1
|
Li X, Ren Q, Sun Z, Wu Y, Pan H. Resuscitation Promotion Factor: A Pronounced Bacterial Cytokine in Propelling Bacterial Resuscitation. Microorganisms 2024; 12:1528. [PMID: 39203370 PMCID: PMC11356341 DOI: 10.3390/microorganisms12081528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
While confronted with unfavorable growth conditions, bacteria may transform into the dormant state, such as viable but nonculturable (VBNC) state, which is a reversible state characterized by low metabolic activity and lack of division. These dormant cells can be reactivated through the influence of the resuscitation promoting factor (Rpf) family, which are classified as autocrine growth factors and possess peptidoglycan hydrolase activities. To date, with the significant resuscitation or growth promotion ability of Rpf, it has been extensively applied to increasing bacterial diversity and isolating functional microbial species. This review provides a comprehensive analysis of the distribution, mode of action, and functional mechanisms of Rpf proteins in various bacterial species. The aim is to create opportunities for decoding microbial communities and extracting microbial resources from real samples across different research fields.
Collapse
Affiliation(s)
| | | | | | | | - Hanxu Pan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (X.L.); (Q.R.); (Z.S.); (Y.W.)
| |
Collapse
|
2
|
Fernández Blanco A, Moreno Y, García-Hernández J, Hernández M. A Photonic Immunosensor Detection Method for Viable and Non-Viable E. coli in Water Samples. Microorganisms 2024; 12:1328. [PMID: 39065096 PMCID: PMC11278787 DOI: 10.3390/microorganisms12071328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Detection and enumeration of coliform bacteria using traditional methods and current molecular techniques against E. coli usually involve long processes with less sensitivity and specificity to distinguish between viable and non-viable bacteria for microbiological water analysis. This approach involves developing and validating an immunosensor comprising ring resonators functionalized with specific antibodies surrounded by a network of microchannels as an alternative method for detecting and indirectly enumerating Escherichia coli in samples of water for consumption. Different ELISA assays were conducted to characterize monoclonal and polyclonal antibodies selected as detection probes for specific B-galactosidase enzymes and membrane LPS antigens of E. coli. An immobilization control study was performed on silicon nitride surfaces used in the immunosensor, immobilized with the selected antibodies from the ELISA assays. The specificity of this method was confirmed by detecting as few as 10 CFU/mL of E. coli from viable and non-viable target bacteria after applying various disinfection methods to water samples intended for human consumption. The 100% detection rate and a 100 CFU/mL Limit of Quantification of the proposed method were validated through a comprehensive assessment of the immunosensor-coupled microfluidic system, involving at least 50 replicates with a concentration range of 10 to 106 CFU/mL of the target bacteria and 50 real samples contaminated with and without disinfection treatment. The correlation coefficient of around one calculated for each calibration curve obtained from the results demonstrated sensitive and rapid detection capabilities suitable for application in water resources intended for human consumption within the food industry. The biosensor was shown to provide results in less than 4 h, allowing for rapid identification of microbial contamination crucial for ensuring water monitoring related to food safety or environmental diagnosis and allowing for timely interventions to mitigate contamination risks. Indeed, the achieved setup facilitates the in situ execution of laboratory processes, allowing for the detection of both viable and non-viable bacteria, and it implies future developments of simultaneous detection of pathogens in the same contaminated sample.
Collapse
Affiliation(s)
| | - Yolanda Moreno
- Institute of Water and Environmental Engineering, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Jorge García-Hernández
- Advanced Center for Food Microbiology, Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain; (J.G.-H.); (M.H.)
| | - Manuel Hernández
- Advanced Center for Food Microbiology, Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain; (J.G.-H.); (M.H.)
| |
Collapse
|
3
|
Wen X, Chen Y, Zhang S, Su AT, Huang D, Zhou G, Xie X, Wang J. Resistance to preservatives and the viable but non-culturable state formation of Asaia lannensis in flavored syrups. Front Microbiol 2024; 15:1345800. [PMID: 38435685 PMCID: PMC10904602 DOI: 10.3389/fmicb.2024.1345800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Food security is a crucial issue that has caused extensive concern, and the use of food flavors has become prevalent over time. we used the molecular biological techniques, preservative susceptibility testing, viable but non-culturable (VBNC) state induction testing, and a transcriptome analysis to examine the bacterial contamination of favored syrup and identify the causes and develop effective control measures. The results showed that Asaia lannensis WLS1-1 is a microorganism that can spoil food and is a member of the acetic acid bacteria families. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests showed that WLS1-1 was susceptible to potassium sorbate (PS), sodium benzoate (SB), and sodium sulffte (SS) at pH 4.0. It revealed a progressive increase in resistance to these preservatives at increasing pH values. WLS1-1 was resistant to PS, SB and SS with an MIC of 4.0, 2.0 and 0.5 g/L at pH 5.0, respectively. The MIC values exceed the maximum permissible concentrations that can be added. The induction test of the VBNC state demonstrated that WLS1-1 lost its ability to grow after 321 days of PS induction, 229 days of SB induction and 52 days of SS induction combined with low temperature at 4°C. Additionally, laser confocal microscopy and a propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) assay showed that WLS1-1 was still alive after VBNC formation. There were 7.192 ± 0.081 (PS), 5.416 ± 0.149 (SB) and 2.837 ± 0.134 (SS) log10(CFU/mL) of viable bacteria. An analysis of the transcriptome data suggests that Asaia lannensis can enter the VBNC state by regulating oxidative stress and decreasing protein synthesis and metabolic activity in response to low temperature and preservatives. The relative resistance of Asaia lannensis to preservatives and the induction of the VBNC state by preservatives are the primary factors that contribute to the contamination of favored syrup by this bacterium. To our knowledge, this study represents the first evidence of the ability of Asaia lannensis to enter the VBNC state and provides a theoretical foundation for the control of organisms with similar types of activity.
Collapse
Affiliation(s)
- Xia Wen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yiwen Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuyao Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ai-ting Su
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Di Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Gang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Zou Y, Li X, Mao Y, Song W, Liu Q. Enhanced Biofilm Formation by Tetracycline in a Staphylococcus aureus Naturally Lacking ica Operon and atl. Microb Drug Resist 2024; 30:82-90. [PMID: 38252794 DOI: 10.1089/mdr.2023.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Staphylococcus aureus is a major, widespread pathogen, and its biofilm-forming characteristics make it even more difficult to eliminate by biocides. Tetracycline (TCY) is a major broad-spectrum antibiotic, the residues of which can cause deleterious health impacts, and subinhibitory concentrations of TCY have the potential to increase biofilm formation in S. aureus. In this study, we showed how the biofilm formation of S. aureus 123786 is enhanced in the presence of TCY at specific subinhibitory concentrations. S. aureus 123786 used in this study was identified as Staphylococcal Cassette Chromosome mec III, sequence type239 and naturally lacking ica operon and atl gene. Two assays were performed to quantify the formation of S. aureus biofilm. In the crystal violet (CV) assay, the absorbance values of biofilm stained with CV at optical density (OD)540 nm increased after 8 and 16 hr of incubation when the concentration of TCY was 1/2 minimum inhibitory concentration (MIC), whereas at the concentration of 1/16 MIC, the absorbance values increased after 16 and 24 hr of incubation. In tetrazolium salt reduction assay, the absorbance value at OD490 nm of S. aureus 123786 biofilms mixed with 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium solution increased after 8 hr when the concentration of TCY was 1/4 MIC, which may be correlated with the higher proliferation and maturation of biofilm. In conclusion, the biofilm formation of S. aureus 123786 could be enhanced in the presence of TCY at specific subinhibitory concentrations.
Collapse
Affiliation(s)
- Yimin Zou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejie Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yanxiong Mao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjuan Song
- Department of Economics, School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing Liu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Bao Q, Ma X, Bo X, Pang J, Dai L, Wang H, Chen Y, Kwok LY. Transcriptomic analysis of Lacticaseibacillus paracasei Zhang in transition to the viable but non-culturable state by RNA sequencing. Front Microbiol 2023; 14:1280350. [PMID: 38188563 PMCID: PMC10768001 DOI: 10.3389/fmicb.2023.1280350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Background Some bacteria enter the viable but non-culturable (VBNC) state to survive harsh environmental conditions and external stresses. This alters cell physiology and has implications for the food industry as some bacteria, such as lactobacilli, undergo similar changes during food processing. Methods This study aimed to investigate the transcriptomic changes of a probiotic strain, Lacticaseibacillus paracasei Zhang (L. paracasei Zhang), upon transition to the VBNC state using high throughput RNA sequencing (RNA-seq). Results Bacteria were inoculated into the de Man, Rogosa, and Sharpe medium and maintained at low temperature and pH to induce cell transition to the VBNC state. Cells were harvested for analysis at five stages of VBNC induction: 0, 3, 30, and 180 days after induction and 210 days when the cells entered the VBNC state. Our results showed that the expression of 2,617, 2,642, 2,577, 2,829, and 2,840 genes was altered at these five different stages. The function of differentially expressed genes (DEGs, compared to healthy cells collected at day 0) and their encoded pathways were analyzed by the Gene Ontology Consortium and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. A total of 10 DEGs were identified in cells that entered the VBNC state: five continuously upregulated (LCAZH_0621, LCAZH_1986, LCAZH_2038, LCAZH_2040, and LCAZH_2174) and five continuously downregulated (LCAZH_0024, LCAZH_0210, LCAZH_0339, LCAZH_0621, and LCAZH_0754). Conclusions This study proposes a molecular model of the VBNC mechanism in L. paracasei Zhang, highlighting that changes in cell metabolism improve substrate utilization efficiency, thereby enhancing bacterial survival under adverse conditions. These data may be useful for improving the survival of probiotics in industrial food processing.
Collapse
Affiliation(s)
- Qiuhua Bao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Xuebo Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaoyu Bo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Pang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lixia Dai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Huiying Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
6
|
Liu J, Yang L, Kjellerup BV, Xu Z. Viable but nonculturable (VBNC) state, an underestimated and controversial microbial survival strategy. Trends Microbiol 2023; 31:1013-1023. [PMID: 37225640 DOI: 10.1016/j.tim.2023.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
As a unique microbial response to adverse circumstances, the viable but nonculturable (VBNC) state is characterized by the loss of culturability of microbial cells on/in nutrient media that normally support their growth, while maintaining metabolic activity. These cells can resuscitate to a culturable state under suitable conditions. Given the intrinsic importance of the VBNC state and recent debates surrounding it, there is a need to redefine and standardize the term, and to address essential questions such as 'How to differentiate VBNC from other similar terms?' and 'How can VBNC cells be standardly and accurately determined?'. This opinion piece aims at contributing to an improved understanding of the VBNC state and promoting its proper handling as an underestimated and controversial microbial survival strategy.
Collapse
Affiliation(s)
- Junyan Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Birthe Veno Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
7
|
McDonald ND, Rosenberger JR, Almagro-Moreno S, Boyd EF. The Role of Nutrients and Nutritional Signals in the Pathogenesis of Vibrio cholerae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:195-211. [PMID: 36792877 DOI: 10.1007/978-3-031-22997-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio cholerae, the agent of cholera, is a natural inhabitant of aquatic environments. Over the past decades, the importance of specific nutrients and micronutrients in the environmental survival, host colonization, and pathogenesis of this species has become increasingly clear. For instance, V. cholerae has evolved ingenious mechanisms that allow the bacterium to colonize and establish a niche in the intestine of human hosts, where it competes with commensals (gut microbiota) and other pathogenic bacteria for available nutrients. Here, we discuss the carbon and energy sources utilized by V. cholerae and what is known about the role of nutrition in V. cholerae colonization. We examine how nutritional signals affect virulence gene regulation and how interactions with intestinal commensal species can affect intestinal colonization.
Collapse
Affiliation(s)
- N D McDonald
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - J R Rosenberger
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - S Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA.,National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
8
|
Environmental Reservoirs of Pathogenic Vibrio spp. and Their Role in Disease: The List Keeps Expanding. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:99-126. [PMID: 36792873 DOI: 10.1007/978-3-031-22997-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio species are natural inhabitants of aquatic environments and have complex interactions with the environment that drive the evolution of traits contributing to their survival. These traits may also contribute to their ability to invade or colonize animal and human hosts. In this review, we attempt to summarize the relationships of Vibrio spp. with other organisms in the aquatic environment and discuss how these interactions could potentially impact colonization of animal and human hosts.
Collapse
|
9
|
Perera IU, Fujiyoshi S, Nishiuchi Y, Nakai T, Maruyama F. Zooplankton act as cruise ships promoting the survival and pathogenicity of pathogenic bacteria. Microbiol Immunol 2022; 66:564-578. [PMID: 36128640 PMCID: PMC10091822 DOI: 10.1111/1348-0421.13029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022]
Abstract
Bacteria in general interact with zooplankton in aquatic ecosystems. These zooplankton-bacterial interactions help to shape the bacterial community by regulating bacterial abundances. Such interactions are even more significant and crucially in need of investigation in the case of pathogenic bacteria, which cause severe diseases in humans and animals. Among the many associations between a host metazoan and pathogenic bacteria, zooplankton provide nutrition and protection from stressful conditions, promote the horizontal transfer of virulence genes, and act as a mode of pathogen transport. These interactions allow the pathogen to survive and proliferate in aquatic environments and to endure water treatment processes, thereby creating a potential risk to human health. This review highlights current knowledge on the contributions of zooplankton to the survival and pathogenicity of pathogenic bacteria. We also discuss the need to consider these interactions as a risk factor in water treatment processes.
Collapse
Affiliation(s)
- Ishara U Perera
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan.,Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan
| | - So Fujiyoshi
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan.,Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan
| | - Yukiko Nishiuchi
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan
| | - Toshihiro Nakai
- Takehara Marine Science Station, Graduate School of Integrated Science for Life, Hiroshima University, Takehara City, Hiroshima, Japan
| | - Fumito Maruyama
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan.,Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan
| |
Collapse
|
10
|
Yadav M, Dhyani S, Joshi P, Awasthi S, Tanwar S, Gupta V, Rathore DK, Chaudhuri S. Formic acid, an organic acid food preservative, induces viable-but-non-culturable state, and triggers new Antimicrobial Resistance traits in Acinetobacter baumannii and Klebsiella pneumoniae. Front Microbiol 2022; 13:966207. [PMID: 36504816 PMCID: PMC9730046 DOI: 10.3389/fmicb.2022.966207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Numerous human pathogens, especially Gram-negative bacteria, are able to enter the viable-but-non-culturable (VBNC) state when they are exposed to environmental stressors and pose the risk of being resuscitated and causing infection after the removal of the trigger. Widely used food preservatives like weak organic acids are potential VBNC inducers in food processing and packaging facilities but have only been reported for food-borne pathogens. In the present study, it is demonstrated for the first time that one such agent, formic acid (FA), can induce a VBNC state at food processing, storage, and distribution temperatures (4, 25, and 37°C) with a varied time of treatment (days 4-10) in pathogenic Gram-negative bacteria Acinetobacter baumannii and Klebsiella pneumoniae. The use of hospital-associated pathogens is critical based on the earlier reports that demonstrated the presence of these bacteria in hospital kitchens and commonly consumed foods. VBNC induction was validated by multiple parameters, e.g., non-culturability, metabolic activity as energy production, respiratory markers, and membrane integrity. Furthermore, it was demonstrated that the removal of FA was able to resuscitate VBNC with an increased expression of multiple virulence and Antimicrobial Resistance (AMR) genes in both pathogens. Since food additives/preservatives are significantly used in most food manufacturing facilities supplying to hospitals, contamination of these packaged foods with pathogenic bacteria and the consequence of exposure to food additives emerge as pertinent issues for infection control, and control of antimicrobial resistance in the hospital setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Susmita Chaudhuri
- Department of Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
11
|
Dey SS, Hossain ZZ, Akhter H, Jensen PKM, Begum A. Abundance and biofilm formation capability of Vibrio cholerae in aquatic environment with an emphasis on Hilsha fish (Tenualosa ilisha). Front Microbiol 2022; 13:933413. [PMID: 36386632 PMCID: PMC9643777 DOI: 10.3389/fmicb.2022.933413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022] Open
Abstract
The potentially deadly and sporadic diarrhea-causing agent, Vibrio cholerae, is present in a great number in the freshwater aquatic environment and can be transmitted to humans by different aquatic organisms. In the perspective of Bangladesh, an anadromous fish species Hilsha (Tenualosa ilisha) can act as a transmission vehicle of V. cholerae from the aquatic to the household kitchen environment. The present study was carried out to investigate the presence of V. cholerae in the aquatic habitat of Bangladesh with a major emphasis on freshly caught Hilsha fish, along with river water and plankton samples from the fish capture site. The study also detected the biofilm formation capability of V. cholerae within Hilsha fish that might help the transmission and persistence of the pathogen in aquatic habitat. Twenty out of 65 freshly caught fish (30.8%) and 1 out of 15 water samples (6.67%) showed the presence of V. cholerae and none of the plankton samples were positive for V. cholerae. The isolated strains were identified as non-O1 and non-O139 serogroups of V. cholerae and contain some major toxin and virulence genes. A few strains showed cellular cytotoxicity on the HeLa cell line. All strains were able to form biofilm on the microtiter plate and the detection of three genes related to biofilm formation (vpsA, vpsL, and vpsR) were also assayed using qPCR. In this study, the in vitro biofilm formation ability of the isolated strains may indicate the long-term persistence of V. cholerae in different parts of Hilsha fish. The abundance of V. cholerae only in freshly caught Hilsha fish and the absence of the pathogen in the surrounding aquatic environment could stipulate the role of Hilsha fish as one of the major transmission routes of V. cholerae from the freshwater aquatic environment of Bangladesh to the household kitchen environment.
Collapse
Affiliation(s)
- Subarna Sandhani Dey
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, Bangladesh
| | - Zenat Zebin Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- Department of Public Health, School of Pharmacy and Public Health, Independent University, Dhaka, Bangladesh
| | - Humaira Akhter
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Peter K. M. Jensen
- Copenhagen Centre for Disaster Research, Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Anowara Begum
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- *Correspondence: Anowara Begum,
| |
Collapse
|
12
|
Liebenberg D, Gordhan BG, Kana BD. Drug resistant tuberculosis: Implications for transmission, diagnosis, and disease management. Front Cell Infect Microbiol 2022; 12:943545. [PMID: 36211964 PMCID: PMC9538507 DOI: 10.3389/fcimb.2022.943545] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/06/2022] [Indexed: 01/17/2023] Open
Abstract
Drug resistant tuberculosis contributes significantly to the global burden of antimicrobial resistance, often consuming a large proportion of the healthcare budget and associated resources in many endemic countries. The rapid emergence of resistance to newer tuberculosis therapies signals the need to ensure appropriate antibiotic stewardship, together with a concerted drive to develop new regimens that are active against currently circulating drug resistant strains. Herein, we highlight that the current burden of drug resistant tuberculosis is driven by a combination of ongoing transmission and the intra-patient evolution of resistance through several mechanisms. Global control of tuberculosis will require interventions that effectively address these and related aspects. Interrupting tuberculosis transmission is dependent on the availability of novel rapid diagnostics which provide accurate results, as near-patient as is possible, together with appropriate linkage to care. Contact tracing, longitudinal follow-up for symptoms and active mapping of social contacts are essential elements to curb further community-wide spread of drug resistant strains. Appropriate prophylaxis for contacts of drug resistant index cases is imperative to limit disease progression and subsequent transmission. Preventing the evolution of drug resistant strains will require the development of shorter regimens that rapidly eliminate all populations of mycobacteria, whilst concurrently limiting bacterial metabolic processes that drive drug tolerance, mutagenesis and the ultimate emergence of resistance. Drug discovery programs that specifically target bacterial genetic determinants associated with these processes will be paramount to tuberculosis eradication. In addition, the development of appropriate clinical endpoints that quantify drug tolerant organisms in sputum, such as differentially culturable/detectable tubercle bacteria is necessary to accurately assess the potential of new therapies to effectively shorten treatment duration. When combined, this holistic approach to addressing the critical problems associated with drug resistance will support delivery of quality care to patients suffering from tuberculosis and bolster efforts to eradicate this disease.
Collapse
|
13
|
Alebouyeh S, Weinrick B, Achkar JM, García MJ, Prados-Rosales R. Feasibility of novel approaches to detect viable Mycobacterium tuberculosis within the spectrum of the tuberculosis disease. Front Med (Lausanne) 2022; 9:965359. [PMID: 36072954 PMCID: PMC9441758 DOI: 10.3389/fmed.2022.965359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) is a global disease caused by Mycobacterium tuberculosis (Mtb) and is manifested as a continuum spectrum of infectious states. Both, the most common and clinically asymptomatic latent tuberculosis infection (LTBI), and the symptomatic disease, active tuberculosis (TB), are at opposite ends of the spectrum. Such binary classification is insufficient to describe the existing clinical heterogeneity, which includes incipient and subclinical TB. The absence of clinically TB-related symptoms and the extremely low bacterial burden are features shared by LTBI, incipient and subclinical TB states. In addition, diagnosis relies on cytokine release after antigenic T cell stimulation, yet several studies have shown that a high proportion of individuals with immunoreactivity never developed disease, suggesting that they were no longer infected. LTBI is estimated to affect to approximately one fourth of the human population and, according to WHO data, reactivation of LTBI is the main responsible of TB cases in developed countries. Assuming the drawbacks associated to the current diagnostic tests at this part of the disease spectrum, properly assessing individuals at real risk of developing TB is a major need. Further, it would help to efficiently design preventive treatment. This quest would be achievable if information about bacterial viability during human silent Mtb infection could be determined. Here, we have evaluated the feasibility of new approaches to detect viable bacilli across the full spectrum of TB disease. We focused on methods that specifically can measure host-independent parameters relying on the viability of Mtb either by its direct or indirect detection.
Collapse
Affiliation(s)
- Sogol Alebouyeh
- Department of Preventive Medicine and Public Health and Microbiology, Autonoma University of Madrid, Madrid, Spain
| | | | - Jacqueline M. Achkar
- Departments of Medicine, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maria J. García
- Department of Preventive Medicine and Public Health and Microbiology, Autonoma University of Madrid, Madrid, Spain
- *Correspondence: Maria J. García,
| | - Rafael Prados-Rosales
- Department of Preventive Medicine and Public Health and Microbiology, Autonoma University of Madrid, Madrid, Spain
- Rafael Prados-Rosales,
| |
Collapse
|
14
|
Ecological Impacts of Aged Freshwater Biofilms on Estuarine Microbial Communities Elucidated Through Microcosm Experiments: A Microbial Invasion Perspective. Curr Microbiol 2022; 79:210. [PMID: 35666311 DOI: 10.1007/s00284-022-02903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 05/12/2022] [Indexed: 11/03/2022]
Abstract
Inadvertent introductions of alien species via biofilms as a vector released through ballast water are of environmental importance, yet their consequences are not much known. In the present study, biofilm communities developed in an inland freshwater port under in situ and dark conditions were subjected to long-term dark incubations. Subsequently, the impact of these aged biofilms as vectors on estuarine water column communities were evaluated using microcosm experiments in the laboratory. Variations in biofilm and planktonic microbial communities were quantified using quantitative PCR.Upon prolonged dark incubation, a shift in bacterial diversity with an increase in tolerant bacterial communities better adapted to stress was observed. Actinobacteria were the dominant taxa in both aged biofilms upon dark incubations. The laboratory studies indicated that on exposure of these biofilms to estuarine water, resuscitation of Vibrio alginolyticus, V. parahaemolyticus, and V. cholerae from a dormant state existing in these biofilms to culturable form was observed. Moreover, the results revealed that both the biofilm types can pose a threat to the environment, but the degree of risk can be attributed to the imbalance caused by significant changes in the surrounding estuarine microbial communities. Consequently, this may result in either proliferation or decline of some genera with different metabolic potential and resuscitation of pathogenic forms not present earlier, thereby influencing the ecology of the environment. Quantifying these effects in the field using biofilm metagenomes with an emphasis on virulent species and understanding traits that enable them to adapt to changing environments is a way forward.
Collapse
|
15
|
Assessing Microbial Monitoring Methods for Challenging Environmental Strains and Cultures. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This paper focuses on the comparison of microbial biomass increase (cell culture growth) using field-relevant testing methods and moving away from colony counts. Challenges exist in exploring the antimicrobial growth of fastidious strains, poorly culturable bacteria and bacterial communities of environmental interest. Thus, various approaches have been explored to follow bacterial growth that can be efficient surrogates for classical optical density or colony-forming unit measurements. Here, six species grown in pure culture were monitored using optical density, ATP assays, DNA concentrations and 16S rRNA qPCR. Each of these methods have different advantages and disadvantages concerning the measurement of growth and activity in complex field samples. The species used as model systems for monitoring were: Acetobacterium woodii, Bacillus subtilis, Desulfovibrio vulgaris, Geoalkalibacter subterraneus, Pseudomonas putida and Thauera aromatica. All four techniques were found to successfully measure and detect cell biomass/activity differences, though the shape and accuracy of each technique varied between species. DNA concentrations were found to correlate the best with the other three assays (ATP, DNA concentrations and 16S rRNA-targeted qPCR) and provide the advantages of rapid extraction, consistency between replicates and the potential for downstream analysis. DNA concentrations were determined to be the best universal monitoring method for complex environmental samples.
Collapse
|
16
|
Nasreen T, Hussain NA, Ho JY, Aw VZJ, Alam M, Yanow SK, Boucher YF. Assay for Evaluating the Abundance of Vibrio cholerae and Its O1 Serogroup Subpopulation from Water without DNA Extraction. Pathogens 2022; 11:pathogens11030363. [PMID: 35335687 PMCID: PMC8953119 DOI: 10.3390/pathogens11030363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Cholera is a severe diarrheal disease caused by Vibrio cholerae, a natural inhabitant of brackish water. Effective control of cholera outbreaks depends on prompt detection of the pathogen from clinical specimens and tracking its source in the environment. Although the epidemiology of cholera is well studied, rapid detection of V. cholerae remains a challenge, and data on its abundance in environmental sources are limited. Here, we describe a sensitive molecular quantification assay by qPCR, which can be used on-site in low-resource settings on water without the need for DNA extraction. This newly optimized method exhibited 100% specificity for total V. cholerae as well as V. cholerae O1 and allowed detection of as few as three target CFU per reaction. The limit of detection is as low as 5 × 103 CFU/L of water after concentrating biomass from the sample. The ability to perform qPCR on water samples without DNA extraction, portable features of the equipment, stability of the reagents at 4 °C and user-friendly online software facilitate fast quantitative analysis of V. cholerae. These characteristics make this assay extremely useful for field research in resource-poor settings and could support continuous monitoring in cholera-endemic areas.
Collapse
Affiliation(s)
- Tania Nasreen
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.)
| | - Nora A.S. Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.)
| | - Jia Yee Ho
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore 637551, Singapore; (J.Y.H.); (V.Z.J.A.)
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore 117549, Singapore
| | - Vanessa Zhi Jie Aw
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore 637551, Singapore; (J.Y.H.); (V.Z.J.A.)
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore 117549, Singapore
| | - Munirul Alam
- Centre for Communicable Diseases, International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), Dhaka 1212, Bangladesh;
| | - Stephanie K. Yanow
- School of Public Health, University of Alberta, Edmonton, AB T6G 2E9, Canada;
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Yann F. Boucher
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore 637551, Singapore; (J.Y.H.); (V.Z.J.A.)
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore 117549, Singapore
- Correspondence:
| |
Collapse
|
17
|
Chamanrokh P, Colwell RR, Huq A. Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of viable but non-culturable Vibrio cholerae O1. Can J Microbiol 2021; 68:103-110. [PMID: 34793252 DOI: 10.1139/cjm-2021-0142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vibrio cholerae, an important waterborne pathogen, is a rod-shaped bacterium that naturally exists in aquatic environments. When conditions are unfavorable for growth, the bacterium can undergo morphological and physiological changes to assume a coccoid morphology. This stage in its life cycle is referred to as viable but non-culturable (VBNC) since VBNC cells do not grow on conventional bacteriological culture media. The current study compared polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) to detect and identify VBNC V. cholerae. Because it is difficult to detect and identify VBNC V. cholerae, the results of the current study are useful in showing LAMP to be more sensitive and rapid than PCR in detecting and identifying non-culturable, coccoid forms of V. cholerae. Furthermore, the LAMP method is effective in detecting and identifying very low numbers of coccoid VBNC V. cholerae in environmental water samples, with the added benefit of being inexpensive to perform.
Collapse
Affiliation(s)
- Parastoo Chamanrokh
- University of Maryland College Park, Maryland Pathogen Research Institute, College Park, Maryland, United States;
| | - Rita R Colwell
- University of Maryland at College Park, 1068, Maryland Pathogen Research Institute, College Park, Maryland, United States.,University of Maryland at College Park, 1068, Maryland Institute of Applied Environmental Health, College Park, Maryland, United States.,University of Maryland at College Park, 1068, CBCB. UMIACS, College Park, Maryland, United States.,Johns Hopkins University Bloomberg School of Public Health, 25802, Baltimore, Maryland, United States;
| | - Anwar Huq
- University of Maryland at College Park, 1068, Maryland Pathogen Research Institute, College Park, Maryland, United States;
| |
Collapse
|
18
|
Bäumler W, Eckl D, Holzmann T, Schneider-Brachert W. Antimicrobial coatings for environmental surfaces in hospitals: a potential new pillar for prevention strategies in hygiene. Crit Rev Microbiol 2021; 48:531-564. [PMID: 34699296 DOI: 10.1080/1040841x.2021.1991271] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent reports provide evidence that contaminated healthcare environments represent major sources for the acquisition and transmission of pathogens. Antimicrobial coatings (AMC) may permanently and autonomously reduce the contamination of such environmental surfaces complementing standard hygiene procedures. This review provides an overview of the current status of AMC and the demands to enable a rational application of AMC in health care settings. Firstly, a suitable laboratory test norm is required that adequately quantifies the efficacy of AMC. In particular, the frequently used wet testing (e.g. ISO 22196) must be replaced by testing under realistic, dry surface conditions. Secondly, field studies should be mandatory to provide evidence for antimicrobial efficacy under real-life conditions. The antimicrobial efficacy should be correlated to the rate of nosocomial transmission at least. Thirdly, the respective AMC technology should not add additional bacterial resistance development induced by the biocidal agents and co- or cross-resistance with antibiotic substances. Lastly, the biocidal substances used in AMC should be safe for humans and the environment. These measures should help to achieve a broader acceptance for AMC in healthcare settings and beyond. Technologies like the photodynamic approach already fulfil most of these AMC requirements.
Collapse
Affiliation(s)
- Wolfgang Bäumler
- Department of Dermatology, University Hospital, Regensburg, Germany
| | - Daniel Eckl
- Department of Microbiology, University of Regensburg, Regensburg, Germany
| | - Thomas Holzmann
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| |
Collapse
|
19
|
Characterization of Differentially Detectable Mycobacterium tuberculosis in the Sputum of Subjects with Drug-Sensitive or Drug-Resistant Tuberculosis before and after Two Months of Therapy. Antimicrob Agents Chemother 2021; 65:e0060821. [PMID: 34060896 PMCID: PMC8284451 DOI: 10.1128/aac.00608-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Standard methods for enumerating Mycobacterium tuberculosis in patient sputum can miss large populations of viable M. tuberculosis cells that are unable to grow either on solid medium or in liquid medium unless the medium has been extensively diluted. Because these bacteria can be detected in liquid medium after limiting dilution, they have been termed differentially culturable or differentially detectable M. tuberculosis (DD-Mtb). Treatment with isoniazid (H), rifampin (R), pyrazinamide (Z), and ethambutol (E) (HRZE) for 1 to 2 weeks has been shown to increase the representation of DD-Mtb in the sputum of drug-sensitive (DS) tuberculosis (TB) patients. However, little is known about DD-Mtb after longer periods of treatment with HRZE or in patients with drug-resistant (DR) TB who receive second-line therapies. Here, we measured the proportion of DD-Mtb cells in the sputum of 47 subjects, 29 with DS TB and 18 with DR TB, before initiation of treatment and at 2 weeks and 2 months thereafter. Prior to treatment, DD-Mtb cells represented the majority of M. tuberculosis cells in the sputum of 21% of subjects with DS TB, and this proportion rose to 65% after 2 weeks of treatment with first-line drugs. In subjects with DR TB, DD-Mtb cells were found in the sputum of 29% of subjects prior to treatment initiation, and this proportion remained steady at 31% after 2 weeks of treatment with second-line drugs. By 2 months, DD-Mtb cells were detected in the sputum of only 2/15 (13.3%) subjects with DS TB and in 0/15 of subjects with DR TB. One of the DS subjects whose sputum was positive for DD-Mtb at month 2 later experienced treatment failure.
Collapse
|
20
|
Ching CL, Kamaruddin A, Rajangan CS. Assessing the Performance of a Real-Time Total Adenylate (ATP+ADP+AMP) Detection Assay for Surface Hygiene Monitoring in Food Manufacturing Plants and Commercial Kitchens. J Food Prot 2021; 84:973-983. [PMID: 33232455 DOI: 10.4315/jfp-20-294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/22/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Environmental hygiene monitoring in the food processing environment has become important in current food safety programs to ensure safe food production. However, conventional monitoring of surface hygiene based on visual inspection and microbial counts is slow, tedious, and thus unable to support the current risk-based management system. Therefore, this study was conducted to assess the performance of a real-time total adenylate assay that detected ATP+ADP+AMP (A3) for food contact surface hygiene in 13 food processing plants and two commercial kitchens in Malaysia. The A3 value was compared with the microbial count (aerobic plate count [APC]) on food contact surfaces. Receiver-operating characteristic (ROC) analysis was performed to assess the reliability of the data and to determine the optimal threshold value for hygiene indication of food contact surfaces. Overall, the A3 value demonstrated a weak positive relationship with APC. However, the A3 value significantly correlated with APC for food processing environments associated with raw meat and raw food ingredients such as fruit that harbor a high microbial load. ROC analysis suggested an optimal threshold for the A3 value of 500 relative light units to balance the sensitivity and specificity at 0.728 and 0.719, respectively. The A3 assay as a hygiene indicator for food contact surfaces had an efficiency of 72.1%, indicating its reliability as a general hygiene indicator. HIGHLIGHTS
Collapse
Affiliation(s)
- Chai Lay Ching
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia (ORCID: https://orcid.org/0000-0001-8280-3226 [C.L.C.]).,Infra Microbiology Laboratory, Center for Research Services (PPP), Institute of Research Management & Monitoring (IPPP), Level 2, Research Management & Innovation Complex, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Arif Kamaruddin
- Infra Microbiology Laboratory, Center for Research Services (PPP), Institute of Research Management & Monitoring (IPPP), Level 2, Research Management & Innovation Complex, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | |
Collapse
|
21
|
Zhang XH, Ahmad W, Zhu XY, Chen J, Austin B. Viable but nonculturable bacteria and their resuscitation: implications for cultivating uncultured marine microorganisms. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:189-203. [PMID: 37073345 PMCID: PMC10077291 DOI: 10.1007/s42995-020-00041-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 03/25/2020] [Indexed: 05/03/2023]
Abstract
Culturing has been the cornerstone of microbiology since Robert Koch first successfully cultured bacteria in the late nineteenth century. However, even today, the majority of microorganisms in the marine environment remain uncultivated. There are various explanations for the inability to culture bacteria in the laboratory, including lack of essential nutrients, osmotic support or incubation conditions, low growth rate, development of micro-colonies, and the presence of senescent or viable but nonculturable (VBNC) cells. In the marine environment, many bacteria have been associated with dormancy, as typified by the VBNC state. VBNC refers to a state where bacteria are metabolically active, but are no longer culturable on routine growth media. It is apparently a unique survival strategy that has been adopted by many microorganisms in response to harsh environmental conditions and the bacterial cells in the VBNC state may regain culturability under favorable conditions. The resuscitation of VBNC cells may well be an important way to cultivate the otherwise uncultured microorganisms in marine environments. Many resuscitation stimuli that promote the restoration of culturability have so far been identified; these include sodium pyruvate, quorum sensing autoinducers, resuscitation-promoting factors Rpfs and YeaZ, and catalase. In this review, we focus on the issues associated with bacterial culturability, the diversity of bacteria entering the VBNC state, mechanisms of induction into the VBNC state, resuscitation factors of VBNC cells and implications of VBNC resuscitation stimuli for cultivating these otherwise uncultured microorganisms. Bringing important microorganisms into culture is still important in the era of high-throughput sequencing as their ecological functions in the marine environment can often only be known through isolation and cultivation.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- College of Marine Life Sciences and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100 China
| | - Waqar Ahmad
- College of Marine Life Sciences and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Xiao-Yu Zhu
- College of Marine Life Sciences and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050 China
| | - Brian Austin
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA Scotland, UK
| |
Collapse
|
22
|
Li Y, Chen J, Wang Y, Ma D, Rui W. The effects of the recombinant YeaZ of Vibrio harveyi on the resuscitation and growth of soil bacteria in extreme soil environment. PeerJ 2020; 8:e10342. [PMID: 33391864 PMCID: PMC7759134 DOI: 10.7717/peerj.10342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022] Open
Abstract
Numerous bacteria entered the viable but non-culturable state due to the stresses of dry and salt in soils. YeaZ of Gram-negative bacteria is a resuscitation promoting factor (Rpf) homologous protein could resuscitate bacteria of natural environment in VBNC state. To investigate the promoting effect of YeaZ on the isolation of viable but non-culturable (VBNC) bacteria from soil samples in extreme environments, the recombinant YeaZ of Vibrio harveyi was prepared and added to the soil samples from volcanic soil and saline soil in Northwest China. The study has shown that YeaZ can promote the recovery and growth of soil microorganisms, and the number of cultivable bacteria in volcanic and saline soil has increased from 0.17 × 103 and 2.03 × 103 cfu⋅ml−1 to 1.00 × 103 and 5.55 × 103 cfu⋅ml−1, respectively. The 16S rDNA gene sequencing and phylogenetic analysis showed that YeaZ played an essential role in the increase of composition and diversity of bacteria. A total of 13 bacterial strains were isolated from the volcanic soil samples, which belong to phyla Actinobacteria, Firmicutes and Gamma-proteobacteria. Four species, including Ornithinimicrobium kibberense, Agrococcus citreus, Stenotrophomonas rhizophila and Pseudomonas zhaodongensis were found in the control group, while Micrococcus antarcticus, Kocuria rose, Salinibacterium xinjiangense, Planococcus antarcticus, Ornithinimicrobium kibberense and Pseudomonas zhaodongensis were isolated from the treatment groups (addition of YeaZ). Twenty-one strains were isolated from the saline soil samples, including eight species from the control group and thirteen species from the treatment groups, among which nine species were only found, including Bacillus oceanisediminis, Brevibacillus brevis, Paenibacillus xylanilyticus, Microbacterium maritypicum, B. subtilis, B. alcalophilus, B. niabensis, Oceanimonas doudoroffii and Zobellella taiwanensis. The results suggest that addition of YeaZ to soil samples can promote the recovery of VBNC. This method has the implications for the discovery of VBNC bacteria that have potential environmental functions.
Collapse
Affiliation(s)
- Yanlin Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China.,Chongqing Key Laboratory of Environmental Materials & Remediation Technologies/College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yonggang Wang
- School of life science and engineering, Lanzhou University of Technology, Lanzhou, China
| | - Dan Ma
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Wenhong Rui
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
23
|
Nasreen T, Hussain NAS, Islam MT, Orata FD, Kirchberger PC, Case RJ, Alam M, Yanow SK, Boucher YF. Simultaneous Quantification of Vibrio metoecus and Vibrio cholerae with Its O1 Serogroup and Toxigenic Subpopulations in Environmental Reservoirs. Pathogens 2020; 9:pathogens9121053. [PMID: 33339261 PMCID: PMC7766680 DOI: 10.3390/pathogens9121053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Vibrio metoecus is a recently described aquatic bacterium and opportunistic pathogen, closely related to and often coexisting with Vibrio cholerae. To study the relative abundance and population dynamics of both species in aquatic environments of cholera-endemic and cholera-free regions, we developed a multiplex qPCR assay allowing simultaneous quantification of total V. metoecus and V. cholerae (including toxigenic and O1 serogroup) cells. The presence of V. metoecus was restricted to samples from regions that are not endemic for cholera, where it was found at 20% of the abundance of V. cholerae. In this environment, non-toxigenic O1 serogroup V. cholerae represents almost one-fifth of the total V. cholerae population. In contrast, toxigenic O1 serogroup V. cholerae was also present in low abundance on the coast of cholera-endemic regions, but sustained in relatively high proportions throughout the year in inland waters. The majority of cells from both Vibrio species were recovered from particles rather than free-living, indicating a potential preference for attached versus planktonic lifestyles. This research further elucidates the population dynamics underpinning V. cholerae and its closest relative in cholera-endemic and non-endemic regions through culture-independent quantification from environmental samples.
Collapse
Affiliation(s)
- Tania Nasreen
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.); (M.T.I.); (F.D.O.); (R.J.C.)
| | - Nora A. S. Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.); (M.T.I.); (F.D.O.); (R.J.C.)
| | - Mohammad Tarequl Islam
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.); (M.T.I.); (F.D.O.); (R.J.C.)
| | - Fabini D. Orata
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.); (M.T.I.); (F.D.O.); (R.J.C.)
| | - Paul C. Kirchberger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA;
| | - Rebecca J. Case
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.); (M.T.I.); (F.D.O.); (R.J.C.)
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Munirul Alam
- Centre for Communicable Diseases, International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), Dhaka 1000, Bangladesh;
| | - Stephanie K. Yanow
- School of Public Health, University of Alberta, Edmonton, AB T6G 1C9, Canada;
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Yann F. Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.); (M.T.I.); (F.D.O.); (R.J.C.)
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore 637551, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
- Correspondence:
| |
Collapse
|
24
|
Hsiao A, Zhu J. Pathogenicity and virulence regulation of Vibrio cholerae at the interface of host-gut microbiome interactions. Virulence 2020; 11:1582-1599. [PMID: 33172314 PMCID: PMC7671094 DOI: 10.1080/21505594.2020.1845039] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
The Gram-negative bacterium Vibrio cholerae is responsible for the severe diarrheal pandemic disease cholera, representing a major global public health concern. This pathogen transitions from aquatic reservoirs into epidemics in human populations, and has evolved numerous mechanisms to sense this transition in order to appropriately regulate its gene expression for infection. At the intersection of pathogen and host in the gastrointestinal tract lies the community of native gut microbes, the gut microbiome. It is increasingly clear that the diversity of species and biochemical activities within the gut microbiome represents a driver of infection outcome, through their ability to manipulate the signals used by V. cholerae to regulate virulence and fitness in vivo. A better mechanistic understanding of how commensal microbial action interacts with V. cholerae pathogenesis may lead to novel prophylactic and therapeutic interventions for cholera. Here, we review a subset of this burgeoning field of research.
Collapse
Affiliation(s)
- Ansel Hsiao
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, CA, USA
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
A Review on Sampling Techniques and Analytical Methods for Microbiota of Cultural Properties and Historical Architecture. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228099] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
World cultural heritage suffers from deterioration caused by both natural and anthropogenic processes, among which microorganisms are significantly involved. Among the key issues of this topic, sampling techniques and analytical methods for revealing the microbiome are fundamental to obtaining useful results for understanding the key players and processes involved, and also for effective protection and management of the cultural heritage for humanity. A non-invasive and non-destructive sampling method is required for sampling of cultural properties prior to further analysis of the microbiome. One example is illustrated in this article. For many years, culture-dependent methods had been used before the invention of polymerase-chain reaction (PCR) methods and, more recently, specifically high-throughput next generation sequencing (NGS). NGS reveals the whole microbial community composition and the active microorganisms from genomic DNA and RNA, respectively. The recovered environmental DNA and RNA from samples provide the information on microbial community and composition, and the active members and biochemical processes of the microbial attributes. It should be emphasized that the metabolically-active members of functional microflora in the biofilm or microbiome on cultural heritage must be determined and identified from the RNA-based analysis to gain a substantially important insight of the active biodeterioration processes and also the effectiveness of the conservation strategies. The importance of the culture-independent technique, based on NGS, is that it can be used in combination with the conventional culturing methods to guide the isolation and enrichment of new microorganisms to gain further biochemical insights to advance the role of the specific microbial groups for biodeterioration of cultural heritage. At the same time, effective restoration and maintenance strategies can be formulated for the protection of world cultural heritage.
Collapse
|
26
|
Quorum sensing regulation confronts the development of a viable but
non‐culturable
state in
Vibrio cholerae. Environ Microbiol 2020; 22:4314-4322. [DOI: 10.1111/1462-2920.15026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/01/2022]
|
27
|
Taneja N, Mishra A, Batra N, Gupta P, Mahindroo J, Mohan B. Inland cholera in freshwater environs of north India. Vaccine 2020; 38 Suppl 1:A63-A72. [DOI: 10.1016/j.vaccine.2019.06.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/15/2019] [Accepted: 06/17/2019] [Indexed: 01/02/2023]
|
28
|
Islam MS, Zaman M, Islam MS, Ahmed N, Clemens J. Environmental reservoirs of Vibrio cholerae. Vaccine 2020; 38 Suppl 1:A52-A62. [DOI: 10.1016/j.vaccine.2019.06.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/27/2019] [Accepted: 06/07/2019] [Indexed: 11/30/2022]
|
29
|
Dong K, Pan H, Yang D, Rao L, Zhao L, Wang Y, Liao X. Induction, detection, formation, and resuscitation of viable but non‐culturable state microorganisms. Compr Rev Food Sci Food Saf 2019; 19:149-183. [DOI: 10.1111/1541-4337.12513] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Kai Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Hanxu Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Dong Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Lei Rao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Liang Zhao
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Yongtao Wang
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| |
Collapse
|
30
|
Debnath A, Mizuno T, Miyoshi SI. Comparative proteomic analysis to characterize temperature-induced viable but non-culturable and resuscitation states in Vibrio cholerae. MICROBIOLOGY-SGM 2019; 165:737-746. [PMID: 31124781 DOI: 10.1099/mic.0.000798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vibrio cholerae can survive environmental adversities by entering into a viable but non-culturable (VBNC) state and is able to resuscitate under favourable conditions. In this study, an environmental strain of V. cholerae (AN59) showed a decrease in culturability from 4×107 to ≤ 3 c.f.u. ml -1 in artificial seawater media at 4 °C within 35 days. During the course of VBNC progression, viability was confirmed by real-time RT-PCR which showed reduced but stable expression of molecular chaperones groEL and dnaK. Resuscitation was induced in VBNC microcosm by a temperature increase from 4 to 37 °C for 24 h. The results obtained from resuscitation and growth experiments suggest that 103-104 c.f.u. ml -1 of VBNC cells should recover upon temperature increase and grow to attain 107 c.f.u. ml -1. We used comparative proteomics to differentiate recovery from the VBNC state and selected 19 proteins whose expression was significantly variable between these two states. These proteins were mainly related to carbohydrate metabolism, phosphate utilization, stress response, transport and translation. The main difference in the proteome profile was higher protein expression in the recovery state compared to VBNC state. However, during recovery Pi-starvation led to expression of PhoX, PstB and Xds, which might help in utilization of extracellular DNA to promote growth after resuscitation. In addition, the expression of EctC suggests that osmotic adaptation is necessary to grow at high salinity. Detection of AhpC in the VBNC and recovery state indicates the significance of the oxidative stress response. A temperature-induced VBNC and recovery state is a combination of adaptive and survival responses under nutrient limitation.
Collapse
|
31
|
Brenzinger S, van der Aart LT, van Wezel GP, Lacroix JM, Glatter T, Briegel A. Structural and Proteomic Changes in Viable but Non-culturable Vibrio cholerae. Front Microbiol 2019; 10:793. [PMID: 31057510 PMCID: PMC6479200 DOI: 10.3389/fmicb.2019.00793] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/28/2019] [Indexed: 11/13/2022] Open
Abstract
Aquatic environments are reservoirs of the human pathogen Vibrio cholerae O1, which causes the acute diarrheal disease cholera. Upon low temperature or limited nutrient availability, the cells enter a viable but non-culturable (VBNC) state. Characteristic of this state are an altered morphology, low metabolic activity, and lack of growth under standard laboratory conditions. Here, for the first time, the cellular ultrastructure of V. cholerae VBNC cells raised in natural waters was investigated using electron cryo-tomography. This was complemented by a comparison of the proteomes and the peptidoglycan composition of V. cholerae from LB overnight cultures and VBNC cells. The extensive remodeling of the VBNC cells was most obvious in the passive dehiscence of the cell envelope, resulting in improper embedment of flagella and pili. Only minor changes of the peptidoglycan and osmoregulated periplasmic glucans were observed. Active changes in VBNC cells included the production of cluster I chemosensory arrays and change of abundance of cluster II array proteins. Components involved in iron acquisition and storage, peptide import and arginine biosynthesis were overrepresented in VBNC cells, while enzymes of the central carbon metabolism were found at lower levels. Finally, several pathogenicity factors of V. cholerae were less abundant in the VBNC state, potentially limiting their infectious potential. This study gives unprecedented insight into the physiology of VBNC cells and the drastically altered presence of their metabolic and structural proteins.
Collapse
Affiliation(s)
- Susanne Brenzinger
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Lizah T. van der Aart
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Gilles P. van Wezel
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université de Lille Sciences et Technologies, Villeneuve d'Ascq, France
| | - Timo Glatter
- Facility for Bacterial Proteomics and Mass Spectrometry, Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ariane Briegel
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
32
|
Ou F, McGoverin C, Swift S, Vanholsbeeck F. Near real-time enumeration of live and dead bacteria using a fibre-based spectroscopic device. Sci Rep 2019; 9:4807. [PMID: 30886183 PMCID: PMC6423134 DOI: 10.1038/s41598-019-41221-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/28/2019] [Indexed: 01/05/2023] Open
Abstract
A rapid, cost-effective and easy method that allows on-site determination of the concentration of live and dead bacterial cells using a fibre-based spectroscopic device (the optrode system) is proposed and demonstrated. Identification of live and dead bacteria was achieved by using the commercially available dyes SYTO 9 and propidium iodide, and fluorescence spectra were measured by the optrode. Three spectral processing methods were evaluated for their effectiveness in predicting the original bacterial concentration in the samples: principal components regression (PCR), partial least squares regression (PLSR) and support vector regression (SVR). Without any sample pre-concentration, PCR achieved the most reliable results. It was able to quantify live bacteria from 108 down to 106.2 bacteria/mL and showed the potential to detect as low as 105.7 bacteria/mL. Meanwhile, enumeration of dead bacteria using PCR was achieved between 108 and 107 bacteria/mL. The general procedures described in this article can be applied or modified for the enumeration of bacteria within populations stained with fluorescent dyes. The optrode is a promising device for the enumeration of live and dead bacterial populations particularly where rapid, on-site measurement and analysis is required.
Collapse
Affiliation(s)
- Fang Ou
- Department of Physics, The University of Auckland, Auckland, New Zealand.
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland, New Zealand.
| | - Cushla McGoverin
- Department of Physics, The University of Auckland, Auckland, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland, New Zealand
| | - Simon Swift
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Frédérique Vanholsbeeck
- Department of Physics, The University of Auckland, Auckland, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland, New Zealand
| |
Collapse
|
33
|
Lee S, Bae S. Molecular viability testing of viable but non-culturable bacteria induced by antibiotic exposure. Microb Biotechnol 2018; 11:1008-1016. [PMID: 29243404 PMCID: PMC6196391 DOI: 10.1111/1751-7915.13039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022] Open
Abstract
Nucleic acid amplification-based methods are limited by their inability to discriminate between viable and dead cells. To overcome this drawback, propidium monoazide (PMA) combined with qPCR has been used to differentiate viable from nonviable cells in environmental samples. However, assessing bacterial physiology using PMA-qPCR remains a challenge due to its incapability of detecting metabolic activities, leading to overestimation of the viable bacteria population under an inactivation condition (e.g. antibiotic treatments). A recent advanced technique to amplify ribosomal RNA precursors (pre-rRNA) has been shown to detect viable cells because pre-rRNAs are intermediates in rRNA synthesis. This study investigated the effect of different types of antibiotics on the bacterial viability or viable but non-culturable (VBNC) state using both PMA-qPCR and pre-rRNA analyses with Pseudomonas aeruginosa. This study demonstrated that P. aeruginosa was more sensitive to colistin than it was to carbenicillin, gentamicin and levofloxacin. We could discriminate VBNCP. aeruginosa cells using PMA-qPCR when antibiotic pressure induced the VBNC state. Also, pre-rRNA was able to distinguish viable cells from colistin-inactivated bacteria cells, and it could detect the presence of VBNC and persister cells. Our results showed that these two molecular methods could successfully eliminate false-positive signals derived from antibiotics-inactivated cells.
Collapse
Affiliation(s)
- Seunguk Lee
- Department of Civil and Environmental EngineeringNational University of Singapore1 Engineering Drive 2Singapore117576Singapore
| | - Sungwoo Bae
- Department of Civil and Environmental EngineeringNational University of Singapore1 Engineering Drive 2Singapore117576Singapore
| |
Collapse
|
34
|
Xu T, Cao H, Zhu W, Wang M, Du Y, Yin Z, Chen M, Liu Y, Yang B, Liu B. RNA-seq-based monitoring of gene expression changes of viable but non-culturable state of Vibrio cholerae induced by cold seawater. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:594-604. [PMID: 30058121 DOI: 10.1111/1758-2229.12685] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Vibrio cholerae O1 is a natural inhabitant of aquatic environments and causes the acute diarrheal disease cholera. Entry into a viable but non-culturable (VBNC) state is a survival strategy by which V. cholerae withstands natural stresses and is important for the transition between the aquatic and host environments during the V. cholerae life cycle. In this study, the formation of VBNC V. cholerae induced by cold seawater exposure was investigated using RNA sequencing (RNA-seq). The analysis revealed that the expression of 1420 genes was changed on VBNC state formation. In the VBNC cells, genes related to biofilm formation, chitin utilization and stress responses were upregulated, whereas those related to cell division, morphology and ribosomal activity were mainly downregulated. The concurrent acquisition of a carbon source and the arrest of cell division in cells with low metabolic activity help bacteria increase their resistance to unfavourable environments. Moreover, two transcriptional regulators, SlmA and MetJ, were found to play roles in both VBNC formation and intestinal colonization, suggesting that some genes may function in both processes. This acquired knowledge will improve our understanding of the molecular mechanisms of stress tolerance and may help control future cholera infections and outbreaks.
Collapse
Affiliation(s)
- Tingting Xu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Hengchun Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Wei Zhu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Min Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Yuhui Du
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Zhiqiu Yin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Min Chen
- Lab of Microbiology, Shanghai Municipal Center for Disease Control & Prevention, Shanghai, People's Republic of China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| |
Collapse
|
35
|
Role of food sanitising treatments in inducing the ‘viable but nonculturable’ state of microorganisms. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Yang L, Lou J, Wang H, Wu L, Xu J. Use of an improved high-throughput absolute abundance quantification method to characterize soil bacterial community and dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:360-371. [PMID: 29574379 DOI: 10.1016/j.scitotenv.2018.03.201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/11/2018] [Accepted: 03/18/2018] [Indexed: 05/28/2023]
Abstract
High-throughput sequencing has dramatically expanded our understanding of bacterial communities based on the information of the species types and their relative abundances. Recently, researchers have also become aware of a deficiency in not considering the absolute abundance in this technique. Combining two or more different methods has typically been used to achieve absolute quantification of microbial communities. However, making a combination of different methods not only is time-consuming but also involves potential uncertainty due to variations in the experimental conditions. To simplify the experimental procedure and improve the high-throughput absolute abundance quantification (HAAQ) of a soil bacterial community, we propose an HAAQ method that uses an internal standard strain (ISS) HAAQ-GFP to simultaneously obtain both the relative and absolute abundances in the soil bacterial community. The results showed that a soil bacterial community and its dynamics can be better characterized by the HAAQ method when the optimal concentrations of ISS HAAQ-GFP (105 to 107cellsg-1) were used, and a 16S rRNA gene copy number adjustment was applied. Based on the HAAQ method, we first found that soil bacterial absolute abundances at the genus level fitted well to the partial log-normal distribution function, and most genera concentrations were in the range of 103.5 to 106.5cellsg-1 in the test soils. Our case studies also indicated that more comprehensive descriptions of soil bacterial communities and their dynamics can be achieved by both the relative and absolute abundances than by the relative abundance alone. The improved HAAQ method can be potentially applied to other microbial ecological studies and to stimulating the development of quantitative bacterial ecology studies.
Collapse
Affiliation(s)
- Li Yang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jun Lou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Laosheng Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
37
|
Kirschner AKT, Pleininger S, Jakwerth S, Rehak S, Farnleitner AH, Huhulescu S, Indra A. Application of three different methods to determine the prevalence, the abundance and the environmental drivers of culturable Vibrio cholerae in fresh and brackish bathing waters. J Appl Microbiol 2018; 125:1186-1198. [PMID: 29856502 PMCID: PMC6175421 DOI: 10.1111/jam.13940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 02/01/2023]
Abstract
Aims Three cultivation methods were used to study the prevalence and abundance of Vibrio cholerae in Eastern Austrian bathing waters and to elucidate the main factors controlling their distribution. Methods and Results Vibrio cholerae abundance was monitored at 36 inland bathing sites with membrane filtration (MF), a standard most probable number (MPN) approach and direct plating (DP). Membrane filtration yielded the most reliable and sensitive results and allowed V. cholerae detection at 22 sites with concentrations up to 39 000 CFU per 100 ml, all belonging to serogroups other than O1 and O139 and not coding for cholera toxin and toxin coregulated pilus. Direct plating turned out as an easy method for environments with high V. cholerae abundances, conductivity was the only significant predictor of V. cholerae abundance in the bathing waters at warm water temperatures. Conclusions Vibrio cholerae nonO1/nonO139 are widely prevalent in Eastern Austrian bathing waters. Instead of the standard MPN approach, MF and DP are recommended for V. cholerae monitoring. Conductivity can be used as a first easy‐to‐measure parameter to identify potential bathing waters at risk. Significance and Impact of the Study Vibrio cholerae nonO1/nonO139 infections associated with bathing activities are an increasing public health issue in many countries of the northern hemisphere. However, there are only limited data available on the prevalence and abundance of V. cholerae in coastal and inland bathing waters. For monitoring V. cholerae prevalence and abundance, reliable and simple quantification methods are needed. Moreover, prediction of V. cholerae abundance from environmental parameters would be a helpful tool for risk assessment. This study identified the best culture‐based quantification methods and a first quick surrogate parameter to attain these aims.
Collapse
Affiliation(s)
- A K T Kirschner
- Institute for Hygiene and Applied Immunology, Water Hygiene, Medical University Vienna, Vienna, Austria.,Interuniversity Cooperation Centre for Water & Health, Vienna, Austria.,Research Department Water Quality and Health, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - S Pleininger
- Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - S Jakwerth
- Institute for Hygiene and Applied Immunology, Water Hygiene, Medical University Vienna, Vienna, Austria.,Interuniversity Cooperation Centre for Water & Health, Vienna, Austria
| | - S Rehak
- Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - A H Farnleitner
- Interuniversity Cooperation Centre for Water & Health, Vienna, Austria.,Institute of Chemical, Environmental & Bioscience Engineering, Technische Universität Wien, Vienna, Austria.,Research Department Water Quality and Health, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - S Huhulescu
- Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - A Indra
- Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| |
Collapse
|
38
|
Hede N, Khandeparker L. Influence of Darkness and Aging on Marine and Freshwater Biofilm Microbial Communities Using Microcosm Experiments. MICROBIAL ECOLOGY 2018; 76:314-327. [PMID: 29380028 DOI: 10.1007/s00248-018-1149-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Ballast tank biofilms pose an additional risk of microbial invasion if sloughed off during ballasting operations, yet their significance and invasion biology is poorly understood. In this study, biofilms developed in marine and freshwater locations were exposed to prolonged darkness and aging by mimicking ballast water conditions in the laboratory. Upon prolonged darkness, the decay of phytoplankton, as indicated by the decrease in chlorophyll a in marine biofilms, led to remineralization and enhanced bacterial and protist populations. However, the same trend was not observed in the case of freshwater biofilms wherein the microbial parameters (i.e., bacteria, protists) and chlorophyll a decreased drastically. The bacterial community structure in such conditions was evaluated by real-time quantitative PCR (qPCR), and results showed that the biofilm bacterial communities changed significantly over a period of time. α-Proteobacteria was the most stable taxonomic group in the marine biofilms under dark conditions. However, β-proteobacteria dominated the freshwater biofilms and seemed to play an important role in organic matter remineralization. γ-Proteobacteria, which includes most of the pathogenic genera, were affected significantly and decreased in both the types of biofilms. This study revealed that marine biofilm communities were able to adapt better to the dark conditions while freshwater biofilm communities collapsed. Adaptation of tolerant bacterial communities, regeneration of nutrients via cell lysis, and presence of grazers appeared to be key factors for survival upon prolonged darkness. However, the fate of biofilm communities upon discharge in the new environment and their invasion potential is an important topic for future investigation.
Collapse
Affiliation(s)
- Niyati Hede
- CSIR - National Institute of Oceanography, Dona Paula, Goa, 403 004, India
| | | |
Collapse
|
39
|
Su X, Wang Y, Xue B, Zhang Y, Mei R, Zhang Y, Hashmi MZ, Lin H, Chen J, Sun F. Resuscitation of functional bacterial community for enhancing biodegradation of phenol under high salinity conditions based on Rpf. BIORESOURCE TECHNOLOGY 2018; 261:394-402. [PMID: 29684869 DOI: 10.1016/j.biortech.2018.04.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/08/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
This study assumed that key degraders of functional bacterial community were prone to enter into the viable but non-culturable (VBNC) state under high saline phenolic conditions, and resuscitation-promoting factor (Rpf) could strengthen these degraders for better performances. Based on these assumptions, Rpf was used to enhance salt-tolerant phenol-degrading capability of functional populations in activated sludge. Results suggested that Rpf accelerated the start-up process during sludge domestication, and significantly enhanced salt-tolerant phenol-degrading capability. High-throughput sequencing showed that the resuscitation and stimulation functions of Rpf linked mainly to the genus Corynebacterium within the phylum Actinobacteria, and the genera Proteiniphilum and Petrimonas within the phylum Bacteroidete. These key functional populations contributed to better phenol-degrading capabilities under high salinity conditions. This study indicated that Rpf is a promising additive for improving biological treatment performance of saline phenolic wastewater.
Collapse
Affiliation(s)
- Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yuyang Wang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Binbing Xue
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yunge Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Rongwu Mei
- Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou 310007, China
| | - Yu Zhang
- Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou 310007, China
| | - Muhammad Zaffar Hashmi
- Department of Meteorology, COMSATS Institute of Information Technology, Islamabad 44000, Pakistan
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
40
|
Liu J, Deng Y, Li L, Li B, Li Y, Zhou S, Shirtliff ME, Xu Z, Peters BM. Discovery and control of culturable and viable but non-culturable cells of a distinctive Lactobacillus harbinensis strain from spoiled beer. Sci Rep 2018; 8:11446. [PMID: 30061572 PMCID: PMC6065415 DOI: 10.1038/s41598-018-28949-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/02/2018] [Indexed: 11/09/2022] Open
Abstract
Occasional beer spoilage incidents caused by false-negative isolation of lactic acid bacteria (LAB) in the viable but non-culturable (VBNC) state, result in significant profit loss and pose a major concern in the brewing industry. In this study, both culturable and VBNC cells of an individual Lactobacillus harbinensis strain BM-LH14723 were identified in one spoiled beer sample by genome sequencing, with the induction and resuscitation of VBNC state for this strain further investigated. Formation of the VBNC state was triggered by low-temperature storage in beer (175 ± 1.4 days) and beer subculturing (25 ± 0.8 subcultures), respectively, and identified by both traditional staining method and PMA-PCR. Resuscitated cells from the VBNC state were obtained by addition of catalase rather than temperature upshift, changing medium concentration, and adding other chemicals, and both VBNC and resuscitated cells retained similar beer-spoilage capability as exponentially growing cells. In addition to the first identification of both culturable and VBNC cells of an individual L. harbinensis strain from spoiled beer, this study also for the first time reported the VBNC induction and resuscitation, as well as verification of beer-spoilage capability of VBNC and resuscitated cells for the L. harbinensis strain. Genes in association with VBNC state were also identified by the first genome sequencing of beer spoilage L. harbinensis. The results derived from this study suggested the contamination and spoilage of beer products by VBNC and resuscitated L. harbinensis strain BM-LH14723.
Collapse
Affiliation(s)
- Junyan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.,Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yang Deng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China. .,School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China. .,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, China.
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, China
| | - Yanyan Li
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Shishui Zhou
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Mark E Shirtliff
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore MD, MA, 21201, USA
| | - Zhenbo Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China. .,College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, P.R. China. .,Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore MD, MA, 21201, USA.
| | - Brian M Peters
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
41
|
An antibacterial platform based on capacitive carbon-doped TiO 2 nanotubes after direct or alternating current charging. Nat Commun 2018; 9:2055. [PMID: 29795383 PMCID: PMC5967314 DOI: 10.1038/s41467-018-04317-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/20/2018] [Indexed: 01/12/2023] Open
Abstract
Electrical interactions between bacteria and the environment are delicate and essential. In this study, an external electrical current is applied to capacitive titania nanotubes doped with carbon (TNT-C) to evaluate the effects on bacteria killing and the underlying mechanism is investigated. When TNT-C is charged, post-charging antibacterial effects proportional to the capacitance are observed. This capacitance-based antibacterial system works well with both direct and alternating current (DC, AC) and the higher discharging capacity in the positive DC (DC+) group leads to better antibacterial performance. Extracellular electron transfer observed during early contact contributes to the surface-dependent post-charging antibacterial process. Physiologically, the electrical interaction deforms the bacteria morphology and elevates the intracellular reactive oxygen species level without impairing the growth of osteoblasts. Our finding spurs the design of light-independent antibacterial materials and provides insights into the use of electricity to modify biomaterials to complement other bacteria killing measures such as light irradiation. Bacteria are known to be sensitive to electrical interactions with the environment. Here, the authors report on a study into how the antibacterial properties of carbon-doped titania nanotubes are affected by capacitance after charging with direct and alternating currents.
Collapse
|
42
|
Li Z, Zhang Y, Wang Y, Mei R, Zhang Y, Hashmi MZ, Lin H, Su X. A New Approach of Rpf Addition to Explore Bacterial Consortium for Enhanced Phenol Degradation Under High Salinity Conditions. Curr Microbiol 2018; 75:1046-1054. [DOI: 10.1007/s00284-018-1489-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/03/2018] [Indexed: 01/10/2023]
|
43
|
Su X, Zhang S, Mei R, Zhang Y, Hashmi MZ, Liu J, Lin H, Ding L, Sun F. Resuscitation of viable but non-culturable bacteria to enhance the cellulose-degrading capability of bacterial community in composting. Microb Biotechnol 2018. [PMID: 29536669 PMCID: PMC5902322 DOI: 10.1111/1751-7915.13256] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nowadays, much of what we know regarding the isolated cellulolytic bacteria comes from the conventional plate separation techniques. However, the culturability of many bacterial species is controlled by resuscitation‐promoting factors (Rpfs) due to entering a viable but non‐culturable (VBNC) state. Therefore, in this study, Rpf from Micrococcus luteus was added in the culture medium to evaluate its role in bacterial isolation and enhanced effects on cellulose‐degrading capability of bacterial community in the compost. It was found that Proteobacteria and Actinobacteria were two main phyla in the compost sample. The introduction of Rpf could isolate some unique bacterial species. The cellulase activity of enrichment cultures with and without Rpf treatment revealed that Rpf treatment significantly enhanced cellulase activity. Ten isolates unique in Rpf addition displayed carboxymethyl‐cellulase (CMCase) activity, while six isolates possessed filter paper cellulase (FPCase) activity. This study provides new insights into broader cellulose degraders, which could be utilized for enhancing cellulosic waste treatment.
Collapse
Affiliation(s)
- Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Shuo Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Rongwu Mei
- Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou, 310007, China
| | - Yu Zhang
- Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou, 310007, China
| | - Muhammad Zaffar Hashmi
- Department of Meteorology, COMSATS Institute of Information Technology, Islamabad, 44000, Pakistan
| | - Jingjing Liu
- Department of Architecture and Resources Engineering, Jiangxi University of Science and Technology, Nanchang, 310013, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Linxian Ding
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
44
|
Su X, Bamba A, Zhang S, Zhang Y, Hashmi M, Lin H, Ding L. Revealing potential functions of VBNC bacteria in polycyclic aromatic hydrocarbons biodegradation. Lett Appl Microbiol 2018; 66:277-283. [DOI: 10.1111/lam.12853] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/13/2018] [Accepted: 01/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- X.M. Su
- College of Geography and Environmental Science; Zhejiang Normal University; Jinhua China
| | - A.M. Bamba
- College of Geography and Environmental Science; Zhejiang Normal University; Jinhua China
| | - S. Zhang
- College of Geography and Environmental Science; Zhejiang Normal University; Jinhua China
| | - Y.G. Zhang
- College of Geography and Environmental Science; Zhejiang Normal University; Jinhua China
| | - M.Z. Hashmi
- Department of Meteorology; COMSATS Institute of Information Technology; Islamabad Pakistan
| | - H.J. Lin
- College of Geography and Environmental Science; Zhejiang Normal University; Jinhua China
| | - L.X. Ding
- College of Geography and Environmental Science; Zhejiang Normal University; Jinhua China
| |
Collapse
|
45
|
Nosho K, Fukushima H, Asai T, Nishio M, Takamaru R, Kobayashi-Kirschvink KJ, Ogawa T, Hidaka M, Masaki H. cAMP-CRP acts as a key regulator for the viable but non-culturable state in Escherichia coli. MICROBIOLOGY-SGM 2018; 164:410-419. [PMID: 29458560 DOI: 10.1099/mic.0.000618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A variety of bacteria, including Escherichia coli, are known to enter the viable but non-culturable (VBNC) state under various stress conditions. During this state, cells lose colony-forming activities on conventional agar plates while retaining signs of viability. Diverse environmental stresses including starvation induce the VBNC state. However, little is known about the genetic mechanism inducing this state. Here, we aimed to reveal the genetic determinants of the VBNC state of E. coli. We hypothesized that the VBNC state is a process wherein specific gene products important for colony formation are depleted during the extended period of stress conditions. If so, higher expression of these genes would maintain colony-forming activities, thereby restraining cells from entering the VBNC state. From an E. coli plasmid-encoded ORF library, we identified genes that were responsible for maintaining high colony-forming activities after exposure to starvation condition. Among these, cpdA encoding cAMP phosphodiesterase exhibited higher performance in the maintenance of colony-forming activities. As cpdA overexpression decreases intracellular cAMP, cAMP or its complex with cAMP-receptor protein (CRP) may negatively regulate colony-forming activities under stress conditions. We confirmed this using deletion mutants lacking adenylate cyclase or CRP. These mutants fully maintained colony-forming activities even after a long period of starvation, while wild-type cells lost most of this activity. Thus, we concluded that the lack of cAMP-CRP effectively retains high colony-forming activities, indicating that cAMP-CRP acts as a positive regulator necessary for the induction of the VBNC state in E. coli.
Collapse
Affiliation(s)
- Kazuki Nosho
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hiroko Fukushima
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Takehiro Asai
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Masahiro Nishio
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Reiko Takamaru
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | - Tetsuhiro Ogawa
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Makoto Hidaka
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Haruhiko Masaki
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
46
|
Ikonen J, Pitkänen T, Kosse P, Ciszek R, Kolehmainen M, Miettinen IT. On-line detection of Escherichia coli intrusion in a pilot-scale drinking water distribution system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 198:384-392. [PMID: 28494427 DOI: 10.1016/j.jenvman.2017.04.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Improvements in microbial drinking water quality monitoring are needed for the better control of drinking water distribution systems and for public health protection. Conventional water quality monitoring programmes are not always able to detect a microbial contamination of drinking water. In the drinking water production chain, in addition to the vulnerability of source waters, the distribution networks are prone to contamination. In this study, a pilot-scale drinking-water distribution network with an on-line monitoring system was utilized for detecting bacterial intrusion. During the experimental Escherichia coli intrusions, the contaminant was measured by applying a set of on-line sensors for electric conductivity (EC), pH, temperature (T), turbidity, UV-absorbance at 254 nm (UVAS SC) and with a device for particle counting. Monitored parameters were compared with the measured E. coli counts using the integral calculations of the detected peaks. EC measurement gave the strongest signal compared with the measured baseline during the E. coli intrusion. Integral calculations showed that the peaks in the EC, pH, T, turbidity and UVAS SC data were detected corresponding to the time predicted. However, the pH and temperature peaks detected were barely above the measured baseline and could easily be mixed with the background noise. The results indicate that on-line monitoring can be utilized for the rapid detection of microbial contaminants in the drinking water distribution system although the peak interpretation has to be performed carefully to avoid being mixed up with normal variations in the measurement data.
Collapse
Affiliation(s)
- Jenni Ikonen
- Water and Health Unit, Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701, Kuopio, Finland.
| | - Tarja Pitkänen
- Water and Health Unit, Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701, Kuopio, Finland
| | - Pascal Kosse
- Water and Health Unit, Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701, Kuopio, Finland; University of Duisburg-Essen, Biofilm Centre, Universitätsstr. 5, 45141, Essen, Germany
| | - Robert Ciszek
- Research Group of Environmental Informatics, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Mikko Kolehmainen
- Research Group of Environmental Informatics, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ilkka T Miettinen
- Water and Health Unit, Department of Health Security, National Institute for Health and Welfare, P.O. Box 95, FI-70701, Kuopio, Finland
| |
Collapse
|
47
|
Survival, Persistence, and Isolation of the Emerging Multidrug-Resistant Pathogenic Yeast Candida auris on a Plastic Health Care Surface. J Clin Microbiol 2017; 55:2996-3005. [PMID: 28747370 DOI: 10.1128/jcm.00921-17] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/18/2017] [Indexed: 11/20/2022] Open
Abstract
The emerging multidrug-resistant pathogenic yeast Candida auris represents a serious threat to global health. Unlike most other Candida species, this organism appears to be commonly transmitted within health care facilities and causes health care-associated outbreaks. To better understand the epidemiology of this emerging pathogen, we investigated the ability of C. auris to persist on plastic surfaces common in health care settings compared with that of Candida parapsilosis, a species known to colonize the skin and plastics. Specifically, we compiled comparative and quantitative data essential to understanding the vehicles of spread and the ability of both species to survive and persist on plastic surfaces under controlled conditions (25°C and 57% relative humidity), such as those found in health care settings. When a test suspension of 104 cells was applied and dried on plastic surfaces, C. auris remained viable for at least 14 days and C. parapsilosis for at least 28 days, as measured by CFU. However, survival measured by esterase activity was higher for C. auris than C. parapsilosis throughout the 28-day study. Given the notable length of time Candida species survive and persist outside their host, we developed methods to more effectively culture C. auris from patients and their environment. Using our enrichment protocol, public health laboratories and researchers can now readily isolate C. auris from complex microbial communities (such as patient skin, nasopharynx, and stool) as well as environmental biofilms, in order to better understand and prevent C. auris colonization and transmission.
Collapse
|
48
|
Abstract
Infectious diseases kill nearly 9 million people annually. Bacterial pathogens are responsible for a large proportion of these diseases, and the bacterial agents of pneumonia, diarrhea, and tuberculosis are leading causes of death and disability worldwide. Increasingly, the crucial role of nonhost environments in the life cycle of bacterial pathogens is being recognized. Heightened scrutiny has been given to the biological processes impacting pathogen dissemination and survival in the natural environment, because these processes are essential for the transmission of pathogenic bacteria to new hosts. This chapter focuses on the model environmental pathogen Vibrio cholerae to describe recent advances in our understanding of how pathogens survive between hosts and to highlight the processes necessary to support the cycle of environmental survival, transmission, and dissemination. We describe the physiological and molecular responses of V. cholerae to changing environmental conditions, focusing on its survival in aquatic reservoirs between hosts and its entry into and exit from human hosts.
Collapse
|
49
|
Rifamycin action on RNA polymerase in antibiotic-tolerant Mycobacterium tuberculosis results in differentially detectable populations. Proc Natl Acad Sci U S A 2017; 114:E4832-E4840. [PMID: 28559332 DOI: 10.1073/pnas.1705385114] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) encounters stresses during the pathogenesis and treatment of tuberculosis (TB) that can suppress replication of the bacteria and render them phenotypically tolerant to most available drugs. Where studied, the majority of Mtb in the sputum of most untreated subjects with active TB have been found to be nonreplicating by the criterion that they do not grow as colony-forming units (cfus) when plated on agar. However, these cells are viable because they grow when diluted in liquid media. A method for generating such "differentially detectable" (DD) Mtb in vitro would aid studies of the biology and drug susceptibility of this population, but lack of independent confirmation of reported methods has contributed to skepticism about their existence. Here, we identified confounding artifacts that, when avoided, allowed development of a reliable method of producing cultures of ≥90% DD Mtb in starved cells. We then characterized several drugs according to whether they contribute to the generation of DD Mtb or kill them. Of the agents tested, rifamycins led to DD Mtb generation, an effect lacking in a rifampin-resistant strain with a mutation in rpoB, which encodes the canonical rifampin target, the β subunit of RNA polymerase. In contrast, thioridazine did not generate DD Mtb from starved cells but killed those generated by rifampin.
Collapse
|
50
|
Isolation of Viable but Non-culturable Bacteria from Printing and Dyeing Wastewater Bioreactor Based on Resuscitation Promoting Factor. Curr Microbiol 2017; 74:787-797. [DOI: 10.1007/s00284-017-1240-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/21/2017] [Indexed: 12/22/2022]
|