1
|
Espinosa-Aguirre JJ, Camacho-Carranza R, Hernández-Ojeda SL, Cárdenas-Ávila RI, Santes-Palacios R. Apiole, an important constituent of parsley, is a mixed-type inhibitor of the CYP1A subfamily. Mutat Res 2024; 829:111881. [PMID: 39191149 DOI: 10.1016/j.mrfmmm.2024.111881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Apiole (1-allyl-2,5-dimethoxy-3,4-methylenedioxybenzene) and parsley leaves ethanolic extract containing it inhibit the rat liver microsomal ethoxy- and methoxyresorufin-O-deacetylase activities associated with cytochrome P450 (CYP) 1A1 and 1A2, respectively. Cytochrome P4501A subfamily metabolizes environmental mutagens and several drugs, leading to the formation of mutagenic metabolites. Docking analysis showed that residue Phe123 within the active site of the CYP1A1 enzyme is bound to apiole through a π/π stacking of its benzene ring. In the case of 1A2, its Phe226 interacts with the dioxolane ring of apiole. Furthermore, apiole behaves as a mixed-type inhibitor of bacterial human recombinant CYP1A1. To explore one of the possible biological implications of this inhibitory effect, we tested the capacity of apiole and the parsley ethanolic extract to interfere with the mutagenicity of the promutagen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) metabolized by CYP1A subfamily. As expected, both apiole and the plant extract reduced the number of revertant colonies of Salmonella typhimurium TA98 Ames strain after exposure to MeIQx, reaching a 78 % and 100 % reduction, respectively. Neither apiol nor parsley extract were mutagenic to the TA98 strain. We speculate that consuming apiole, a constituent of edible herbs, in conjunction with the utilization of pharmaceuticals metabolized by the CYP1A subfamily, may result in herb-drug interactions. Furthermore, the consumption of apiole by individuals who regularly ingest fresh vegetables may contribute to the low incidence of cancer observed in those who adhere to such a dietary regimen.
Collapse
Affiliation(s)
- J J Espinosa-Aguirre
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior sin Número, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - R Camacho-Carranza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior sin Número, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - S L Hernández-Ojeda
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior sin Número, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - R I Cárdenas-Ávila
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| | - R Santes-Palacios
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, Insurgentes Cuicuilco, Coyoacán, Ciudad de México C. P. 04530, Mexico
| |
Collapse
|
2
|
Jurva U, Sandinge AS, Baek JM, Avanthay M, Thomson RES, D'Cunha SA, Andersson S, Hayes MA, Gillam EMJ. Biocatalysis using Thermostable Cytochrome P450 Enzymes in Bacterial Membranes - Comparison of Metabolic Pathways with Human Liver Microsomes and Recombinant Human Enzymes. Drug Metab Dispos 2024; 52:242-251. [PMID: 38176735 DOI: 10.1124/dmd.123.001569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
Detailed structural characterization of small molecule metabolites is desirable during all stages of drug development, and often relies on the synthesis of metabolite standards. However, introducing structural changes into already complex, highly functionalized small molecules both regio- and stereo-selectively can be challenging using purely chemical approaches, introducing delays into the drug pipeline. An alternative is to use the cytochrome P450 enzymes (P450s) that produce the metabolites in vivo, taking advantage of the enzyme's inherently chiral active site to achieve regio- and stereoselectivity. Importantly, biotransformations are more sustainable: they proceed under mild conditions and avoid environmentally damaging solvents and transition metal catalysts. Recombinant enzymes avoid the need to use animal liver microsomes. However, native enzymes must be stabilized to work for extended periods or at elevated temperatures, and stabilizing mutations can alter catalytic activity. Here we assessed a set of novel, thermostable P450s in bacterial membranes, a format analogous to liver microsomes, for their ability to metabolize drugs through various pathways and compared them to human liver microsomes. Collectively, the thermostable P450s could replicate the metabolic pathways seen with human liver microsomes, including bioactivation to protein-reactive intermediates. Novel metabolites were found, suggesting the possibility of obtaining metabolites not produced by human or rodent liver microsomes. Importantly, no alteration in assay conditions from standard protocols for microsomal incubations was necessary. Thus, such bacterial membranes represent an analogous metabolite generation system to liver microsomes in terms of metabolites produced and ease of use, but which provides access to more diversity of metabolite structures. SIGNIFICANCE STATEMENT: In drug development it is often chemically challenging, to synthesize authentic metabolites of drug candidates for structural identification and evaluation of activity and safety. Biosynthesis using microsomes or recombinant human enzymes is confounded by the instability of the enzymes. Here we show that thermostable ancestral cytochrome P450 enzymes derived from P450 families responsible for human drug metabolism offer advantages over the native human forms in being more robust and over microbial enzymes in faithfully reflecting human drug metabolism.
Collapse
Affiliation(s)
- Ulrik Jurva
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Ann-Sofie Sandinge
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Jong Min Baek
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Mickaël Avanthay
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Raine E S Thomson
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Stephlina A D'Cunha
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Shalini Andersson
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Martin A Hayes
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| | - Elizabeth M J Gillam
- Drug Metabolism and Pharmacokinetics (DMPK), Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (U.J., A.-S.S.); School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia (J.M.B., R.E.S.T., S.A.D.C., E.M.J.G.); and Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden (M.A., S.A., M.A.H.)
| |
Collapse
|
3
|
Guengerich FP. Ninety-eight semesters of cytochrome P450 enzymes and related topics-What have I taught and learned? J Biol Chem 2024; 300:105625. [PMID: 38185246 PMCID: PMC10847173 DOI: 10.1016/j.jbc.2024.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/09/2024] Open
Abstract
This Reflection article begins with my family background and traces my career through elementary and high school, followed by time at the University of Illinois, Vanderbilt University, the University of Michigan, and then for 98 semesters as a Vanderbilt University faculty member. My research career has dealt with aspects of cytochrome P450 enzymes, and the basic biochemistry has had applications in fields as diverse as drug metabolism, toxicology, medicinal chemistry, pharmacogenetics, biological engineering, and bioremediation. I am grateful for the opportunity to work with the Journal of Biological Chemistry not only as an author but also for 34 years as an Editorial Board Member, Associate Editor, Deputy Editor, and interim Editor-in-Chief. Thanks are extended to my family and my mentors, particularly Profs. Harry Broquist and Minor J. Coon, and the more than 170 people who have trained with me. I have never lost the enthusiasm for research that I learned in the summer of 1968 with Harry Broquist, and I have tried to instill this in the many trainees I have worked with. A sentence I use on closing slides is "It's not just a laboratory-it's a fraternity."
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
4
|
Nagayoshi H, Murayama N, Kim V, Kim D, Takenaka S, Yamazaki H, Guengerich FP, Shimada T. Oxidation of Naringenin, Apigenin, and Genistein by Human Family 1 Cytochrome P450 Enzymes and Comparison of Interaction of Apigenin with Human P450 1B1.1 and Scutellaria P450 82D.1. Chem Res Toxicol 2023; 36:1778-1788. [PMID: 37783573 PMCID: PMC11497155 DOI: 10.1021/acs.chemrestox.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Naringenin, an initial synthesized flavanone in various plant species, is further utilized for production of many biologically active flavonoids, e.g., apigenin, eriodictyol, and genistein, by various plant enzymes including cytochrome P450s (P450s or CYPs). We examined how these flavonoids are oxidized by human P450 family 1 and 2A enzymes. Naringenin was principally oxidized at the 3'-position to form eriodictyol by CYP1 enzymes more efficiently than by CYP2A enzymes, and the resulting eriodictyol was further oxidized to two penta-hydroxylated products. In contrast to plant P450 enzymes, these human P450s did not mediate the desaturation of naringenin and eriodictyol to give apigenin and luteolin, respectively. Apigenin was oxidized at the C3' and C6 positions to form luteolin and scutellarein by these P450s. CYP1B1.1 and 1B1.3 had high activities in apigenin 6-hydroxylation with a homotropic cooperative manner, as has been observed previously in chrysin 6-hydroxylation (Nagayoshi et al., Chem. Res. Toxicol. 2019, 32, 1268-1280). Molecular docking analysis suggested that CYP1B1 had two apigenin binding sites and showed similarities in substrate recognition sites to plant CYP82D.1, one of the enzymes in catalyzing apigenin and chrysin 6-hydroxylations in Scutellaria baicalensis. The present results suggest that human CYP1 enzymes and CYP2A13 in some reactions have important roles in the oxidation of naringenin, eriodictyol, apigenin, and genistein and that human CYP1B1 and Scutellaria CYP82D.1 have similarities in their SRS regions, catalyzing 6-hydroxylation of both apigenin and chrysin.
Collapse
Affiliation(s)
- Haruna Nagayoshi
- Food Chemistry Section, Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka 537-0025, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Korea
| | - Shigeo Takenaka
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Metropolitan University, Habikino, Osaka 583-8555, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Tsutomu Shimada
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Metropolitan University, Habikino, Osaka 583-8555, Japan
| |
Collapse
|
5
|
Liu L, Cui H, Huang Y, Yan H, Zhou Y, Wan Y. Molecular docking and in vitro evaluations reveal the role of human cytochrome P450 3A4 in the cross-coupling metabolism of phenolic xenobiotics. ENVIRONMENTAL RESEARCH 2023; 220:115256. [PMID: 36634892 DOI: 10.1016/j.envres.2023.115256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/11/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Metabolism generally transforms xenobiotics into more polar and hydrophilic products, facilitating their elimination from the body. Recently, a new metabolic pathway that transforms phenolic xenobiotics into more lipophilic and bioactive dimer products was discovered. To elucidate the role of cytochrome P450 (CYP) enzymes in mediating this cross-coupling metabolism, we used high-throughput screening to identify the metabolites generated from the coupling of 20 xenobiotics with four endogenous metabolites in liver microsomes. Endogenous vitamin E (VE) was the most reactive metabolite, as VE reacted with seven phenolic xenobiotics containing various structures (e.g., an imidazoline ring or a diphenol group) to generate novel lipophilic ethers such as bakuchiol-O-VE, phentolamine-O-VE, phenylethyl resorcinol-O-VE, 2-propanol-O-VE, and resveratrol-O-VE. Seven recombinant CYP enzymes were successfully expressed and purified in Escherichia coli. Integration of the results of recombinant human CYP incubation and molecular docking identified the central role of CYP3A4 in the cross-coupling metabolic pathway. Structural analysis revealed the π-π interactions, hydrogen bonds, and hydrophobic interactions between reactive xenobiotics and VE in the malleable active sites of CYP3A4. The consistency between the molecular docking results and the in vitro human cytochrome P450 evaluation shows that docking calculations can be used to screen molecules participating in cross-coupling metabolism. The results of this study provide supporting evidence for the overlooked toxicological effects induced by direct reactions between xenobiotics and endogenous metabolites during metabolic processes.
Collapse
Affiliation(s)
- Liu Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hao Yan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yulan Zhou
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
6
|
Le TK, Park YJ, Cha GS, Oktavia FARH, Kim DH, Yun CH. Roles of Human Liver Cytochrome P450 Enzymes in Tenatoprazole Metabolism. Pharmaceutics 2022; 15:pharmaceutics15010023. [PMID: 36678652 PMCID: PMC9863764 DOI: 10.3390/pharmaceutics15010023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/05/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Tenatoprazole, a newly developed proton pump inhibitor candidate, was developed as an acid inhibitor for gastric acid hypersecretion disorders such as gastric ulcer and reflux esophagitis. It is known that tenatoprazole is metabolized to three major metabolites of 5'-hydroxy tenatoprazole, tenatoprazole sulfide, and tenatoprazole sulfone in human liver, primarily catalyzed by CYPs 2C19 and 3A4. While CYP2C19 prefers the hydroxylation of tenatoprazole at C-5' position, CYP3A4 is mainly involved in sulfoxidation reaction to make tenatoprazole sulfone. Tenatoprazole sulfide is a major human metabolite of tenatoprazole and is formed spontaneously and non-enzymatically from tenatoprazole. However, its metabolic fate in the human liver is not fully known. Furthermore, no systematic metabolic study has been performed to study tenatoprazole or tenatoprazole sulfide. Here, we studied the functions of human cytochromes P450 in the metabolic pathway of tenatoprazole and tenatoprazole sulfide by using recombinant human P450s and human liver microsomes. Both CYP 2C19 and CYP3A4 showed distinct regioselective and stereospecific monooxygenation activities toward tenatoprazole and tenatoprazole sulfide. Furthermore, a new major metabolite of tenatoprazole sulfide was found, 1'-N-oxy-5'-hydroxytenatoprzole sulfide, which has never been reported. In conclusion, the metabolic fates of tenatoprazole and tenatoprazole sulfide should be considered in the clinical use of tenatoprazole.
Collapse
Affiliation(s)
- Thien-Kim Le
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Young Jin Park
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, Bokjiro 75, Busanjin-Gu, Busan 47392, Republic of Korea
| | - Gun Su Cha
- Namhae Garlic Research Institute, 2465-8 Namhaedaero, Namhae-gun, Gyeongsang-namdo 52430, Republic of Korea
| | - Fikri A. R. Hardiyanti Oktavia
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, Bokjiro 75, Busanjin-Gu, Busan 47392, Republic of Korea
- Correspondence: (D.H.K.); (C.-H.Y.)
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
- Correspondence: (D.H.K.); (C.-H.Y.)
| |
Collapse
|
7
|
Zhu J, Feng J, Tian K, Li C, Li M, Qiu X. Functional characterization of CYP6G4 from the house fly in propoxur metabolism and resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105186. [PMID: 36127048 DOI: 10.1016/j.pestbp.2022.105186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The house fly (Musca domestica L.) (Diptera: Muscidae) is a global vector that can transmit >250 human and animal diseases. The control of house flies has heavily relied on the application of various chemical insecticides. The carbamate insecticide propoxur has been widely used for the control of house flies, and resistance to propoxur has been documented in many house fly populations worldwide. Previous studies have identified several propoxur resistance-conferring mutations in the target protein acetylcholinesterase; however, the molecular basis for metabolic resistance to propoxur remains unknown. In this study, we investigated the involvement of CYP6G4, a cytochrome P450 overexpressed in many insecticide resistant populations of Musca domestica, in propoxur metabolism and resistance by using combined approaches of recombinant protein-based insecticide metabolism and the Drosophila GAL4/UAS transgenic system. The recombinant CYP6G4 and its redox partners (NADPH-dependent cytochrome P450 reductase and cytochrome b5) were functionally expressed in Escherichia coli. Metabolism experiments showed that CYP6G4 was able to transform propoxur with a turnover rate of around 0.79 min-1. Six metabolites were putatively identified, suggesting that CYP6G4 could metabolize propoxur via hydroxylation, O-depropylation and N-demethylation. Moreover, bioassay results showed that ectopic overexpression of CYP6G4 in fruit flies significantly increased their tolerance to propoxur. Our in vivo and in vitro data convincingly demonstrate that CYP6G4 contributes to propoxur metabolism and resistance.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences. Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Feng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences. Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences. Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chong Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences. Beijing 100101, China
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences. Beijing 100101, China
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences. Beijing 100101, China.
| |
Collapse
|
8
|
Vinde MH, Cao D, Chesterfield RJ, Yoneyama K, Gumulya Y, Thomson RES, Matila T, Ebert BE, Beveridge CA, Vickers CE, Gillam EMJ. Ancestral sequence reconstruction of the CYP711 family reveals functional divergence in strigolactone biosynthetic enzymes associated with gene duplication events in monocot grasses. THE NEW PHYTOLOGIST 2022; 235:1900-1912. [PMID: 35644901 PMCID: PMC9544836 DOI: 10.1111/nph.18285] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The strigolactone (SL) class of phytohormones shows broad chemical diversity, the functional importance of which remains to be fully elucidated, along with the enzymes responsible for the diversification of the SL structure. Here we explore the functional evolution of the highly conserved CYP711A P450 family, members of which catalyze several key monooxygenation reactions in the strigolactone pathway. Ancestral sequence reconstruction was utilized to infer ancestral CYP711A sequences based on a comprehensive set of extant CYP711 sequences. Eleven ancestral enzymes, corresponding to key points in the CYP711A phylogenetic tree, were resurrected and their activity was characterized towards the native substrate carlactone and the pure enantiomers of the synthetic strigolactone analogue, GR24. The ancestral and extant CYP711As tested accepted GR24 as a substrate and catalyzed several diversifying oxidation reactions on the structure. Evidence was obtained for functional divergence in the CYP711A family. The monocot group 3 ancestor, arising from gene duplication events within monocot grasses, showed both increased catalytic activity towards GR24 and high stereoselectivity towards the GR24 isomer resembling strigol-type SLs. These results are consistent with a role for CYP711As in strigolactone diversification in early land plants, which may have extended to the diversification of strigol-type SLs.
Collapse
Affiliation(s)
- Marcos H. Vinde
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQld4072Australia
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
- CSIRO Synthetic Biology Future Science PlatformCSIRO Land & Water, EcoSciences PrecinctDutton ParkBrisbaneQld4012Australia
| | - Da Cao
- School of Biological Sciences, ARC Centre of Excellence for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQld4072Australia
| | - Rebecca J. Chesterfield
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQld4072Australia
- CSIRO Synthetic Biology Future Science PlatformCSIRO Land & Water, EcoSciences PrecinctDutton ParkBrisbaneQld4012Australia
| | - Kaori Yoneyama
- Graduate School of AgricultureEhime UniversityEhime790‐8566Japan
- Japan Science and Technology AgencyPRESTOSaitama332‐0012Japan
| | - Yosephine Gumulya
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
| | - Raine E. S. Thomson
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
| | - Tebogo Matila
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
| | - Birgitta E. Ebert
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQld4072Australia
| | - Christine A. Beveridge
- School of Biological Sciences, ARC Centre of Excellence for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQld4072Australia
| | - Claudia E. Vickers
- Japan Science and Technology AgencyPRESTOSaitama332‐0012Japan
- ARC Centre of Excellence in Synthetic BiologyQueensland University of TechnologyBrisbaneQld4000Australia
- Griffith Institute for Drug DesignGriffith UniversityNathanBrisbaneQld4111Australia
| | - Elizabeth M. J. Gillam
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
| |
Collapse
|
9
|
Harris KL, Thomson RES, Gumulya Y, Foley G, Carrera-Pacheco SE, Syed P, Janosik T, Sandinge AS, Andersson S, Jurva U, Bodén M, Gillam EMJ. Ancestral sequence reconstruction of a cytochrome P450 family involved in chemical defence reveals the functional evolution of a promiscuous, xenobiotic-metabolizing enzyme in vertebrates. Mol Biol Evol 2022; 39:6593376. [PMID: 35639613 PMCID: PMC9185370 DOI: 10.1093/molbev/msac116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The cytochrome P450 family 1 enzymes (CYP1s) are a diverse family of hemoprotein monooxygenases, which metabolize many xenobiotics including numerous environmental carcinogens. However, their historical function and evolution remain largely unstudied. Here we investigate CYP1 evolution via the reconstruction and characterization of the vertebrate CYP1 ancestors. Younger ancestors and extant forms generally demonstrated higher activity toward typical CYP1 xenobiotic and steroid substrates than older ancestors, suggesting significant diversification away from the original CYP1 function. Caffeine metabolism appears to be a recently evolved trait of the CYP1A subfamily, observed in the mammalian CYP1A lineage, and may parallel the recent evolution of caffeine synthesis in multiple separate plant species. Likewise, the aryl hydrocarbon receptor agonist, 6-formylindolo[3,2-b]carbazole (FICZ) was metabolized to a greater extent by certain younger ancestors and extant forms, suggesting that activity toward FICZ increased in specific CYP1 evolutionary branches, a process that may have occurred in parallel to the exploitation of land where UV-exposure was higher than in aquatic environments. As observed with previous reconstructions of P450 enzymes, thermostability correlated with evolutionary age; the oldest ancestor was up to 35 °C more thermostable than the extant forms, with a 10T50 (temperature at which 50% of the hemoprotein remains intact after 10 min) of 71 °C. This robustness may have facilitated evolutionary diversification of the CYP1s by buffering the destabilizing effects of mutations that conferred novel functions, a phenomenon which may also be useful in exploiting the catalytic versatility of these ancestral enzymes for commercial application as biocatalysts.
Collapse
Affiliation(s)
- Kurt L Harris
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072 Australia
| | - Raine E S Thomson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072 Australia
| | - Yosephine Gumulya
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072 Australia
| | - Gabriel Foley
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072 Australia
| | - Saskya E Carrera-Pacheco
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170147, Ecuador
| | - Parnayan Syed
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072 Australia
| | - Tomasz Janosik
- RISE Research Institutes of Sweden, Division Bioeconomy and Health, Chemical Process and Pharmaceutical Development, Södertälje, Sweden
| | - Ann-Sofie Sandinge
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Astrazeneca, Gothenburg, Sweden
| | - Shalini Andersson
- Discovery Sciences, BioPharmaceuticals R&D, Astrazeneca, Gothenburg, Sweden
| | - Ulrik Jurva
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Astrazeneca, Gothenburg, Sweden
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072 Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, 4072 Australia
| |
Collapse
|
10
|
Liu L, Cui H, Huang Y, Zhou Y, Hu J, Wan Y. Enzyme-Mediated Reactions of Phenolic Pollutants and Endogenous Metabolites as an Overlooked Metabolic Disruption Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3634-3644. [PMID: 35238542 DOI: 10.1021/acs.est.1c08141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is generally recognized that phenol-containing molecules mainly undergo phase II metabolic reactions, whereas glucuronide and sulfate are conjugated to form water-soluble products. Here, we report direct reactions of phenolic pollutants (triclosan, alkylphenol, bisphenol A [BPA], and its analogues) and some endogenous metabolites (vitamin E [VE] and estradiol) to generate new lipophilic ether products (e.g., BPA-O-VEs and alkylphenol-O-estradiol). A nontargeted screening strategy was used to identify the products in human liver microsome incubations, and the most abundant products (BPA-O-VEs) were confirmed via in vivo exposure in mice. BPA-O-VEs were frequently detected in sera from the general population at levels comparable to those of glucuronide/sulfate-conjugated BPA. Recombinant human cytochrome P450s were applied to find that CYP3A4 catalyzed the formation of these newly discovered ether metabolites by linking the VE hydroxyl group to the BPA phenolic ring, leading to the significantly reduced antioxidative activities of BPA-O-VEs compared to VEs. The effects of the reaction on the homeostasis of reacted biomolecules were finally assessed by in vitro assay and in vivo mice exposures. The generation of BPA-O-VEs decreased the VE concentrations and increased the reactive oxygen species generation after exposure to BPA at environmentally relevant concentrations. The identified reactions provided an overlooked metabolic disruption pathway for phenolic pollutants.
Collapse
Affiliation(s)
- Liu Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yulan Zhou
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Effect of repeated Shengmai-San administration on nifedipine pharmacokinetics and the risk/benefit under co-treatment. J Food Drug Anal 2022; 30:111-127. [PMID: 35647719 PMCID: PMC9931008 DOI: 10.38212/2224-6614.3401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
Herbal interactions with nifedipine/felodipine through cytochrome P450 (CYP) 3A inhibition is significant in humans. Shengmai-San (SMS), a three-herbal formula of Chinese medicine, is commonly prescribed in Asia populations for cardiovascular disorders. This study aimed to elucidate the impact of SMS on nifedipine/felodipine treatment by the findings from rat pharmacokinetic study of nifedipine to the retrospective cohort study of patients with hypertension. The 3-week SMS treatment increased the systemic exposure to nifedipine by nearly two-fold and decreased nifedipine clearance by 39% in rats. Among the ingredients of SMS component herbs, schisandrin B, schisantherin A, and methylophiopogonanone A, inhibited the nifedipine oxidation (NFO) activities of rat hepatic and intestinal microsomes, as well as human CYP3A4. Methylophiopogonanone A was identified as a time-dependent inhibitor of CYP3A4. After 1:5 propensity score matching, 4,894 patients with nifedipine/felodipine use were analyzed. In patients receiving nifedipine/felodipine, the subgroup with concurrent SMS treatment had a higher incidence of headache (92.70 per 1,000 personyears) than the subgroup without SMS treatment (51.10 per 1,000 person-years). There was a positive association between headache incidence and cumulative doses of SMS (1-60 g SMS: hazard ratio (HR): 1.39; 95% confidence interval (CI): 1.11-1.74; >60 g SMS: HR: 1.97; 95% CI: 1.62-2.39; p < 0.0001). However, patients who had higher cumulative SMS doses had a lower risk of all-cause mortality (1-60 g SMS: HR: 0.67; 95% CI: 0.47-0.94; >60 g SMS: HR: 0.54; 95% CI: 0.37-0.79; p = 0.001). Results demonstrated increased rat plasma nifedipine levels after 3-week SMS treatment and increased headache incidence should be noted in nifedipine/felodipine-treated patients with prolonged SMS administration.
Collapse
|
12
|
Krenc D, Na-Bangchang K. Spectroscopic observations of β-eudesmol binding to human cytochrome P450 isoforms 3A4 and 1A2, but not to isoforms 2C9, 2C19 and 2D6. Xenobiotica 2022; 52:199-208. [PMID: 35139770 DOI: 10.1080/00498254.2022.2037168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
β-Eudesmol is a sesquiterpenoid component o Atractylodes lancea with cytotoxic activity against cholangiocarcinoma. Its lipophilic nature makes β-eudesmol a likely substrate of human cytochrome P450 (P450) enzymes.Using ligand-binding difference spectroscopy, the affinities of this compound to recombinant CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 were investigated in Escherichia coli membrane preparations.CYP3A4 showed a type I spectral change, with a binding constant Ks of 77 ± 23 (mean ± SD) μM at 0.5 μM P450 (Ks/[P450] ≈ 155). The reference substrate testosterone and the inhibitor fluconazole bound to the enzyme with apparent affinities of 86 ± 4 μM (type I) and 21 μM (type II), respectively. β-Eudesmol was bound to CYP3A4 in a non-cooperative manner (Hill coefficient n ≈ 0.8). CYP1A2 showed reverse type I difference spectra with either β-eudesmol or caffeine. The CYP1A2 affinity for β-eudesmol was higher (0.23 mM) than for caffeine (0.37 mM) but lower than for phenacetin (0.11 mM, type I). β-Eudesmol did not bind significantly to CYP2C9, CYP2C19, and CYP2D6.Confirmation of metabolic activity and studies on the involvement of other human P450 isoforms studies are required. Double-beam spectrometry is needed to validate Ks measurements made with a plate reader.
Collapse
Affiliation(s)
- Dawid Krenc
- Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand.,Drug Discovery and Development Center, Thammasat University, Khlong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
13
|
Shimada T, Nagayoshi H, Murayama N, Sawai A, Kim V, Kim D, Yamazaki H, Guengerich FP, Takenaka S. Oxidation of 3'-methoxyflavone, 4'-methoxyflavone, and 3',4'-dimethoxyflavone and their derivatives having 5,7-dihydroxyl moieties by human cytochromes P450 1B1 and 2A13. Xenobiotica 2022; 52:134-145. [PMID: 35387543 PMCID: PMC9896170 DOI: 10.1080/00498254.2022.2062486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidation of 3'-methoxyflavone, 4'-methoxyflavone, and 3',4'-dimethoxyflavone and their derivatives containing 5,7-dihydroxyl groups by human cytochrome P450 (P450 or CYP) 1B1 and 2A13 was determined using LC-MS/MS systems.3'-Methoxyflavone and 4'-methoxyflavone were mainly O-demethylated to form 3'-hydroxyflavone and 4'-hydroxyflavone, respectively, and then 3',4'-dihydroxyflavone at higher rates with CYP1B1 than with CYP2A13. 4'-Methoxy-5,7-dihydroxyflavone (acacetin) was found to be demethylated by CYP1B1 and 2A13 to form 4',5,7-trihydroxyflavone (apigenin) at rates of 0.098-1 and 0.42 min-1, respectively. 3'-Methoxy-5,7-dihydroxyflavone was also demethylated by both P450s, with CYP2A13 being more active.3',4'-Dimethoxyflavone was a good substrate for CYP1B1 but not for CYP2A13 and was found to be mainly O-demethylated to form 3',4'-dihydroxyflavone (at a rate of 4.2 min-1) and also several ring-oxygenated products having m/z 299 fragments. Molecular docking analysis supported the proper orientation for formation of these products by CYP1B1.Our present results showed that 3'- and 4'-methoxyflavone can be oxidised to their O-demethylated products and, to a lesser extent, to ring oxidation products by both P450s 1B1 and 2A13 and that 3',4'-dimethoxyflavone is a good substrate for CYP1B1 in forming both O-demethylated and ring-oxidation products. Introduction of a 57diOHF moiety into these methoxylated flavonoids caused decreased in oxidation by CYP1B1 and 2A13.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Haruna Nagayoshi
- Laboratory of Food Sanitation, Osaka Institute of Public Health, Osaka, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Atsuki Sawai
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Shigeo Takenaka
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| |
Collapse
|
14
|
Cao NT, Nguyen NA, Park CM, Cha GS, Park KD, Yun CH. A Novel Statin Compound from Monacolin J Produced Using CYP102A1-Catalyzed Regioselective C-Hydroxylation. Pharmaceuticals (Basel) 2021; 14:ph14100981. [PMID: 34681205 PMCID: PMC8541633 DOI: 10.3390/ph14100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Statins inhibit the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMG-CoA reductase), which is the rate-limiting enzyme in cholesterol biosynthesis. Statin therapy reduces morbidity and mortality in those who are at high risk of cardiovascular disease. Monacolin J is a statin compound, which is an intermediate in the lovastatin biosynthesis pathway, in the fungus Aspergillus terreus. It is also found in red yeast rice, which is made by culturing rice with the yeast Monascus purpureus. Monacolin J has a hydroxyl substituent at position C’-8 of monacolin L. Here, a new statin derivative from monacolin J was made through the catalysis of CYP102A1 from Bacillus megaterium. A set of CYP102A1 mutants of monacolin J hydroxylation with high catalytic activity was screened. The major hydroxylated product was C-6′a-hydroxymethyl monacolin J, whose structure was confirmed using LC–MS and NMR analysis. The C-6′a-hydroxymethyl monacolin J has never been reported before. It showed a greater ability to inhibit HMG-CoA reductase than the monacolin J substrate itself. Human liver microsomes and human CYP3A4 also showed the ability to catalyze monacolin J in producing the same product of the CYP102A1-catalyzed reaction. This result motivates a new strategy for the development of a lead for the enzymatic and chemical processes to develop statin drug candidates.
Collapse
Affiliation(s)
- Ngoc Tan Cao
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Korea;
| | - Ngoc Anh Nguyen
- School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Korea; (N.A.N.); (C.M.P.)
| | - Chan Mi Park
- School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Korea; (N.A.N.); (C.M.P.)
| | - Gun Su Cha
- Namhae Garlic Research Institute, 2465-8 Namhaedaero, Gyungnam 52430, Korea;
| | - Ki Deok Park
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Korea;
| | - Chul-Ho Yun
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Korea;
- School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Korea; (N.A.N.); (C.M.P.)
- Correspondence:
| |
Collapse
|
15
|
Nagayoshi H, Murayama N, Takenaka S, Kim V, Kim D, Komori M, Yamazaki H, Guengerich FP, Shimada T. Roles of cytochrome P450 2A6 in the oxidation of flavone, 4'-hydroxyflavone, and 4'-, 3'-, and 2'-methoxyflavones by human liver microsomes. Xenobiotica 2021; 51:995-1009. [PMID: 34224301 DOI: 10.1080/00498254.2021.1950866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nine forms of recombinant cytochrome P450 (P450 or CYP) enzymes were used to study roles of individual P450 enzymes in the oxidation of flavone and some other flavonoids, 4'-hydroxyflavone and 4'-, 3'-, and 2'-methoxyflavones, by human liver microsomes using LC-MS/MS analysis.As has been reported previously , 4'-, 3'-, and 2'-methoxyflavones were preferentially O-demethylated by human liver P450 enzymes to form 4'-, 3'-, and 2'-hydroxylated flavones and also 3',4'-dihydroxyflavone from the former two substrates.In comparisons of product formation by oxidation of these methoxylated flavones, CYP2A6 was found to be a major enzyme catalysing flavone 4'- and 3'-hydroxylations by human liver microsomes but did not play significant roles in 2'-hydroxylation of flavone, O-demethylations of three methoxylated flavones, and the oxidation of 4'-hydroxyflavone to 3',4'-dihydroxyflavone.The effects of anti-CYP2A6 IgG and chemical P450 inhibitors suggested that different P450 enzymes, as well as CYP2A6, catalysed oxidation of these flavonoids at different positions by liver microsomes.These studies suggest that CYP2A6 catalyses flavone 4'- and 3'-hydroxylations in human liver microsomes and that other P450 enzymes have different roles in oxidizing these flavonoids.
Collapse
Affiliation(s)
- Haruna Nagayoshi
- Laboratory of Food Sanitation, Osaka Institute of Public Health, Osaka, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tsutomu Shimada
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan.,Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| |
Collapse
|
16
|
Shimada T, Nagayoshi H, Murayama N, Takenaka S, Katahira J, Kim V, Kim D, Komori M, Yamazaki H, Guengerich FP. Liquid chromatography-tandem mass spectrometry analysis of oxidation of 2'-, 3'-, 4'- and 6-hydroxyflavanones by human cytochrome P450 enzymes. Xenobiotica 2021; 51:139-154. [PMID: 33047997 PMCID: PMC7875482 DOI: 10.1080/00498254.2020.1836433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
2'-Hydroxyflavanone (2'OHFva), 3'OHFva, 4'OHFva, and 6OHFva, the major oxidative products of flavanone by human cytochrome P450 (P450, CYP) enzymes, were studied in regard to further oxidation by human CYP1A1, 1A2, 1B1.1, 1B1.3, and 2A6. The products formed were analyzed with LC-MS/MS and characterized by their positive ion fragmentations on mass spectrometry. Several di-hydroxylated flavanone (diOHFva) and di-hydroxylated flavone (diOHFvo) products, detected by analyzing parent ions at m/z 257 and 255, respectively, were found following incubation of these four hydroxylated flavanones with P450s. The m/z 257 products were produced at higher levels than the latter with four substrates examined. The structures of the m/z 257 products were characterized by LC-MS/MS product ion spectra, and the results suggest that 3'OHFva and 4'OHFva are further oxidized mainly at B-ring by P450s while 6OHFva oxidation was at A-ring. Different diOHFvo products (m/z 255) were also characterized by LC-MS/MS, and the results suggested that most of these diOHFvo products were formed through oxidation or desaturation of the diOHFva products (m/z 257) by P450s. Only when 4'OHFva (m/z 241) was used as a substrate, formation of 4'OHFvo (m/z 239) was detected, indicating that diOHFvo might also be formed through oxidation of 4'OHFvo by P450s. Finally, our results indicated that CYP1 family enzymes were more active than CYP2A6 in catalyzing the oxidation of these four hydroxylated flavanones, and these findings were supported by molecular docking studies of these chemicals with active sites of P450 enzymes.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Haruna Nagayoshi
- Division of Food Sanitation, Osaka Institute of Public Health, Osaka, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Jun Katahira
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
17
|
Ogiso T, Fukami T, Zhongzhe C, Konishi K, Nakano M, Nakajima M. Human superoxide dismutase 1 attenuates quinoneimine metabolite formation from mefenamic acid. Toxicology 2020; 448:152648. [PMID: 33259822 DOI: 10.1016/j.tox.2020.152648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Mefenamic acid (MFA), one of the nonsteroidal anti-inflammatory drugs (NSAIDs), sometimes causes liver injury. Quinoneimines formed by cytochrome P450 (CYP)-mediated oxidation of MFA are considered to be causal metabolites of the toxicity and are detoxified by glutathione conjugation. A previous study reported that NAD(P)H:quinone oxidoreductase 1 (NQO1) can reduce the quinoneimines, but NQO1 is scarcely expressed in the human liver. The purpose is to identify enzyme(s) responsible for the decrease in MFA-quinoneimine formation in the human liver. The formation of MFA-quinoneimine by recombinant CYP1A2 and CYP2C9 was significantly decreased by the addition of human liver cytosol, and the extent of the decrease in the metabolite formed by CYP1A2 was larger than that by CYP2C9. By column chromatography, superoxide dismutase 1 (SOD1) was identified from the human liver cytosol as an enzyme decreasing MFA-quinoneimine formation. Addition of recombinant SOD1 into the reaction mixture decreased the formation of MFA-quinoneimine from MFA by recombinant CYP1A2. By a structure-activity relationship study, we found that SOD1 decreased the formation of quinoneimines from flufenamic acid and tolfenamic acid, but did not affect those produced from acetaminophen, amodiaquine, diclofenac, and lapatinib. Thus, SOD1 may selectively decrease the quinoneimine formation from fenamate-class NSAIDs. To examine whether SOD1 can attenuate cytotoxicity caused by MFA, siRNA for SOD1 was transfected into CYP1A2-overexpressed HepG2 cells. The leakage of lactate dehydrogenase caused by MFA treatment was significantly increased by knockdown of SOD1. In conclusion, we found that SOD1 can serve as a detoxification enzyme for quinoneimines to protect from drug-induced toxicity.
Collapse
Affiliation(s)
- Takuo Ogiso
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| | - Cheng Zhongzhe
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Keigo Konishi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
18
|
Regioselective Hydroxylation of Phloretin, a Bioactive Compound from Apples, by Human Cytochrome P450 Enzymes. Pharmaceuticals (Basel) 2020; 13:ph13110330. [PMID: 33105851 PMCID: PMC7690628 DOI: 10.3390/ph13110330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 01/15/2023] Open
Abstract
Phloretin, the major polyphenol compound in apples and apple products, is interesting because it shows beneficial effects on human health. It is mainly found as a form of glucoside, phlorizin. However, the metabolic pathway of phloretin in humans has not been reported. Therefore, identifying phloretin metabolites made in human liver microsomes and the human cytochrome P450 (P450) enzymes to make them is interesting. In this study, the roles of human liver P450s for phloretin oxidation were examined using human liver microsomes and recombinant human liver P450s. One major metabolite of phloretin in human liver microsomes was 3-OH phloretin, which is the same product of a bacterial CYP102A1-catalyzed reaction of phloretin. CYP3A4 and CYP2C19 showed kcat values of 3.1 and 5.8 min-1, respectively. However, CYP3A4 has a 3.3-fold lower Km value than CYP2C19. The catalytic efficiency of a CYP3A4-catalyzed reaction is 1.8-fold higher than a reaction catalyzed by CYP2C19. Whole-cell biotransformation with CYP3A4 was achieved 0.16 mM h-1 productivity for 3-OH phlorein from 8 mM phloretin at optimal condition. Phloretin was a potent inhibitor of CYP3A4-catalyzed testosterone 6β-hydroxylation activity. Antibodies against CYP3A4 inhibited up to 90% of the microsomal activity of phloretin 3-hydroxylation. The immunoinhibition effect of anti-2C19 is much lower than that of anti-CYP3A4. Thus, CYP3A4 majorly contributes to the human liver microsomal phloretin 3-hydroxylation, and CYP2C19 has a minor role.
Collapse
|
19
|
Delcourt V, Barnabé A, Loup B, Garcia P, André F, Chabot B, Trévisiol S, Moulard Y, Popot MA, Bailly-Chouriberry L. MetIDfyR: An Open-Source R Package to Decipher Small-Molecule Drug Metabolism through High-Resolution Mass Spectrometry. Anal Chem 2020; 92:13155-13162. [DOI: 10.1021/acs.analchem.0c02281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vivian Delcourt
- GIE-LCH, Laboratoire des Courses Hippiques, 15 rue de Paradis, 91370 Verrières-le-Buisson, France
| | - Agnès Barnabé
- GIE-LCH, Laboratoire des Courses Hippiques, 15 rue de Paradis, 91370 Verrières-le-Buisson, France
| | - Benoit Loup
- GIE-LCH, Laboratoire des Courses Hippiques, 15 rue de Paradis, 91370 Verrières-le-Buisson, France
| | - Patrice Garcia
- GIE-LCH, Laboratoire des Courses Hippiques, 15 rue de Paradis, 91370 Verrières-le-Buisson, France
| | - François André
- GIE-LCH, Laboratoire des Courses Hippiques, 15 rue de Paradis, 91370 Verrières-le-Buisson, France
| | - Benjamin Chabot
- GIE-LCH, Laboratoire des Courses Hippiques, 15 rue de Paradis, 91370 Verrières-le-Buisson, France
| | - Stéphane Trévisiol
- GIE-LCH, Laboratoire des Courses Hippiques, 15 rue de Paradis, 91370 Verrières-le-Buisson, France
| | - Yves Moulard
- GIE-LCH, Laboratoire des Courses Hippiques, 15 rue de Paradis, 91370 Verrières-le-Buisson, France
| | - Marie-Agnès Popot
- GIE-LCH, Laboratoire des Courses Hippiques, 15 rue de Paradis, 91370 Verrières-le-Buisson, France
| | | |
Collapse
|
20
|
Cunha MR, Bhardwaj R, Carrel AL, Lindinger S, Romanin C, Parise-Filho R, Hediger MA, Reymond JL. Natural product inspired optimization of a selective TRPV6 calcium channel inhibitor. RSC Med Chem 2020; 11:1032-1040. [PMID: 33479695 PMCID: PMC7513592 DOI: 10.1039/d0md00145g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential vanilloid 6 (TRPV6) is a calcium channel implicated in multifactorial diseases and overexpressed in numerous cancers. We recently reported the phenyl-cyclohexyl-piperazine cis-22a as the first submicromolar TRPV6 inhibitor. This inhibitor showed a seven-fold selectivity against the closely related calcium channel TRPV5 and no activity on store-operated calcium channels (SOC), but very significant off-target effects and low microsomal stability. Here, we surveyed analogues incorporating structural features of the natural product capsaicin and identified 3OG, a new oxygenated analog with similar potency against TRPV6 (IC50 = 0.082 ± 0.004 μM) and ion channel selectivity, but with high microsomal stability and very low off-target effects. This natural product-inspired inhibitor does not exhibit any non-specific toxicity effects on various cell lines and is proposed as a new tool compound to test pharmacological inhibition of TRPV6 mediated calcium flux in disease models.
Collapse
Affiliation(s)
- Micael Rodrigues Cunha
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
- Department of Pharmacy , University of São Paulo , Prof. Lineu Prestes Avenue 580 , 05508-000 São Paulo , Brazil .
| | - Rajesh Bhardwaj
- Department of Nephrology and Hypertension , University Hospital Bern , Inselspital , 3010 Bern , Switzerland .
| | - Aline Lucie Carrel
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| | - Sonja Lindinger
- Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| | - Christoph Romanin
- Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| | - Roberto Parise-Filho
- Department of Pharmacy , University of São Paulo , Prof. Lineu Prestes Avenue 580 , 05508-000 São Paulo , Brazil .
| | - Matthias A Hediger
- Department of Nephrology and Hypertension , University Hospital Bern , Inselspital , 3010 Bern , Switzerland .
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| |
Collapse
|
21
|
Nagayoshi H, Murayama N, Tsujino M, Takenaka S, Katahira J, Kim V, Kim D, Komori M, Yamazaki H, Guengerich FP, Shimada T. Preference for O-demethylation reactions in the oxidation of 2'-, 3'-, and 4'-methoxyflavones by human cytochrome P450 enzymes. Xenobiotica 2020; 50:1158-1169. [PMID: 32312164 DOI: 10.1080/00498254.2020.1759157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
2'-, 3'-, and 4'-Methoxyflavones (MeFs) were incubated with nine forms of recombinant human cytochrome P450 (P450 or CYP) enzymes in the presence of an NADPH-generating system and the products formed were analyzed with LC-MS/MS methods.CYP1B1.1 and 1B1.3 were highly active in demethylating 4'MeF to form 4'-hydroxyflavone (rate of 5.0 nmol/min/nmol P450) and further to 3',4'-dihydroxyflavone (rates of 2.1 and 0.66 nmol/min/nmol P450, respectively). 3'MeF was found to be oxidized by P450s to m/z 239 (M-14) products (presumably 3'-hydroxyflavone) and then to 3',4'-dihydroxyflavone. P450s also catalyzed oxidation of 2'MeF to m/z 239 (M-14) and m/z 255 (M-14, M-14 + 16) products, presumably mono- and di-hydroxylated products, respectively.At least two types of ring oxidation products having m/z 269 fragments were formed, although at slower rates than the formation of mono- and di-hydroxylated products, on incubation of these MeFs with P450s; one type was products oxidized at the C-ring, having m/z 121 fragments, and the other one was the products oxidized at the A-ring (having m/z 137 fragments).Molecular docking analysis indicated the preference of interaction of O-methoxy moiety of methoxyflavones in the active site of CYP1A2.These results suggest that 2'-, 3'-, and 4'-methoxyflavones are principally demethylated by human P450s to form mono- and di-hydroxyflavones and that direct oxidation occurs in these MeFs to form mono-hydroxylated products, oxidized at the A- or B-ring of MeF.
Collapse
Affiliation(s)
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | | | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Jun Katahira
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea, and
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea, and
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| |
Collapse
|
22
|
Strohmaier SJ, De Voss JJ, Jurva U, Andersson S, Gillam EMJ. Oxygen Surrogate Systems for Supporting Human Drug-Metabolizing Cytochrome P450 Enzymes. Drug Metab Dispos 2020; 48:432-437. [PMID: 32238418 DOI: 10.1124/dmd.120.090555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/12/2020] [Indexed: 01/13/2023] Open
Abstract
Oxygen surrogates (OSs) have been used to support cytochrome P450 (P450) enzymes for diverse purposes in drug metabolism research, including reaction phenotyping, mechanistic and inhibition studies, studies of redox partner interactions, and to avoid the need for NADPH or a redox partner. They also have been used in engineering P450s for more cost-effective, NADPH-independent biocatalysis. However, despite their broad application, little is known of the preference of individual P450s for different OSs or the substrate dependence of OS-supported activity. Furthermore, the biocatalytic potential of OSs other than cumene hydroperoxide (CuOOH) and hydrogen peroxide (H2O2) is yet to be explored. Here, we investigated the ability of the major human drug-metabolizing P450s, namely CYP3A4, CYP2C9, CYP2C19, CYP2D6, and CYP1A2, to use the following OSs: H2O2, tert-butyl hydroperoxide (tert-BuOOH), CuOOH, (diacetoxyiodo)benzene, and bis(trifluoroacetoxy)iodobenzene. Overall, CuOOH and tert-BuOOH were found to be the most effective at supporting these P450s. However, the ability of P450s to be supported by OSs effectively was also found to be highly dependent on the substrate used. This suggests that the choice of OS should be tailored to both the P450 and the substrate under investigation, underscoring the need to employ screening methods that reflect the activity toward the substrate of interest to the end application. SIGNIFICANCE STATEMENT: Cytochrome P450 (P450) enzymes can be supported by different oxygen surrogates (OSs), avoiding the need for a redox partner and costly NADPH. However, few data exist comparing relative activity with different OSs and substrates. This study shows that the choice of OS used to support the major drug-metabolizing P450s influences their relative activity and regioselectivity in a substrate-specific fashion and provides a model for the more efficient use of P450s for metabolite biosynthesis.
Collapse
Affiliation(s)
- Silja J Strohmaier
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia (S.J.S., J.J.D.V., E.M.J.G.); and DMPK, Early Cardiovascular, Renal and Metabolism (U.J.) and Discovery Sciences (S.A.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia (S.J.S., J.J.D.V., E.M.J.G.); and DMPK, Early Cardiovascular, Renal and Metabolism (U.J.) and Discovery Sciences (S.A.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulrik Jurva
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia (S.J.S., J.J.D.V., E.M.J.G.); and DMPK, Early Cardiovascular, Renal and Metabolism (U.J.) and Discovery Sciences (S.A.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Shalini Andersson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia (S.J.S., J.J.D.V., E.M.J.G.); and DMPK, Early Cardiovascular, Renal and Metabolism (U.J.) and Discovery Sciences (S.A.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia (S.J.S., J.J.D.V., E.M.J.G.); and DMPK, Early Cardiovascular, Renal and Metabolism (U.J.) and Discovery Sciences (S.A.), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
23
|
Li Z, Jiang Y, Guengerich FP, Ma L, Li S, Zhang W. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J Biol Chem 2020; 295:833-849. [PMID: 31811088 PMCID: PMC6970918 DOI: 10.1074/jbc.rev119.008758] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytochrome P450 enzymes (P450s) are broadly distributed among living organisms and play crucial roles in natural product biosynthesis, degradation of xenobiotics, steroid biosynthesis, and drug metabolism. P450s are considered as the most versatile biocatalysts in nature because of the vast variety of substrate structures and the types of reactions they catalyze. In particular, P450s can catalyze regio- and stereoselective oxidations of nonactivated C-H bonds in complex organic molecules under mild conditions, making P450s useful biocatalysts in the production of commodity pharmaceuticals, fine or bulk chemicals, bioremediation agents, flavors, and fragrances. Major efforts have been made in engineering improved P450 systems that overcome the inherent limitations of the native enzymes. In this review, we focus on recent progress of different strategies, including protein engineering, redox-partner engineering, substrate engineering, electron source engineering, and P450-mediated metabolic engineering, in efforts to more efficiently produce pharmaceuticals and other chemicals. We also discuss future opportunities for engineering and applications of the P450 systems.
Collapse
Affiliation(s)
- Zhong Li
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Jiang
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 Shandong, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 Shandong, China
| |
Collapse
|
24
|
|
25
|
Cho MA, Yoon JG, Kim V, Kim H, Lee R, Lee MG, Kim D. Functional Characterization of Pharmcogenetic Variants of Human Cytochrome P450 2C9 in Korean Populations. Biomol Ther (Seoul) 2019; 27:577-583. [PMID: 31484472 PMCID: PMC6824622 DOI: 10.4062/biomolther.2019.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
Human cytochrome P450 2C9 is a highly polymorphic enzyme that is required for drug and xenobiotic metabolism. Here, we studied eleven P450 2C9 genetic variants—including three novel variants F69S, L310V, and Q324X—that were clinically identified in Korean patients. P450 2C9 variant enzymes were expressed in Escherichia coli and their bicistronic membrane fractions were prepared The CO-binding spectra were obtained for nine enzyme variants, indicating P450 holoenzymes, but not for the M02 (L90P) variant. The M11 (Q324X) variant could not be expressed due to an early nonsense mutation. LC-MS/MS analysis was performed to measure the catalytic activities of the P450 2C9 variants, using diclofenac as a substrate. Steady-state kinetic analysis revealed that the catalytic efficiency of all nine P450 2C9 variants was lower than that of the wild type P450 2C9 enzyme. The M05 (R150L) and M06 (P279T) variants showed high kcat values; however, their Km values were also high. As the M01 (F69S), M03 (R124Q), M04 (R125H), M08 (I359L), M09 (I359T), and M10 (A477T) variants exhibited higher Km and lower kcat values than that of the wild type enzyme, their catalytic efficiency decreased by approximately 50-fold compared to the wild type enzyme. Furthermore, the novel variant M07 (L310V) showed lower kcat and Km values than the wild type enzyme, which resulted in its decreased (80%) catalytic efficiency. The X-ray crystal structure of P450 2C9 revealed the presence of mutations in the residues surrounding the substrate-binding cavity. Functional characterization of these genetic variants can help understand the pharmacogenetic outcomes.
Collapse
Affiliation(s)
- Myung-A Cho
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Jihoon G Yoon
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Harim Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Rowoon Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
26
|
Santes-Palacios R, Marroquín-Pérez AL, Hernández-Ojeda SL, Camacho-Carranza R, Govezensky T, Espinosa-Aguirre JJ. Human CYP1A1 inhibition by flavonoids. Toxicol In Vitro 2019; 62:104681. [PMID: 31655123 DOI: 10.1016/j.tiv.2019.104681] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/10/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022]
Abstract
Cytochrome P4501A1 (CYP1A1) is involved in the metabolism of several genotoxic/carcinogenic environmental xenobiotics including polycyclic aromatic hydrocarbons (PAHs) like benzo[a]pyrene. Several authors had proposed CYP1A inhibition as a plausible strategy for cancer chemoprevention. Using ethoxyresorufin O-deethylase activity (EROD), we tested the inhibitory properties of nine flavonoids: quercetin, miricetin, luteolin, fisetin, morin, kaempferol, 5-hydroxyflavone (5-HF), 3-hydroxyflavone (3-HF), and flavone (F) against human recombinant CYP1A1. The last three compounds exerted the highest inhibitory effect with IC50 values of 0.07, 0.10 and 0.08 μM respectively; the more hydroxyl-groups were present, the lower the potency of inhibition was. Biochemical characterization leads to the conclusion that flavone and its hydroxy derivatives are mixed-type inhibitors. In silico studies have shown that, Phe224 and other aromatic residues in the human CYP1A1 active site play an important role in flavonoid-CYP interaction, through a π/π stacking between the aminoacid and the flavonoid C-ring. Outside the active site, the three flavonoids bind preferentially between A and K helices of the enzyme. Results from the Ames test using human S9 fraction revealed that none of the three compounds was mutagenic. We can consider 5-HF, 3-HF, and F as potential chemopreventive agents against genotoxic damage caused by metabolites resulting from CYP1A1 activity.
Collapse
Affiliation(s)
- Rebeca Santes-Palacios
- Instituto de Investigaciones Biomédicas, UNAM, Apartado postal 70228, Ciudad de México, México
| | - Ana L Marroquín-Pérez
- Instituto de Investigaciones Biomédicas, UNAM, Apartado postal 70228, Ciudad de México, México
| | | | - Rafael Camacho-Carranza
- Instituto de Investigaciones Biomédicas, UNAM, Apartado postal 70228, Ciudad de México, México
| | - Tzipe Govezensky
- Instituto de Investigaciones Biomédicas, UNAM, Apartado postal 70228, Ciudad de México, México
| | | |
Collapse
|
27
|
Strohmaier SJ, Huang W, Baek JM, Hunter DJB, Gillam EMJ. Rational evolution of the cofactor-binding site of cytochrome P450 reductase yields variants with increased activity towards specific cytochrome P450 enzymes. FEBS J 2019; 286:4473-4493. [PMID: 31276316 DOI: 10.1111/febs.14982] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/30/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
NADPH-cytochrome P450 reductase (CPR) is the natural redox partner of microsomal cytochrome P450 enzymes. CPR shows a stringent preference for NADPH over the less expensive cofactor, NADH, economically limiting its use as a biocatalyst. The complexity of cofactor-linked CPR protein dynamics and the incomplete understanding of the interaction of CPR with both cofactors and electron acceptors present challenges for the successful rational engineering of a CPR with enhanced activity with NADH. Here, we report a rational evolution approach to enhance the activity of CPR with NADH, in which mutations were introduced into the NADPH-binding flavin adenine dinucleotide (FAD) domain. Multiple CPR mutants that used NADH more effectively than the wild-type CPR in the reduction of the surrogate electron acceptor, cytochrome c were found. However, most were inactive in supporting P450 activity, arguing against the use of cytochrome c as a surrogate electron acceptor. Unexpectedly, several mutants showed significantly improved activity towards CYP2C9 (mutant 1-014) and/or CYP2A6 (mutants 1-014, 1-015, 1-053 and 1-077) using NADPH, even though the mutations were introduced at locations remote from the putative CPR-P450 interaction face. Therefore, mutations at sites in the FAD domain of CPR may be promising future engineering targets to enhance P450-mediated substrate turnover. ENZYMES: NADPH-cytochrome P450 reductase - EC 1.6.2.4; cytochrome P450 - EC 1.14.14.1.
Collapse
Affiliation(s)
- Silja J Strohmaier
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Weiliang Huang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Jong-Min Baek
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Dominic J B Hunter
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
28
|
Analysis of In Vivo Activity of the Bovine Cholesterol Hydroxylase/Lyase System Proteins Expressed in Escherichia coli. Mol Biotechnol 2019; 61:261-273. [PMID: 30729436 DOI: 10.1007/s12033-019-00158-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cholesterol hydroxylase/lyase (CHL) system, located in the mitochondria of the mammalian adrenal cortex cells, consists of cytochrome P450scc (CYP11A1), adrenodoxin (Adx), and adrenodoxin reductase (AdR) and performs the first stage of the steroidogenesis: AdR and Adx enable the electron transfer between NADPH and cytochrome P450scc, and P450scc catalyzes the conversion of cholesterol into pregnenolone. CHL system was reconstructed in Escherichia coli using the polycistronic plasmid pTrc99A/CHL. In E. coli cells, the recombinant proteins form the catalytically active system. CHL activity towards 22R-hydroxycholesterol was 4.0 ± 1.3 nmol pregnenolone/h per 1 mg homogenate protein. The alteration of the order of heterologous cDNAs in the expression cassette from AdR-Adx-P450scc to P450scc-Adx-AdR results in alteration of stoichiometric ratio P450scc/Adx/AdR from 1:1.45:4.2 to 1:1.67:0.98; the former ratio is more optimal for the functioning of the cytochrome P450scc. The application of modified cDNA of Adx (AdxS112W) does not increase the CHL activity; however, the introduction of the second copy of AdxS112W gene into the expression cassette increases both the expression level of АdxS112W and the CHL activity in comparison with P450scc/АdxS112W/AdR system. In vivo activity of the CHL system in bacteria is limited by the substrate uptake by bacterial cells: it varied in the range of 0.05-0.62 mg pregnenolone/l resting cell suspension per 1-day cultivation, depending on the type and concentration of permeabilizing agents in the medium. The obtained results contribute to the knowledge of CHL system functioning in living bacteria.
Collapse
|
29
|
Nagayoshi H, Murayama N, Kakimoto K, Tsujino M, Takenaka S, Katahira J, Lim YR, Kim D, Yamazaki H, Komori M, Guengerich FP, Shimada T. Oxidation of Flavone, 5-Hydroxyflavone, and 5,7-Dihydroxyflavone to Mono-, Di-, and Tri-Hydroxyflavones by Human Cytochrome P450 Enzymes. Chem Res Toxicol 2019; 32:1268-1280. [PMID: 30964977 DOI: 10.1021/acs.chemrestox.9b00078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biologically active plant flavonoids, including 5,7-dihydroxyflavone (57diOHF, chrysin), 4',5,7-trihydroxyflavone (4'57triOHF, apigenin), and 5,6,7-trihydroxyflavone (567triOHF, baicalein), have important pharmacological and toxicological significance, e.g., antiallergic, anti-inflammatory, antioxidative, antimicrobial, and antitumorgenic properties. In order to better understand the metabolism of these flavonoids in humans, we examined the oxidation of flavone, 5-hydroxyflavone (5OHF), and 57diOHF to various products by human cytochrome P450 (P450 or CYP) and liver microsomal enzymes. Individual human P450s and liver microsomes oxidized flavone to 6-hydroxyflavone, small amounts of 5OHF, and 11 other monohydroxylated products at different rates and also produced several dihydroxylated products (including 57diOHF and 7,8-dihydroxyflavone) from flavone. We also found that 5OHF was oxidized by several P450 enzymes and human liver microsomes to 57diOHF and further to 567triOHF, but the turnover rates in these reactions were low. Interestingly, both CYP1B1.1 and 1B1.3 converted 57diOHF to 567triOHF at turnover rates (on the basis of P450 contents) of >3.0 min-1, and CYP1A1 and 1A2 produced 567triOHF at rates of 0.51 and 0.72 min-1, respectively. CYP2A13 and 2A6 catalyzed the oxidation of 57diOHF to 4'57triOHF at rates of 0.7 and 0.1 min-1, respectively. Our present results show that different P450s have individual roles in oxidizing these phytochemical flavonoids and that these reactions may cause changes in their biological and toxicological properties in mammals.
Collapse
Affiliation(s)
- Haruna Nagayoshi
- Osaka Institute of Public Health , 1-3-69 Nakamichi , Higashinari-ku , Osaka 537-0025 , Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| | - Kensaku Kakimoto
- Osaka Institute of Public Health , 1-3-69 Nakamichi , Higashinari-ku , Osaka 537-0025 , Japan
| | - Masaki Tsujino
- Osaka Institute of Public Health , 1-3-69 Nakamichi , Higashinari-ku , Osaka 537-0025 , Japan
| | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation , Osaka Prefecture University , 3-7-30 , Habikino , Osaka 583-8555 , Japan
| | - Jun Katahira
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences , Osaka Prefecture University , 1-58 Rinku-Orai-Kita , Izumisano , Osaka 598-8531 , Japan
| | - Young-Ran Lim
- Department of Biological Sciences , Konkuk University , Seoul 05029 , Korea
| | - Donghak Kim
- Department of Biological Sciences , Konkuk University , Seoul 05029 , Korea
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences , Osaka Prefecture University , 1-58 Rinku-Orai-Kita , Izumisano , Osaka 598-8531 , Japan
| | - F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States
| | - Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Veterinary Sciences , Osaka Prefecture University , 1-58 Rinku-Orai-Kita , Izumisano , Osaka 598-8531 , Japan
| |
Collapse
|
30
|
Rekka EA, Kourounakis PN, Pantelidou M. Xenobiotic Metabolising Enzymes: Impact on Pathologic Conditions, Drug Interactions and Drug Design. Curr Top Med Chem 2019; 19:276-291. [DOI: 10.2174/1568026619666190129122727] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/21/2022]
Abstract
Background:
The biotransformation of xenobiotics is a homeostatic defensive response of the
body against bioactive invaders. Xenobiotic metabolizing enzymes, important for the metabolism,
elimination and detoxification of exogenous agents, are found in most tissues and organs and are distinguished
into phase I and phase II enzymes, as well as phase III transporters. The cytochrome P450 superfamily
of enzymes plays a major role in the biotransformation of most xenobiotics as well as in the
metabolism of important endogenous substrates such as steroids and fatty acids. The activity and the
potential toxicity of numerous drugs are strongly influenced by their biotransformation, mainly accomplished
by the cytochrome P450 enzymes, one of the most versatile enzyme systems.
Objective:
In this review, considering the importance of drug metabolising enzymes in health and disease,
some of our previous research results are presented, which, combined with newer findings, may
assist in the elucidation of xenobiotic metabolism and in the development of more efficient drugs.
Conclusion:
Study of drug metabolism is of major importance for the development of drugs and provides
insight into the control of human health. This review is an effort towards this direction and may
find useful applications in related medical interventions or help in the development of more efficient
drugs.
Collapse
Affiliation(s)
- Eleni A. Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki- 54124, Greece
| | - Panos N. Kourounakis
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki- 54124, Greece
| | - Maria Pantelidou
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia 1036, Cyprus
| |
Collapse
|
31
|
|
32
|
Esteves F, Campelo D, Urban P, Bozonnet S, Lautier T, Rueff J, Truan G, Kranendonk M. Human cytochrome P450 expression in bacteria: Whole-cell high-throughput activity assay for CYP1A2, 2A6 and 3A4. Biochem Pharmacol 2018; 158:134-140. [PMID: 30308189 DOI: 10.1016/j.bcp.2018.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
Cytochrome P450s (CYPs) are key enzymes involved in drug and xenobiotic metabolism. A wide array of in vitro methodologies, including recombinant sources, are currently been used to assess CYP catalysis, to identify the metabolic profile of compounds, potential drug-drug interactions, protein-protein interactions in the CYP enzyme complex and the role of polymorphic enzymes. We report here on a bacterial whole-cells high-throughput method for the activity evaluation of human CYP1A2, 2A6, and 3A4, when sustained by NADPH cytochrome P450 oxidoreductase (CPR), in the absence or presence of cytochrome b5 (CYB5). This new assay consists of a microplate real-time fluorometric method, with direct measurement of metabolite formation, in a suspension of Escherichia coli BTC-CYP bacteria, a human CYP competent tester strain when incubated with specific fluorogenic substrates. Overall, the maximum turnover (kcat) velocities of the three human CYPs resulting from the whole-BTC cells assays were similar to those obtained when applying the corresponding standard reference membrane fractions assays. CYP activity screening with co-expression of CYB5 suggests an enhancing effect of CYB5 on the kcat of specific isoforms, when using the whole-BTC cells assay. Our results demonstrate that this new approach can offer an efficient high-throughput method for screening of CYP1A2, 2A6 and 3A4 activity and can be potentially applicable for other human CYPs. This can be of particular use for timely and efficient screening of chemical libraries or mutant libraries of CYP enzyme complex proteins, without the necessity for labor intensive isolation of subcellular fractions.
Collapse
Affiliation(s)
- Francisco Esteves
- Center for Toxicogenomics and Human Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal. http://www.fcm.unl.pt
| | - Diana Campelo
- Center for Toxicogenomics and Human Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Philippe Urban
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Sophie Bozonnet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Thomas Lautier
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - José Rueff
- Center for Toxicogenomics and Human Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Gilles Truan
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
33
|
Nagayoshi H, Murayama N, Kakimoto K, Takenaka S, Katahira J, Lim YR, Kim V, Kim D, Yamazaki H, Komori M, Guengerich FP, Shimada T. Site-specific oxidation of flavanone and flavone by cytochrome P450 2A6 in human liver microsomes. Xenobiotica 2018; 49:791-802. [PMID: 30048196 DOI: 10.1080/00498254.2018.1505064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The roles of human cytochrome P450 (P450 or CYP) 2A6 in the oxidation of flavanone [(2R)- and (2S)-enantiomers] and flavone were studied in human liver microsomes and recombinant human P450 enzymes. CYP2A6 was highly active in oxidizing flavanone to form flavone, 2'-hydroxy-, 4'-, and 6-hydroxyflavanones and in oxidizing flavone to form mono- and di-hydroxylated products, such as mono-hydroxy flavones M6, M7, and M11 and di-hydroxy flavones M3, M4, and M5. Liver microsomes prepared from human sample HH2, defective in coumarin 7-hydroxylation activity, were very inefficient in forming 2'-hydroxyflavanone from flavanone and a mono-hydroxylated product, M6, from flavone. Coumarin and anti-CYP2A6 antibodies strongly inhibited the formation of these metabolites in microsomes prepared from liver samples HH47 and 54, which were active in coumarin oxidation activities. Molecular docking analysis showed that the C2'-position of (2R)-flavanone (3.8 Å) was closer to the iron center of CYP2A6 than the C6-position (10 Å), while distances from C2' and C6 of (2S)-flavanone to the CYP2A6 were 6.91 Å and 5.42 Å, respectively. These results suggest that CYP2A6 catalyzes site-specific oxidation of (racemic) flavanone and also flavone in human liver microsomes. CYP1A2 and CYP2B6 were also found to play significant roles in some of the oxidations of these flavonoids by human liver microsomes.
Collapse
Affiliation(s)
| | - Norie Murayama
- b Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | | | - Shigeo Takenaka
- c Graduate School of Comprehensive Rehabilitation , Osaka Prefecture University , Habikino Osaka , Japan
| | - Jun Katahira
- d Laboratory of Cellular and Molecular Biology , Veterinary Sciences, Osaka Prefecture University , Izumisano , Osaka , Japan
| | - Young-Ran Lim
- e Department of Biological Sciences , Konkuk University , Seoul , Korea
| | - Vitchan Kim
- e Department of Biological Sciences , Konkuk University , Seoul , Korea
| | - Donghak Kim
- e Department of Biological Sciences , Konkuk University , Seoul , Korea
| | - Hiroshi Yamazaki
- b Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Masayuki Komori
- d Laboratory of Cellular and Molecular Biology , Veterinary Sciences, Osaka Prefecture University , Izumisano , Osaka , Japan
| | - F Peter Guengerich
- f Department of Biochemistry Vanderbilt University School of Medicine , Nashville , Tennessee , USA
| | - Tsutomu Shimada
- d Laboratory of Cellular and Molecular Biology , Veterinary Sciences, Osaka Prefecture University , Izumisano , Osaka , Japan
| |
Collapse
|
34
|
Spady ES, Wyche TP, Rollins NJ, Clardy J, Way JC, Silver PA. Mammalian Cells Engineered To Produce New Steroids. Chembiochem 2018; 19:1827-1833. [PMID: 29931794 PMCID: PMC6156985 DOI: 10.1002/cbic.201800214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 11/12/2022]
Abstract
Steroids can be difficult to modify through traditional organic synthesis methods, but many enzymes regio- and stereoselectively process a wide variety of steroid substrates. We tested whether steroid-modifying enzymes could make novel steroids from non-native substrates. Numerous genes encoding steroid-modifying enzymes, including some bacterial enzymes, were expressed in mammalian cells by transient transfection and found to be active. We made three unusual steroids by stable expression, in HEK293 cells, of the 7α-hydroxylase CYP7B1, which was selected because of its high native product yield. These cells made 7α,17α-dihydroxypregnenolone and 7β,17α-dihydroxypregnenolone from 17α-hydroxypregnenolone and produced 11α,16α-dihydroxyprogesterone from 16α-hydroxyprogesterone. The last two products were the result of CYP7B1-catalyzed hydroxylation at previously unobserved sites. A Rosetta docking model of CYP7B1 suggested that these substrates' D-ring hydroxy groups might prevent them from binding in the same way as the native substrates, bringing different carbon atoms close to the active ferryl oxygen atom. This new approach could potentially use other enzymes and substrates to produce many novel steroids for drug candidate testing.
Collapse
Affiliation(s)
- Emma S. Spady
- Department of Systems Biology, Harvard Medical School – Boston, MA 02115, United States
- Laboratory of Systems Pharmacology, Harvard University – Boston, MA 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University – Boston, MA 02115, United States
| | - Thomas P. Wyche
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School – Boston, MA 02115, United States
| | - Nathanael J. Rollins
- Department of Systems Biology, Harvard Medical School – Boston, MA 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University – Boston, MA 02115, United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School – Boston, MA 02115, United States
| | - Jeffrey C. Way
- Department of Systems Biology, Harvard Medical School – Boston, MA 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University – Boston, MA 02115, United States
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School – Boston, MA 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University – Boston, MA 02115, United States
| |
Collapse
|
35
|
Cheng CYS, Kim TK, Jeayeng S, Slominski AT, Tuckey RC. Properties of purified CYP2R1 in a reconstituted membrane environment and its 25-hydroxylation of 20-hydroxyvitamin D3. J Steroid Biochem Mol Biol 2018; 177:59-69. [PMID: 28716760 PMCID: PMC5767547 DOI: 10.1016/j.jsbmb.2017.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 12/31/2022]
Abstract
Recent studies indicate that CYP2R1 is the major 25-hydroxylase catalyzing the first step in vitamin D activation. Since the catalytic properties of CYP2R1 have been poorly studied to date and it is a membrane protein, we examined the purified enzyme in a membrane environment. CYP2R1 was expressed in E. coli and purified by nickel affinity- and hydrophobic interaction-chromatography and assayed in a reconstituted membrane system comprising phospholipid vesicles plus purified human NADPH-P450 oxidoreductase. CYP2R1 converted vitamin D3 in the vesicle membrane to 25-hydroxyvitamin D3 [25(OH)D3] with good adherence to Michaelis-Menten kinetics. The kinetic parameters for 25-hydroxylation of vitamin D3 by the two major vitamin D 25-hydroxylases, CYP2R1 and CYP27A1, were examined in vesicles under identical conditions. CYP2R1 displayed a slightly lower kcat than CYP27A1 but a much lower Km for vitamin D3, and thus an overall 17-fold higher catalytic efficiency (kcat/Km), consistent with CYP2R1 being the major vitamin D 25-hydroxylase. 20-Hydroxyvitamin D3 [20(OH)D3], the main product of vitamin D3 activation by an alternative pathway catalyzed by CYP11A1, was metabolized by CYP2R1 to 20,25-dihydroxyvitamin D3 [20,25(OH)2D3], with catalytic efficiency similar to that for the 25-hydroxylation of vitamin D3. 20,25(OH)2D3 retained full, or somewhat enhanced activity compared to the parent 20(OH)D3 for the inhibition of the proliferation of melanocytes and dermal fibroblasts, with a potency comparable to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. The 20,25(OH)2D3 was also able to act as an inverse agonist on retinoic acid-related orphan receptor α, like its parent 20(OH)D3. Thus, the major findings of this study are that CYP2R1 can metabolize substrates in a membrane environment, the enzyme displays higher catalytic efficiency than CYP27A1 for the 25-hydroxylation of vitamin D, it efficiently hydroxylates 20(OH)D3 at C25 and this product retains the biological activity of the parent compound.
Collapse
Affiliation(s)
- Chloe Y S Cheng
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, AL, 35294, USA
| | - Saowanee Jeayeng
- Department of Dermatology, University of Alabama at Birmingham, AL, 35294, USA; Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, AL, 35294, USA; VA Medical Center, Birmingham, AL, 35294, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
36
|
Kakimoto K, Murayama N, Takenaka S, Nagayoshi H, Lim YR, Kim V, Kim D, Yamazaki H, Komori M, Guengerich FP, Shimada T. Cytochrome P450 2A6 and other human P450 enzymes in the oxidation of flavone and flavanone. Xenobiotica 2018; 49:131-142. [PMID: 29310511 DOI: 10.1080/00498254.2018.1426133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. We previously reported that flavone and flavanone interact spectrally with cytochrome P450 (P450 or CYP) 2A6 and 2A13 and other human P450s and inhibit catalytic activities of these P450 enzymes. In this study, we studied abilities of CYP1A1, 1A2, 1B1, 2A6, 2A13, 2C9 and 3A4 to oxidize flavone and flavanone. 2. Human P450s oxidized flavone to 6- and 5-hydroxylated flavones, seven uncharacterized mono-hydroxylated flavones, and five di-hydroxylated flavones. CYP2A6 was most active in forming 6-hydroxy- and 5-hydroxyflavones and several mono- and di-hydroxylated products. 3. CYP2A6 was also very active in catalyzing flavanone to form 2'- and 6-hydroxyflavanones, the major products, at turnover rates of 4.8 min-1 and 1.3 min-1, respectively. Other flavanone metabolites were 4'-, 3'- and 7-hydroxyflavanone, three uncharacterized mono-hydroxylated flavanones and five mono-hydroxylated flavones, including 6-hydroxyflavone. CYP2A6 catalyzed flavanone to produce flavone at a turnover rate of 0.72 min-1 that was ∼3-fold higher than that catalyzed by CYP2A13 (0.29 min-1). 4. These results indicate that CYP2A6 and other human P450s have important roles in metabolizing flavone and flavanone, two unsubstituted flavonoids, present in dietary foods. Chemical mechanisms of P450-catalyzed desaturation of flavanone to form flavone are discussed.
Collapse
Affiliation(s)
- Kensaku Kakimoto
- a Osaka Institute of Public Health , Higashinari-ku , Osaka , Japan
| | - Norie Murayama
- b Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Shigeo Takenaka
- c Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University , Habikino , Osaka , Japan
| | - Haruna Nagayoshi
- a Osaka Institute of Public Health , Higashinari-ku , Osaka , Japan
| | - Young-Ran Lim
- d Department of Biological Sciences , Konkuk University , Seoul , Korea
| | - Vitchan Kim
- d Department of Biological Sciences , Konkuk University , Seoul , Korea
| | - Donghak Kim
- d Department of Biological Sciences , Konkuk University , Seoul , Korea
| | - Hiroshi Yamazaki
- b Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Masayuki Komori
- e Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University , Izumisano , Osaka , Japan , and
| | - F Peter Guengerich
- f Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Tsutomu Shimada
- e Laboratory of Cellular and Molecular Biology, Veterinary Sciences, Osaka Prefecture University , Izumisano , Osaka , Japan , and
| |
Collapse
|
37
|
Beyer N, Kulig JK, Fraaije MW, Hayes MA, Janssen DB. Exploring PTDH-P450BM3 Variants for the Synthesis of Drug Metabolites. Chembiochem 2018; 19:326-337. [DOI: 10.1002/cbic.201700470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Nina Beyer
- Biotransformation and Biocatalysis; University of Groningen; Nijenborgh 4 9747AG Groningen The Netherlands
| | - Justyna K. Kulig
- Cardiovascular and Metabolic Diseases; DMPK; Innovative Medicines and Early Development; AstraZeneca R&D Gothenburg; Pepparedsleden 1 43150 Mölndal Sweden
- Crop Science Division; Bayer AG; Alfred-Nobel-Strasse 50 40789 Monheim am Rhein Germany
| | - Marco W. Fraaije
- Biotransformation and Biocatalysis; University of Groningen; Nijenborgh 4 9747AG Groningen The Netherlands
| | - Martin A. Hayes
- Cardiovascular and Metabolic Diseases; DMPK; Innovative Medicines and Early Development; AstraZeneca R&D Gothenburg; Pepparedsleden 1 43150 Mölndal Sweden
| | - Dick B. Janssen
- Biotransformation and Biocatalysis; University of Groningen; Nijenborgh 4 9747AG Groningen The Netherlands
| |
Collapse
|
38
|
YU HJ, LEE SH, LEE S, CHOI YJ, OH D, NAM KH, YUN Y, RYU DY. Biochemical characterization of variants of canine CYP1A1 using heterologous expression. J Vet Med Sci 2017; 79:1327-1334. [PMID: 28652520 PMCID: PMC5573817 DOI: 10.1292/jvms.17-0192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/12/2017] [Indexed: 12/27/2022] Open
Abstract
Cytochrome P450 1A1 (CYP1A1) is a heme-containing mono-oxygenase involved in metabolism of environmental contaminants. Two variants of dog CYP1A1 with a single residue difference were identified and designated Sap1 and Sap2. Compared with Sap1, Sap2 had a Trp50Leu substitution. The biochemical characteristics of the variants were comparatively analyzed using heterologous expression in Escherichia coli. The membrane fraction of E. coli expressing Sap2 exhibited higher CYP holoprotein and heme contents than the Sap1-containing membranes, although the level of total CYP1A1 protein (i.e., apoprotein + holoprotein) was comparable between the groups. As normalized to holo-CYP content, the Sap2-expressing membranes showed lower CYP1A1-specific enzyme activities, such as 7-ethoxyresorufin O-dealkylation (EROD), than the Sap1 group. In single substitution variants of residue 50, proteins with hydrophobic residues having mass similar to Leu exhibited lower EROD activities than those with hydrophobic residues having larger mass than Leu. In addition, variants with polar or charged residues having mass similar to Leu showed activities that were comparable to those of Sap2. Taken together, these findings suggest that the Trp50Leu substitution leads to an enhancement of holo-CYP1A1 formation, but diminishes the enzyme activity because of the small size of Leu compared with Trp.
Collapse
Affiliation(s)
- Hee Jeong YU
- College of Veterinary Medicine, Research Institute for
Veterinary Sciences, BK21plus Program for Creative Veterinary Science Research, Seoul
National University, Seoul, 08862, Republic of Korea
| | - Seung Heon LEE
- College of Veterinary Medicine, Research Institute for
Veterinary Sciences, BK21plus Program for Creative Veterinary Science Research, Seoul
National University, Seoul, 08862, Republic of Korea
| | - Seungwoo LEE
- College of Veterinary Medicine, Research Institute for
Veterinary Sciences, BK21plus Program for Creative Veterinary Science Research, Seoul
National University, Seoul, 08862, Republic of Korea
| | - Yu Jung CHOI
- College of Veterinary Medicine, Research Institute for
Veterinary Sciences, BK21plus Program for Creative Veterinary Science Research, Seoul
National University, Seoul, 08862, Republic of Korea
| | - Dayoung OH
- College of Veterinary Medicine, Research Institute for
Veterinary Sciences, BK21plus Program for Creative Veterinary Science Research, Seoul
National University, Seoul, 08862, Republic of Korea
| | - Ki-Hoan NAM
- Laboratory Animal Resource Center, Korea Research Institute
of Bioscience and Biotechnology, Cheongwon, Chungbuk, 28116 Republic of Korea
| | - YoungMin YUN
- College of Veterinary Medicine, Jeju National University,
Jeju, 63243, Republic of Korea
| | - Doug-Young RYU
- College of Veterinary Medicine, Research Institute for
Veterinary Sciences, BK21plus Program for Creative Veterinary Science Research, Seoul
National University, Seoul, 08862, Republic of Korea
| |
Collapse
|
39
|
Shimada T, Murayama N, Kakimoto K, Takenaka S, Lim YR, Yeom S, Kim D, Yamazaki H, Guengerich FP, Komori M. Oxidation of 1-chloropyrene by human CYP1 family and CYP2A subfamily cytochrome P450 enzymes: catalytic roles of two CYP1B1 and five CYP2A13 allelic variants. Xenobiotica 2017. [PMID: 28648140 DOI: 10.1080/00498254.2017.1347306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. 1-Chloropyrene, one of the major chlorinated polycyclic aromatic hydrocarbon contaminants, was incubated with human cytochrome P450 (P450 or CYP) enzymes including CYP1A1, 1A2, 1B1, 2A6, 2A13, 2B6, 2C9, 2D6, 2E1, 3A4 and 3A5. Catalytic differences in 1-chloropyrene oxidation by polymorphic two CYP1B1 and five CYP2A13 allelic variants were also examined. 2. CYP1A1 oxidized 1-chloropyrene at the 6- and 8-positions more actively than at the 3-position, while both CYP1B1.1 and 1B1.3 preferentially catalyzed 6-hydroxylation. 3. Five CYP2A13 allelic variants oxidized 8-hydroxylation much more than 6- and 3-hydroxylation, and the variant CYP2A13.3 was found to slowly catalyze these reactions with a lower kcat value than other CYP2A13.1 variants. 4. CYP2A6 catalyzed 1-chloropyrene 6-hydroxylation at a higher rate than the CYP2A13 enzymes, but the rate was lower than the CYP1A1 and 1B1 variants. Other human P450 enzymes had low activities towards 1-chloropyrene. 5. Molecular docking analysis suggested differences in the interaction of 1-chloropyrene with active sites of CYP1 and 2 A enzymes. In addition, a naturally occurring Thr134 insertion in CYP2A13.3 was found to affect the orientation of Asn297 in the I-helix in interacting with 1-chloropyrene (and also 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK) and caused changes in the active site of CYP2A13.3 as compared with CYP2A13.1.
Collapse
Affiliation(s)
- Tsutomu Shimada
- a Laboratory of Cellular and Molecular Biology, Osaka Prefecture University , Osaka , Japan
| | - Norie Murayama
- b Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Machida , Tokyo
| | | | - Shigeo Takenaka
- d Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University , Osaka , Japan
| | - Young-Ran Lim
- e Department of Biological Sciences , Konkuk University , Seoul , Korea , and
| | - Sora Yeom
- e Department of Biological Sciences , Konkuk University , Seoul , Korea , and
| | - Donghak Kim
- e Department of Biological Sciences , Konkuk University , Seoul , Korea , and
| | - Hiroshi Yamazaki
- b Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Machida , Tokyo
| | - F Peter Guengerich
- f Department of Biochemistry , Vanderbilt University School of Medicine , Nashville, TN , USA
| | - Masayuki Komori
- a Laboratory of Cellular and Molecular Biology, Osaka Prefecture University , Osaka , Japan
| |
Collapse
|
40
|
Chen PC, Tsai WJ, Ueng YF, Tzeng TT, Chen HL, Zhu PR, Huang CH, Shiao YJ, Li WT. Neuroprotective and Antineuroinflammatory Effects of Hydroxyl-Functionalized Stilbenes and 2-Arylbenzo[b]furans. J Med Chem 2017; 60:4062-4073. [DOI: 10.1021/acs.jmedchem.7b00376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Pei-Chun Chen
- Institute
of Biopharmaceutical Science, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Wei-Jern Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, R.O.C
| | - Yune-Fang Ueng
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, R.O.C
| | - Tsai-Teng Tzeng
- Institute
of Biopharmaceutical Science, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Hsiang-Ling Chen
- Institute
of Biopharmaceutical Science, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Pei-Ru Zhu
- Institute
of Biopharmaceutical Science, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Chia-Hsiang Huang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, R.O.C
| | - Young-Ji Shiao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, R.O.C
| | - Wen-Tai Li
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, R.O.C
| |
Collapse
|
41
|
Behrendorff JBYH, Gillam EMJ. Prospects for Applying Synthetic Biology to Toxicology: Future Opportunities and Current Limitations for the Repurposing of Cytochrome P450 Systems. Chem Res Toxicol 2016; 30:453-468. [DOI: 10.1021/acs.chemrestox.6b00396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Elizabeth M. J. Gillam
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| |
Collapse
|
42
|
Shimada T, Kakimoto K, Takenaka S, Koga N, Uehara S, Murayama N, Yamazaki H, Kim D, Guengerich FP, Komori M. Roles of Human CYP2A6 and Monkey CYP2A24 and 2A26 Cytochrome P450 Enzymes in the Oxidation of 2,5,2',5'-Tetrachlorobiphenyl. Drug Metab Dispos 2016; 44:1899-1909. [PMID: 27625140 PMCID: PMC6047209 DOI: 10.1124/dmd.116.072991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/12/2016] [Indexed: 11/22/2022] Open
Abstract
2,5,2',5'-Tetrachlorobiphenyl (TCB) induced type I binding spectra with cytochrome P450 (P450) 2A6 and 2A13, with Ks values of 9.4 and 0.51 µM, respectively. However, CYP2A6 oxidized 2,5,2',5'-TCB to form 4-hydroxylated products at a much higher rate (∼1.0 minute-1) than CYP2A13 (∼0.02 minute-1) based on analysis by liquid chromatography-tandem mass spectrometry. Formation of 4-hydroxy-2,5,2',5'-TCB by CYP2A6 was greater than that of 3-hydroxy-2,5,2',5'-TCB and three other hydroxylated products. Several human P450 enzymes, including CYP1A1, 1A2, 1B1, 2B6, 2D6, 2E1, 2C9, and 3A4, did not show any detectable activities in oxidizing 2,5,2',5'-TCB. Cynomolgus monkey CYP2A24, which shows 95% amino acid identity to human CYP2A6, catalyzed 4-hydroxylation of 2,5,2',5'-TCB at a higher rate (∼0.3 minute-1) than CYP2A26 (93% identity to CYP2A6, ∼0.13 minute-1) and CYP2A23 (94% identity to CYP2A13, ∼0.008 minute-1). None of these human and monkey CYP2A enzymes were catalytically active in oxidizing other TCB congeners, such as 2,4,3',4'-, 3,4,3',4'-, and 3,5,3',5'-TCB. Molecular docking analysis suggested that there are different orientations of interaction of 2,5,2',5'-TCB with the active sites (over the heme) of human and monkey CYP2A enzymes, and that ligand interaction energies (U values) of bound protein-ligand complexes show structural relationships of interaction of TCBs and other ligands with active sites of CYP2A enzymes. Catalytic differences in human and monkey CYP2A enzymes in the oxidation of 2,5,2',5'-TCB are suggested to be due to amino acid changes at substrate recognition sites, i.e., V110L, I209S, I300F, V365M, S369G, and R372H, based on the comparison of primary sequences.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Kensaku Kakimoto
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Shigeo Takenaka
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Nobuyuki Koga
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Shotaro Uehara
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Norie Murayama
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Hiroshi Yamazaki
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Donghak Kim
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - F Peter Guengerich
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| |
Collapse
|
43
|
Abstract
The biochemical facets of toxicology have always had a major role in providing insight into mechanisms. Some of the history of the development of this area is summarized, including metabolism, enzymology, and the chemistry of reactive intermediates. Knowledge in these fields has had a major impact in the areas of drug metabolism and safety assessment, which are both critical steps in the development of pharmaceuticals and the rational use of commodity chemicals. The science of toxicology has developed considerably with input from other disciplines and today is poised to emerge as a predictive science with even more dramatic impact. The challenges ahead are considerable but there is renewed excitement in the potential of the field. As in the past, further advances in the field of toxicology will require the input of knowledge from many disciplines.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| |
Collapse
|
44
|
Bendikov MY, Miners JO, Simpson BS, Elliot DJ, Semple SJ, Claudie DJ, McKinnon RA, Gillam EMJ, Sykes MJ. In vitro metabolism of the anti-inflammatory clerodane diterpenoid polyandric acid A and its hydrolysis product by human liver microsomes and recombinant cytochrome P450 and UDP-glucuronosyltransferase enzymes. Xenobiotica 2016; 47:461-469. [DOI: 10.1080/00498254.2016.1203041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Matthew Y. Bendikov
- Department of Clinical Pharmacology, School of Medicine, Flinders University, Adelaide, Australia,
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia,
| | - John O. Miners
- Department of Clinical Pharmacology, School of Medicine, Flinders University, Adelaide, Australia,
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, Australia,
| | - Bradley S. Simpson
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, Australia,
- Quality Use of Medicines and Pharmacy Research Centre, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia,
| | - David J. Elliot
- Department of Clinical Pharmacology, Flinders Medical Centre, Adelaide, Australia,
| | - Susan J. Semple
- Quality Use of Medicines and Pharmacy Research Centre, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia,
| | - David J. Claudie
- Chuulangun Aboriginal Corporation, Cairns Mail Centre, Cairns, Australia, and
| | - Ross A. McKinnon
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, Australia,
| | - Elizabeth M. J. Gillam
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Australia
| | - Matthew J. Sykes
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia,
| |
Collapse
|
45
|
Chun YJ, Kim D. Cancer Activation and Polymorphisms of Human Cytochrome P450 1B1. Toxicol Res 2016; 32:89-93. [PMID: 27123158 PMCID: PMC4843978 DOI: 10.5487/tr.2016.32.2.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 11/20/2022] Open
Abstract
Human cytochrome P450 enzymes (P450s, CYPs) are major oxidative catalysts that metabolize various xenobiotic and endogenous compounds. Many carcinogens induce cancer only after metabolic activation and P450 enzymes play an important role in this phenomenon. P450 1B1 mediates bioactivation of many procarcinogenic chemicals and carcinogenic estrogen. It catalyzes the oxidation reaction of polycyclic aromatic carbons, heterocyclic and aromatic amines, and the 4-hydroxylation reaction of 17β-estradiol. Enhanced expression of P450 1B1 promotes cancer cell proliferation and metastasis. There are at least 25 polymorphic variants of P450 1B1 and some of these have been reported to be associated with eye diseases. In addition, P450 1B1 polymorphisms can greatly affect the metabolic activation of many procarcinogenic compounds. It is necessary to understand the relationship between metabolic activation of such substances and P450 1B1 polymorphisms in order to develop rational strategies for the prevention of its toxic effect on human health.
Collapse
Affiliation(s)
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| |
Collapse
|
46
|
Stok JE, Slessor KE, Farlow AJ, Hawkes DB, De Voss JJ. Cytochrome P450cin (CYP176A1). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:319-39. [PMID: 26002741 DOI: 10.1007/978-3-319-16009-2_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cytochrome P450cin (P450cin) (CYP176A1) is a bacterial P450 enzyme that catalyses the enantiospecific hydroxylation of 1,8-cineole to (1R)-6β-hydroxycineole when reconstituted with its natural reduction-oxidation (redox) partner cindoxin, E. coli flavodoxin reductase, and NADPH as a source of electrons. This catalytic system has become a useful tool in the study of P450s as not only can large quantities of P450cin be prepared and rates of oxidation up to 1,500 min(-1) achieved, but it also displays a number of unusual characteristics. These include an asparagine residue in P450cin that has been found in place of the usual conserved threonine residue observed in most P450s. In general, this conserved threonine controls oxygen activation to create the potent ferryl (Fe(IV=O) porphyrin cation radical required for substrate oxidation. Another atypical characteristic of P450cin is that it utilises an FMN-containing redoxin (cindoxin) rather than a ferridoxin as is usually observed with other bacterial P450s (e.g. P450cam). This chapter will review what is currently known about P450cin and how this enzyme has provided a greater understanding of P450s in general.
Collapse
Affiliation(s)
- Jeanette E Stok
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | | | | | | | | |
Collapse
|
47
|
Lee SH, Yu HJ, Lee S, Ryu DY. Characterization of the Gly45Asp variant of human cytochrome P450 1A1 using recombinant expression. Toxicol Lett 2015; 239:81-9. [PMID: 26367467 DOI: 10.1016/j.toxlet.2015.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/22/2015] [Accepted: 09/09/2015] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 1A1 (CYP1A1) is a heme-containing enzyme involved in metabolism of xenobiotics. CYP1A1 containing a Gly45Asp substitution has not yet been characterized. Escherichia coli expressing the Gly45Asp variant, as well as the purified variant protein, had lower CYP (i.e., holoenzyme) contents than their wild-type (WT) equivalents. The purified variant protein had reduced heme contents compared with their WT equivalents. Enhanced supplementation of a heme precursor during culture did not increase CYP content in E. coli expressing the variant, but did for the WT. Substitution of Gly45 with other residues, especially those having large side chains, decreased CYP contents of E. coli expressing the variants to a considerable extent. A 3D structure of CYP1A1 indicates that Gly45, along with other residues of the PR region, interacts with Arg77 of β- strand 1-1, which indirectly interacts with heme. Substitution analyses suggest the importance of residues of the PR region and Arg77 in holoenzyme expression. E. coli membrane and mammalian microsomes expressing the Gly45Asp variant, as well as the purified variant protein, had reduced ethoxyresorufin O-dealkylation activities, compared with the WT equivalents. These findings suggest the Gly45Asp substitution results in a structural disturbance of CYP1A1, reducing its holoenzyme formation and catalytic activity.
Collapse
Affiliation(s)
- Seung Heon Lee
- College of Veterinary Medicine, BK21plus Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea
| | - Hee Jeong Yu
- College of Veterinary Medicine, BK21plus Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea
| | - Seungwoo Lee
- College of Veterinary Medicine, BK21plus Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea
| | - Doug-Young Ryu
- College of Veterinary Medicine, BK21plus Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, South Korea.
| |
Collapse
|
48
|
Yoshimoto FK, Auchus RJ. The diverse chemistry of cytochrome P450 17A1 (P450c17, CYP17A1). J Steroid Biochem Mol Biol 2015; 151:52-65. [PMID: 25482340 PMCID: PMC4456341 DOI: 10.1016/j.jsbmb.2014.11.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/25/2014] [Accepted: 11/30/2014] [Indexed: 11/28/2022]
Abstract
The steroid hydroxylation and carbon-carbon bond cleavage activities of cytochrome P450 17A1 (CYP17A1) are responsible for the production of glucocorticoids and androgens, respectively. The inhibition of androgen synthesis is an important strategy to treat androgen-dependent prostate cancer. We discuss the different enzymatic activities towards the various substrates of CYP17A1, demonstrating its promiscuity. Additionally, a novel interhelical interaction is proposed between the F-G loop and the B'-helix to explain the 16α-hydroxylase activity of human CYP17A1 with progesterone as the substrate. The techniques used by biochemists to study this important enzyme are also summarized. This article is part of a Special Issue entitled 'Steroid/Sterol signaling'.
Collapse
Affiliation(s)
- Francis K Yoshimoto
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Richard J Auchus
- Division of Metabolism, Diabetes, and Endocrinology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48019, United States.
| |
Collapse
|
49
|
Lee SH, Kang S, Dong MS, Park JD, Park J, Rhee S, Ryu DY. Characterization of the Ala62Pro polymorphic variant of human cytochrome P450 1A1 using recombinant protein expression. Toxicol Appl Pharmacol 2015; 285:159-69. [DOI: 10.1016/j.taap.2015.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 11/16/2022]
|
50
|
Looße C, Galozzi S, Debor L, Julsing MK, Bühler B, Schmid A, Barkovits K, Müller T, Marcus K. Direct infusion-SIM as fast and robust method for absolute protein quantification in complex samples. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|