1
|
Alford JR, Fowler AC, Wuttke DS, Kerwin BA, Latypov RF, Carpenter JF, Randolph TW. Effect of benzyl alcohol on recombinant human interleukin-1 receptor antagonist structure and hydrogen-deuterium exchange. J Pharm Sci 2011; 100:4215-24. [PMID: 21557223 DOI: 10.1002/jps.22601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/22/2011] [Accepted: 04/18/2011] [Indexed: 11/10/2022]
Abstract
Benzyl alcohol, a preservative commonly added to multidose therapeutic protein formulations, can accelerate aggregation of recombinant human interleukin-1 receptor antagonist (rhIL-1ra). To investigate the interactions between benzyl alcohol and rhIL-1ra, we used nuclear magnetic resonance to observe the effect of benzyl alcohol on the chemical shifts of amide resonances of rhIL-1ra and to measure hydrogen-deuterium exchange rates of individual rhIL-1ra residues. Addition of 0.9% benzyl alcohol caused significant chemical shifts of amide resonances for residues 90-97, suggesting that these solvent-exposed residues participate in the binding of benzyl alcohol. In contrast, little perturbation of exchange rates was observed in the presence of either sucrose or benzyl alcohol.
Collapse
Affiliation(s)
- John R Alford
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309
| | | | | | | | | | | | | |
Collapse
|
2
|
Bai S, Manning MC, Randolph TW, Carpenter JF. BIOTECHNOLOGY: Aggregation of Recombinant Human Botulinum Protein Antigen Serotype C in Varying Solution Conditions: Implications of Conformational Stability for Aggregation Kinetics. J Pharm Sci 2011; 100:836-48. [DOI: 10.1002/jps.22345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/19/2010] [Accepted: 08/13/2010] [Indexed: 11/10/2022]
|
3
|
Chang JY. Conformational Isomers of Denatured and Unfolded Proteins: Methods of Production and Applications. Protein J 2009; 28:44-56. [DOI: 10.1007/s10930-009-9162-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Identification and characterization of a novel cytotoxic protein, parasporin-4, produced by Bacillus thuringiensis A1470 strain. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1387-2656(08)00009-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
5
|
Nigen M, Croguennec T, Madec MN, Bouhallab S. Apo alpha-lactalbumin and lysozyme are colocalized in their subsequently formed spherical supramolecular assembly. FEBS J 2007; 274:6085-93. [PMID: 17970750 DOI: 10.1111/j.1742-4658.2007.06130.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have reported previously that the calcium-depleted form of bovine alpha-lactalbumin (apo alpha-LA) interacts with hen egg-white lysozyme (LYS) to form spherical supramolecular structures. These supramolecular structures contain an equimolar ratio of the two proteins. We further explore here the organization of these structures. The spherical morphology and size of the assembled LYS/apo alpha-LA supramolecular structures were demonstrated using confocal scanning laser microscopy and scanning electron microscopy. From confocal scanning laser microscopy experiments with labelled proteins, it was found that LYS and apo alpha-LA were perfectly colocalized and homogeneously distributed throughout the entire three-dimensional structure of the microspheres formed. The spatial colocalization of the two proteins was also confirmed by the occurrence of a fluorescence resonance energy transfer phenomenon between labelled apo alpha-LA and labelled LYS. Polarized light microscopy analysis revealed that the microspheres formed differ from spherulites, a higher order semicrystalline structure. As the molecular mechanism initiating the formation of these microspheres is still unknown, we discuss the potential involvement of a LYS/apo alpha-LA heterodimer as a starting block for such a supramolecular assembly.
Collapse
|
6
|
Li S, Bai JH, Park YD, Zhou HM. Capture of monomeric refolding intermediate of human muscle creatine kinase. Protein Sci 2006; 15:171-81. [PMID: 16373479 PMCID: PMC2242377 DOI: 10.1110/ps.051738406] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Human muscle creatine kinase (CK) is an enzyme that plays an important physiological role in the energy metabolism of humans. It also serves as a typical model for studying refolding of proteins. A study of the refolding and reactivation process of guanidine chloride-denatured human muscle CK is described in the present article. The results show that the refolding process can be divided into fast and slow folding phases and that an aggregation process competes with the proper refolding process at high enzyme concentration and high temperature. An intermediate in the early stage of refolding was captured by specific protein molecules: the molecular chaperonin GroEL and alpha(s)-casein. This intermediate was found to be a monomer, which resembles the "molten globule" state in the CK folding pathway. To our knowledge, this is the first monomeric intermediate captured during refolding of CK. We propose that aggregation is caused by interaction between such monomeric intermediates. Binding of GroEL with this intermediate prevents formation of aggregates by decreasing the concentration of free monomeric intermediates, whereas binding of alpha(s)-casein with this intermediate induces more aggregation.
Collapse
Affiliation(s)
- Sen Li
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, PR China.
| | | | | | | |
Collapse
|
7
|
Okumura S, Saitoh H, Wasano N, Katayama H, Higuchi K, Mizuki E, Inouye K. Efficient solubilization, activation, and purification of recombinant Cry45Aa of Bacillus thuringiensis expressed as inclusion bodies in Escherichia coli. Protein Expr Purif 2005; 47:144-51. [PMID: 16307894 DOI: 10.1016/j.pep.2005.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 10/07/2005] [Accepted: 10/07/2005] [Indexed: 11/30/2022]
Abstract
A cytotoxic protein Cry45Aa of Bacillus thuringiensis expressed as inclusion bodies in Escherichia coli was solubilized in 10 mM HCl. Protein concentration of saturated solution of the recombinant Cry45Aa in 10 mM HCl was about 25 times higher than that in the buffer of previous method (in 50 mM sodium carbonate buffer, pH 10.5, containing 1 mM EDTA, and 10 mM dithiothreitol). The Cry45Aa solubilized in the acidic solution was activated by pepsin as an alternative to proteinase K in the previous method. Cytotoxic activity against CACO-2 cells of the pepsin-treated Cry45Aa was almost identical to the proteinase K-treated protein. The pepsin-treated Cry45Aa was purified by cation-exchange chromatography. The concentration of the purified protein was 539 microg/ml, which was 27-fold higher than that of the activated Cry45Aa by the previously method. The cytotoxic activity of the purified protein was stable in broad pH region (pH 2.0-11.0) for 3 days, and 97% cytotoxic activity remained after incubation at 30 degrees C for 360 min.
Collapse
Affiliation(s)
- Shiro Okumura
- Fukuoka Industrial Technology Centre, Kurume, Fukuoka 839-0861, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Wang W. Protein aggregation and its inhibition in biopharmaceutics. Int J Pharm 2005; 289:1-30. [PMID: 15652195 DOI: 10.1016/j.ijpharm.2004.11.014] [Citation(s) in RCA: 687] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 08/20/2004] [Accepted: 11/12/2004] [Indexed: 12/21/2022]
Abstract
Protein aggregation is arguably the most common and troubling manifestation of protein instability, encountered in almost all stages of protein drug development. Protein aggregation, along with other physical and/or chemical instabilities of proteins, remains to be one of the major road barriers hindering rapid commercialization of potential protein drug candidates. Although a variety of methods have been used/designed to prevent/inhibit protein aggregation, the end results are often unsatisfactory for many proteins. The limited success is partly due to our lack of a clear understanding of the protein aggregation process. This article intends to discuss protein aggregation and its related mechanisms, methods characterizing protein aggregation, factors affecting protein aggregation, and possible venues in aggregation prevention/inhibition in various stages of protein drug development.
Collapse
Affiliation(s)
- Wei Wang
- Biotechnology Division, Bayer HealthCare, 800 Dwight Way, Berkeley, CA 94701, USA.
| |
Collapse
|
9
|
Shin I, Wachtel E, Roth E, Bon C, Silman I, Weiner L. Thermal denaturation of Bungarus fasciatus acetylcholinesterase: Is aggregation a driving force in protein unfolding? Protein Sci 2002; 11:2022-32. [PMID: 12142456 PMCID: PMC2373691 DOI: 10.1110/ps.0205102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A monomeric form of acetylcholinesterase from the venom of Bungarus fasciatus is converted to a partially unfolded molten globule species by thermal inactivation, and subsequently aggregates rapidly. To separate the kinetics of unfolding from those of aggregation, single molecules of the monomeric enzyme were encapsulated in reverse micelles of Brij 30 in 2,2,4-trimethylpentane, or in large unilamellar vesicles of egg lecithin/cholesterol at various protein/micelle (vesicle) ratios. The first-order rate constant for thermal inactivation at 45 degrees C, of single molecules entrapped within the reverse micelles (0.031 min(-1)), was higher than in aqueous solution (0.007 min(-1)) or in the presence of normal micelles (0.020 min(-1)). This clearly shows that aggregation does not provide the driving force for thermal inactivation of BfAChE. Within the large unilamellar vesicles, at average protein/vesicle ratios of 1:1 and 10:1, the first-order rate constants for thermal inactivation of the encapsulated monomeric acetylcholinesterase, at 53 degrees C, were 0.317 and 0.342 min(-1), respectively. A crosslinking technique, utilizing the photosensitive probe, hypericin, showed that thermal denaturation produces a distribution of species ranging from dimers through to large aggregates. Consequently, at a protein/vesicle ratio of 10:1, aggregation can occur upon thermal denaturation. Thus, these experiments also demonstrate that aggregation does not drive the thermal unfolding of Bungarus fasciatus acetylcholinesterase. Our experimental approach also permitted monitoring of recovery of enzymic activity after thermal denaturation in the absence of a competing aggregation process. Whereas no detectable recovery of enzymic activity could be observed in aqueous solution, up to 23% activity could be obtained for enzyme sequestered in the reverse micelles.
Collapse
Affiliation(s)
- I Shin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Protein folding is a topic of fundamental interest since it concerns the mechanisms by which the genetic message is translated into the three-dimensional and functional structure of proteins. In these post-genomic times, the knowledge of the fundamental principles are required in the exploitation of the information contained in the increasing number of sequenced genomes. Protein folding also has practical applications in the understanding of different pathologies and the development of novel therapeutics to prevent diseases associated with protein misfolding and aggregation. Significant advances have been made ranging from the Anfinsen postulate to the "new view" which describes the folding process in terms of an energy landscape. These new insights arise from both theoretical and experimental studies. The problem of folding in the cellular environment is briefly discussed. The modern view of misfolding and aggregation processes that are involved in several pathologies such as prion and Alzheimer diseases. Several approaches of structure prediction, which is a very active field of research, are described.
Collapse
Affiliation(s)
- Jeannine M Yon
- Institut de Biochimie Biophysique Moléculaire et Cellulaire, UMR Centre National de la Recherche Scientifique, Université de Paris-Sud, Orsay, France.
| |
Collapse
|
11
|
Ou WB, Luo W, Park YD, Zhou HM. Chaperone-like activity of peptidyl-prolyl cis-trans isomerase during creatine kinase refolding. Protein Sci 2001; 10:2346-53. [PMID: 11604540 PMCID: PMC2374073 DOI: 10.1110/ps.23301] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2001] [Revised: 08/09/2001] [Accepted: 08/09/2001] [Indexed: 10/14/2022]
Abstract
Porcine kidney 18 kD peptidyl-prolyl cis-trans isomerase (PPIase) belongs to the cyclophilin family that is inhibited by the immunosuppressive drug cyclosporin A. The chaperone activity of PPIase was studied using inactive, active, and alkylated PPIase during rabbit muscle creatine kinase (CK) refolding. The results showed that low concentration inactive or active PPIase was able to improve the refolding yields, while high concentration PPIase decreased the CK reactivation yields. Aggregation was inhibited by inactive or active PPIase, and completely suppressed at 32 or 80 times the CK concentration (2.7 microM). However, alkylated PPIase was not able to prevent CK aggregation. In addition, the ability of inactive PPIase to affect CK reactivation and prevent CK aggregation was weaker than that of active PPIase. These results indicate that PPIase interacted with the early folding intermediates of CK, thus preventing their aggregation in a concentration-dependent manner. PPIase exhibited chaperone-like activity during CK refolding. The results also suggest that the isomerase activity of PPIase was independent of the chaperone activity, and that the proper molar ratio was important for the chaperone activity of PPIase. The cysteine residues of PPIase may be a peptide binding site, and may be an essential group for the chaperone function.
Collapse
Affiliation(s)
- W B Ou
- Department of Biological Science and Biotechnology, Tsinghua University, Beijing 100084, PR China
| | | | | | | |
Collapse
|
12
|
King LS, Berg M, Chevalier M, Carey A, Elguindi EC, Blond SY. Isolation, expression, and characterization of fully functional nontoxic BiP/GRP78 mutants. Protein Expr Purif 2001; 22:148-58. [PMID: 11388813 DOI: 10.1006/prep.2001.1424] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian BiP/GRP78 and Escherichia coli DnaK belong to the highly conserved hsp70 family and function as molecular chaperones in the endoplasmic reticulum or the cytosol, respectively. Induction of murine BiP/GRP78 expression in E. coli leads to growth arrest and cell death, independent of the bacterial strain and vector used. Analysis of various BiP constructs and mutants shows that the dominant-lethal phenotype is induced specifically by the expression of the 13.7-kDa C-terminal domain and abolished by a single substitution in that region. Deletion of that region also results in nontoxic gene products that can be overexpressed and purified to homogeneity. The nontoxic mutants are highly expressed in E. coli, representing up to 20% of the soluble fraction. They are catalytically active, depolymerize upon binding ATP or synthetic peptide, and interact with the J-domain of the DnaJ-like accessory protein, MTJ1, with near wild-type affinity. Our data indicate that the cytotoxic effect encountered during overexpression of recombinant proteins can be caused by a single domain and can be alleviated by a specific mutation or deletion in that region without altering the catalytic properties of the enzyme.
Collapse
Affiliation(s)
- L S King
- Center for Pharmaceutical Biotechnology, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, College of Pharmacy, Molecular Biology Research Building, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | | | | | |
Collapse
|
13
|
Carrió MM, Corchero JL, Villaverde A. Dynamics of in vivo protein aggregation: building inclusion bodies in recombinant bacteria. FEMS Microbiol Lett 1998; 169:9-15. [PMID: 9851031 DOI: 10.1111/j.1574-6968.1998.tb13292.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Time-dependent aggregation of a plasmid-encoded beta-galactosidase fusion protein, VP1LAC, has been carefully monitored during its high-rate synthesis in Escherichia coli. Immediately after recombinant gene induction, the full-length form of the protein steadily accumulates into rapidly growing cytoplasmic inclusion bodies. Their volume increases during at least 5 h at a rate of 0.4 micron3 h-1, while the average density remains constant. Protein VP1LAC accounts for about 90% of the aggregated protein throughout the building process. Minor components, such as DnaK and GroEL chaperones, have been identified in variable, but low concentrations. The homogeneous distribution of inclusion bodies among the cell population and the coexistence of large, still growing bodies with newly appearing aggregates indicate that the aggregation cores are mutually exclusive, this fact being a main determinant of the in vivo dynamics of protein aggregation.
Collapse
Affiliation(s)
- M M Carrió
- Institut de Biologia Fonamental, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
14
|
Kendrick BS, Carpenter JF, Cleland JL, Randolph TW. A transient expansion of the native state precedes aggregation of recombinant human interferon-gamma. Proc Natl Acad Sci U S A 1998; 95:14142-6. [PMID: 9826667 PMCID: PMC24340 DOI: 10.1073/pnas.95.24.14142] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aggregation of proteins, even under conditions favoring the native state, is a ubiquitous problem in biotechnology and biomedical engineering. Providing a mechanistic basis for the pathways that lead to aggregation should allow development of rational approaches for its prevention. We have chosen recombinant human interferon-gamma (rhIFN-gamma) as a model protein for a mechanistic study of aggregation. In the presence of 0.9 M guanidinium hydrochloride, rhIFN-gamma aggregates with first order kinetics, a process that is inhibited by addition of sucrose. We describe a pathway that accounts for both the observed first-order aggregation of rhIFN-gamma and the effect of sucrose. In this pathway, aggregation proceeds through a transient expansion of the native state. Sucrose shifts the equilibrium within the ensemble of rhIFN-gamma native conformations to favor the most compact native species over more expanded ones, thus stabilizing rhIFN-gamma against aggregation. This phenomenon is attributed to the preferential exclusion of sucrose from the protein surface. In addition, kinetic analysis combined with solution thermodynamics shows that only a small (9%) expansion surface area is needed to form the transient native state that precedes aggregation. The approaches used here link thermodynamics and aggregation kinetics to provide a powerful tool for understanding both the pathway of protein aggregation and the rational use of excipients to inhibit the process.
Collapse
Affiliation(s)
- B S Kendrick
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | |
Collapse
|
15
|
Abstract
Expression of recombinant proteins as inclusion bodies in bacteria is one of the most efficient ways to produce cloned proteins, as long as the inclusion body protein can be successfully refolded. Aggregation is the leading cause of decreased refolding yields. Developments during the past year have advanced our understanding of the mechanism of aggregation in in vitro protein folding. New additives to prevent aggregation have been added to a growing list. A wealth of literature on the role of chaperones and foldases in in vivo protein folding has triggered the development of new additives and processes that mimic chaperone activity in vitro.
Collapse
|