1
|
Somssich M. The Dawn of Plant Molecular Biology: How Three Key Methodologies Paved the Way. Curr Protoc 2022; 2:e417. [PMID: 35441802 DOI: 10.1002/cpz1.417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The adoption of Arabidopsis thaliana in the 1980s as a universal plant model finally enabled researchers to adopt and take full advantage of the molecular biology tools and methods developed in the bacterial and animal fields since the early 1970s. It further brought the plant sciences up to speed with other research fields, which had been employing widely accepted model organisms for decades. In parallel with this major development, the concurrent establishment of the plant transformation methodology and the description of the cauliflower mosaic virus (CaMV) 35S promoter enabled scientists to create robust transgenic plant lines for the first time, thereby providing a valuable tool for studying gene function. The ability to create transgenic plants launched the plant biotechnology sector, with Monsanto and Plant Genetic Systems developing the first herbicide- and pest-tolerant plants, initiating a revolution in the agricultural industry. Here I review the major developments over a less than 10-year span and demonstrate how they complemented each other to trigger a revolution in plant molecular biology and launch an era of unprecedented progress for the whole plant field. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Marc Somssich
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Abstract
Viruses are widely used as vectors for heterologous gene expression in cultured cells or natural hosts, and therefore a large number of viruses with exogenous sequences inserted into their genomes have been engineered. Many of these engineered viruses are viable and express heterologous proteins at high levels, but the inserted sequences often prove to be unstable over time and are rapidly lost, limiting heterologous protein expression. Although virologists are aware that inserted sequences can be unstable, processes leading to insert instability are rarely considered from an evolutionary perspective. Here, we review experimental work on the stability of inserted sequences over a broad range of viruses, and we present some theoretical considerations concerning insert stability. Different virus genome organizations strongly impact insert stability, and factors such as the position of insertion can have a strong effect. In addition, we argue that insert stability not only depends on the characteristics of a particular genome, but that it will also depend on the host environment and the demography of a virus population. The interplay between all factors affecting stability is complex, which makes it challenging to develop a general model to predict the stability of genomic insertions. We highlight key questions and future directions, finding that insert stability is a surprisingly complex problem and that there is need for mechanism-based, predictive models. Combining theoretical models with experimental tests for stability under varying conditions can lead to improved engineering of viral modified genomes, which is a valuable tool for understanding genome evolution as well as for biotechnological applications, such as gene therapy.
Collapse
Affiliation(s)
- Anouk Willemsen
- Laboratory MIVEGEC (UMR CNRS IRD University of Montpellier), Centre National de la Recherche Scientifique (CNRS), 911 Avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Mark P Zwart
- Netherlands Institute of Ecology (NIOO-KNAW), Postbus 50, 6700 AB, Wageningen, The Netherlands
| |
Collapse
|
3
|
Shingu Y, Yokomizo S, Kimura M, Ono Y, Yamaguchi I, Hamamoto H. Conferring cadmium resistance to mature tobacco plants through metal-adsorbing particles of tomato mosaic virus vector. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:281-8. [PMID: 17147634 DOI: 10.1111/j.1467-7652.2006.00180.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Tomato mosaic virus vectors were designed that produced, by a translational readthrough, a fusion protein consisting of coat protein and metal-binding peptide, as a result of which particles were expected to present the metal-binding peptides on their surface. When inoculated in plants, they were expected to replicate and form a metal-adsorbing artificial sink in the cytoplasm, so as to reduce metal toxicity. Vectors were constructed harbouring sequences encoding various lengths of polyhistidine as a metal-binding peptide. One of the vectors, TLRT6His, which contains a 6 x histidine sequence, moved systemically in tobacco plants, and its particles were shown to retain cadmium ions by an in vitro assay. When a toxic amount of cadmium was applied, the toxic effect was much reduced in TLRT6His-inoculated tobacco plants, probably as a result of cadmium adsorption by TLRT6His particles in the cytosol. This shows the possible use of an artificial sink for metal tolerance and the advantage of employing a plant viral vector for phytoremediation.
Collapse
Affiliation(s)
- Yoshinori Shingu
- Environmental Plant Research Group, RIKEN Plant Science Center, Suehiro-cho 1-7-22, Tsurumi, Yokohama, 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Porta C, Lomonossoff GP. Viruses as vectors for the expression of foreign sequences in plants. Biotechnol Genet Eng Rev 2003; 19:245-91. [PMID: 12520880 DOI: 10.1080/02648725.2002.10648031] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Claudine Porta
- Horticulture Research International Wellesbourne, Warwick CV35 9EF, UK.
| | | |
Collapse
|
5
|
Leisner SM, Neher DA. Third position codon composition suggests two classes of genes within the Cauliflower mosaic virus genome. J Theor Biol 2002; 217:195-201. [PMID: 12202113 DOI: 10.1006/jtbi.2002.3023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The translation of viral mRNAs by host ribosomes is essential for infection. Hence, codon usage of virus genes may influence efficiency of infection. In addition, composition of nucleotides in the third position within codons of genes can reflect evolutionary relationships. In this study, third position codon composition was examined for the seven genes of eight Cauliflower mosaic virus isolates. Genes IV-VII had similar codon composition values and were termed Class 1 genes. Genes I-III possessed corresponding codon composition values and were termed Class 2 genes. The codon composition values of Class 1 and genes differed significantly. Neither Class 1 nor Class 2 genes had codon composition values identical to that of the host plant, Arabidopsis thaliana. However, Class 1 genes possessed codon composition values closer to those of the host than Class 2 genes. Examination of the genomes of three Rous sarcoma virus isolates indicated that codon composition values were similar for the gag, pol, and env genes but these genes differed significantly from the src genes. Since codon composition values for Rous sarcoma virus distinguished a "foreign" gene from the rest of the viral genome, it is possible that the Cauliflower mosaic virus genome is composed of genes from two different sources. Others have suggested that Cauliflower mosaic virus evolved in this manner and our data provide support for this hypothesis.
Collapse
Affiliation(s)
- S M Leisner
- Department of Biological Sciences, College of Arts and Sciences, The University of Toledo, Toledo, OH, 43606, USA.
| | | |
Collapse
|
6
|
Kärenlampi S, Schat H, Vangronsveld J, Verkleij JA, van der Lelie D, Mergeay M, Tervahauta AI. Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2000; 107:225-31. [PMID: 15092999 DOI: 10.1016/s0269-7491(99)00141-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/1998] [Accepted: 05/22/1999] [Indexed: 05/20/2023]
Abstract
Metal concentrations in soils are locally quite high, and are still increasing due to many human activities, leading to elevated risk for health and the environment. Phytoremediation may offer a viable solution to this problem, and the approach is gaining increasing interest. Improvement of plants by genetic engineering, i.e. by modifying characteristics like metal uptake, transport and accumulation as well as metal tolerance, opens up new possibilities for phytoremediation. So far, only a few cases have been reported where one or more of these characteristics have been successfully altered; e.g. mercuric ion reduction causing improved resistance and phytoextraction, and metallothionein causing enhanced cadmium tolerance. These, together with other approaches and potentially promising genes for transformation of target plants are discussed.
Collapse
Affiliation(s)
- S Kärenlampi
- Department of Biochemistry and Biotechnology, University of Kuopio, PO Box 1627, FIN-70211, Finland.
| | | | | | | | | | | | | |
Collapse
|
7
|
Kotrba P, Ruml T. Bioremediation of Heavy Metal Pollution Exploiting Constituents, Metabolites and Metabolic Pathways of Livings. A Review. ACTA ACUST UNITED AC 2000. [DOI: 10.1135/cccc20001205] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Removal of heavy metals from the soil and water or their remediation from the waste streams "at source" has been a long-term challenge. During the recent era of environmental protection, the use of microorganisms for the recovery of metals from waste streams as well as employment of plants for landfill applications has generated growing attention. Many studies have demonstrated that both prokaryotes and eukaryotes have the ability to remove metals from contaminated water or waste streams. They sequester metals from soils and sediments or solubilize them to aid their extraction. The proposed microbial processes for bioremediation of toxic metals and radionuclides from waste streams employ living cells and non-living biomass or biopolymers as biosorbents. Microbial biotransformation of metals or metalloids results in an alteration of their oxidation state or in their alkylation and subsequent precipitation or volatilization. Specific metabolic pathways leading to precipitation of heavy metals as metal sulfides, phosphates or carbonates possess significance for possible biotechnology application. Moreover, the possibility of altering the properties of living species used in heavy metal remediation or constructing chimeric organisms possessing desirable features using genetic engineering is now under study in many laboratories. The encouraging evidence as to the usefulness of living organisms and their constituents as well as metabolic pathways for the remediation of metal contamination is reviewed here. A review with 243 references.
Collapse
|
8
|
Bobish J, Leisner S. Novel use of polA bacteria for inserting DNA fragments into Agrobacterium binary vectors. J Microbiol Methods 1997. [DOI: 10.1016/s0167-7012(97)00093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Stomp AM, Han KH, Wilbert S, Gordon MP, Cunningham SD. Genetic strategies for enhancing phytoremediation. Ann N Y Acad Sci 1994; 721:481-91. [PMID: 8010696 DOI: 10.1111/j.1749-6632.1994.tb47418.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- A M Stomp
- Forestry Department, North Carolina State University, Raleigh 27695-8002
| | | | | | | | | |
Collapse
|
10
|
Chapman S, Kavanagh T, Baulcombe D. Potato virus X as a vector for gene expression in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1992; 2:549-57. [PMID: 1344890 DOI: 10.1046/j.1365-313x.1992.t01-24-00999.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The suitability of potato virus X (PVX) as a gene vector in plants was tested by analysis of two viral constructs. In the first, the GUS gene of Escherichia coli was substituted for the viral coat protein gene. In the second, GUS was added into the viral genome coupled to a duplicated copy of the viral promoter for the coat protein mRNA. The viral construct with the substituted coat protein gene accumulated poorly in inoculated protoplasts and failed to spread from the site of infection in plants. These results suggest a role for the viral coat protein in key stages of the viral infection cycle and show that gene replacement constructs are not suitable for the production of PVX-based gene vector. The construct with GUS coupled to the duplicated promoter for coat protein mRNA also accumulated less well in protoplasts than the unmodified PVX, but did infect systemically and directed high level synthesis of GUS in inoculated and systemically infected tissue. Although there was some genome instability in the PVX construct, much of the viral RNA in the systemically infected tissue had retained the foreign gene insertion, especially in infected Nicotiana clevelandii plants. These data point to a general utility of PVX as a vector for unregulated gene expression in plants.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Capsid/genetics
- Codon
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Gene Expression
- Genes, Bacterial
- Genetic Vectors
- Genome, Viral
- Glucuronidase/biosynthesis
- Glucuronidase/genetics
- Molecular Sequence Data
- Oligonucleotide Probes
- Plants/genetics
- Plants, Genetically Modified
- Plants, Toxic
- Potexvirus/genetics
- Potexvirus/physiology
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- RNA, Messenger/metabolism
- RNA, Viral/biosynthesis
- RNA, Viral/metabolism
- Nicotiana/genetics
- Nicotiana/metabolism
- Transfection
Collapse
Affiliation(s)
- S Chapman
- Sainsbury Laboratory, Norwich Research Park, UK
| | | | | |
Collapse
|
11
|
Abstract
The structures of the Cabb-B and CM1841 strains of cauliflower mosaic virus (CaMV) have been solved to about 3 nm resolution from unstained, frozen-hydrated samples that were examined with low-irradiation cryo-electron microscopy and three-dimensional image reconstruction procedures. CaMV is highly susceptible to distortions. Spherical particles, with a maximum diameter of 53.8 nm, are composed of three concentric layers (I-III) of solvent-excluded density that surround a large, solvent-filled cavity (approximately 27 nm dia). The outermost layer (I) contains 72 capsomeric morphological units, with 12 pentavalent pentamers and 60 hexavalent hexamers for a total of 420 subunits (37-42 kDa each) arranged with T = 7 icosahedral symmetry. CaMV is the first example of a T = 7 virus that obeys the rules of stoichiometry proposed for isometric viruses by Caspar and Klug (1962, Cold Spring Harb. Symp. Quant. Biol. 27, 1-24), although the hexameric capsomers exhibit marked departure from the regular sixfold symmetry expected for a structure in which the capsid protein subunits are quasi-equivalently related. The double-stranded DNA genome is distributed in layers II and III along with a portion of the viral protein. The CaMV reconstructions are consistent with the model based on neutron diffraction studies (Kruse et al., 1987, Virology 159, 166-168) and, together, these structural models are discussed in relation to a replication-assembly model (Hull et al., 1987, J. Cell Sci. (Suppl.) 7, 213-229). Remarkable agreement between the reconstructions of CaMV Cabb-B and CM1841 suggests that other strains of CaMV adopt the same basic structure.
Collapse
Affiliation(s)
- R H Cheng
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
12
|
Walden R, Schell J. Techniques in plant molecular biology--progress and problems. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:563-76. [PMID: 2209611 DOI: 10.1111/j.1432-1033.1990.tb19262.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Progress in plant molecular biology has been dependent on efficient methods of introducing foreign DNA into plant cells. Gene transfer into plant cells can be achieved by either direct uptake of DNA or the natural process of gene transfer carried out by the soil bacterium Agrobacterium. Versatile gene-transfer vectors have been developed for use with Agrobacterium and more recently vectors based on the genomes of plant viruses have become available. Using this technology the expression of foreign DNA, the functional analysis of plant DNA sequences, the investigation of the mechanism of viral DNA replication and cell to cell spread, as well as the study of transposition, can be carried out. In addition, the versatility of the gene-transfer vectors is such that they may be used to isolate genes not amenable to isolation using conventional protocols. This review concentrates on these aspects of plant molecular biology and discusses the limitations of the experimental systems that are currently available.
Collapse
Affiliation(s)
- R Walden
- Max-Planck-Institut für Züchtungsforschung, Köln, Federal Republic of Germany
| | | |
Collapse
|
13
|
De Zoeten GA, Penswick JR, Horisberger MA, Ahl P, Schultze M, Hohn T. The expression, localization, and effect of a human interferon in plants. Virology 1989; 172:213-22. [PMID: 2773316 DOI: 10.1016/0042-6822(89)90123-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The ORF II of Cauliflower mosaic virus (CaMV) DNA was replaced with the human IFN alpha D coding sequence to yield a stable CaMV strain designated Ca524i. Inoculation of turnip (Brassica rapa cv "Just Right") with strain Ca524i DNA excised from plasmid pCa524i resulted in the production of biologically active IFN alpha D in infected plants. This was also true for its mutant (Ca562i) where one of the CYS codons was deleted. IFN alpha D produced in planta did not hamper superinfection with a single-stranded (+) sense RNA plant virus, turnip yellow mosaic virus (TYMV). Antibody gold labeling techniques and electron microscopy of infected plants showed that IFN was localized in the CaMV inclusion bodies.
Collapse
|
14
|
Abstract
Three gene constructions based on a mouse metallothionein I gene (mMT-I) were introduced into tobacco using a Ri plasmid vector system to test the effectiveness of animal gene regulatory signals in plant cells. No transcription from the native mouse gene was observed. In plant cells bearing chimeric mMT-I genes in which transcription was driven by the nopaline synthase promoter, neither polyadenylation nor splicing of mMT-I pre-mRNA was observed. Detailed comparisons of mMT-I sequences with those of known plant genes were carried out; slight differences in regions of known consensus sequences may be at least partly responsible for the non-recognition of mMT-I gene regulatory signals in plant cells, though other as yet unidentified, potentially necessary sequences may also be involved.
Collapse
Affiliation(s)
- V Pautot
- Laboratoire de Biologie Cellulaire, INRA-Centre de Versailles, France
| | | | | |
Collapse
|
15
|
|
16
|
Maiti IB, Hunt AG, Wagner GJ. Seed-transmissible expression of mammalian metallothionein in transgenic tobacco. Biochem Biophys Res Commun 1988; 150:640-7. [PMID: 2829879 DOI: 10.1016/0006-291x(88)90440-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A binary plasmid was constructed to contain the mouse metallothionein c-DNA, the constitutive 35S promoter from cauliflower mosaic virus, the polyadenylation signal from the pea rbcS-E9 gene and several selectable markers. The plasmid was transferred to Agrobacterium tumefaciens and the leaf disc method was used to transform tobacco. Callus and shoots were regenerated in the presence of kanamycin and transformed plants were obtained. Southern, Northern and Western blot analysis demonstrated integration and expression of the metallothionein gene in transformed callus and transgenic plants. The gene is transmitted to and expressed in seed derived progeny as a dominant Mendelian trait.
Collapse
Affiliation(s)
- I B Maiti
- Department of Agronomy, University of Kentucky, Lexington 40546-0091
| | | | | |
Collapse
|