Burt RK, Brenner M, Burns W, Courier E, Firestein G, Hahn B, Heslop H, Link C, McFarland H, Roland M, Territo M, Tsokos G, Traynor A. Gene-marked autologous hematopoietic stem cell transplantation of autoimmune disease. J Clin Immunol 2000; 20:1-9. [PMID: 10798601 DOI: 10.1023/a:1006673408343] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In phase I (safety) trials, we have demonstrated the feasibility of autologous hematopoietic stem cell transplantation (HSCT) for patients with autoimmune diseases. Although this review comments on results of our phase I trials, the focus is on phase II (efficacy) trials using gene-marked autologous stem cells.
Collapse
Affiliation(s)
- R K Burt
- Northwestern University Medical Center, and the Rupert H. Lurie Cancer Center, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter. J Neurosci 1999. [PMID: 10559406 DOI: 10.1523/jneurosci.19-22-09986.1999] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies have suggested the persistence of oligodendrocyte progenitor cells in the adult mammalian subcortical white matter. To identify oligodendrocyte progenitors in the adult human subcortical white matter, we transfected dissociates of capsular white matter with plasmid DNA bearing the gene for green fluorescence protein (hGFP), placed under the control of the human early promoter (P2) for the oligodendrocytic protein cyclic nucleotide phosphodiesterase (P/hCNP2). Within 4 d after transfection with P/hCNP2:hGFP, a discrete population of small, bipolar cells were noted to express GFP. These cells were A2B5-positive (A2B5(+)), incorporated bromodeoxyuridine in vitro, and constituted <0.5% of all cells. Using fluorescence-activated cell sorting (FACS), the P/hCNP2-driven GFP(+) cells were then isolated and enriched to near-purity. In the weeks after FACS, most P/hCNP2:hGFP-sorted cells matured as morphologically and antigenically characteristic oligodendrocytes. Thus, the human subcortical white matter harbors mitotically competent progenitor cells, which give rise primarily to oligodendrocytes in vitro. By using fluorescent transgenes of GFP expressed under the control of an early oligodendrocytic promoter, these oligodendrocyte progenitor cells may be extracted and purified from adult human white matter in sufficient numbers for implantation and cell-based therapy.
Collapse
|
43
|
Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit. J Neurosci 1999. [PMID: 10479681 DOI: 10.1523/jneurosci.19-18-07781.1999] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Subcellular localization of the NMDA receptor NR1 splice forms was studied by expressing individual splice variants and their epitope-tagged derivatives in mouse fibroblasts and in hippocampal neurons. When NR1 splice variants were expressed in fibroblasts, the amount of NR1 molecules expressed on the cell surface varied among forms with different C-terminal cytoplasmic domains. The splice forms with the longest C-terminal cytoplasmic tail (NR1-1a and NR1-1b) showed the lowest amount of cell surface expression, and the splice forms with the shortest C-terminal cytoplasmic tail (NR1-4a and NR1-4b) showed the highest cell surface expression. Cell surface expression of NR1 was enhanced by the coexpression of the NR2 subunit. We measured the glutamate-induced increase of calcium concentration in fibroblasts expressing one of the NR1 splice forms and the NR2B subunit. The increase of calcium concentration after glutamate application had a positive correlation with the amount of NR1 splice forms expressed on the cell surface. When epitope-tagged NR1 splice variants were expressed in primary hippocampal neurons using recombinant adenoviruses, we also observed the differential expression on the cell surface between splice variants. These results suggest that the splicing of the C-terminal domain of the NR1 subunit regulates the cell surface expression of the functional NMDA receptors.
Collapse
|
44
|
Panchal RG, Wang S, McDermott J, Link CJ. Partial functional correction of xeroderma pigmentosum group A cells by suppressor tRNA. Hum Gene Ther 1999; 10:2209-19. [PMID: 10498252 DOI: 10.1089/10430349950017194] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic diseases are often caused by nonsense mutations. The resulting defect in protein translation can be restored by expressing suppressor tRNA in the mutant cells. Our goal was to demonstrate both protein restoration and phenotypic correction using these small transgenes. Functional activity of an arginine opal suppressor tRNA in cells expressing a nonsense mutated GFP gene was demonstrated by restored fluorescence. This suppressor tRNA was expressed in xeroderma pigmentosum group A cells, containing a homozygous nonsense mutation at Arg-207 in the XPA complementing gene. The transfected XPA cell population showed a twofold increase in cell survival after UV irradiation as determined by colony-forming assays compared with cell populations without the suppressor tRNA gene. The UV doses required for 37% survival of XP cells and XP cells expressing the suppressor tRNA were 0.6 and 1.2 J/m2. A similar twofold increase in the reactivation of UV-irradiated plasmid DNA was observed in XP cells expressing the suppressor tRNA. However, there was no detectable increase in XPA protein levels. Several potential limitations of this approach exist, including the availability of mutant RNA transcripts, the efficiency of suppression by the suppressor tRNA, and the abundance and availability and continued expression of the suppressor tRNA. The unique feature of this study is the relatively small size (88 bp) of the suppressor tRNA. Small-sized suppressor tRNAs can be synthetically constructed and subcloned into different viral vectors for delivery into the target cells. This approach may be useful for other genetic diseases caused by nonsense mutations.
Collapse
Affiliation(s)
- R G Panchal
- Human Gene Therapy Research Institute, Des Moines, IA 50309, USA
| | | | | | | |
Collapse
|
45
|
Sapp CM, Li T, Zhang J. Systematic comparison of a color reporter gene and drug resistance genes for the determination of retroviral titers. J Biomed Sci 1999; 6:342-8. [PMID: 10494041 DOI: 10.1007/bf02253523] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Retroviral vectors usually contain drug resistance genes, which are used to select for infected cells and to determine the viral titers. The viral titer is referred to as colony-forming units (CFUs). Color reporter genes, such as the lacZ gene and the green fluorescent protein gene (gfp), have been widely used as markers in retroviral vectors. In this report, a simple and rapid method for the determination of retroviral titers has been developed. The number of viral particles capable of forming individual green cells per unit volume is defined as marker-forming units (MFUs). The MFUs determined by using gfp as a marker were found to be proportional to the CFUs obtained by using drug selection for five different drug resistance genes. In addition, after adjusting the time factor, the MFUs are higher than CFUs in viruses released from 30 stable helper cell lines. The lower titers determined by CFUs are likely due to the toxicity on transduced cells.
Collapse
Affiliation(s)
- C M Sapp
- Department of Microbiology and Immunology, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0096, USA
| | | | | |
Collapse
|
46
|
Kume A, Hashiyama M, Suda T, Ozawa K. Green fluorescent protein as a selectable marker of retrovirally transduced hematopoietic progenitors. Stem Cells 1999; 17:226-32. [PMID: 10437986 DOI: 10.1002/stem.170226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recombinant retroviruses are most commonly used in hematopoietic stem cell gene therapy trials, but gene transfer efficiency is still inadequate with the present vectors. One approach for overcoming this problem is to develop methods of selecting and enriching the successfully transduced cells. We investigated the feasibility of using the green fluorescent protein (GFP) gene as a selectable marker of hematopoietic cells. When M1 murine leukemia cells were electroporated with GFP expression vectors, a red-shifted mutant (S65T) GFP showed several-fold greater fluorescence than the wild-type GFP and generated readily detectable green light under control of SRalpha or CAG promoter. We then inserted an SRalpha-S65T GFP cassette into the MSCV retrovirus vector and established virus producer cells. Infection of primary murine bone marrow cells resulted in a distinct population with green fluorescence, which was separated by fluorescence-activated cell sorting. The fractionated bright cells gave rise to fluorescent spleen colonies in lethally irradiated mice, while the fluorescence-negative cells yielded only dark colonies. These results indicated that GFP is a faithful marker in gene transfer into hematopoietic progenitor/stem cells, facilitating selection of the transduced cells and tracking of their progeny in vivo.
Collapse
Affiliation(s)
- A Kume
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, Kawachi-gun, Tochigi, Japan
| | | | | | | |
Collapse
|
47
|
Stripecke R, Carmen Villacres M, Skelton D, Satake N, Halene S, Kohn D. Immune response to green fluorescent protein: implications for gene therapy. Gene Ther 1999; 6:1305-12. [PMID: 10455440 DOI: 10.1038/sj.gt.3300951] [Citation(s) in RCA: 265] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Green fluorescent protein (GFP) is a widely used intracellular reporter molecule to assess gene transfer and expression. A potential use for GFP is as a co-expressed marker, to select and enrich gene-modified cells by flow cytometry. Processed peptides derived from GFP and presented by the major histocompatibility complex on the cell surface could potentially induce T cell immune responses against GFP+ cells. Thus, clinical application of GFP is premature, since in vivo studies on its immunogenicity are lacking. Therefore, we investigated immune responses against EGFP (enhanced-GFP) in two transplantable murine models: the BALB/c (H-2d) BM185 pre-B leukemia and the C57BL/6 (H-2b) EL-4 T cell lymphoma. BM185 and EL-4 cell lines modified to express high levels of EGFP showed drastic reduction of disease development when transplanted into immunocompetent mice. BM185/ EGFP did lead to rapid development of disease in immunodeficient Nu/Nu mice. Mice surviving BM185/EGFP leukemia challenge developed high cytotoxic T lymphocyte (CTL) responses against EGFP-expressing cells. Furthermore, immune stimulation against BM185/EGFP cells could also be induced by immunization with EGFP+ transduced dendritic cells. The effects of the co-expression of EGFP and immunomodulators (CD80 plus GM-CSF) were also investigated as an irradiated leukemia vaccine. EGFP co-expression by the vaccine did not interfere with the development of CTLs against the parental leukemia or with the anti-leukemia response in vivo. These results indicate that the immune response against EGFP may interfere with its applicability in gene insertion/replacement strategies but could potentially be employed for leukemia cell vaccines.
Collapse
Affiliation(s)
- R Stripecke
- Division of Research Immunology/Bone Marrow Transplantation, Childrens Hospital Los Angeles, CA 90027, USA
| | | | | | | | | | | |
Collapse
|
48
|
Yang M, Chishima T, Wang X, Baranov E, Shimada H, Moossa AR, Hoffman RM. Multi-organ metastatic capability of Chinese hamster ovary cells revealed by green fluorescent protein (GFP) expression. Clin Exp Metastasis 1999; 17:417-22. [PMID: 10651308 DOI: 10.1023/a:1006665112147] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Stable high-level green fluorescent protein (GFP)-expressing Chinese hamster ovary cells (CHO) were used to visualize the degree of metastatic behavior of this cell line in nude and SCID mice. A stable GFP high-expression CHO clone, selected in 1.5 microM methotrexate, was injected subcutaneously in nude and severe combined immunodeficient (SCID) mice and implanted orthotopically in the ovary of nude mice. CHO proved to be highly metastatic from both the subcutaneous and orthotopic sites as brightly visualized by GFP fluorescence. High-level GFP-expression allowed the visualization of metastatic tumor in fresh live host tissue in great detail. Metastases were visualized by GFP expression in the lung, pleural membrane, spleen, kidney, ovary, adrenal gland, and peritoneum after orthotopic implantation in nude mice. Metastases were visualized by GFP expression mainly in the lung, pleural membrane after subcutaneous implantation in nude mice. Metastases were visualized in the lung and pleural membrane, liver, kidney, and ovary after subcutaneous implantation in SCID mice. The construction of highly fluorescent stable GFP transfectants of CHO has revealed the multi-organ metastatic capability of CHO cells. CHO has such a high degree of malignancy that it is metastatic from both the orthotopic and subcutaneous transplant sites. This highly malignant GFP-expressing cell-line with multi-organ metastatic affinity should serve as a powerful tool to study tumor-host interaction.
Collapse
Affiliation(s)
- M Yang
- AntiCancer, Inc., San Diego, CA 92111, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Kan Z, Liu TJ. Video microscopy of tumor metastasis: using the green fluorescent protein (GFP) gene as a cancer-cell-labeling system. Clin Exp Metastasis 1999; 17:49-55. [PMID: 10390147 DOI: 10.1023/a:1026478105365] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Video microscopy allows dynamic observation of cancer-cell activity in the microcirculation of live animals. However, observation of cancer invasion and metastasis in situ has never been successful because of the lack of a technique for labeling cancer cells. We report here our success with video microscopy of cancer-cell activity, detection of remote metastases and cancer cells endogenously generated using the green fluorescent protein (GFP) gene as a cell-labeling system in live animals. As a cell-labeling system, GFP is stable, efficient, and nontoxic, and it is passed on to subsequent generations of cells. This pilot experiment has demonstrated the feasibility of direct observation and documentation of tumor growth and tumor invasion as well as the metastatic activities of cancer cells in live animals.
Collapse
Affiliation(s)
- Z Kan
- Department of Diagnostic Radiology, The University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | |
Collapse
|
50
|
Dardalhon V, Noraz N, Pollok K, Rebouissou C, Boyer M, Bakker AQ, Spits H, Taylor N. Green fluorescent protein as a selectable marker of fibronectin-facilitated retroviral gene transfer in primary human T lymphocytes. Hum Gene Ther 1999; 10:5-14. [PMID: 10022526 DOI: 10.1089/10430349950019147] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The success of gene therapy strategies for congenital and acquired blood disorders requires high levels of gene transfer into hematopoietic cells. Retroviral vectors have been extensively used to deliver foreign genes to mammalian cells and improvement of transduction protocols remains dependent on markers that can be rapidly monitored and used for efficient selection of transduced cells. The enhanced green fluorescent protein (EGFP) is a suitable reporter molecule for gene expression because of its lack of cytotoxicity and stable fluorescence signal that can be readily detected by flow cytometry. However, attempts to adapt the GFP system to stable transduction of human lymphocytes have not been satisfactory. In this article, transductions of primary human T lymphocytes were performed using cell-free supernatants from a PG13 packaging cell line in which a retroviral vector expressing EGFP was pseudotyped with the gibbon ape leukemia virus (GALV) envelope. Using this system combined with a fibronectin-facilitated protocol, primary lymphocytes were transduced with a mean gene transfer efficiency of 27.5% following a 2-day stimulation with either PHA or anti-CD3/CD28 antibodies. Conditions that increased the entry of lymphocytes into cell cycle did not consistently correlate with enhanced gene transfer, indicating that factors other than proliferation are important for optimal retroviral gene transfer. These results demonstrate the utility of EGFP as a marker for human T cell transduction and will enable further optimization of T cell gene therapy protocols.
Collapse
Affiliation(s)
- V Dardalhon
- Institut de Génétique Moléculaire de Montpellier, Université Montpellier II, France
| | | | | | | | | | | | | | | |
Collapse
|