1
|
Nakashima Y, Tsukahara M. MFGE8 Acts as a Cell Adhesion Factor for Human-Induced Pluripotent Stem Cells in Embryology. Tissue Eng Part C Methods 2025; 31:74-84. [PMID: 39869126 DOI: 10.1089/ten.tec.2024.0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.5 embryonic, and is also found in MEF-conditioned medium (MEF-CM). Feeder-less culture of human-induced pluripotent stem cells (iPSCs) with MEF-CM significantly decreased the number of adherent cells when an inhibitory antibody against MFGE8 was used. The concentration of mouse MFGE8 in MEF-CM, as measured by an ELISA (Enzyme-Linked Immunosorbent Assay), was 0.16-1.24 μg/mL. Mouse MFGE8 and human MFGE8 have partially different molecular structures. Both the recombinant mouse MFGE8 and human MFGE8 significantly promoted cell adhesion of human iPSCs at medium-added concentrations of 2 μg/mL. This cell adhesion was also strongly inhibited by Arginylglycylaspartic acid (RGD) inhibitors, suggesting that it is dependent on the RGD sequence. The integrin αVβ5 expressed in iPSCs was thought to be involved in binding to the RGD sequence. MEF-CMs have long been an essential bio-derived material for the feeder culture method of iPSC culture. This study demonstrates that MFGE8 in MEF-CM is a functional factor in the promoting of cell adhesion of human iPSCs. Furthermore, the use of MFGE8-containing media demonstrates that iPSCs can be established and cultured while maintaining pluripotency and inducing three germ layer differentiation. The results of this study suggest the possibility of using MFGE8 as a scaffold material suitable for inducing differentiation when reproducing in vivo maturation in vitro.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- CiRA Foundation, Research and Development Center, Osaka, Japan
- Research and Development Center, Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Kyoto, Japan
| | | |
Collapse
|
2
|
Rouzbahani M, Ghanaati H. Intra-Arterial Stem Cell Injection for Treating Various Diseases: A New Frontier in Interventional Radiology. Cardiovasc Intervent Radiol 2025:10.1007/s00270-024-03947-y. [PMID: 39789253 DOI: 10.1007/s00270-024-03947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025]
Abstract
This article provides radiologists with insights into stem cells' functions, sources, and potentially successful clinical treatments via intravascular injection in organs such as the liver, kidney, pancreas, musculoskeletal system, and for ischemic conditions affecting the brain, heart and limbs. Understanding stem cells' significance in interventional radiology and its limitations enables tailored interventions for diverse conditions, ensuring efficient medical care and optimal treatment selection.
Collapse
Affiliation(s)
- Maedeh Rouzbahani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hossein Ghanaati
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Kirkeby A, Main H, Carpenter M. Pluripotent stem-cell-derived therapies in clinical trial: A 2025 update. Cell Stem Cell 2025; 32:10-37. [PMID: 39753110 DOI: 10.1016/j.stem.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/28/2025]
Abstract
Since the first derivation of human pluripotent stem cells (hPSCs) 27 years ago, technologies to control their differentiation and manufacturing have advanced immensely, enabling increasing numbers of clinical trials with hPSC-derived products. Here, we revew the landscape of interventional hPSC trials worldwide, highlighting available data on clinical safety and efficacy. As of December 2024, we identify 116 clinical trials with regulatory approval, testing 83 hPSC products. The majority of trials are targeting eye, central nervous system, and cancer. To date, more than 1,200 patients have been dosed with hPSC products, accumulating to >1011 clinically administered cells, so far showing no generalizable safety concerns.
Collapse
Affiliation(s)
- Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden.
| | - Heather Main
- HOYA Consulting (ReGenMed Solutions), Stockholm, Sweden
| | | |
Collapse
|
4
|
Jin G, Huang H, Bao X, Palecek SP. Poly(norepinephrine)-Mediated Universal Surface Modification for Patterning Human Pluripotent Stem Cell Culture and Differentiation. ACS Biomater Sci Eng 2024; 10:7429-7440. [PMID: 39548968 DOI: 10.1021/acsbiomaterials.4c01229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
Maintaining undifferentiated states of human pluripotent stem cells (hPSCs) is key to accomplishing successful hPSC research. Specific culture conditions, including hPSC-compatible substrates, are required for the hPSC culture. Over the past two decades, substrates supporting hPSC self-renewal have evolved from undefined and xenogeneic protein components to chemically defined and xenogeneic-free materials. However, these synthetic substrates are often costly and complex to use, leading many laboratories to continue using simpler undefined extracellular matrix (ECM) protein mixtures. In this study, we present a method using poly(norepinephrine) (pNE) for surface modification to enhance the immobilization of ECM proteins on various substrates, including polydimethylsiloxane (PDMS) and ultralow attachment (ULA) hydrogels, thereby supporting hPSC culture and maintenance of pluripotency. The pNE-mediated surface modification enables spatial patterning of ECM proteins on nonadhesive ULA surfaces, facilitating tunable macroscopic cell patterning. This approach improves hPSC attachment and growth and allows for cell patterning to study the effects of anisotropic environments on the hPSC fate. Our findings demonstrate the versatility and simplicity of pNE-mediated surface modification for improving hPSC culture and spatially controlled differentiation into endothelial cells and cardiomyocytes on previously nonamenable substrates, providing a valuable tool for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Gyuhyung Jin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue University Institute for Cancer Research, West Lafayette, Indiana 47907, United States
- Department of Chemical and Biological Engineering, University of Wisconsin Madison, Madison, Wisconsin 53706, United States
| | - Haoning Huang
- Purdue University Institute for Cancer Research, West Lafayette, Indiana 47907, United States
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue University Institute for Cancer Research, West Lafayette, Indiana 47907, United States
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Matsuo-Takasaki M, Kambayashi S, Hemmi Y, Wakabayashi T, Shimizu T, An Y, Ito H, Takeuchi K, Ibuki M, Kawashima T, Masayasu R, Suzuki M, Kawai Y, Umekage M, Kato TM, Noguchi M, Nakade K, Nakamura Y, Nakaishi T, Nishishita N, Tsukahara M, Hayashi Y. Complete suspension culture of human induced pluripotent stem cells supplemented with suppressors of spontaneous differentiation. eLife 2024; 12:RP89724. [PMID: 39529479 PMCID: PMC11556790 DOI: 10.7554/elife.89724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are promising resources for producing various types of tissues in regenerative medicine; however, the improvement in a scalable culture system that can precisely control the cellular status of hiPSCs is needed. Utilizing suspension culture without microcarriers or special materials allows for massive production, automation, cost-effectiveness, and safety assurance in industrialized regenerative medicine. Here, we found that hiPSCs cultured in suspension conditions with continuous agitation without microcarriers or extracellular matrix components were more prone to spontaneous differentiation than those cultured in conventional adherent conditions. Adding PKCβ and Wnt signaling pathway inhibitors in the suspension conditions suppressed the spontaneous differentiation of hiPSCs into ectoderm and mesendoderm, respectively. In these conditions, we successfully completed the culture processes of hiPSCs, including the generation of hiPSCs from peripheral blood mononuclear cells with the expansion of bulk population and single-cell sorted clones, long-term culture with robust self-renewal characteristics, single-cell cloning, direct cryopreservation from suspension culture and their successful recovery, and efficient mass production of a clinical-grade hiPSC line. Our results demonstrate that precise control of the cellular status in suspension culture conditions paves the way for their stable and automated clinical application.
Collapse
Affiliation(s)
- Mami Matsuo-Takasaki
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Sho Kambayashi
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Yasuko Hemmi
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Tamami Wakabayashi
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Tomoya Shimizu
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Yuri An
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Hidenori Ito
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
| | - Kazuhiro Takeuchi
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Masato Ibuki
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Terasu Kawashima
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Rio Masayasu
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Manami Suzuki
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Yoshikazu Kawai
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | | | - Tomoaki M Kato
- Research and Development Center, CiRA FoundationKyotoJapan
| | - Michiya Noguchi
- Cell Engineering Division, RIKEN BioResource Research CenterIbarakiJapan
| | - Koji Nakade
- Gene Engineering Division, RIKEN BioResource Research CenterIbarakiJapan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research CenterIbarakiJapan
| | - Tomoyuki Nakaishi
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | - Naoki Nishishita
- Regenerative Medicine and Cell Therapy Laboratories, KANEKA CORPORATIONKobeJapan
| | | | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research CenterIbarakiJapan
- Faculty of Medicine and School of Integrative and Global Majors, University of TsukubaIbarakiJapan
| |
Collapse
|
6
|
Ma H, Xu L, Wu S, Wang S, Li J, Ai S, Yang Z, Mo R, Lin L, Li Y, Wang S, Gao J, Li C, Kong D. Supragel-mediated efficient generation of pancreatic progenitor clusters and functional glucose-responsive islet-like clusters. Bioact Mater 2024; 41:1-14. [PMID: 39101030 PMCID: PMC11292262 DOI: 10.1016/j.bioactmat.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Although several synthetic hydrogels with defined stiffness have been developed to facilitate the proliferation and maintenance of human pluripotent stem cells (hPSCs), the influence of biochemical cues in lineage-specific differentiation and functional cluster formation has been rarely reported. Here, we present the application of Supragel, a supramolecular hydrogel formed by synthesized biotinylated peptides, for islet-like cluster differentiation. We observed that Supragel, with a peptide concentration of 5 mg/mL promoted spontaneous hPSCs formation into uniform clusters, which is mainly attributable to a supporting stiffness of ∼1.5 kPa as provided by the Supragel matrix. Supragel was also found to interact with the hPSCs and facilitate endodermal and subsequent insulin-secreting cell differentiation, partially through its components: the sequences of RGD and YIGSR that interacts with cell membrane molecules of integrin receptor. Compared to Matrigel and suspension culturing conditions, more efficient differentiation of the hPSCs was also observed at the stages 3 and 4, as well as the final stage toward generation of insulin-secreting cells. This could be explained by 1) suitable average size of the hPSCs clusters cultured on Supragel; 2) appropriate level of cell adhesive sites provided by Supragel during differentiation. It is worth noting that the Supragel culture system was more tolerance in terms of the initial seeding densities and less demanding, since a standard static cell culture condition was sufficient for the entire differentiation process. Our observations demonstrate a positive role of Supragel for hPSCs differentiation into islet-like cells, with additional potential in facilitating germ layer differentiation.
Collapse
Affiliation(s)
- Hongmeng Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lilin Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shengjie Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Songdi Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Sifan Ai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhuangzhuang Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Rigen Mo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lei Lin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yan Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chen Li
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Xu Rongxiang Regeneration Life Science Center, Nankai University, 300071, Tianjin, China
| |
Collapse
|
7
|
Song HW, Solomon JN, Masri F, Mack A, Durand N, Cameau E, Dianat N, Hunter A, Oh S, Schoen B, Marsh M, Bravery C, Sumen C, Clarke D, Bharti K, Allickson JG, Lakshmipathy U. Bioprocessing considerations for generation of iPSCs intended for clinical application: perspectives from the ISCT Emerging Regenerative Medicine Technology working group. Cytotherapy 2024; 26:1275-1284. [PMID: 38970614 DOI: 10.1016/j.jcyt.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 07/08/2024]
Abstract
Approval of induced pluripotent stem cells (iPSCs) for the manufacture of cell therapies to support clinical trials is now becoming realized after 20 years of research and development. In 2022 the International Society for Cell and Gene Therapy (ISCT) established a Working Group on Emerging Regenerative Medicine Technologies, an area in which iPSCs-derived technologies are expected to play a key role. In this article, the Working Group surveys the steps that an end user should consider when generating iPSCs that are stable, well-characterised, pluripotent, and suitable for making differentiated cell types for allogeneic or autologous cell therapies. The objective is to provide the reader with a holistic view of how to achieve high-quality iPSCs from selection of the starting material through to cell banking. Key considerations include: (i) intellectual property licenses; (ii) selection of the raw materials and cell sources for creating iPSC intermediates and master cell banks; (iii) regulatory considerations for reprogramming methods; (iv) options for expansion in 2D vs. 3D cultures; and (v) available technologies and equipment for harvesting, washing, concentration, filling, cryopreservation, and storage. Some key process limitations are highlighted to help drive further improvement and innovation, and includes recommendations to close and automate current open and manual processes.
Collapse
Affiliation(s)
- Hannah W Song
- Center for Cellular Engineering, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Emmanuelle Cameau
- Cytiva, Pall Life Sciences 24-26 avenue de Winchester, CS5005, 78100 St. Germain-en-Laye, France
| | | | | | - Steve Oh
- Cellvec Pte. Ltd. 100 Pasir Panjang, #04-01/02, Singapore 118518 Singapore
| | - Brianna Schoen
- Charles River Laboratories Cell Solutions, Inc. 8500 Balboa Blvd. Suite 230 Northridge, CA 91320, USA
| | | | | | | | | | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethsda, MD, USA
| | - Julie G Allickson
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
8
|
Prieto-López L, Pereiro X, Vecino E. The mechanics of the retina: Müller glia role on retinal extracellular matrix and modelling. Front Med (Lausanne) 2024; 11:1393057. [PMID: 39296899 PMCID: PMC11410058 DOI: 10.3389/fmed.2024.1393057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
The retina is a highly heterogeneous tissue, both cell-wise but also regarding its extracellular matrix (ECM). The stiffness of the ECM is pivotal in retinal development and maturation and has also been associated with the onset and/or progression of numerous retinal pathologies, such as glaucoma, proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), epiretinal membrane (ERM) formation or uveitis. Nonetheless, much remains unknown about the biomechanical milieu of the retina, and specifically the role that Müller glia play as principal mechanosensors and major producers of ECM constituents. So far, new approaches need to be developed to further the knowledge in the field of retinal mechanobiology for ECM-target applications to arise. In this review, we focus on the involvement of Müller glia in shaping and altering the retinal ECM under both physiological and pathological conditions and look into various biomaterial options to more accurately replicate the impact of matrix stiffness in vitro.
Collapse
Affiliation(s)
- Laura Prieto-López
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Xandra Pereiro
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| |
Collapse
|
9
|
Conner AA, Yao Y, Chan SW, Jain D, Wong SM, Yim EKF, Rizwan M. High-throughput analysis of topographical cues for the expansion of murine pluripotent stem cells. NANOTECHNOLOGY 2024; 35:455101. [PMID: 39084233 DOI: 10.1088/1361-6528/ad6994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
The expansion of pluripotent stem cells (PSCs)in vitroremains a critical barrier to their use in tissue engineering and regenerative medicine. Biochemical methods for PSC expansion are known to produce heterogeneous cell populations with varying states of pluripotency and are cost-intensive, hindering their clinical translation. Engineering biomaterials to physically control PSC fate offers an alternative approach. Surface or substrate topography is a promising design parameter for engineering biomaterials. Topographical cues have been shown to elicit profound effects on stem cell differentiation and proliferation. Previous reports have shown isotropic substrate topographies to be promising in expanding PSCs. However, the optimal feature to promote PSC proliferation and the pluripotent state has not yet been determined. In this work, the MultiARChitecture (MARC) plate is developed to conduct a high-throughput analysis of topographical cues in a 96-well plate format. The MARC plate is a reproducible and customizable platform for the analysis of multiple topographical patterns and features and is compatible with both microscopic assays and molecular biology techniques. The MARC plate is used to evaluate the expression of pluripotency markersOct4, Nanog, andSox2and the differentiation markerLmnAas well as the proliferation of murine embryonic stem (mES) cells. Our systematic analyses identified three topographical patterns that maintain pluripotency in mES cells after multiple passages: 1µm pillars (1µm spacing, square arrangement), 2µm wells (c-c (x, y) = 4, 4µm), and 5µm pillars (c-c (x, y) = 7.5, 7.5µm). This study represents a step towards developing a biomaterial platform for controlled murine PSC expansion.
Collapse
Affiliation(s)
- Abigail A Conner
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Sarah W Chan
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Deepak Jain
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Suzanne M Wong
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, Waterloo, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Muhammad Rizwan
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| |
Collapse
|
10
|
Choi H, Oh D, Kim M, Jawad A, Zheng H, Cai L, Lee J, Kim E, Lee G, Jang H, Moon C, Hyun SH. Establishment of porcine embryonic stem cells in simplified serum free media and feeder free expansion. Stem Cell Res Ther 2024; 15:245. [PMID: 39113095 PMCID: PMC11304784 DOI: 10.1186/s13287-024-03858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The establishment of stable porcine embryonic stem cells (pESCs) can contribute to basic and biomedical research, including comparative developmental biology, as well as assessing the safety of stem cell-based therapies. Despite these advantages, most pESCs obtained from in vitro blastocysts require complex media and feeder layers, making routine use, genetic modification, and differentiation into specific cell types difficult. We aimed to establish pESCs with a single cell-passage ability, high proliferative potency, and stable in long-term culture from in vitro-derived blastocysts using a simplified serum-free medium. METHODS We evaluated the establishment efficiency of pESCs from in vitro blastocysts using various basal media (DMEM/F10 (1:1), DMEM/F12, and a-MEM) and factors (FGF2, IWR-1, CHIR99021, and WH-4-023). The pluripotency and self-renewal capacity of the established pESCs were analyzed under feeder or feeder-free conditions. Ultimately, we developed a simplified culture medium (FIW) composed of FGF2, IWR-1, and WH-4-023 under serum-free conditions. RESULTS The pESC-FIW lines were capable of single-cell passaging with short cell doubling times and expressed the pluripotency markers POU5F1, SOX2, and NANOG, as well as cell surface markers SSEA1, SSEA4, and TRA-1-60. pESC-FIW showed a stable proliferation rate and normal karyotype, even after 50 passages. Transcriptome analysis revealed that pESC-FIW were similar to reported pESC maintained in complex media and showed gastrulating epiblast cell characteristics. pESC-FIW were maintained for multiple passages under feeder-free conditions on fibronectin-coated plates using mTeSR™, a commercial medium used for feeder-free culture, exhibiting characteristics similar to those observed under feeder conditions. CONCLUSIONS These results indicated that inhibition of WNT and SRC was sufficient to establish pESCs capable of single-cell passaging and feeder-free expansion under serum-free conditions. The easy maintenance of pESCs facilitates their application in gene editing technology for agriculture and biomedicine, as well as lineage commitment studies.
Collapse
Affiliation(s)
- Hyerin Choi
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Ali Jawad
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Haomiao Zheng
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Department of Companion Animal Industry, Semyung University, Jecheon, 27136, Republic of Korea
| | - Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gabsang Lee
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins Medicine, Baltimore, ML, USA
| | - Hyewon Jang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-Hwan Hyun
- Veterinary Medical Center, College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Republic of Korea.
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea.
- Vet-ICT Convergence Education and Research Center (VICERC), Chungbuk National University, Cheongju, Republic of Korea.
- Chungbuk National University Hospital, Cheongju, Republic of Korea.
| |
Collapse
|
11
|
Zhao M, Taniguchi Y, Shimono C, Jonouchi T, Cheng Y, Shimizu Y, Nalbandian M, Yamamoto T, Nakagawa M, Sekiguchi K, Sakurai H. Heparan Sulfate Chain-Conjugated Laminin-E8 Fragments Advance Paraxial Mesodermal Differentiation Followed by High Myogenic Induction from hiPSCs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308306. [PMID: 38685581 PMCID: PMC11234437 DOI: 10.1002/advs.202308306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Human-induced pluripotent stem cells (hiPSCs) have great therapeutic potential. The cell source differentiated from hiPSCs requires xeno-free and robust methods for lineage-specific differentiation. Here, a system is described for differentiating hiPSCs on new generation laminin fragments (NGLFs), a recombinant form of a laminin E8 fragment conjugated to the heparan sulfate chains (HS) attachment domain of perlecan. Using NGLFs, hiPSCs are highly promoted to direct differentiation into a paraxial mesoderm state with high-efficiency muscle lineage generation. HS conjugation to the C-terminus of Laminin E8 fragments brings fibroblast growth factors (FGFs) bound to the HS close to the cell surface of hiPSCs, thereby facilitating stronger FGF signaling pathways stimulation and initiating HOX gene expression, which triggers the paraxial mesoderm differentiation of hiPSCs. This highly efficient differentiation system can provide a roadmap for paraxial mesoderm development and an infinite source of myocytes and muscle stem cells for disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
- Center for Medical EpigeneticsSchool of Basic Medical SciencesChongqing Medical University1 Yixueyuan Road, Yuzhong DistrictChongqing400016China
| | - Yukimasa Taniguchi
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Chisei Shimono
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Tatsuya Jonouchi
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Yushen Cheng
- Department of Life Science FrontiersCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Yasuhiro Shimizu
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Minas Nalbandian
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Takuya Yamamoto
- Department of Life Science FrontiersCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Masato Nakagawa
- Department of Life Science FrontiersCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Hidetoshi Sakurai
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| |
Collapse
|
12
|
Guo H, Sun Q, Huang X, Wang X, Zhang F, Qu W, Liu J, Cheng X, Zhu Q, Yi W, Shu Q, Li X. Fucosyltransferase 8 regulates adult neurogenesis and cognition of mice by modulating the Itga6-PI3K/Akt signaling pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1427-1440. [PMID: 38523237 DOI: 10.1007/s11427-023-2510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 03/26/2024]
Abstract
Fucosyltransferase 8 (Fut8) and core fucosylation play critical roles in regulating various biological processes, including immune response, signal transduction, proteasomal degradation, and energy metabolism. However, the function and underlying mechanism of Fut8 and core fucosylation in regulating adult neurogenesis remains unknown. We have shown that Fut8 and core fucosylation display dynamic features during the differentiation of adult neural stem/progenitor cells (aNSPCs) and postnatal brain development. Fut8 depletion reduces the proliferation of aNSPCs and inhibits neuronal differentiation of aNSPCs in vitro and in vivo, respectively. Additionally, Fut8 deficiency impairs learning and memory in mice. Mechanistically, Fut8 directly interacts with integrin α6 (Itga6), an upstream regulator of the PI3k-Akt signaling pathway, and catalyzes core fucosylation of Itga6. Deletion of Fut8 enhances the ubiquitination of Itga6 by promoting the binding of ubiquitin ligase Trim21 to Itga6. Low levels of Itga6 inhibit the activity of the PI3K/Akt signaling pathway. Moreover, the Akt agonist SC79 can rescue neurogenic and behavioral deficits caused by Fut8 deficiency. In summary, our study uncovers an essential function of Fut8 and core fucosylation in regulating adult neurogenesis and sheds light on the underlying mechanisms.
Collapse
Affiliation(s)
- Hongfeng Guo
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Qihang Sun
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Xiaoli Huang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Xiaohao Wang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Feng Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Wenzheng Qu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Jinling Liu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Xuejun Cheng
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Qiang Zhu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen Yi
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Shu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China.
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China.
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China.
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
13
|
Mousavi Mirkalaei S, Farivar S. Systematic optimization of culture media for maintenance of human induced pluripotent stem cells using the response surface methodology. Heliyon 2024; 10:e32558. [PMID: 38975108 PMCID: PMC11226774 DOI: 10.1016/j.heliyon.2024.e32558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
The application of human induced pluripotent stem cells (hiPSCs) provides tremendous opportunities in cell therapy. However, culturing these cells faces many practical challenges, including costs associated with cell culture media and the optimization of cell culture conditions. Providing an optimized culture platform for hiPSCs to maintain pluripotency and self-renewal and generate cost-effective and robust therapeutics is an immediate requirement. This study used the design of experiments and the response surface methodology, a powerful statistical tool, to generate empirical models for predicting the optimal culture conditions of the hiPSCs. Pluripotency and cell proliferation were applied as read-outs to determine the optimal concentration of basic fibroblast growth factor (bFGF) and cell density. One model was defined to predict pluripotency and cell proliferation in terms of the predictor variables of the bFGF concentration and cell seeding density. Predicted culture conditions to maximize maintaining cell pluripotency were successfully validated. The present study's findings provide a novel approach that can potentially allow controllable hiPSC culture routine in translational research.
Collapse
Affiliation(s)
- Seyedmilad Mousavi Mirkalaei
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shirin Farivar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
14
|
Sulaksono HLS, Annisa A, Ruslami R, Mufeeduzzaman M, Panatarani C, Hermawan W, Ekawardhani S, Joni IM. Recent Advances in Graphene Oxide-Based on Organoid Culture as Disease Model and Cell Behavior - A Systematic Literature Review. Int J Nanomedicine 2024; 19:6201-6228. [PMID: 38911499 PMCID: PMC11193994 DOI: 10.2147/ijn.s455940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
Due to their ability to replicate the in vivo microenvironment through cell interaction and induce cells to stimulate cell function, three-dimensional cell culture models can overcome the limitations of two-dimensional models. Organoids are 3D models that demonstrate the ability to replicate the natural structure of an organ. In most organoid tissue cultures, matrigel made of a mouse tumor extracellular matrix protein mixture is an essential ingredient. However, its tumor-derived origin, batch-to-batch variation, high cost, and safety concerns have limited the usefulness of organoid drug development and regenerative medicine. Its clinical application has also been hindered by the fact that organoid generation is dependent on the use of poorly defined matrices. Therefore, matrix optimization is a crucial step in developing organoid culture that introduces alternatives as different materials. Recently, a variety of substitute materials has reportedly replaced matrigel. The purpose of this study is to review the significance of the latest advances in materials for cell culture applications and how they enhance build network systems by generating proper cell behavior. Excellence in cell behavior is evaluated from their cell characteristics, cell proliferation, cell differentiation, and even gene expression. As a result, graphene oxide as a matrix optimization demonstrated high potency in developing organoid models. Graphene oxide can promote good cell behavior and is well known for having good biocompatibility. Hence, advances in matrix optimization of graphene oxide provide opportunities for the future development of advanced organoid models.
Collapse
Affiliation(s)
| | - Annisa Annisa
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Rovina Ruslami
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Mufeeduzzaman Mufeeduzzaman
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Camellia Panatarani
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Wawan Hermawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Savira Ekawardhani
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
15
|
Ferrai C, Schulte C. Mechanotransduction in stem cells. Eur J Cell Biol 2024; 103:151417. [PMID: 38729084 DOI: 10.1016/j.ejcb.2024.151417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Nowadays, it is an established concept that the capability to reach a specialised cell identity via differentiation, as in the case of multi- and pluripotent stem cells, is not only determined by biochemical factors, but that also physical aspects of the microenvironment play a key role; interpreted by the cell through a force-based signalling pathway called mechanotransduction. However, the intricate ties between the elements involved in mechanotransduction, such as the extracellular matrix, the glycocalyx, the cell membrane, Integrin adhesion complexes, Cadherin-mediated cell/cell adhesion, the cytoskeleton, and the nucleus, are still far from being understood in detail. Here we report what is currently known about these elements in general and their specific interplay in the context of multi- and pluripotent stem cells. We furthermore merge this overview to a more comprehensive picture, that aims to cover the whole mechanotransductive pathway from the cell/microenvironment interface to the regulation of the chromatin structure in the nucleus. Ultimately, with this review we outline the current picture of the interplay between mechanotransductive cues and epigenetic regulation and how these processes might contribute to stem cell dynamics and fate.
Collapse
Affiliation(s)
- Carmelo Ferrai
- Institute of Pathology, University Medical Centre Göttingen, Germany.
| | - Carsten Schulte
- Department of Biomedical and Clinical Sciences and Department of Physics "Aldo Pontremoli", University of Milan, Italy.
| |
Collapse
|
16
|
Teixeira Polez R, Huynh N, Pridgeon CS, Valle-Delgado JJ, Harjumäki R, Österberg M. Insights into spheroids formation in cellulose nanofibrils and Matrigel hydrogels using AFM-based techniques. Mater Today Bio 2024; 26:101065. [PMID: 38706731 PMCID: PMC11066555 DOI: 10.1016/j.mtbio.2024.101065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
The recent FDA decision to eliminate animal testing requirements emphasises the role of cell models, such as spheroids, as regulatory test alternatives for investigations of cellular behaviour, drug responses, and disease modelling. The influence of environment on spheroid formation are incompletely understood, leading to uncertainty in matrix selection for scaffold-based 3D culture. This study uses atomic force microscopy-based techniques to quantify cell adhesion to Matrigel and cellulose nanofibrils (CNF), and cell-cell adhesion forces, and their role in spheroid formation of hepatocellular carcinoma (HepG2) and induced pluripotent stem cells (iPS(IMR90)-4). Results showed different cell behaviour in CNF and Matrigel cultures. Both cell lines formed compact spheroids in CNF but loose cell aggregates in Matrigel. Interestingly, the type of cell adhesion protein, and not the bond strength, appeared to be a key factor in the formation of compact spheroids. The gene expression of E- and N-cadherins, proteins on cell membrane responsible for cell-cell interactions, was increased in CNF culture, leading to formation of compact spheroids while Matrigel culture induced integrin-laminin binding and downregulated E-cadherin expression, resulting in looser cell aggregates. These findings enhance our understanding of cell-biomaterial interactions in 3D cultures and offer insights for improved 3D cell models, culture biomaterials, and applications in drug research.
Collapse
Affiliation(s)
- Roberta Teixeira Polez
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Ngoc Huynh
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Chris S. Pridgeon
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Riina Harjumäki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| |
Collapse
|
17
|
De Sousa PA, Perfect L, Ye J, Samuels K, Piotrowska E, Gordon M, Mate R, Abranches E, Wishart TM, Dockrell DH, Courtney A. Hyaluronan in mesenchymal stromal cell lineage differentiation from human pluripotent stem cells: application in serum free culture. Stem Cell Res Ther 2024; 15:130. [PMID: 38702837 PMCID: PMC11069290 DOI: 10.1186/s13287-024-03719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/05/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Hyaluronan (HA) is an extracellular glycosaminoglycan polysaccharide with widespread roles throughout development and in healthy and neoplastic tissues. In pluripotent stem cell culture it can support both stem cell renewal and differentiation. However, responses to HA in culture are influenced by interaction with a range of cognate factors and receptors including components of blood serum supplements, which alter results. These may contribute to variation in cell batch production yield and phenotype as well as heighten the risks of adventitious pathogen transmission in the course of cell processing for therapeutic applications. MAIN: Here we characterise differentiation of a human embryo/pluripotent stem cell derived Mesenchymal Stromal Cell (hESC/PSC-MSC)-like cell population by culture on a planar surface coated with HA in serum-free media qualified for cell production for therapy. Resulting cells met minimum criteria of the International Society for Cellular Therapy for identification as MSC by expression of. CD90, CD73, CD105, and lack of expression for CD34, CD45, CD14 and HLA-II. They were positive for other MSC associated markers (i.e.CD166, CD56, CD44, HLA 1-A) whilst negative for others (e.g. CD271, CD71, CD146). In vitro co-culture assessment of MSC associated functionality confirmed support of growth of hematopoietic progenitors and inhibition of mitogen activated proliferation of lymphocytes from umbilical cord and adult peripheral blood mononuclear cells, respectively. Co-culture with immortalized THP-1 monocyte derived macrophages (Mɸ) concurrently stimulated with lipopolysaccharide as a pro-inflammatory stimulus, resulted in a dose dependent increase in pro-inflammatory IL6 but negligible effect on TNFα. To further investigate these functionalities, a bulk cell RNA sequence comparison with adult human bone marrow derived MSC and hESC substantiated a distinctive genetic signature more proximate to the former. CONCLUSION Cultivation of human pluripotent stem cells on a planar substrate of HA in serum-free culture media systems is sufficient to yield a distinctive developmental mesenchymal stromal cell lineage with potential to modify the function of haematopoietic lineages in therapeutic applications.
Collapse
Affiliation(s)
- Paul A De Sousa
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Stroma Therapeutics Ltd, Glasgow, UK.
| | - Leo Perfect
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | - Jinpei Ye
- Institute of Biomedical Science, Shanxi University, Taiyuan, Shanxi, China
| | - Kay Samuels
- Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Ewa Piotrowska
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Department of Molecular Biology, University of Gdansk, Gdańsk, Poland
| | - Martin Gordon
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | - Ryan Mate
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | - Elsa Abranches
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | | | - David H Dockrell
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
18
|
Chen Y, Li M, Wu Y. The occurrence and development of induced pluripotent stem cells. Front Genet 2024; 15:1389558. [PMID: 38699229 PMCID: PMC11063328 DOI: 10.3389/fgene.2024.1389558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
The ectopic expression of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc (OSKM), known as "Yamanaka factors," can reprogram or stimulate the production of induced pluripotent stem cells (iPSCs). Although OSKM is still the gold standard, there are multiple ways to reprogram cells into iPSCs. In recent years, significant progress has been made in improving the efficiency of this technology. Ten years after the first report was published, human pluripotent stem cells have gradually been applied in clinical settings, including disease modeling, cell therapy, new drug development, and cell derivation. Here, we provide a review of the discovery of iPSCs and their applications in disease and development.
Collapse
Affiliation(s)
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Adachi T, Tahara Y, Yamamoto K, Yamamoto T, Kanamura N, Akiyoshi K, Mazda O. Cholesterol-Bearing Polysaccharide-Based Nanogels for Development of Novel Immunotherapy and Regenerative Medicine. Gels 2024; 10:206. [PMID: 38534624 DOI: 10.3390/gels10030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Novel functional biomaterials are expected to bring about breakthroughs in developing immunotherapy and regenerative medicine through their application as drug delivery systems and scaffolds. Nanogels are defined as nanoparticles with a particle size of 100 nm or less and as having a gel structure. Nanogels have a three-dimensional network structure of cross-linked polymer chains, which have a high water content, a volume phase transition much faster than that of a macrogel, and a quick response to external stimuli. As it is possible to transmit substances according to the three-dimensional mesh size of the gel, a major feature is that relatively large substances, such as proteins and nucleic acids, can be taken into the gel. Furthermore, by organizing nanogels as a building block, they can be applied as a scaffold material for tissue regeneration. This review provides a brief overview of the current developments in nanogels in general, especially drug delivery, therapeutic applications, and tissue engineering. In particular, polysaccharide-based nanogels are interesting because they have excellent complexation properties and are highly biocompatible.
Collapse
Affiliation(s)
- Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Yoshiro Tahara
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyoto-fu, Kyotanabe-shi 610-0321, Japan
| | - Kenta Yamamoto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| |
Collapse
|
20
|
Cheng YS, Taniguchi Y, Yunoki Y, Masai S, Nogi M, Doi H, Sekiguchi K, Nakagawa M. Simultaneous binding of bFGF to both FGFR and integrin maintains properties of primed human induced pluripotent stem cells. Regen Ther 2024; 25:113-127. [PMID: 38226057 PMCID: PMC10788407 DOI: 10.1016/j.reth.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 01/17/2024] Open
Abstract
Introduction Basic fibroblast growth factor (bFGF, FGF2) and integrin α6β1 are important for maintaining the pluripotency of human pluripotent stem cells (hPSCs). Although bFGF-integrin binding contributes to biofunctions in cancer cells, the relationship in hPSCs remains unclear. Methods To investigate the relationship between bFGF and integrin in human induced pluripotent stem cells (hiPSCs), we generated recombinant human bFGF wild-type and mutant proteins, that do not bind to integrin, FGFR, or both. We then cultured hiPSCs with these recombinant bFGF proteins. To evaluate the abilities of recombinant bFGF proteins in maintaining hPSC properties, pluripotent markers, ERK activity, and focal adhesion structure were analyzed through flow cytometry, immunofluorescence (IF), and immunoblotting (IB). Result We identified an interaction between bFGF and integrin α6β1 in vitro and in hiPSCs. The integrin non-binding mutant was incapable of inducing the hPSC properties, such as proliferation, ERK activity, and large focal adhesions at the edges of hiPSC colonies. Signaling induced by bFGF-FGFR binding was essential during the first 24 h after cell seeding for maintaining the properties of hPSCs, followed by a shift towards intracellular signaling via the bFGF-integrin interaction. The mixture of the two bFGF mutants also failed to maintain hPSC properties, indicating that bFGF binds to both FGFR and integrin. Conclusion Our study demonstrates that the integrin-bFGF-FGFR ternary complex maintains the properties of hPSCs via intracellular signaling, providing insights into the functional crosstalk between bFGF and integrins in hiPSCs.
Collapse
Affiliation(s)
- Yu-Shen Cheng
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Yukimasa Taniguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Yasuhiro Yunoki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Satomi Masai
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Mizuho Nogi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Hatsuki Doi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Masato Nakagawa
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
21
|
Kearney M, McReynolds DE, Duncan HF. Isolation and Culture of Primary Human Dental Pulp Cells-A Description of Technical and Methodological Steps to Maximise Predictability and Yield. Methods Protoc 2024; 7:22. [PMID: 38525780 PMCID: PMC10961800 DOI: 10.3390/mps7020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
The dental pulp has critical functions in tooth development as well as an ongoing role in promoting and maintaining the vitality of teeth. In particular, its regenerative ability allows dental tissues to be restored following damage caused by traumatic injury or caries. Regenerative endodontic procedures aim to utilise these processes to stimulate dental pulp repair in a minimally invasive manner and reduce the need for more invasive procedures such as root canal treatment. Dental pulp is a source of dental pulp cells (DPCs), which has a subpopulation of dental pulp stem cells (DPSCs), which are attractive for use in regenerative medicine due to their high proliferation rate, ability to differentiate into multiple cell types, and their preserved vitality following cryopreservation. The development of next-generation clinical therapeutics that maximise the potential of dental pulp relies on strong empirical evidence arising from in vitro experimentation. Here, we describe a modified method for the efficient isolation of primary human DPCs from sound third molar teeth for culture using an explant outgrowth method on basement membrane-coated flasks, as well as using high-resolution macro-photography to illustrate the methods. Critically, steps are taken to minimise potential physical and mechanical trauma to the cells and maximise yield. Human DPCs cultured using this method can be further expanded in cell culture flasks to facilitate their use in various in vitro experimental procedures.
Collapse
Affiliation(s)
- Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, University of Dublin, D02 PN40 Dublin, Ireland
| | | | | |
Collapse
|
22
|
Khandani B, Movahedin M. Learning Towards Maturation of Defined Feeder-free Pluripotency Culture Systems: Lessons from Conventional Feeder-based Systems. Stem Cell Rev Rep 2024; 20:484-494. [PMID: 38079087 DOI: 10.1007/s12015-023-10662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Pluripotent stem cells (PSCs) are widely recognized as one of the most promising types of stem cells for applications in regenerative medicine, tissue engineering, disease modeling, and drug screening. This is due to their unique ability to differentiate into cells from all three germ layers and their capacity for indefinite self-renewal. Initially, PSCs were cultured using animal feeder cells, but these systems presented several limitations, particularly in terms of Good Manufacturing Practices (GMP) regulations. As a result, feeder-free systems were introduced as a safer alternative. However, the precise mechanisms by which feeder cells support pluripotency are not fully understood. More importantly, it has been observed that some aspects of the need for feeder cells like the optimal density and cell type can vary depending on conditions such as the developmental stage of the PSCs, phases of the culture protocol, the method used in culture for induction of pluripotency, and intrinsic variability of PSCs. Thus, gaining a better understanding of the divergent roles and necessity of feeder cells in various conditions would lead to the development of condition-specific defined feeder-free systems that resolve the failure of current feeder-free systems in some conditions. Therefore, this review aims to explore considerable feeder-related issues that can lead to the development of condition-specific feeder-free systems.
Collapse
Affiliation(s)
- Bardia Khandani
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, 14115111, Iran.
| |
Collapse
|
23
|
Hopkinson A, Notara M, Cursiefen C, Sidney LE. Increased Anti-Inflammatory Therapeutic Potential and Progenitor Marker Expression of Corneal Mesenchymal Stem Cells Cultured in an Optimized Propagation Medium. Cell Transplant 2024; 33:9636897241241992. [PMID: 38602231 PMCID: PMC11010753 DOI: 10.1177/09636897241241992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Abstract
There is a huge unmet need for new treatment modalities for ocular surface inflammatory disorders (OSIDs) such as dry eye disease and meibomian gland dysfunction. Mesenchymal stem cell therapies may hold the answer due to their potent immunomodulatory properties, low immunogenicity, and ability to modulate both the innate and adaptive immune response. MSC-like cells that can be isolated from the corneal stroma (C-MSCs) offer a potential new treatment strategy; however, an optimized culture medium needs to be developed to produce the ideal phenotype for use in a cell therapy to treat OSIDs. The effects of in vitro expansion of human C-MSC in a medium of M199 containing fetal bovine serum (FBS) was compared to a stem cell medium (SCM) containing knockout serum replacement (KSR) with basic fibroblast growth factor (bFGF) and human leukemia inhibitory factor (LIF), investigating viability, protein, and gene expression. Isolating populations expressing CD34 or using siRNA knockdown of CD34 were investigated. Finally, the potential of C-MSC as a cell therapy was assessed using co-culture with an in vitro corneal epithelial cell injury model and the angiogenic effects of C-MSC conditioned medium were evaluated with blood and lymph endothelial cells. Both media supported proliferation of C-MSC, with SCM increasing expression of CD34, ABCG2, PAX6, NANOG, REX1, SOX2, and THY1, supported by increased associated protein expression. Isolating cell populations expressing CD34 protein made little difference to gene expression, however, knockdown of the CD34 gene led to decreased expression of progenitor genes. C-MSC increased viability of injured corneal epithelial cells whilst decreasing levels of cytotoxicity and interleukins-6 and -8. No pro-angiogenic effect of C-MSC was seen. Culture medium can significantly influence C-MSC phenotype and culture in SCM produced a cell phenotype more suitable for further consideration as an anti-inflammatory cell therapy. C-MSC show considerable potential for development as therapies for OSIDs, acting through anti-inflammatory action.
Collapse
Affiliation(s)
- Andrew Hopkinson
- Academic Ophthalmology, Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, UK
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Koln, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Koln, Germany
| | - Laura E. Sidney
- Academic Ophthalmology, Mental Health and Clinical Neurosciences, University of Nottingham, Nottingham, UK
- Regenerating and Modelling Tissues, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
24
|
Iworima DG, Baker RK, Piret JM, Kieffer TJ. Analysis of the effects of bench-scale cell culture platforms and inoculum cell concentrations on PSC aggregate formation and culture. Front Bioeng Biotechnol 2023; 11:1267007. [PMID: 38107616 PMCID: PMC10722899 DOI: 10.3389/fbioe.2023.1267007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/18/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction: Human pluripotent stem cells (hPSCs) provide many opportunities for application in regenerative medicine due to their ability to differentiate into cells from all three germ layers, proliferate indefinitely, and replace damaged or dysfunctional cells. However, such cell replacement therapies require the economical generation of clinically relevant cell numbers. Whereas culturing hPSCs as a two-dimensional monolayer is widely used and relatively simple to perform, their culture as suspended three-dimensional aggregates may enable more economical production in large-scale stirred tank bioreactors. To be more relevant to this biomanufacturing, bench-scale differentiation studies should be initiated from aggregated hPSC cultures. Methods: We compared five available bench-scale platforms for generating undifferentiated cell aggregates of human embryonic stem cells (hESCs) using AggreWell™ plates, low attachment plates on an orbital shaker, roller bottles, spinner flasks, and vertical-wheel bioreactors (PBS-Minis). Thereafter, we demonstrated the incorporation of an hPSC aggregation step prior to directed differentiation to pancreatic progenitors and endocrine cells. Results and discussion: The AggreWell™ system had the highest aggregation yield. The initial cell concentrations had an impact on the size of aggregates generated when using AggreWell™ plates as well as in roller bottles. However, aggregates made with low attachment plates, spinner flasks and PBS-Minis were similar regardless of the initial cell number. Aggregate morphology was compact and relatively homogenously distributed in all platforms except for the roller bottles. The size of aggregates formed in PBS-Minis was modulated by the agitation rate during the aggregation. In all cell culture platforms, the net growth rate of cells in 3D aggregates was lower (range: -0.01-0.022 h-1) than cells growing as a monolayer (range: 0.039-0.045 h-1). Overall, this study describes operating ranges that yield high-quality undifferentiated hESC aggregates using several of the most commonly used bench-scale cell culture platforms. In all of these systems, methods were identified to obtain PSC aggregates with greater than 70% viability, and mean diameters between 60 and 260 mm. Finally, we showed the capacity of hPSC aggregates formed with PBS-Minis to differentiate into viable pancreatic progenitors and endocrine cell types.
Collapse
Affiliation(s)
- Diepiriye G. Iworima
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Robert K. Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - James M. Piret
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Ahn Y, Jeong J, Choi KH, Lee DK, Lee M, Lee NY, Kim DY, Lee CK. Development of Reproducible and Scalable Culture Conditions for In Vitro Maintenance of Pig Embryonic Stem Cells Using the Sandoz Inbred Swiss Mouse Thioguanine-Resistant Ouabain-Resistant Cell Line as a Feeder Layer. Stem Cells Dev 2023; 32:747-757. [PMID: 37756363 DOI: 10.1089/scd.2023.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Feeder cells play a crucial role in maintaining the pluripotency of embryonic stem cells (ESCs) by secreting various extrinsic regulators, such as extracellular matrix (ECM) proteins and growth factors. Although primary mouse embryonic fibroblasts (MEFs) are the most widely used feeder cell type for the culture of ESCs, they have inevitable disadvantages such as batch-to-batch variation and labor-intensive isolation processes. Here, we revealed that the Sandoz inbred Swiss Mouse (SIM) thioguanine-resistant ouabain-resistant (STO) cell line, an immortalized cell line established from mouse SIM embryonic fibroblasts, can be used as a feeder layer for in vitro culture of authentic pig ESCs instead of primary MEFs. First, the expression of genes encoding ECM proteins and growth factors was analyzed to compare their secretory functions as feeder cells. Quantitative real-time polymerase chain reaction (qPCR) showed that the gene expression of these pluripotency-associated factors was downregulated in STO cells compared to primary MEFs of similar density. Therefore, subsequent optimization of the culture conditions was attempted using higher STO cell densities. Notably, pig ESCs cultured on STO cell density of 3 × (187,500 cells/cm2) exhibited the most similar pluripotent state to pig ESCs cultured on primary MEF density of 1 × (62,500 cells/cm2), as determined by alkaline phosphatase staining, qPCR, and immunocytochemistry. In addition, pig ESCs cultured on STO cell density of 3 × formed complex teratoma containing multiple types of tissues derived from all three germ layers. Our culture conditions using optimal STO cell density can be applied to fields requiring reproducible and scalable production of pig ESCs, such as preclinical research and cellular agriculture.
Collapse
Affiliation(s)
- Yelim Ahn
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science; College of Veterinary Medicine; Seoul National University, Seoul, South Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science; College of Veterinary Medicine; Seoul National University, Seoul, South Korea
| | - Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science; College of Veterinary Medicine; Seoul National University, Seoul, South Korea
- Research and Development Center, Space F Corporation, Hwasung, South Korea
| | - Dong-Kyung Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science; College of Veterinary Medicine; Seoul National University, Seoul, South Korea
- Research and Development Center, Space F Corporation, Hwasung, South Korea
| | - Mingyun Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science; College of Veterinary Medicine; Seoul National University, Seoul, South Korea
| | - Na-Young Lee
- Department of Veterinary Pathology, College of Veterinary Medicine; Seoul National University, Seoul, South Korea
| | - Dae-Yong Kim
- Department of Veterinary Pathology, College of Veterinary Medicine; Seoul National University, Seoul, South Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science; College of Veterinary Medicine; Seoul National University, Seoul, South Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| |
Collapse
|
26
|
Liao C, Guan Y, Zheng J, Wang X, Wang M, Zhu Z, Peng Q, Wang HH, Li M. Development of synthetic modulator enabling long-term propagation and neurogenesis of human embryonic stem cell-derived neural progenitor cells. Biol Res 2023; 56:59. [PMID: 37951961 PMCID: PMC10638775 DOI: 10.1186/s40659-023-00471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
Neural progenitor cells (NPCs) are essential for in vitro drug screening and cell-based therapies for brain-related disorders, necessitating well-defined and reproducible culture systems. Current strategies employing protein growth factors pose challenges in terms of both reproducibility and cost. In this study, we developed a novel DNA-based modulator to regulate FGFR signaling in NPCs, thereby facilitating the long-term maintenance of stemness and promoting neurogenesis. This DNA-based FGFR-agonist effectively stimulated FGFR1 phosphorylation and activated the downstream ERK signaling pathway in human embryonic stem cell (HESC)-derived NPCs. We replaced the basic fibroblast growth factor (bFGF) in the culture medium with our DNA-based FGFR-agonist to artificially modulate FGFR signaling in NPCs. Utilizing a combination of cell experiments and bioinformatics analyses, we showed that our FGFR-agonist could enhance NPC proliferation, direct migration, and promote neurosphere formation, thus mimicking the functions of bFGF. Notably, transcriptomic analysis indicated that the FGFR-agonist could specifically influence the transcriptional program associated with stemness while maintaining the neuronal differentiation program, closely resembling the effects of bFGF. Furthermore, our culture conditions allowed for the successful propagation of NPCs through over 50 passages while retaining their ability to efficiently differentiate into neurons. Collectively, our approach offers a highly effective method for expanding NPCs, thereby providing new avenues for disease-in-dish research and drug screening aimed at combating neural degeneration.
Collapse
Affiliation(s)
- Ceheng Liao
- College of Biology, Hunan University, 27 Tianma Road, Yuelu District, Changsha, 410082, Hunan, China
| | - Ying Guan
- Joint Institute of Tobacco and Health, 367 Hongjin Road, Wuhua District, Kunming, 650202, Yunnan, China
| | - Jihui Zheng
- College of Biology, Hunan University, 27 Tianma Road, Yuelu District, Changsha, 410082, Hunan, China
| | - Xue Wang
- College of Biology, Hunan University, 27 Tianma Road, Yuelu District, Changsha, 410082, Hunan, China
| | - Meixia Wang
- College of Biology, Hunan University, 27 Tianma Road, Yuelu District, Changsha, 410082, Hunan, China
| | - Zhouhai Zhu
- Joint Institute of Tobacco and Health, 367 Hongjin Road, Wuhua District, Kunming, 650202, Yunnan, China
| | - Qiyuan Peng
- Joint Institute of Tobacco and Health, 367 Hongjin Road, Wuhua District, Kunming, 650202, Yunnan, China
| | - Hong-Hui Wang
- College of Biology, Hunan University, 27 Tianma Road, Yuelu District, Changsha, 410082, Hunan, China.
| | - Meng Li
- Joint Institute of Tobacco and Health, 367 Hongjin Road, Wuhua District, Kunming, 650202, Yunnan, China.
| |
Collapse
|
27
|
Wang K, Wei Y, Xie X, Li Q, Liu X, Wang L, Li J, Wu J, Fan C. DNA-Programmed Stem Cell Niches via Orthogonal Extracellular Vesicle-Cell Communications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302323. [PMID: 37463346 DOI: 10.1002/adma.202302323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Extracellular vesicles (EVs) are natural carriers for intercellular transfer of bioactive molecules, which are harnessed for wide biomedical applications. However, a facile yet general approach to engineering interspecies EV-cell communications is still lacking. Here, the use of DNA to encode the heterogeneous interfaces of EVs and cells in a manner free of covalent or genetic modifications is reported, which enables orthogonal EV-cell interkingdom interactions in complex environments. Cholesterol-modified DNA strands and tetrahedral DNA frameworks are employed with complementary sequences to serve as artificial ligands and receptors docking on EVs and living cells, respectively, which can mediate specific yet efficient cellular internalization of EVs via Watson-Crick base pairing. It is shown that based on this system, human cells can adopt EVs derived from the mouse, watermelon, and Escherichia coli. By implementing several EV-cell circuits, it shows that this DNA-programmed system allows orthogonal EV-cell communications in complex environments. This study further demonstrates efficient delivery of EVs with bioactive contents derived from feeder cells toward monkey female germline stem cells (FGSCs), which enables self-renewal and stemness maintenance of the FGSCs without feeder cells. This system may provide a universal platform to customize intercellular exchanges of materials and signals across species and kingdoms.
Collapse
Affiliation(s)
- Kaizhe Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of BioMedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Yuhan Wei
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Xie
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lihua Wang
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
28
|
Ghorbani S, Christine Füchtbauer A, Møllebjerg A, Møller Martensen P, Hvidbjerg Laursen S, Christian Evar Kraft D, Kjems J, Meyer RL, Rahimi K, Foss M, Füchtbauer EM, Sutherland DS. Protein ligand and nanotopography separately drive the phenotype of mouse embryonic stem cells. Biomaterials 2023; 301:122244. [PMID: 37459700 DOI: 10.1016/j.biomaterials.2023.122244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023]
Abstract
Biochemical and biomechanical signals regulate stem cell function in the niche environments in vivo. Current in vitro culture of mouse embryonic stem cells (mESC) uses laminin (LN-511) to provide mimetic biochemical signaling (LN-521 for human systems) to maintain stemness. Alternative approaches propose topographical cues to provide biomechanical cues, however combined biochemical and topographic cues may better mimic the in vivo environment, but are largely unexplored for in vitro stem cell expansion. In this study, we directly compare in vitro signals from LN-511 and/or topographic cues to maintain stemness, using systematically-varied submicron pillar patterns or flat surfaces with or without preadsorbed LN-511. The adhesion of cells, colony formation, expression of the pluripotency marker,octamer-binding transcription factor 4 (Oct4), and transcriptome profiling were characterized. We observed that either biochemical or topographic signals could maintain stemness of mESCs in feeder-free conditions, indicated by high-level Oct4 and gene profiling by RNAseq. The combination of LN-511 with nanotopography reduced colony growth, while maintaining stemness markers, shifted the cellular phenotype indicating that the integration of biochemical and topographic signals is antagonistic. Overall, significantly faster (up to 2.5 times) colony growth was observed at nanotopographies without LN-511, suggesting for improved ESC expansion.
Collapse
Affiliation(s)
- Sadegh Ghorbani
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, Aarhus C, 8000, Denmark; The Centre for Cellular Signal Patterns (CELLPAT), Gustav Wieds Vej 14, Aarhus C, 8000, Denmark; Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| | | | - Andreas Møllebjerg
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, Aarhus C, 8000, Denmark
| | | | - Sara Hvidbjerg Laursen
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, Aarhus C, 8000, Denmark
| | - David Christian Evar Kraft
- Department of Dentistry and Oral Health, Faculty of Health, University of Aarhus, Aarhus C, 8000, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, Aarhus C, 8000, Denmark; The Centre for Cellular Signal Patterns (CELLPAT), Gustav Wieds Vej 14, Aarhus C, 8000, Denmark; Department of Molecular Biology, University of Aarhus, Aarhus C, 8000, Denmark
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, Aarhus C, 8000, Denmark
| | - Karim Rahimi
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, Aarhus C, 8000, Denmark; Department of Molecular Biology, University of Aarhus, Aarhus C, 8000, Denmark
| | - Morten Foss
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, Aarhus C, 8000, Denmark
| | | | - Duncan S Sutherland
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, Aarhus C, 8000, Denmark; The Centre for Cellular Signal Patterns (CELLPAT), Gustav Wieds Vej 14, Aarhus C, 8000, Denmark.
| |
Collapse
|
29
|
Souralova T, Hulinova D, Jeseta M, Ventruba P, Hampl A, Koutna I. Truncated vitronectin with E-cadherin enables the xeno-free derivation of human embryonic stem cells. Sci Rep 2023; 13:15062. [PMID: 37700192 PMCID: PMC10497536 DOI: 10.1038/s41598-023-42236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023] Open
Abstract
Human embryonic stem cells (hESCs) have unique abilities that enable their use in cell therapy, disease modeling, and drug development. Their derivation is usually performed using a feeder layer, which is undefined and can potentially cause a contamination by xeno components, therefore there is a tendency to replace feeders with xeno-free defined substrates in recent years. Three hESC lines were successfully derived on the vitronectin with a truncated N-terminus (VTN-N) in combination with E-cadherin in xeno-free conditions for the first time, and their undifferentiated state, hESC morphology, and standard karyotypes together with their potential to differentiate into three germ layers were confirmed. These results support the conclusion that the VTN-N/E-cadherin is a suitable substrate for the xeno-free derivation of hESCs and can be used for the derivation of hESCs according to good manufacturing practices.
Collapse
Affiliation(s)
- Tereza Souralova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, Cell and Tissue Engineering Facility, St. Anne's University Hospital, Pekarska 53, 602 00, Brno, Czech Republic
| | - Daniela Hulinova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, Cell and Tissue Engineering Facility, St. Anne's University Hospital, Pekarska 53, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Michal Jeseta
- Department of Gynecology and Obstetrics, Faculty of Medicine, Center of Assisted Reproduction, Masaryk University Brno and University Hospital, Obilni Trh 11, 602 00, Brno, Czech Republic
| | - Pavel Ventruba
- Department of Gynecology and Obstetrics, Faculty of Medicine, Center of Assisted Reproduction, Masaryk University Brno and University Hospital, Obilni Trh 11, 602 00, Brno, Czech Republic
| | - Ales Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, Cell and Tissue Regeneration, St. Anne's University Hospital, Pekarska 53, 602 00, Brno, Czech Republic
| | - Irena Koutna
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, Cell and Tissue Engineering Facility, St. Anne's University Hospital, Pekarska 53, 602 00, Brno, Czech Republic.
| |
Collapse
|
30
|
Timilsina S, McCandliss KF, Trivedi E, Villa-Diaz LG. Enhanced Expansion of Human Pluripotent Stem Cells and Somatic Cell Reprogramming Using Defined and Xeno-Free Culture Conditions. Bioengineering (Basel) 2023; 10:999. [PMID: 37760101 PMCID: PMC10525589 DOI: 10.3390/bioengineering10090999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
Human embryonic stem cells and induced pluripotent stem cells (hPSC) have an unprecedented opportunity to revolutionize the fields of developmental biology as well as tissue engineering and regenerative medicine. However, their applications have been significantly limited by the lack of chemically defined and xeno-free culture conditions. The demand for the high-quality and scaled-up production of cells for use in both research and clinical studies underscores the need to develop tools that will simplify the in vitro culture process while reducing the variables. Here, we describe a systematic study to identify the optimal conditions for the initial cell attachment of hPSC to tissue culture dishes grafted with polymers of N-(3-Sulfopropyl)-N-Methacryloxyethyl-N, N-Dimethylammoniun Betaine (PMEDSAH) in combination with chemically defined and xeno-free culture media. After testing multiple supplements and chemicals, we identified that pre-conditioning of PMEDSAH grafted plates with 10% human serum (HS) supported the initial cell attachment, which allowed for the long-term culture and maintenance of hPSC compared to cells cultured on Matrigel-coated plates. Using this culture condition, a 2.1-fold increase in the expansion of hPSC was observed without chromosomal abnormalities. Furthermore, this culture condition supported a higher reprogramming efficiency (0.37% vs. 0.22%; p < 0.0068) of somatic cells into induced pluripotent stem cells compared to the non-defined culture conditions. This defined and xeno-free hPSC culture condition may be used in obtaining the large populations of hPSC and patient-derived iPSC required for many applications in regenerative and translational medicine.
Collapse
Affiliation(s)
- Suraj Timilsina
- Department of Biomarkers and Investigative Pathology Unit (BIPU), Charles River Laboratories, Mattawan, MI 49071, USA;
| | | | - Evan Trivedi
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA;
| | - Luis G. Villa-Diaz
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA;
- Department of Bioengineering, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
31
|
Noh KM, Park SJ, Moon SH, Jung SY. Extracellular matrix cues regulate the differentiation of pluripotent stem cell-derived endothelial cells. Front Cardiovasc Med 2023; 10:1169331. [PMID: 37435057 PMCID: PMC10330705 DOI: 10.3389/fcvm.2023.1169331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/23/2023] [Indexed: 07/13/2023] Open
Abstract
The generation of endothelial cells (ECs) from human pluripotent stem cells (PSCs) has been a promising approach for treating cardiovascular diseases for several years. Human PSCs, particularly induced pluripotent stem cells (iPSCs), are an attractive source of ECs for cell therapy. Although there is a diversity of methods for endothelial cell differentiation using biochemical factors, such as small molecules and cytokines, the efficiency of EC production varies depending on the type and dose of biochemical factors. Moreover, the protocols in which most EC differentiation studies have been performed were in very unphysiological conditions that do not reflect the microenvironment of native tissue. The microenvironment surrounding stem cells exerts variable biochemical and biomechanical stimuli that can affect stem cell differentiation and behavior. The stiffness and components of the extracellular microenvironment are critical inducers of stem cell behavior and fate specification by sensing the extracellular matrix (ECM) cues, adjusting the cytoskeleton tension, and delivering external signals to the nucleus. Differentiation of stem cells into ECs using a cocktail of biochemical factors has been performed for decades. However, the effects of mechanical stimuli on endothelial cell differentiation remain poorly understood. This review provides an overview of the methods used to differentiate ECs from stem cells by chemical and mechanical stimuli. We also propose the possibility of a novel EC differentiation strategy using a synthetic and natural extracellular matrix.
Collapse
Affiliation(s)
- Kyung Mu Noh
- Stem Cell Research Institute, T&R Biofab Co. Ltd., Seongnam-si, Republic of Korea
| | - Soon-Jung Park
- Stem Cell Research Institute, T&R Biofab Co. Ltd., Seongnam-si, Republic of Korea
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong-si, Republic of Korea
| | - Seok Yun Jung
- Stem Cell Research Institute, T&R Biofab Co. Ltd., Seongnam-si, Republic of Korea
| |
Collapse
|
32
|
Kim S, Kang GH, Lim KM, Shin Y, Song K, Park S, An J, Kim DY, Shin HC, Cho SG. Thermostable Human Basic Fibroblast Growth Factor (TS-bFGF) Engineered with a Disulfide Bond Demonstrates Superior Culture Outcomes in Human Pluripotent Stem Cell. BIOLOGY 2023; 12:888. [PMID: 37372172 DOI: 10.3390/biology12060888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) can differentiate into various tissues and are an essential source of various disease models and therapeutics. Various growth factors are required in order to culture pluripotent stem cells, among which basic fibroblast growth factor (bFGF) is essential for maintaining stem cell ability. However, bFGF has a short half-life (8 h) under normal mammalian cell culture conditions, and its activity decreases after 72 h, posing a serious problem in the production of high-quality stem cells. Here, we evaluated the various functions of pluripotent stem cells (PSCs) by utilizing an engineered thermostable bFGF (TS-bFGF) that is thermally stable and maintains activity longer under mammalian culture conditions. PSCs cultured with TS-bFGF showed better proliferation, stemness, morphology, and differentiation than cells cultured with wild-type bFGF. In light of the importance of stem cells in a wide range of applications in the medical and biotechnology fields, we anticipate that TS-bFGF, as a thermostable and long-acting bFGF, can play a key role in securing high-quality stem cells through various sets of stem cell culture processes.
Collapse
Affiliation(s)
- Sejong Kim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Geun-Ho Kang
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeokyung Shin
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kwonwoo Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sangrok Park
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jongyub An
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dae Young Kim
- PnP Biopharm Co., Ltd., 1304, Acetechnotower 8-cha, 11 Digital-ro 33-gil, Guro-gu, Seoul 08380, Republic of Korea
| | - Hang-Cheol Shin
- PnP Biopharm Co., Ltd., 1304, Acetechnotower 8-cha, 11 Digital-ro 33-gil, Guro-gu, Seoul 08380, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
33
|
Jiang H, Jiang FX. Human pluripotent stem cell-derived β cells: Truly immature islet β cells for type 1 diabetes therapy? World J Stem Cells 2023; 15:182-195. [PMID: 37180999 PMCID: PMC10173812 DOI: 10.4252/wjsc.v15.i4.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
A century has passed since the Nobel Prize winning discovery of insulin, which still remains the mainstay treatment for type 1 diabetes mellitus (T1DM) to this day. True to the words of its discoverer Sir Frederick Banting, “insulin is not a cure for diabetes, it is a treatment”, millions of people with T1DM are dependent on daily insulin medications for life. Clinical donor islet transplantation has proven that T1DM is curable, however due to profound shortages of donor islets, it is not a mainstream treatment option for T1DM. Human pluripotent stem cell derived insulin-secreting cells, pervasively known as stem cell-derived β cells (SC-β cells), are a promising alternative source and have the potential to become a T1DM treatment through cell replacement therapy. Here we briefly review how islet β cells develop and mature in vivo and several types of reported SC-β cells produced using different ex vivo protocols in the last decade. Although some markers of maturation were expressed and glucose stimulated insulin secretion was shown, the SC-β cells have not been directly compared to their in vivo counterparts, generally have limited glucose response, and are not yet fully matured. Due to the presence of extra-pancreatic insulin-expressing cells, and ethical and technological issues, further clarification of the true nature of these SC-β cells is required.
Collapse
Affiliation(s)
- Helen Jiang
- Sir Charles Gairdner Hospital, University of Western Australia, Perth 6009, Australia
| | - Fang-Xu Jiang
- School of Biomedical Sciences, University of Western Australia, Perth 6009, Australia
- School of Health and Medical Sciences, Edith Cowan University, Perth 6027, Australia
| |
Collapse
|
34
|
Duarte AC, Costa EC, Filipe HAL, Saraiva SM, Jacinto T, Miguel SP, Ribeiro MP, Coutinho P. Animal-derived products in science and current alternatives. BIOMATERIALS ADVANCES 2023; 151:213428. [PMID: 37146527 DOI: 10.1016/j.bioadv.2023.213428] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023]
Abstract
More than fifty years after the 3Rs definition and despite the continuous implementation of regulatory measures, animals continue to be widely used in basic research. Their use comprises not only in vivo experiments with animal models, but also the production of a variety of supplements and products of animal origin for cell and tissue culture, cell-based assays, and therapeutics. The animal-derived products most used in basic research are fetal bovine serum (FBS), extracellular matrix proteins such as Matrigel™, and antibodies. However, their production raises several ethical issues regarding animal welfare. Additionally, their biological origin is associated with a high risk of contamination, resulting, frequently, in poor scientific data for clinical translation. These issues support the search for new animal-free products able to replace FBS, Matrigel™, and antibodies in basic research. In addition, in silico methodologies play an important role in the reduction of animal use in research by refining the data previously to in vitro and in vivo experiments. In this review, we depicted the current available animal-free alternatives in in vitro research.
Collapse
Affiliation(s)
- Ana C Duarte
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal; CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisabete C Costa
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal
| | - Hugo A L Filipe
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal
| | - Sofia M Saraiva
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal
| | - Telma Jacinto
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal
| | - Sónia P Miguel
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal; CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Maximiano P Ribeiro
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal; CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN/IPG - Centro de Potencial e Inovação em Recursos Naturais, Instituto Politécnico da Guarda (CPIRN/IPG), 6300-559 Guarda, Portugal; CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
35
|
Abdal Dayem A, Lee SB, Lim KM, Kim A, Shin HJ, Vellingiri B, Kim YB, Cho SG. Bioactive peptides for boosting stem cell culture platform: Methods and applications. Biomed Pharmacother 2023; 160:114376. [PMID: 36764131 DOI: 10.1016/j.biopha.2023.114376] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Peptides, short protein fragments, can emulate the functions of their full-length native counterparts. Peptides are considered potent recombinant protein alternatives due to their specificity, high stability, low production cost, and ability to be easily tailored and immobilized. Stem cell proliferation and differentiation processes are orchestrated by an intricate interaction between numerous growth factors and proteins and their target receptors and ligands. Various growth factors, functional proteins, and cellular matrix-derived peptides efficiently enhance stem cell adhesion, proliferation, and directed differentiation. For that, peptides can be immobilized on a culture plate or conjugated to scaffolds, such as hydrogels or synthetic matrices. In this review, we assess the applications of a variety of peptides in stem cell adhesion, culture, organoid assembly, proliferation, and differentiation, describing the shortcomings of recombinant proteins and their full-length counterparts. Furthermore, we discuss the challenges of peptide applications in stem cell culture and materials design, as well as provide a brief outlook on future directions to advance peptide applications in boosting stem cell quality and scalability for clinical applications in tissue regeneration.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun Jin Shin
- Department of Ophthalmology, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Young Bong Kim
- Department of Biomedical Science & Engineering, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
36
|
Wang T, Yu T, Tsai CY, Hong ZY, Chao WH, Su YS, Subbiah SK, Renuka RR, Hsu ST, Wu GJ, Higuchi A. Xeno-free culture and proliferation of hPSCs on 2D biomaterials. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:63-107. [PMID: 37678982 DOI: 10.1016/bs.pmbts.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Human pluripotent stem cells (human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs)) have unlimited proliferative potential, whereas adult stem cells such as bone marrow-derived stem cells and adipose-derived stem cells have problems with aging. When hPSCs are intended to be cultured on feeder-free or xeno-free conditions without utilizing mouse embryonic fibroblasts or human fibroblasts, they cannot be cultured on conventional tissue culture polystyrene dishes, as adult stem cells can be cultured but should be cultivated on material surfaces grafted or coated with (a) natural or recombinant extracellular matrix (ECM) proteins, (b) ECM protein-derived peptides and specific synthetic polymer surfaces in xeno-free and/or chemically defined conditions. This review describes current developing cell culture biomaterials for the proliferation of hPSCs while maintaining the pluripotency and differentiation potential of the cells into 3 germ layers. Biomaterials for the cultivation of hPSCs without utilizing a feeder layer are essential to decrease the risk of xenogenic molecules, which contributes to the potential clinical usage of hPSCs. ECM proteins such as human recombinant vitronectin, laminin-511 and laminin-521 have been utilized instead of Matrigel for the feeder-free cultivation of hPSCs. The following biomaterials are also discussed for hPSC cultivation: (a) decellularized ECM, (b) peptide-grafted biomaterials derived from ECM proteins, (c) recombinant E-cadherin-coated surface, (d) polysaccharide-immobilized surface, (e) synthetic polymer surfaces with and without bioactive sites, (f) thermoresponsive polymer surfaces with and without bioactive sites, and (g) synthetic microfibrous scaffolds.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Chang-Yen Tsai
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Zhao-Yu Hong
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Wen-Hui Chao
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Yi-Shuo Su
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Suresh Kumar Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Remya Rajan Renuka
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Shih-Tien Hsu
- Department of Internal Medicine, Landseed International Hospital, Pingjen City, Taoyuan, Taiwan
| | - Gwo-Jang Wu
- Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
37
|
Chien CY, Lin JC, Huang CY, Hsu CY, Yang KC, Chattopadhyay S, Nikoloutsos N, Hsieh PCH, Hu CMJ. In Situ Hydrogelation of Cellular Monolayers Enables Conformal Biomembrane Functionalization for Xeno-Free Feeder Substrate Engineering. Adv Healthc Mater 2023; 12:e2201708. [PMID: 36455286 DOI: 10.1002/adhm.202201708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/14/2022] [Indexed: 12/03/2022]
Abstract
The intricate functionalities of cellular membranes have inspired strategies for deriving and anchoring cell-surface components onto solid substrates for biological studies, biosensor applications, and tissue engineering. However, introducing conformal and right-side-out cell membrane coverage onto planar substrates requires cumbersome protocols susceptible to significant device-to-device variability. Here, a facile approach for biomembrane functionalization of planar substrates is demonstrated by subjecting confluent cellular monolayer to intracellular hydrogel polymerization. The resulting cell-gel hybrid, herein termed GELL (gelated cell), exhibits extraordinary stability and retains the structural integrity, membrane fluidity, membrane protein mobility, and topology of living cells. In assessing the utility of GELL layers as a tissue engineering feeder substrate for stem cell maintenance, GELL feeder prepared from primary mouse embryonic fibroblasts not only preserves the stemness of murine stem cells but also exhibits advantages over live feeder cells owing to the GELL's inanimate, non-metabolizing nature. The preparation of a xeno-free feeder substrate devoid of non-human components is further shown with HeLa cells, and the resulting HeLa GELL feeder effectively sustains the growth and stemness of both murine and human induced pluripotent stem cells. The study highlights a novel bio-functionalization strategy that introduces new opportunities for tissue engineering and other biomedical applications.
Collapse
Affiliation(s)
- Chen-Ying Chien
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jung-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ching-Ying Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chung-Yao Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academic Sinica, Taipei, 11529, Taiwan
| | - Kai-Chieh Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academic Sinica, Taipei, 11529, Taiwan
| | - Saborni Chattopadhyay
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academic Sinica, Taipei, 11529, Taiwan
| | | | | | - Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academic Sinica, Taipei, 11529, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
38
|
Yang T, Wang L, Wu WH, Wei S, Zhang WB. Orchestrating Chemical and Physical Cross-Linking in Protein Hydrogels to Regulate Embryonic Stem Cell Growth. ACS Macro Lett 2023; 12:269-273. [PMID: 36735236 DOI: 10.1021/acsmacrolett.2c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Protein hydrogels are ideal candidates for next-generation biomaterials due to their genetically programmable properties. Herein, we report an entirely protein-based hydrogel as an artificial extracellular matrix (ECM) for regulating the embryonic stem cell growth. A synergy between chemical and physical cross-linking was achieved in one step by SpyTag/SpyCatcher reaction and P zipper association at 37 °C. The hydrogels' stress relaxation behaviors can be tuned across a broad spectrum by single-point mutation on a P zipper. It has been found that faster relaxation can promote the growth of HeLa tumor spheroids and embryonic stem cells, and mechanical regulation of embryonic stem cells occurs via retention of the cells at the G1 phase. The results highlight the promise of genetically encoded protein materials as a platform of artificial ECM for understanding and controlling the complex cell-matrix interactions in a 3D cell culture.
Collapse
Affiliation(s)
- Tingting Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Ling Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Beijing Academy of Artificial Intelligence, Beijing 100084, P. R. China
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery/Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Beijing Academy of Artificial Intelligence, Beijing 100084, P. R. China
| |
Collapse
|
39
|
Wang T, Liu Q, Chang YT, Liu J, Yu T, Maitiruze K, Ban LK, Sung TC, Subbiah SK, Renuka RR, Jen SH, Lee HHC, Higuchi A. Designed peptide-grafted hydrogels for human pluripotent stem cell culture and differentiation. J Mater Chem B 2023; 11:1434-1444. [PMID: 36541288 DOI: 10.1039/d2tb02521c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells (hPSCs) have the ability to differentiate into cells derived from three germ layers and are an attractive cell source for cell therapy in regenerative medicine. However, hPSCs cannot be cultured on conventional tissue culture flasks but can be cultured on biomaterials with specific hPSC integrin interaction sites. We designed hydrogels conjugated with several designed peptides that had laminin-β4 active sites, optimal elasticities and different zeta potentials. A higher expansion fold of hPSCs cultured on the hydrogels was found with the increasing zeta potential of the hydrogels conjugated with designed peptides, where positive amino acid (lysine) insertion into the peptides promoted higher zeta potentials of the hydrogels and higher expansion folds of hPSCs when cultured on the hydrogels using xeno-free protocols. The hPSCs cultured on hydrogels conjugated with the optimal peptides showed a higher expansion fold than those on recombinant vitronectin-coated plates, which are the gold standard of hPSC cultivation dishes. The hPSCs could differentiate into specific cell lineages, such as mesenchymal stem cells (MSCs) and MSC-derived osteoblasts, even after being cultivated on hydrogels conjugated with optimal peptides for long periods of time, such as 10 passages.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| | - Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| | - Yu-Tang Chang
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan.
| | - Jun Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| | - Kailibinuer Maitiruze
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| | - Lee-Kiat Ban
- Department of Surgery, Hsinchu Cathay General Hospital, No. 678, Sec 2, Zhonghua Rd., Hsinchu, 30060, Taiwan
| | - Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| | - Suresh Kumar Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, 173, Agaram Road, Tambaram East, Chennai-73, 600078, India
| | - Remya Rajan Renuka
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, 173, Agaram Road, Tambaram East, Chennai-73, 600078, India
| | - Shih Hsi Jen
- Department of Obstetrics and Gynecology, Taiwan Landseed Hospital, 77, Kuangtai Road, Pingjen City, Taoyuan 32405, Taiwan
| | - Henry Hsin-Chung Lee
- Department of Surgery, Hsinchu Cathay General Hospital, No. 678, Sec 2, Zhonghua Rd., Hsinchu, 30060, Taiwan.,Department of Surgery, Cathay General Hospital, Taipei, 10630, Taiwan. .,Graduate Institute of Translational and Interdisciplinary Medicine, National Central University, No. 300, Jhongda Rd., Jhongli, Taoyuan, 32001, Taiwan
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China. .,Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan. .,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
40
|
Xu W, Gao L, Li W, Wang J, Yue Y, Li X. The adaptation of bovine embryonic stem cells to the changes of feeder layers. In Vitro Cell Dev Biol Anim 2023; 59:85-99. [PMID: 36847888 DOI: 10.1007/s11626-022-00731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/17/2022] [Indexed: 03/01/2023]
Abstract
Although the feeder-free culture system has been established, the microenvironment provided by the feeder cells still possesses a unique advantage in maintaining the long-term stability and the rapid proliferation of pluripotent stem cells (PSCs). The aim of this study is to discover the adaptive ability of PSCs upon changes of feeder layers. In this study, the morphology, pluripotent marker expression, differentiation ability of bovine embryonic stem cells (bESCs) cultured on low-density, or methanol fixed mouse embryonic fibroblasts were examined by immunofluorescent staining, Western blotting, real-time reverse transcription polymerase chain reaction, and RNA-seq. The results showed that the changes of feeder layers did not induce the rapid differentiation of bESCs, while resulting in the differentiation initiation and alteration of pluripotent state of bESCs. More importantly, the expression of endogenous growth factors and extracellular matrix were increased, and the expression of cell adhesion molecules was altered, which indicated that bESCs may compensate some functions of the feeder layers upon its changes. This study shows the PSCs have the self-adaptive ability responded to the feeder layer alteration.
Collapse
Affiliation(s)
- Wenqiang Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, Inner Mongolia, People's Republic of China
| | - Lingna Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Wei Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Yongli Yue
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China.
| | - Xueling Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China.
| |
Collapse
|
41
|
Shen C, Zhang ZJ, Li XX, Huang YP, Wang YX, Zhou H, Xiong L, Wen Y, Zou H, Liu ZT. Intersection of nanomaterials and organoids technology in biomedicine. Front Immunol 2023; 14:1172262. [PMID: 37187755 PMCID: PMC10175666 DOI: 10.3389/fimmu.2023.1172262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Organoids are stem cell-derived, self-organizing, 3D structures. Compared to the conventional 2D cell culture method, 3D cultured organoids contain a variety of cell types that can form functional "micro-organs" and can be used to simulate the occurrence process and physiological pathological state of organ tissues more effectively. Nanomaterials (NMs) are becoming indispensable in the development of novel organoids. Understanding the application of nanomaterials in organoid construction can, therefore, provide researchers with ideas for the development of novel organoids. Here, we discuss the application status of NMs in various organoid culture systems and the research direction of NMs combined with organoids in the biomedical field.
Collapse
Affiliation(s)
- Chen Shen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zi-jian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-xue Li
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun-peng Huang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong-xiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heng Zou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Heng Zou, ; Zhong-tao Liu,
| | - Zhong-tao Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Heng Zou, ; Zhong-tao Liu,
| |
Collapse
|
42
|
Unagolla JM, Jayasuriya AC. Recent advances in organoid engineering: A comprehensive review. APPLIED MATERIALS TODAY 2022; 29:101582. [PMID: 38264423 PMCID: PMC10804911 DOI: 10.1016/j.apmt.2022.101582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Organoid, a 3D structure derived from various cell sources including progenitor and differentiated cells that self-organize through cell-cell and cell-matrix interactions to recapitulate the tissue/organ-specific architecture and function in vitro. The advancement of stem cell culture and the development of hydrogel-based extracellular matrices (ECM) have made it possible to derive self-assembled 3D tissue constructs like organoids. The ability to mimic the actual physiological conditions is the main advantage of organoids, reducing the excessive use of animal models and variability between animal models and humans. However, the complex microenvironment and complex cellular structure of organoids cannot be easily developed only using traditional cell biology. Therefore, several bioengineering approaches, including microfluidics, bioreactors, 3D bioprinting, and organoids-on-a-chip techniques, are extensively used to generate more physiologically relevant organoids. In this review, apart from organoid formation and self-assembly basics, the available bioengineering technologies are extensively discussed as solutions for traditional cell biology-oriented problems in organoid cultures. Also, the natural and synthetic hydrogel systems used in organoid cultures are discussed when necessary to highlight the significance of the stem cell microenvironment. The selected organoid models and their therapeutic applications in drug discovery and disease modeling are also presented.
Collapse
Affiliation(s)
- Janitha M. Unagolla
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo OH, United States
| | - Ambalangodage C. Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo OH, United States
- Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, United States
| |
Collapse
|
43
|
Cesare E, Urciuolo A, Stuart HT, Torchio E, Gesualdo A, Laterza C, Gagliano O, Martewicz S, Cui M, Manfredi A, Di Filippo L, Sabatelli P, Squarzoni S, Zorzan I, Betto RM, Martello G, Cacchiarelli D, Luni C, Elvassore N. 3D ECM-rich environment sustains the identity of naive human iPSCs. Cell Stem Cell 2022; 29:1703-1717.e7. [PMID: 36459970 DOI: 10.1016/j.stem.2022.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/07/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022]
Abstract
The establishment of in vitro naive human pluripotent stem cell cultures opened new perspectives for the study of early events in human development. The role of several transcription factors and signaling pathways have been characterized during maintenance of human naive pluripotency. However, little is known about the role exerted by the extracellular matrix (ECM) and its three-dimensional (3D) organization. Here, using an unbiased and integrated approach combining microfluidic cultures with transcriptional, proteomic, and secretome analyses, we found that naive, but not primed, hiPSC colonies are characterized by a self-organized ECM-rich microenvironment. Based on this, we developed a 3D culture system that supports robust long-term feeder-free self-renewal of naive hiPSCs and also allows direct and timely developmental morphogenesis simply by modulating the signaling environment. Our study opens new perspectives for future applications of naive hiPSCs to study critical stages of human development in 3D starting from a single cell.
Collapse
Affiliation(s)
- Elisa Cesare
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Anna Urciuolo
- University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; Institute of Pediatric Research IRP, Corso Stati Uniti, Padova 35127, Italy; Department of Molecular Medicine, University of Padova, Via G. Colombo 3, 35131 Padova, Italy
| | - Hannah T Stuart
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Erika Torchio
- Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Alessia Gesualdo
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy
| | - Cecilia Laterza
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Onelia Gagliano
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Sebastian Martewicz
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Meihua Cui
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Anna Manfredi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy; Next Generation Diagnostic srl, Pozzuoli, Italy
| | - Lucio Di Filippo
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy; Next Generation Diagnostic srl, Pozzuoli, Italy
| | - Patrizia Sabatelli
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - Unit of Bologna, Bologna, Italy; IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Squarzoni
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - Unit of Bologna, Bologna, Italy; IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Irene Zorzan
- Epigenetics Programme, Babraham Institute, CB22 3AT Cambridge, UK
| | - Riccardo M Betto
- Department of Molecular Medicine, University of Padova, Via G. Colombo 3, 35131 Padova, Italy
| | - Graziano Martello
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35131, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy; Department of Translational Medicine, University of Naples "Federico II", Naples, Italy; School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples "Federico II", Naples, Italy
| | - Camilla Luni
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China; Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, Via Terracini 28, Bologna 40131, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy; University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
44
|
Barnes AM, Holmstoen TB, Bonham AJ, Rowland TJ. Differentiating Human Pluripotent Stem Cells to Cardiomyocytes Using Purified Extracellular Matrix Proteins. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120720. [PMID: 36550926 PMCID: PMC9774171 DOI: 10.3390/bioengineering9120720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) can be differentiated into cardiomyocytes (hESC-CMs and iPSC-CMs, respectively), which hold great promise for cardiac regenerative medicine and disease modeling efforts. However, the most widely employed differentiation protocols require undefined substrates that are derived from xenogeneic (animal) products, contaminating resultant hESC- and iPSC-CM cultures with xenogeneic proteins and limiting their clinical applicability. Additionally, typical hESC- and iPSC-CM protocols produce CMs that are significantly contaminated by non-CMs and that are immature, requiring lengthy maturation procedures. In this review, we will summarize recent studies that have investigated the ability of purified extracellular matrix (ECM) proteins to support hESC- and iPSC-CM differentiation, with a focus on commercially available ECM proteins and coatings to make such protocols widely available to researchers. The most promising of the substrates reviewed here include laminin-521 with laminin-221 together or Synthemax (a synthetic vitronectin-based peptide coating), which both resulted in highly pure CM cultures. Future efforts are needed to determine whether combinations of specific purified ECM proteins or derived peptides could further improve CM maturation and culture times, and significantly improve hESC- and iPSC-CM differentiation protocols.
Collapse
Affiliation(s)
- Ashlynn M. Barnes
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Tessa B. Holmstoen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Andrew J. Bonham
- Department of Chemistry & Biochemistry, Metropolitan State University of Denver, Denver, CO 80217, USA
| | - Teisha J. Rowland
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- Correspondence:
| |
Collapse
|
45
|
Cvekl A, Camerino MJ. Generation of Lens Progenitor Cells and Lentoid Bodies from Pluripotent Stem Cells: Novel Tools for Human Lens Development and Ocular Disease Etiology. Cells 2022; 11:3516. [PMID: 36359912 PMCID: PMC9658148 DOI: 10.3390/cells11213516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
In vitro differentiation of human pluripotent stem cells (hPSCs) into specialized tissues and organs represents a powerful approach to gain insight into those cellular and molecular mechanisms regulating human development. Although normal embryonic eye development is a complex process, generation of ocular organoids and specific ocular tissues from pluripotent stem cells has provided invaluable insights into the formation of lineage-committed progenitor cell populations, signal transduction pathways, and self-organization principles. This review provides a comprehensive summary of recent advances in generation of adenohypophyseal, olfactory, and lens placodes, lens progenitor cells and three-dimensional (3D) primitive lenses, "lentoid bodies", and "micro-lenses". These cells are produced alone or "community-grown" with other ocular tissues. Lentoid bodies/micro-lenses generated from human patients carrying mutations in crystallin genes demonstrate proof-of-principle that these cells are suitable for mechanistic studies of cataractogenesis. Taken together, current and emerging advanced in vitro differentiation methods pave the road to understand molecular mechanisms of cataract formation caused by the entire spectrum of mutations in DNA-binding regulatory genes, such as PAX6, SOX2, FOXE3, MAF, PITX3, and HSF4, individual crystallins, and other genes such as BFSP1, BFSP2, EPHA2, GJA3, GJA8, LIM2, MIP, and TDRD7 represented in human cataract patients.
Collapse
Affiliation(s)
- Aleš Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael John Camerino
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
46
|
Song SL, Li B, Carvalho MR, Wang HJ, Mao DL, Wei JT, Chen W, Weng ZH, Chen YC, Deng CX, Reis RL, Oliveira JM, He YL, Yan LP, Zhang CH. Complex in vitro 3D models of digestive system tumors to advance precision medicine and drug testing: Progress, challenges, and trends. Pharmacol Ther 2022; 239:108276. [DOI: 10.1016/j.pharmthera.2022.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
|
47
|
The Role of Genetically Modified Human Feeder Cells in Maintaining the Integrity of Primary Cultured Human Deciduous Dental Pulp Cells. J Clin Med 2022; 11:jcm11206087. [PMID: 36294410 PMCID: PMC9605397 DOI: 10.3390/jcm11206087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Tissue-specific stem cells exist in tissues and organs, such as skin and bone marrow. However, their pluripotency is limited compared to embryonic stem cells. Culturing primary cells on plastic tissue culture dishes can result in the loss of multipotency, because of the inability of tissue-specific stem cells to survive in feeder-less dishes. Recent findings suggest that culturing primary cells in medium containing feeder cells, particularly genetically modified feeder cells expressing growth factors, may be beneficial for their survival and proliferation. Therefore, the aim of this study was to elucidate the role of genetically modified human feeder cells expressing growth factors in maintaining the integrity of primary cultured human deciduous dental pulp cells. Feeder cells expressing leukemia inhibitory factor, bone morphogenetic protein 4, and basic fibroblast growth factor were successfully engineered, as evidenced by PCR. Co-culturing with mitomycin-C-treated feeder cells enhanced the proliferation of newly isolated human deciduous dental pulp cells, promoted their differentiation into adipocytes and neurons, and maintained their stemness properties. Our findings suggest that genetically modified human feeder cells may be used to maintain the integrity of primary cultured human deciduous dental pulp cells.
Collapse
|
48
|
Lee CH, Hunt D, Roth JG, Chiu CC, Suhar RA, LeSavage BL, Seymour AJ, Lindsay C, Krajina B, Chen YT, Chang KH, Hsieh IC, Chu PH, Wen MS, Heilshorn SC. Tuning pro-survival effects of human induced pluripotent stem cell-derived exosomes using elastin-like polypeptides. Biomaterials 2022; 291:121864. [DOI: 10.1016/j.biomaterials.2022.121864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/03/2022] [Accepted: 10/17/2022] [Indexed: 11/28/2022]
|
49
|
Chen G, Yin S, Zeng H, Li H, Wan X. Regulation of Embryonic Stem Cell Self-Renewal. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081151. [PMID: 36013330 PMCID: PMC9410528 DOI: 10.3390/life12081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Embryonic stem cells (ESCs) are a type of cells capable of self-renewal and multi-directional differentiation. The self-renewal of ESCs is regulated by factors including signaling pathway proteins, transcription factors, epigenetic regulators, cytokines, and small molecular compounds. Similarly, non-coding RNAs, small RNAs, and microRNAs (miRNAs) also play an important role in the process. Functionally, the core transcription factors interact with helper transcription factors to activate the expression of genes that contribute to maintaining pluripotency, while suppressing the expression of differentiation-related genes. Additionally, cytokines such as leukemia suppressor factor (LIF) stimulate downstream signaling pathways and promote self-renewal of ESCs. Particularly, LIF binds to its receptor (LIFR/gp130) to trigger the downstream Jak-Stat3 signaling pathway. BMP4 activates the downstream pathway and acts in combination with Jak-Stat3 to promote pluripotency of ESCs in the absence of serum. In addition, activation of the Wnt-FDZ signaling pathway has been observed to facilitate the self-renewal of ESCs. Small molecule modulator proteins of the pathway mentioned above are widely used in in vitro culture of stem cells. Multiple epigenetic regulators are involved in the maintenance of ESCs self-renewal, making the epigenetic status of ESCs a crucial factor in this process. Similarly, non-coding RNAs and cellular energetics have been described to promote the maintenance of the ESC's self-renewal. These factors regulate the self-renewal and differentiation of ESCs by forming signaling networks. This review focused on the role of major transcription factors, signaling pathways, small molecular compounds, epigenetic regulators, non-coding RNAs, and cellular energetics in ESC's self-renewal.
Collapse
Affiliation(s)
- Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Shasha Yin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, China;
| | - Haisen Li
- School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| |
Collapse
|
50
|
Yasmeen N, Karpinska A, Kalecki J, Kutner W, Kwapiszewska K, Sharma PS. Electrochemically Synthesized Polyacrylamide Gel and Core-Shell Nanoparticles for 3D Cell Culture Formation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32836-32844. [PMID: 35848208 PMCID: PMC9335524 DOI: 10.1021/acsami.2c04904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Biocompatible polyacrylamide gel and core-shell nanoparticles (NPs) were synthesized using a one-step electrochemically initiated gelation. Constant-potential electrochemical decomposing of ammonium persulfate initiated the copolymerization of N-isopropyl acrylamide, methacrylic acid, and N,N'-methylenebisacrylamide monomers. This decomposing potential and monomers' concentrations were optimized to prepare gel NPs and thin gel film-grafted core-shell NPs. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging confirmed the gel NP formation. The lyophilized gel NPs and core-shell NPs were applied to support the three-dimensional (3D) cell culture. In all, core-shell NPs provided superior support for complex 3D tissue structures.
Collapse
Affiliation(s)
- Nabila Yasmeen
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Aneta Karpinska
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jakub Kalecki
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - Karina Kwapiszewska
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piyush S. Sharma
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|