1
|
Lemoine S, Courbebaisse M. Petits ARN interférents : applications potentielles pour les néphrologues Small interfering RNA: potential applications for nephrologists. Nephrol Ther 2022; 18:6S1-6S6. [PMID: 36585119 DOI: 10.1016/s1769-7255(22)00646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Small interfering RNA (siRNAs) are double-stranded RNAs of around 20 base pairs in length that trigger RNAi machinery, which promotes degradation of a target mRNA avoiding protein translation. SiRNAs are liver-targeted, using tris N-acetylgalactosamine (GalNAc) as the targeting ligand. This discovery received the Nobel Prize for medicine and physiology in 2006 and lead to substantial therapeutic advances. Application field and development of these siRNA has been very fast. Indeed, patisiran has been released in 2018 for hereditary transthyretin amyloidosis. This first treatment showed the security and efficacy of such a product. Since, treatments have been developed for acute hepatic porphyria and primary hyperoxaluria. The current pipeline for new siRNA development is ambitious; clinical trial are ongoing in nephrology, as in the IgA nephropathy. Frequent diseases are also targeted such as hypertension or hypercholesterolemia. © 2022 Published by Elsevier Masson SAS on behalf of Société francophone de néphrologie, dialyse et transplantation.
Collapse
Affiliation(s)
- Sandrine Lemoine
- Service de néphrologie et d'exploration fonctionnelle rénale, centre de référence maladies rénales rares Néphrogones, Hospices civils de Lyon, université de Lyon, France.
| | - Marie Courbebaisse
- Service de physiologie, hôpital européen Georges-Pompidou, AP-HP, INSERM U1151, université de Paris, Paris, France
| |
Collapse
|
2
|
Dong X, Zheng W. Cheminformatics Modeling of Gene Silencing for Both Natural and Chemically Modified siRNAs. Molecules 2022; 27:6412. [PMID: 36234948 PMCID: PMC9570765 DOI: 10.3390/molecules27196412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
In designing effective siRNAs for a specific mRNA target, it is critically important to have predictive models for the potency of siRNAs. None of the published methods characterized the chemical structures of individual nucleotides constituting a siRNA molecule; therefore, they cannot predict the potency of gene silencing by chemically modified siRNAs (cm-siRNA). We propose a new approach that can predict the potency of gene silencing by cm-siRNAs, which characterizes each nucleotide (NT) using 12 BCUT cheminformatics descriptors describing its charge distribution, hydrophobic and polar properties. Thus, a 21-NT siRNA molecule is described by 252 descriptors resulting from concatenating all the BCUT values of its composing nucleotides. Partial Least Square is employed to develop statistical models. The Huesken data (2431 natural siRNA molecules) were used to perform model building and evaluation for natural siRNAs. Our results were comparable with or superior to those from Huesken's algorithm. The Bramsen dataset (48 cm-siRNAs) was used to build and test the models for cm-siRNAs. The predictive r2 of the resulting models reached 0.65 (or Pearson r values of 0.82). Thus, this new method can be used to successfully model gene silencing potency by both natural and chemically modified siRNA molecules.
Collapse
Affiliation(s)
| | - Weifan Zheng
- BRITE Institute and Department of Pharmaceutical Sciences, College of Health and Sciences (CHAS), North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
3
|
Mitra J, Kodavati M, Provasek VE, Rao KS, Mitra S, Hamilton DJ, Horner PJ, Vahidy FS, Britz GW, Kent TA, Hegde ML. SARS-CoV-2 and the central nervous system: Emerging insights into hemorrhage-associated neurological consequences and therapeutic considerations. Ageing Res Rev 2022; 80:101687. [PMID: 35843590 PMCID: PMC9288264 DOI: 10.1016/j.arr.2022.101687] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to impact our lives by causing widespread illness and death and poses a threat due to the possibility of emerging strains. SARS-CoV-2 targets angiotensin-converting enzyme 2 (ACE2) before entering vital organs of the body, including the brain. Studies have shown systemic inflammation, cellular senescence, and viral toxicity-mediated multi-organ failure occur during infectious periods. However, prognostic investigations suggest that both acute and long-term neurological complications, including predisposition to irreversible neurodegenerative diseases, can be a serious concern for COVID-19 survivors, especially the elderly population. As emerging studies reveal sites of SARS-CoV-2 infection in different parts of the brain, potential causes of chronic lesions including cerebral and deep-brain microbleeds and the likelihood of developing stroke-like pathologies increases, with critical long-term consequences, particularly for individuals with neuropathological and/or age-associated comorbid conditions. Our recent studies linking the blood degradation products to genome instability, leading to cellular senescence and ferroptosis, raise the possibility of similar neurovascular events as a result of SARS-CoV-2 infection. In this review, we discuss the neuropathological consequences of SARS-CoV-2 infection in COVID survivors, focusing on possible hemorrhagic damage in brain cells, its association to aging, and the future directions in developing mechanism-guided therapeutic strategies.
Collapse
Affiliation(s)
- Joy Mitra
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Manohar Kodavati
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Vincent E Provasek
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; College of Medicine, Texas A&M University, College Station, TX, USA
| | - K S Rao
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation Deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh 522502, India
| | - Sankar Mitra
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Dale J Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA
| | - Philip J Horner
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA
| | - Farhaan S Vahidy
- Center for Outcomes Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Gavin W Britz
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, USA
| | - Muralidhar L Hegde
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Cornell Medical College, New York, USA.
| |
Collapse
|
4
|
Bocos-Asenjo IT, Niño-Sánchez J, Ginésy M, Diez JJ. New Insights on the Integrated Management of Plant Diseases by RNA Strategies: Mycoviruses and RNA Interference. Int J Mol Sci 2022; 23:9236. [PMID: 36012499 PMCID: PMC9409477 DOI: 10.3390/ijms23169236] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
RNA-based strategies for plant disease management offer an attractive alternative to agrochemicals that negatively impact human and ecosystem health and lead to pathogen resistance. There has been recent interest in using mycoviruses for fungal disease control after it was discovered that some cause hypovirulence in fungal pathogens, which refers to a decline in the ability of a pathogen to cause disease. Cryphonectria parasitica, the causal agent of chestnut blight, has set an ideal model of management through the release of hypovirulent strains. However, mycovirus-based management of plant diseases is still restricted by limited approaches to search for viruses causing hypovirulence and the lack of protocols allowing effective and systemic virus infection in pathogens. RNA interference (RNAi), the eukaryotic cell system that recognizes RNA sequences and specifically degrades them, represents a promising. RNA-based disease management method. The natural occurrence of cross-kingdom RNAi provides a basis for host-induced gene silencing, while the ability of most pathogens to uptake exogenous small RNAs enables the use of spray-induced gene silencing techniques. This review describes the mechanisms behind and the potential of two RNA-based strategies, mycoviruses and RNAi, for plant disease management. Successful applications are discussed, as well as the research gaps and limitations that remain to be addressed.
Collapse
Affiliation(s)
- Irene Teresa Bocos-Asenjo
- Department of Plant Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
- iuFOR-Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain
| | - Jonatan Niño-Sánchez
- Department of Plant Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
- iuFOR-Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain
| | - Mireille Ginésy
- Department of Plant Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
- iuFOR-Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain
| | - Julio Javier Diez
- Department of Plant Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
- iuFOR-Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain
| |
Collapse
|
5
|
de Brito e Cunha D, Frederico ABT, Azamor T, Melgaço JG, da Costa Neves PC, Bom APDA, Tilli TM, Missailidis S. Biotechnological Evolution of siRNA Molecules: From Bench Tool to the Refined Drug. Pharmaceuticals (Basel) 2022; 15:ph15050575. [PMID: 35631401 PMCID: PMC9146980 DOI: 10.3390/ph15050575] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
The depth and versatility of siRNA technologies enable their use in disease targets that are undruggable by small molecules or that seek to achieve a refined turn-off of the genes for any therapeutic area. Major extracellular barriers are enzymatic degradation of siRNAs by serum endonucleases and RNAases, renal clearance of the siRNA delivery system, the impermeability of biological membranes for siRNA, activation of the immune system, plasma protein sequestration, and capillary endothelium crossing. To overcome the intrinsic difficulties of the use of siRNA molecules, therapeutic applications require nanometric delivery carriers aiming to protect double-strands and deliver molecules to target cells. This review discusses the history of siRNAs, siRNA design, and delivery strategies, with a focus on progress made regarding siRNA molecules in clinical trials and how siRNA has become a valuable asset for biopharmaceutical companies.
Collapse
Affiliation(s)
- Danielle de Brito e Cunha
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Ana Beatriz Teixeira Frederico
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Tamiris Azamor
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Juliana Gil Melgaço
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Patricia Cristina da Costa Neves
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Ana Paula Dinis Ano Bom
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Tatiana Martins Tilli
- Translational Oncology Platform, Center for Technological Development in Health, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil
- Laboratory of Cardiovascular Research, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil
- Correspondence: ; Tel.: +55-21-2562-1312
| | - Sotiris Missailidis
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| |
Collapse
|
6
|
Niu D, Hamby R, Sanchez JN, Cai Q, Yan Q, Jin H. RNAs - a new frontier in crop protection. Curr Opin Biotechnol 2021; 70:204-212. [PMID: 34217122 PMCID: PMC8957476 DOI: 10.1016/j.copbio.2021.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022]
Abstract
Small RNA (sRNA)-mediated RNA interference (RNAi) is a regulatory mechanism conserved in almost all eukaryotes. sRNAs play a critical role in host pathogen interactions either endogenously or by traveling between the interacting organisms and inducing 'cross-Kingdom RNAi' in the counterparty. Cross-kingdom RNAi is the mechanistic basis of host-induced gene silencing (HIGS), which relies on genetically expressing pathogen-gene targeting RNAs in crops, and has been successfully utilized against both microbial pathogens and pests. HIGS is limited by the need to produce genetically engineered crops. Recent studies have demonstrated that double-stranded RNAs and sRNAs can be efficiently taken up by many fungal pathogens, and induce gene silencing in fungal cells. This mechanism, termed 'environmental RNAi', allows direct application of pathogen-gene targeting RNAs onto crops to silence fungal virulence-related genes for plant protection. In this review, we will focus on how we can leverage cross-kingdom RNAi and environmental RNAi for crop disease control.
Collapse
Affiliation(s)
- Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Rachael Hamby
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Jonatan Nino Sanchez
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qin Yan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hailing Jin
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
7
|
Bi D, Yao J, Wang Y, Qin G, Zhang Y, Wang Y, Zhao J. CRISPR/Cas13d-mediated efficient KDM5B mRNA knockdown in porcine somatic cells and parthenogenetic embryos. Reproduction 2021; 162:149-160. [PMID: 34096883 PMCID: PMC8284906 DOI: 10.1530/rep-21-0053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022]
Abstract
An efficient mRNA knockdown strategy is needed to explore gene function in cells and embryos, especially to understand the process of maternal mRNA decay during early embryo development. Cas13, a novel RNA-targeting CRISPR effector protein, could bind and cleave complementary single-strand RNA, which has been employed for mRNA knockdown in mouse and human cells and RNA-virus interference in plants. Cas13 has not yet been reported to be used in pigs. In the current study, we explored the feasibility of CRISPR/Cas13d-mediated endogenous RNA knockdown in pigs. KDM5B, a histone demethylase of H3K4me3, was downregulated at the transcriptional level by 50% with CRISPR/Cas13d in porcine fibroblast cells. Knockdown of KDM5B-induced H3K4me3 expression and decreased the abundance of H3K27me3, H3K9me3, H3K4ac, H4K8ac, and H4K12ac. These changes affected cell proliferation and cell cycle. Furthermore, stable integration of the CRISPR/Cas13d system into the porcine genome resulted in the continuous expression of Cas13d and persistent knockdown of KDM5B. Finally, the RNA-targeting potential of Cas13d was further validated in porcine parthenogenetic embryos. By microinjection of Cas13d mRNA and gRNA targeting KDM5B into porcine oocytes, the expression of KDM5B was downregulated, the abundance of H3K4me3 increased as expected, and the expression of embryonic development-related genes was changed accordingly. These results indicate that CRISPR/Cas13d provides an easily programmable platform for spatiotemporal transcriptional manipulation in pigs.
Collapse
Affiliation(s)
- Dengfeng Bi
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Jing Yao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guosong Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yunting Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanfang Wang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianguo Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Cao C, Cai Z, Xiao X, Rao J, Chen J, Hu N, Yang M, Xing X, Wang Y, Li M, Zhou B, Wang X, Wang J, Xue Y. The architecture of the SARS-CoV-2 RNA genome inside virion. Nat Commun 2021; 12:3917. [PMID: 34168138 PMCID: PMC8225788 DOI: 10.1038/s41467-021-22785-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/30/2021] [Indexed: 02/08/2023] Open
Abstract
SARS-CoV-2 carries the largest single-stranded RNA genome and is the causal pathogen of the ongoing COVID-19 pandemic. How the SARS-CoV-2 RNA genome is folded in the virion remains unknown. To fill the knowledge gap and facilitate structure-based drug development, we develop a virion RNA in situ conformation sequencing technology, named vRIC-seq, for probing viral RNA genome structure unbiasedly. Using vRIC-seq data, we reconstruct the tertiary structure of the SARS-CoV-2 genome and reveal a surprisingly "unentangled globule" conformation. We uncover many long-range duplexes and higher-order junctions, both of which are under purifying selections and contribute to the sequential package of the SARS-CoV-2 genome. Unexpectedly, the D614G and the other two accompanying mutations may remodel duplexes into more stable forms. Lastly, the structure-guided design of potent small interfering RNAs can obliterate the SARS-CoV-2 in Vero cells. Overall, our work provides a framework for studying the genome structure, function, and dynamics of emerging deadly RNA viruses.
Collapse
Affiliation(s)
- Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Xiao
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian Rao
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Juan Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Naijing Hu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Minnan Yang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaorui Xing
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yongle Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Manman Li
- School of Life Sciences, Henan Normal University, Xinxiang, China
| | - Bing Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianwei Wang
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Li L, Zhao W. The mutual regulatory loop between TPTEP1 and miR-1303 in leukemogenesis of acute myeloid leukemia. Cancer Cell Int 2021; 21:260. [PMID: 33985519 PMCID: PMC8117550 DOI: 10.1186/s12935-021-01966-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/30/2021] [Indexed: 02/08/2023] Open
Abstract
Background Non-coding RNAs (ncRNAs) have been identified as key regulators during the pathogenesis and development of cancers. However, most of ncRNAs have never been explored in acute myeloid leukemia (AML). Methods Gene expression was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Functional assays were performed to assess the cellular processes in AML cells. The relationship between genes was verified by means of a series of mechanism assays. Results Transmembrane phosphatase with tensin homology pseudogene 1 (TPTEP1) was notably downregulated in AML cells, and functionally acted as a proliferation-inhibitor. Additionally, TPTEP1 suppressed AML cell growth by inactivating c-Jun N-terminal kinase (JNK)/c-JUN signaling pathway. MicroRNA (MiR)-1303, as an oncogene, was predicted and validated as a target of c-JUN in AML cells. Also, TPTEP1 interacted with miR-1303 and they were mutually silenced by each other in AML cells. Furthermore, the effect of TPTEP1 overexpression on AML cell proliferation was counteracted under miR-1303 upregulation. Conclusion Our findings unmasked a feedback loop of TPTEP1/JNK/c-JUN/miR-1303 axis in AML cells, suggesting TPTEP1 and miR-1303 as potential targets for developing therapeutic strategies for AML patients. ![]()
Collapse
Affiliation(s)
- Li Li
- Department of Lymphoma, Sichuan Cancer Hospital & Institute, Sichun Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chendu, 610041, Sichuan, China
| | - Weidong Zhao
- Food Nutrition Center, West China Hospital, Sichun University, No.37, Guoxue Xiang, Wuhou District, Chendu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Hasan M, Ashik AI, Chowdhury MB, Tasnim AT, Nishat ZS, Hossain T, Ahmed S. Computational prediction of potential siRNA and human miRNA sequences to silence orf1ab associated genes for future therapeutics against SARS-CoV-2. INFORMATICS IN MEDICINE UNLOCKED 2021; 24:100569. [PMID: 33846694 PMCID: PMC8028608 DOI: 10.1016/j.imu.2021.100569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) is an ongoing pandemic caused by an RNA virus termed as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). SARS-CoV-2 possesses an almost 30kbp long genome. The genome contains open-reading frame 1ab (ORF1ab) gene, the largest one of SARS-CoV-2, encoding polyprotein PP1ab and PP1a responsible for viral transcription and replication. Several vaccines have already been approved by the respective authorities over the world to develop herd immunity among the population. In consonance with this effort, RNA interference (RNAi) technology holds the possibility to strengthen the fight against this virus. Here, we have implemented a computational approach to predict potential short interfering RNAs including small interfering RNAs (siRNAs) and microRNAs (miRNAs), which are presumed to be intrinsically active against SARS-CoV-2. In doing so, we have screened miRNA library and siRNA library targeting the ORF1ab gene. We predicted the potential miRNA and siRNA candidate molecules utilizing an array of bioinformatic tools. By extending the analysis, out of 24 potential pre-miRNA hairpins and 131 siRNAs, 12 human miRNA and 10 siRNA molecules were sorted as potential therapeutic agents against SARS-CoV-2 based on their GC content, melting temperature (Tm), heat capacity (Cp), hybridization and minimal free energy (MFE) of hybridization. This computational study is focused on lessening the extensive time and labor needed in conventional trial and error based wet lab methods and it has the potential to act as a decent base for future researchers to develop a successful RNAi therapeutic.
Collapse
Key Words
- ACE-2, Angiotensin-converting enzyme 2
- COVID-19
- COVID-19, coronavirus disease 2019
- Cp, heat capacity
- Gene silencing
- ORF, open reading frame
- Posttranscriptional regulation
- RNAi Therapeutics
- RNAi, RNA interference
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus-2
- TMPRSS2, transmembrane protease serine 2
- Tm, melting temperature
- UTR, untranslated region
- hsa-miR, human microRNA
- miRNA
- miRNA, microRNA
- sgRNA, sub-genomic RNA
- siRNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Mahedi Hasan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Arafat Islam Ashik
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md Belal Chowdhury
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Atiya Tahira Tasnim
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Zakia Sultana Nishat
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Tanvir Hossain
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Shamim Ahmed
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
11
|
Naik S, Shreya AB, Raychaudhuri R, Pandey A, Lewis SA, Hazarika M, Bhandary SV, Rao BSS, Mutalik S. Small interfering RNAs (siRNAs) based gene silencing strategies for the treatment of glaucoma: Recent advancements and future perspectives. Life Sci 2020; 264:118712. [PMID: 33159955 DOI: 10.1016/j.lfs.2020.118712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 01/22/2023]
Abstract
RNA-interference-based mechanisms, especially the use of small interfering RNAs (siRNAs), have been under investigation for the treatment of several ailments and have shown promising results for ocular diseases including glaucoma. The eye, being a confined compartment, serves as a good target for the delivery of siRNAs. This review focuses on siRNA-based strategies for gene silencing to treat glaucoma. We have discussed the ocular structures and barriers to gene therapy (tear film, corneal, conjunctival, vitreous, and blood ocular barriers), methods of administration for ocular gene delivery (topical instillation, periocular, intracameral, intravitreal, subretinal, and suprachoroidal routes) and various viral and non-viral vectors in siRNA-based therapy for glaucoma. The components and mechanism of siRNA-based gene silencing have been mentioned briefly followed by the basic strategies and challenges faced during siRNA therapeutics development. We have emphasized different therapeutic targets for glaucoma which have been under research by scientists and the current siRNA-based drugs used in glaucoma treatment. We also mention briefly strategies for siRNA-based treatment after glaucoma surgery.
Collapse
Affiliation(s)
- Santoshi Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajjappla Basavaraj Shreya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Manali Hazarika
- Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sulatha V Bhandary
- Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Bola Sadashiva Satish Rao
- Director - Research, Directorte of Research, Manipal Academy of Higher Education, Manipal and School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
12
|
齐 欣, 徐 永, 夏 燊, 赵 泽, 吕 乾, 浦 绍, 朱 跃. [Application of simple Ilizarov ring external fixation technique in treatment of tibial plateau fracture complicated with osteofascial compartment syndrome]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:1248-1252. [PMID: 33063488 PMCID: PMC8171881 DOI: 10.7507/1002-1892.202003135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/05/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To explore the effectiveness of simple Ilizarov ring external fixation technique in treatment of tibial plateau fractures complicated with osteofascial compartment syndrome. METHODS Between September 2013 and March 2017, 30 patients with tibial plateau fractures complicated with osteofascial compartment syndrome were treated with simple Ilizarov ring external fixation technique. There were 23 males and 7 females, with an average age of 34.4 years (range, 23-43 years). The injuries were caused by traffic accident in 12 cases, by falling from height in 4 cases, by falling in 8 cases, and by a crashing object in 6 cases. The time from injury to admission was 1-12 hours (mean, 4.8 hours). According to the Schatzker classification, there was 1 case of type Ⅱ, 3 cases of type Ⅲ, 10 cases of type Ⅳ, 7 cases of type Ⅴ, and 9 cases of type Ⅵ. All patients underwent fasciotomy due to osteofascial compartment syndrome; the interval between fasciotomy and operation was 10-15 days (mean, 12.5 days). Knee Society Score (KSS) and Ilizarov Method Research and Application Association (ASAMI) protocol were used to evaluate knee function. RESULTS The operation time was 110-155 minutes (mean, 123.1 minutes); the intraoperative blood loss was 100-500 mL (mean, 245 mL); the postoperative hospital stay was 3-5 days (mean, 3.8 days). All patients were followed up 20-24 weeks (mean, 22.7 weeks). Except for 2 patients with signs of needle tract infection, no other complication occurred. X-ray films showed that the fractures healed, and the healing time was 10-20 weeks (mean, 14.6 weeks). At last follow-up, the KSS clinical score was 70- 95 with an average of 87.5; the functional score was 70-90 with an average of 79.0. According to ASAMI protocol evaluation, the effectiveness was rated as excellent in 24 cases, good in 3 cases, fair in 2 cases, and poor in 1 case. CONCLUSION For tibial plateau fractures complicated with osteofascial compartment syndrome, simple Ilizarov ring external fixation technique can basically restore joint function and has fewer complications. It is a relatively safe and effective treatment method.
Collapse
Affiliation(s)
- 欣 齐
- 联勤保障部队第九二〇医院骨科(昆明 650100)Department of Orthopaedics, 920th Hospital of Joint Logistics Support Force, Kunming Yunnan, 650100, P.R.China
| | - 永清 徐
- 联勤保障部队第九二〇医院骨科(昆明 650100)Department of Orthopaedics, 920th Hospital of Joint Logistics Support Force, Kunming Yunnan, 650100, P.R.China
| | - 燊 夏
- 联勤保障部队第九二〇医院骨科(昆明 650100)Department of Orthopaedics, 920th Hospital of Joint Logistics Support Force, Kunming Yunnan, 650100, P.R.China
| | - 泽雨 赵
- 联勤保障部队第九二〇医院骨科(昆明 650100)Department of Orthopaedics, 920th Hospital of Joint Logistics Support Force, Kunming Yunnan, 650100, P.R.China
| | - 乾 吕
- 联勤保障部队第九二〇医院骨科(昆明 650100)Department of Orthopaedics, 920th Hospital of Joint Logistics Support Force, Kunming Yunnan, 650100, P.R.China
| | - 绍全 浦
- 联勤保障部队第九二〇医院骨科(昆明 650100)Department of Orthopaedics, 920th Hospital of Joint Logistics Support Force, Kunming Yunnan, 650100, P.R.China
| | - 跃良 朱
- 联勤保障部队第九二〇医院骨科(昆明 650100)Department of Orthopaedics, 920th Hospital of Joint Logistics Support Force, Kunming Yunnan, 650100, P.R.China
| |
Collapse
|
13
|
Chowdhury FT, Shohan MU, Islam T, Mimu TT, Palit P. A Therapeutic Approach Against Leishmania donovani by Predicting RNAi Molecules Against the Surface Protein, gp63. Curr Bioinform 2019. [DOI: 10.2174/1574893613666180828095737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background:
Leishmaniasis is a disease caused by the Leishmania sp. and can be
classified into two major types: cutaneous and visceral leismaniasis. Visceral leishmaniasis is the
deadlier type and is mediated by Leishmania donovani and involves the establishment of persistent
infection and causes damage to the liver, spleen and bone marrow. With no vaccine yet available
against leishmaniasis and the current therapeutic drugs of leishmaniasis being toxic and expensive;
an alternative treatment is necessary.
Objective:
Surface glycocalyx protein gp63, plays a major role in the virulence and resulting
pathogenicity associated with the disease. Henceforth, silencing the gp63 mRNA through the RNA
interference system was the aim of this study.
Methods:
In this study two competent siRNAs and three miRNAs have been designed against gp63
for five different strains of L. donovani by using various computational methods. Target specific
siRNAs were designed using siDirect 2.0 and to design possible miRNA, another tool named IDT
(IntegratedDNA Technology). Screening for off-target similarity was done by BLAST and the GC
contents and the secondary structures of the designed RNAs were determined. RNA-RNA
interaction was calculated by RNAcofold and IntraRNA, followed by the determination of heat
capacity and the concentration of duplex by DNAmelt web server.
Results:
The selected RNAi molecules; two siRNA and three miRNA had no off-target in human
genome and the ones with lower GC content were selected for efficient RNAi function. The
selected ones showed proper thermodynamic characteristics to suppress the expression of the
pathogenic gene of gp63.
Collapse
Affiliation(s)
- Farhana T. Chowdhury
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Mohammad U.S. Shohan
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Tasmia Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Taisha T. Mimu
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Parag Palit
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
14
|
Abstract
Small silencing RNAs have provided powerful reverse genetics tools and have opened new areas of research. This introduction describes the use of RNAi to suppress expression of individual genes for loss-of-function analysis. It also summarizes methods for measuring specific and global changes in small RNA expression, as well as methods to inhibit the function of individual endogenous small RNA species such as miRNAs.
Collapse
|
15
|
Singh S, Maurya PK. Nanomaterials-Based siRNA Delivery: Routes of Administration, Hurdles and Role of Nanocarriers. NANOTECHNOLOGY IN MODERN ANIMAL BIOTECHNOLOGY 2019. [PMCID: PMC7121101 DOI: 10.1007/978-981-13-6004-6_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Ribonucleic acid interference (RNAi) is a potential alternative therapeutic approach to knock down the overexpression of genes in several disorders especially cancers with underlying genetic dysfunctions. For silencing of specific genes involved in cell cycle, small/short interfering ribonucleic acids (siRNAs) are being used clinically. The siRNA-based RNAi is more efficient, specific and safe antisense technology than other RNAi approaches. The route of siRNA administration for siRNA therapy depends on the targeted site. However, certain hurdles like poor stability of siRNA, saturation, off-target effect, immunogenicity, anatomical barriers and non-targeted delivery restrict the successful siRNA therapy. Thus, advancement of an effective, secure, and long-term delivery system is prerequisite to the medical utilization of siRNA. Polycationic nanocarriers mediated targeted delivery system is an ideal system to remove these hurdles and to increase the blood retention time and rate of intracellular permeability. In this chapter, we will mainly discuss the different biocompatible, biodegradable, non-toxic (organic, inorganic and hybrid) nanocarriers that encapsulate and shield the siRNA from the different harsh environment and provides the increased systemic siRNA delivery.
Collapse
Affiliation(s)
- Sanjay Singh
- Division of Biological and Life Sciences, Ahmedabad University, Ahmedabad, Gujarat India
| | | |
Collapse
|
16
|
Wang F, Wang L, Zou X, Duan S, Li Z, Deng Z, Luo J, Lee SY, Chen S. Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnol Adv 2019; 37:708-729. [PMID: 30926472 DOI: 10.1016/j.biotechadv.2019.03.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems, especially type II (Cas9) systems, have been widely used in gene/genome targeting. Modifications of Cas9 enable these systems to become platforms for precise DNA manipulations. However, the utilization of CRISPR-Cas systems in RNA targeting remains preliminary. The discovery of type VI CRISPR-Cas systems (Cas13) shed light on RNA-guided RNA targeting. Cas13d, the smallest Cas13 protein, with a length of only ~930 amino acids, is a promising platform for RNA targeting compatible with viral delivery systems. Much effort has also been made to develop Cas9, Cas13a and Cas13b applications for RNA-guided RNA targeting. The discovery of new RNA-targeting CRISPR-Cas systems as well as the development of RNA-targeting platforms with Cas9 and Cas13 will promote RNA-targeting technology substantially. Here, we review new advances in RNA-targeting CRISPR-Cas systems as well as advances in applications of these systems in RNA targeting, tracking and editing. We also compare these Cas protein-based technologies with traditional technologies for RNA targeting, tracking and editing. Finally, we discuss remaining questions and prospects for the future.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Xuan Zou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea
| | - Suling Duan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Zhiqiang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Jie Luo
- Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea.
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Brain Center, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China; Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China.
| |
Collapse
|
17
|
Guru Vishnu P, Bhattacharya TK, Bhushan B, Kumar P, Chatterjee RN, Paswan C, Dushyanth K, Divya D, Prasad AR. In silico prediction of short hairpin RNA and in vitro silencing of activin receptor type IIB in chicken embryo fibroblasts by RNA interference. Mol Biol Rep 2019; 46:2947-2959. [PMID: 30879273 DOI: 10.1007/s11033-019-04756-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/08/2019] [Indexed: 12/26/2022]
Abstract
Gene silencing by RNA interference is extensively used reverse genetic approach to analyse the implications of any gene in mammalian systems. The silencing of the Activin type IIB receptor belonging to transforming growth factor beta superfamily has demonstrated increase in muscle growth in many species. We designed five short hairpin RNA constructs targeting coding region of chicken ACTRIIB. All the shRNAs were transfected into chicken embryo fibroblast cells and evaluated their silencing efficiency by real time PCR and western blotting. Initially the computational analysis of target region and shRNA constructs was undertaken to predict sequence based features (secondary structures, GC% and H-b index) and thermodynamic features (ΔGoverall, ΔGduplex, ΔGbreak-target, ΔGintra-oligomer, ΔGinter-oligomer and ΔΔGends). We determined that all these predicted features were associated with shRNA efficacy. The invitro analysis of shRNA constructs exhibited significant (P < 0.05) reduction in the levels of ACTRIIB at mRNA and protein level. The knock down efficiency of shRNAs varied significantly (P < 0.001) from 83% (shRNA 1) to 43% (shRNA 5). All the shRNAs up regulated the myogenic pathway associated genes (MyoD and MyoG) significantly (P < 0.05). There was significant (P < 0.05) up-regulation of IFNA, IFNB and MHCII transcripts. The ACTRIIB expression was inversely associated with the expression of myogenic pathway and immune response genes. The anti ACTRIIB shRNA construct 1 and 3 exhibited maximum knock down efficiency with minimal interferon response, and can be used for generating ACTRIIB knockdown chicken with higher muscle mass.
Collapse
Affiliation(s)
- P Guru Vishnu
- Sri Venkateswara Veterinary University, Tirupathi, A.P., India.
| | | | - Bharat Bhushan
- Division of Animal Genetics & Breeding, Indian Veterinary Research Institute, Izatnagar, U.P., India
| | - Pushpendra Kumar
- Division of Animal Genetics & Breeding, Indian Veterinary Research Institute, Izatnagar, U.P., India
| | | | | | - K Dushyanth
- ICAR-Directorate of Poultry Research, Hyderabad, India
| | - D Divya
- ICAR-Directorate of Poultry Research, Hyderabad, India
| | - A Rajendra Prasad
- Division of Animal Genetics & Breeding, Indian Veterinary Research Institute, Izatnagar, U.P., India
| |
Collapse
|
18
|
Yu H, Pan HM, Trau D, Patzel V. Capsule-like Safe Genetic Vectors-Cell-Penetrating Core-Shell Particles Selectively Release Functional Small RNA and Entrap Its Encoding DNA. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21113-21124. [PMID: 29869496 DOI: 10.1021/acsami.8b04294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The breakthrough of genetic therapy is set back by the lack of suitable genetic vector systems. We present the development of permeability-tunable, capsule-like, polymeric, micron-sized, core-shell particles for delivery of recombinant nucleic acids into target cells. These particles were demonstrated to effectively release rod-shaped small hairpin RNA and to selectively retain the RNA-encoding DNA template, which was designed to form a bulky tripartite structure. Thus, they can serve as delivery vectors preloaded with cargo RNA or alternatively as RNA-producing micro-bioreactors. The internalization of particles by human tissue culture cells inversely correlated with particle size and with the cell to particle ratio, although at a higher than stoichiometric excess of particles over cells, cell viability was impaired. Among primary human peripheral blood mononuclear cells, up to 50% of the monocytes displayed positive uptake of particles. Finally, these particles efficiently delivered siRNA into HEK293T cells triggering functional knockdown of the target gene lamin A/C. Particle-mediated knockdown was superior to that observed after conventional siRNA delivery via lipofection. Core-shell particles protect encapsulated nucleic acids from degradation and target cell genomes from direct contact with recombinant DNA, thus representing a promising delivery vector system that can be explored for genetic therapy and vaccination.
Collapse
Affiliation(s)
- Han Yu
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine , National University of Singapore , 5 Science Drive 2 , 117545 , Singapore
- School of Biological Sciences , Nanyang Technological University , 61 Biopolis Drive , 138673 , Singapore
| | - Houwen Matthew Pan
- Department of Biomedical Engineering , National University of Singapore , 4 Engineering Drive 3 , 117583 , Singapore
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , 637457 , Singapore
| | - Dieter Trau
- Department of Biomedical Engineering , National University of Singapore , 4 Engineering Drive 3 , 117583 , Singapore
| | - Volker Patzel
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine , National University of Singapore , 5 Science Drive 2 , 117545 , Singapore
- Department of Medicine , Addenbrooke's Hospital, University of Cambridge , Cambridge CB2 0QQ , U.K
| |
Collapse
|
19
|
Wolfe BR, Porubsky NJ, Zadeh JN, Dirks RM, Pierce NA. Constrained Multistate Sequence Design for Nucleic Acid Reaction Pathway Engineering. J Am Chem Soc 2017; 139:3134-3144. [DOI: 10.1021/jacs.6b12693] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Brian R. Wolfe
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Nicholas J. Porubsky
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Joseph N. Zadeh
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Robert M. Dirks
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Niles A. Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, California 91125, United States
- Weatherall
Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
20
|
Bhattacharya T, Shukla R, Chatterjee R, Dushyanth K. Knock down of the myostatin gene by RNA interference increased body weight in chicken. J Biotechnol 2017; 241:61-68. [DOI: 10.1016/j.jbiotec.2016.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/05/2016] [Accepted: 11/10/2016] [Indexed: 11/28/2022]
|
21
|
Giraud L, Viricel W, Leblond J, Giasson S. Single stranded siRNA complexation through non-electrostatic interactions. Biomaterials 2017; 113:230-242. [DOI: 10.1016/j.biomaterials.2016.10.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/19/2016] [Accepted: 10/23/2016] [Indexed: 11/24/2022]
|
22
|
Lu CJ, Tian BY, Cao Y, Zou CG, Zhang KQ. Nuclear receptor nhr-48 is required for pathogenicity of the second stage (J2) of the plant parasite Meloidogyne incognita. Sci Rep 2016; 6:34959. [PMID: 27762328 PMCID: PMC5071846 DOI: 10.1038/srep34959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/15/2016] [Indexed: 02/03/2023] Open
Abstract
Nuclear receptors (NRs) are a diverse class of transcription factors, which are involved in regulating a large number of physiological events in metazoans. However, the function of NRs is poorly understood in plant-parasitic nematodes. Here, members of the NR1J+K group of NRs in nematodes, including the free-living and plant parasites, were examined and phylogenetically analyzed. We found that the number of members of the NR1J+K group in plant-parasitic nematodes was less than that in the free-living nematodes, suggesting this reduction of NR1J+K group members in plant parasites maybe arose during the separation of the free-living and intermediately plant parasitic nematodes (Bursaphelenchus xylophilus). Interestingly, the DNA-binding domain (DBD) and ligand-binding domain (LBD) of NR1J+K members were separated into two gene locations in the plant parasites. Knockdown of Meloidogyne incognita WBMinc13296, the ortholog of Caenorhabditis elegans nhr-48 DBD, reduced infectivity, delayed development, and decreased reproductivity. J2 of M. incognita subjected to silencing of WBMinc13295, the orthologs of B. xylophilus nhr-48 LBD, exhibited developmental lag within the host and reduced reproductivity. This study provides new insights into the function of NRs and suggests that NRs are potential targets for developing effective strategies for biological control of plant-parasitic nematodes.
Collapse
Affiliation(s)
- Chao-Jun Lu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Bao-Yu Tian
- College of Life Science, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Yi Cao
- Key Laboratory of Molecular Genetics, Guizhou Academy of Tobacco Science, Guiyang, Guizhou 550081, China
| | - Cheng-Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| |
Collapse
|
23
|
Munkácsy G, Sztupinszki Z, Herman P, Bán B, Pénzváltó Z, Szarvas N, Győrffy B. Validation of RNAi Silencing Efficiency Using Gene Array Data shows 18.5% Failure Rate across 429 Independent Experiments. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e366. [PMID: 27673562 PMCID: PMC5056990 DOI: 10.1038/mtna.2016.66] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 01/31/2023]
Abstract
No independent cross-validation of success rate for studies utilizing small interfering RNA (siRNA) for gene silencing has been completed before. To assess the influence of experimental parameters like cell line, transfection technique, validation method, and type of control, we have to validate these in a large set of studies. We utilized gene chip data published for siRNA experiments to assess success rate and to compare methods used in these experiments. We searched NCBI GEO for samples with whole transcriptome analysis before and after gene silencing and evaluated the efficiency for the target and off-target genes using the array-based expression data. Wilcoxon signed-rank test was used to assess silencing efficacy and Kruskal–Wallis tests and Spearman rank correlation were used to evaluate study parameters. All together 1,643 samples representing 429 experiments published in 207 studies were evaluated. The fold change (FC) of down-regulation of the target gene was above 0.7 in 18.5% and was above 0.5 in 38.7% of experiments. Silencing efficiency was lowest in MCF7 and highest in SW480 cells (FC = 0.59 and FC = 0.30, respectively, P = 9.3E−06). Studies utilizing Western blot for validation performed better than those with quantitative polymerase chain reaction (qPCR) or microarray (FC = 0.43, FC = 0.47, and FC = 0.55, respectively, P = 2.8E−04). There was no correlation between type of control, transfection method, publication year, and silencing efficiency. Although gene silencing is a robust feature successfully cross-validated in the majority of experiments, efficiency remained insufficient in a significant proportion of studies. Selection of cell line model and validation method had the highest influence on silencing proficiency.
Collapse
Affiliation(s)
- Gyöngyi Munkácsy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary.,MTA-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Zsófia Sztupinszki
- Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Péter Herman
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
| | - Bence Bán
- Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Zsófia Pénzváltó
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
| | - Nóra Szarvas
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary.,Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
24
|
Anderson-Lee J, Fisker E, Kosaraju V, Wu M, Kong J, Lee J, Lee M, Zada M, Treuille A, Das R. Principles for Predicting RNA Secondary Structure Design Difficulty. J Mol Biol 2016; 428:748-757. [PMID: 26902426 PMCID: PMC4833017 DOI: 10.1016/j.jmb.2015.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/04/2015] [Accepted: 11/10/2015] [Indexed: 11/27/2022]
Abstract
Designing RNAs that form specific secondary structures is enabling better understanding and control of living systems through RNA-guided silencing, genome editing and protein organization. Little is known, however, about which RNA secondary structures might be tractable for downstream sequence design, increasing the time and expense of design efforts due to inefficient secondary structure choices. Here, we present insights into specific structural features that increase the difficulty of finding sequences that fold into a target RNA secondary structure, summarizing the design efforts of tens of thousands of human participants and three automated algorithms (RNAInverse, INFO-RNA and RNA-SSD) in the Eterna massive open laboratory. Subsequent tests through three independent RNA design algorithms (NUPACK, DSS-Opt and MODENA) confirmed the hypothesized importance of several features in determining design difficulty, including sequence length, mean stem length, symmetry and specific difficult-to-design motifs such as zigzags. Based on these results, we have compiled an Eterna100 benchmark of 100 secondary structure design challenges that span a large range in design difficulty to help test future efforts. Our in silico results suggest new routes for improving computational RNA design methods and for extending these insights to assess "designability" of single RNA structures, as well as of switches for in vitro and in vivo applications.
Collapse
Affiliation(s)
| | | | - Vineet Kosaraju
- Eterna Massive Open Laboratory; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Michelle Wu
- Eterna Massive Open Laboratory; Program in Biomedical Informatics, Stanford University, Stanford, CA 94305, USA
| | - Justin Kong
- Eterna Massive Open Laboratory; Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jeehyung Lee
- Eterna Massive Open Laboratory; Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Minjae Lee
- Eterna Massive Open Laboratory; Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - Adrien Treuille
- Eterna Massive Open Laboratory; Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rhiju Das
- Eterna Massive Open Laboratory; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; Department of Physics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Bhandare VV, Ramaswamy A. Identification of possible siRNA molecules for TDP43 mutants causing amyotrophic lateral sclerosis: In silico design and molecular dynamics study. Comput Biol Chem 2016; 61:97-108. [PMID: 26854610 DOI: 10.1016/j.compbiolchem.2016.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 12/29/2015] [Accepted: 01/08/2016] [Indexed: 12/12/2022]
Abstract
The DNA binding protein, TDP43 is a major protein involved in amyotrophic lateral sclerosis and other neurological disorders such as frontotemporal dementia, Alzheimer disease, etc. In the present study, we have designed possible siRNAs for the glycine rich region of tardbp mutants causing ALS disorder based on a systematic theoretical approach including (i) identification of respective codons for all mutants (reported at the protein level) based on both minimum free energy and probabilistic approaches, (ii) rational design of siRNA, (iii) secondary structure analysis for the target accessibility of siRNA, (iii) determination of the ability of siRNA to interact with mRNA and the formation/stability of duplex via molecular dynamics study for a period of 15ns and (iv) characterization of mRNA-siRNA duplex stability based on thermo-physical analysis. The stable GC-rich siRNA expressed strong binding affinity towards mRNA and forms stable duplex in A-form. The linear dependence between the thermo-physical parameters such as Tm, GC content and binding free energy revealed the ability of the identified siRNAs to interact with mRNA in comparable to that of the experimentally reported siRNAs. Hence, this present study proposes few siRNAs as the possible gene silencing agents in RNAi therapy based on the in silico approach.
Collapse
Affiliation(s)
| | - Amutha Ramaswamy
- Centre for Bioinformatics, Pondicherry University, Pondicherry 605014, India.
| |
Collapse
|
26
|
Fowler DK, Williams C, Gerritsen AT, Washbourne P. Improved knockdown from artificial microRNAs in an enhanced miR-155 backbone: a designer's guide to potent multi-target RNAi. Nucleic Acids Res 2015; 44:e48. [PMID: 26582923 PMCID: PMC4797272 DOI: 10.1093/nar/gkv1246] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/31/2015] [Indexed: 01/24/2023] Open
Abstract
Artificial microRNA (amiRNA) sequences embedded in natural microRNA (miRNA) backbones have proven to be useful tools for RNA interference (RNAi). amiRNAs have reduced off-target and toxic effects compared to other RNAi-based methods such as short-hairpin RNAs (shRNA). amiRNAs are often less effective for knockdown, however, compared to their shRNA counterparts. We screened a large empirically-designed amiRNA set in the synthetic inhibitory BIC/miR-155 RNA (SIBR) scaffold and show common structural and sequence-specific features associated with effective amiRNAs. We then introduced exogenous motifs into the basal stem region which increase amiRNA biogenesis and knockdown potency. We call this modified backbone the enhanced SIBR (eSIBR) scaffold. Using chained amiRNAs for multi-gene knockdown, we show that concatenation of miRNAs targeting different genes is itself sufficient for increased knockdown efficacy. Further, we show that eSIBR outperforms wild-type SIBR (wtSIBR) when amiRNAs are chained. Finally, we use a lentiviral expression system in cultured neurons, where we again find that eSIBR amiRNAs are more potent for multi-target knockdown of endogenous genes. eSIBR will be a valuable tool for RNAi approaches, especially for studies where knockdown of multiple targets is desired.
Collapse
Affiliation(s)
- Daniel K Fowler
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Carly Williams
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Alida T Gerritsen
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - Philip Washbourne
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
27
|
Wolfe BR, Pierce NA. Sequence Design for a Test Tube of Interacting Nucleic Acid Strands. ACS Synth Biol 2015; 4:1086-100. [PMID: 25329866 DOI: 10.1021/sb5002196] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We describe an algorithm for designing the equilibrium base-pairing properties of a test tube of interacting nucleic acid strands. A target test tube is specified as a set of desired "on-target" complexes, each with a target secondary structure and target concentration, and a set of undesired "off-target" complexes, each with vanishing target concentration. Sequence design is performed by optimizing the test tube ensemble defect, corresponding to the concentration of incorrectly paired nucleotides at equilibrium evaluated over the ensemble of the test tube. To reduce the computational cost of accepting or rejecting mutations to a random initial sequence, the structural ensemble of each on-target complex is hierarchically decomposed into a tree of conditional subensembles, yielding a forest of decomposition trees. Candidate sequences are evaluated efficiently at the leaf level of the decomposition forest by estimating the test tube ensemble defect from conditional physical properties calculated over the leaf subensembles. As optimized subsequences are merged toward the root level of the forest, any emergent defects are eliminated via ensemble redecomposition and sequence reoptimization. After successfully merging subsequences to the root level, the exact test tube ensemble defect is calculated for the first time, explicitly checking for the effect of the previously neglected off-target complexes. Any off-target complexes that form at appreciable concentration are hierarchically decomposed, added to the decomposition forest, and actively destabilized during subsequent forest reoptimization. For target test tubes representative of design challenges in the molecular programming and synthetic biology communities, our test tube design algorithm typically succeeds in achieving a normalized test tube ensemble defect ≤1% at a design cost within an order of magnitude of the cost of test tube analysis.
Collapse
Affiliation(s)
- Brian R. Wolfe
- Division of Biology and Biological
Engineering and ‡Division of Engineering and Applied
Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Niles A. Pierce
- Division of Biology and Biological
Engineering and ‡Division of Engineering and Applied
Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
28
|
Yu H, Jiang X, Tan KT, Hang L, Patzel V. Efficient production of superior dumbbell-shaped DNA minimal vectors for small hairpin RNA expression. Nucleic Acids Res 2015; 43:e120. [PMID: 26068470 PMCID: PMC4605290 DOI: 10.1093/nar/gkv583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/22/2015] [Indexed: 01/01/2023] Open
Abstract
Genetic therapy holds great promise for the treatment of inherited or acquired genetic diseases; however, its breakthrough is hampered by the lack of suitable gene delivery systems. Dumbbell-shaped DNA minimal vectors represent an attractive, safe alternative to the commonly used viral vectors which are fraught with risk, but dumbbell generation appears to be costly and time-consuming. We developed a new PCR-based method for dumbbell production which comprises only two steps. First, PCR amplification of the therapeutic expression cassette using chemically modified primers to form a ready-to-ligate DNA structure; and second, a highly efficient intramolecular ligation reaction. Compared with conventional strategies, the new method produces dumbbell vectors more rapidly, with higher yields and purity, and at lower costs. In addition, such produced small hairpin RNA expressing dumbbells triggered superior target gene knockdown compared with conventionally produced dumbbells or plasmids. Our novel method is suitable for large-scale dumbbell production and can facilitate clinical applications of this vector system.
Collapse
Affiliation(s)
- Han Yu
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Xiaoou Jiang
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Kar Tong Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Liting Hang
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Volker Patzel
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| |
Collapse
|
29
|
Fiszer A, Krzyzosiak WJ. Oligonucleotide-based strategies to combat polyglutamine diseases. Nucleic Acids Res 2014; 42:6787-810. [PMID: 24848018 PMCID: PMC4066792 DOI: 10.1093/nar/gku385] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Considerable advances have been recently made in understanding the molecular aspects of pathogenesis and in developing therapeutic approaches for polyglutamine (polyQ) diseases. Studies on pathogenic mechanisms have extended our knowledge of mutant protein toxicity, confirmed the toxicity of mutant transcript and identified other toxic RNA and protein entities. One very promising therapeutic strategy is targeting the causative gene expression with oligonucleotide (ON) based tools. This straightforward approach aimed at halting the early steps in the cascade of pathogenic events has been widely tested for Huntington's disease and spinocerebellar ataxia type 3. In this review, we gather information on the use of antisense oligonucleotides and RNA interference triggers for the experimental treatment of polyQ diseases in cellular and animal models. We present studies testing non-allele-selective and allele-selective gene silencing strategies. The latter include targeting SNP variants associated with mutations or targeting the pathologically expanded CAG repeat directly. We compare gene silencing effectors of various types in a number of aspects, including their design, efficiency in cell culture experiments and pre-clinical testing. We discuss advantages, current limitations and perspectives of various ON-based strategies used to treat polyQ diseases.
Collapse
Affiliation(s)
- Agnieszka Fiszer
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
30
|
Watanabe T, Hatakeyama H, Matsuda-Yasui C, Sato Y, Sudoh M, Takagi A, Hirata Y, Ohtsuki T, Arai M, Inoue K, Harashima H, Kohara M. In vivo therapeutic potential of Dicer-hunting siRNAs targeting infectious hepatitis C virus. Sci Rep 2014; 4:4750. [PMID: 24756133 PMCID: PMC3996463 DOI: 10.1038/srep04750] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/04/2014] [Indexed: 01/07/2023] Open
Abstract
The development of RNA interference (RNAi)-based therapy faces two major obstacles: selecting small interfering RNA (siRNA) sequences with strong activity, and identifying a carrier that allows efficient delivery to target organs. Additionally, conservative region at nucleotide level must be targeted for RNAi in applying to virus because hepatitis C virus (HCV) could escape from therapeutic pressure with genome mutations. In vitro preparation of Dicer-generated siRNAs targeting a conserved, highly ordered HCV 5′ untranslated region are capable of inducing strong RNAi activity. By dissecting the 5′-end of an RNAi-mediated cleavage site in the HCV genome, we identified potent siRNA sequences, which we designate as Dicer-hunting siRNAs (dh-siRNAs). Furthermore, formulation of the dh-siRNAs in an optimized multifunctional envelope-type nano device inhibited ongoing infectious HCV replication in human hepatocytes in vivo. Our efforts using both identification of optimal siRNA sequences and delivery to human hepatocytes suggest therapeutic potential of siRNA for a virus.
Collapse
Affiliation(s)
- Tsunamasa Watanabe
- 1] Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan [2] Division of Gastroenterology, Showa University Fujigaoka Hospital, Yokohama, Japan [3] Present address, Department of Virology & Liver Unit, Nagoya City University Graduate School of Medical Sciences, Kawasumi, Mizuho, Nagoya 467-8601, Japan [4]
| | - Hiroto Hatakeyama
- 1] Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan [2]
| | - Chiho Matsuda-Yasui
- 1] Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan [2]
| | - Yusuke Sato
- 1] Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan [2]
| | - Masayuki Sudoh
- Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa 247-8530, Japan
| | - Asako Takagi
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yuichi Hirata
- 1] Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan [2] Division of Gastroenterology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Takahiro Ohtsuki
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Masaaki Arai
- Advanced Medical Research Laboratory, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Kazuaki Inoue
- Division of Gastroenterology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
31
|
Song YZ, Han QJ, Jiang F, Sun RZ, Fan ZH, Zhu CX, Wen FJ. Effects of the sequence characteristics of miRNAs on multi-viral resistance mediated by single amiRNAs in transgenic tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 77:90-8. [PMID: 24561715 DOI: 10.1016/j.plaphy.2014.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 01/18/2014] [Indexed: 05/11/2023]
Abstract
Artificial microRNA (amiRNA) has become the preferred viral defence that can be induced in plants. In this study, nine amiRNA target sites were selected that were based on the sequence characteristics of natural miRNAs in the cylindrical inclusion protein (CI), nuclear inclusion a protein (NIa), nuclear inclusion b protein (NIb), and coat protein (CP) genes of Potato virus Y (PVY(N)). These amiRNAs that exhibited high similarities to the sequences of PVY(N) and TEV-SD1 were considered. To study the effectiveness of gene silencing in amiRNA-mediated viral resistance, we constructed nine amiRNA plant expression vectors by replacing the functional sequences of miRNA319a precursors with our selected amiRNA sequences. These constructs were subsequently introduced to tobacco plants. A Northern blot assay verified that the nine amiRNA plant expression vectors could successfully express amiRNAs in plants. The analysis of viral resistance demonstrated that these transgenic tobacco plants could effectively inhibit PVY(N) and TEV-SD1 viral infections. The amiRNA that targeted the NIb and CP genes displayed a higher silencing efficiency than did the amiRNAs targeted CI and NIa genes. Northern blot analysis demonstrated that silencing was induced by the original amiRNAs and could be bilaterally extended by the siRNA pathway. That is, the amiRNA and the secondary siRNA mediated the degradation of viral RNA together. Genetic analysis demonstrated that the trait for viral resistance in transgenic plants can be consistently inherited via a single copy of the transgenic sequence. Considering the correlation between the sequence characteristics and the activity of amiRNA, we concluded that a few mismatched bases between the amiRNA and the target sequence could be allowed, particularly the mismatched bases in the 3' end of the amiRNA.
Collapse
Affiliation(s)
- Yun-Zhi Song
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Quan-Jun Han
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Fang Jiang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Run-Ze Sun
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Zhi-Hang Fan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Chang-Xiang Zhu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Fu-Jiang Wen
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
32
|
Abstract
RNA interference mediated by small interfering RNAs is a powerful tool for investigation of gene functions and is increasingly used as a therapeutic agent. However, not all siRNAs are equally potent, and although simple rules for the selection of good siRNAs were proposed early on, siRNAs are still plagued with widely fluctuating efficiency. Recently, new design tools incorporating both the structural features of the targeted RNAs and the sequence features of the siRNAs substantially improved the efficacy of siRNAs. In this chapter we will present a review of sequence and structure-based algorithms behind them.
Collapse
Affiliation(s)
- Hakim Tafer
- Institut fur Informatik, Universitat Leipzig, Leipzig, Germany
| |
Collapse
|
33
|
Jung U, Jiang X, Kaufmann SH, Patzel V. A universal TaqMan-based RT-PCR protocol for cost-efficient detection of small noncoding RNA. RNA (NEW YORK, N.Y.) 2013; 19:1864-1873. [PMID: 24149841 PMCID: PMC3884658 DOI: 10.1261/rna.040501.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/10/2013] [Indexed: 06/02/2023]
Abstract
Several methods for the detection of RNA have been developed over time. For small RNA detection, a stem-loop reverse primer-based protocol relying on TaqMan RT-PCR has been described. This protocol requires an individual specific TaqMan probe for each target RNA and, hence, is highly cost-intensive for experiments with small sample sizes or large numbers of different samples. We describe a universal TaqMan-based probe protocol which can be used to detect any target sequence and demonstrate its applicability for the detection of endogenous as well as artificial eukaryotic and bacterial small RNAs. While the specific and the universal probe-based protocol showed the same sensitivity, the absolute sensitivity of detection was found to be more than 100-fold lower for both than previously reported. In subsequent experiments, we found previously unknown limitations intrinsic to the method affecting its feasibility in determination of mature template RISC incorporation as well as in multiplexing. Both protocols were equally specific in discriminating between correct and incorrect small RNA targets or between mature miRNA and its unprocessed RNA precursor, indicating the stem-loop RT-primer, but not the TaqMan probe, triggers target specificity. The presented universal TaqMan-based RT-PCR protocol represents a cost-efficient method for the detection of small RNAs.
Collapse
Affiliation(s)
- Ulrike Jung
- Department of Immunology, Max Planck Institute for Infection Biology, D-10117 Berlin, Germany
- Department of Molecular and Cell Biology, Beckman Research Institute, City of Hope Medical Center, Duarte, California 91010, USA
| | - Xiaoou Jiang
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Stefan H.E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, D-10117 Berlin, Germany
| | - Volker Patzel
- Department of Immunology, Max Planck Institute for Infection Biology, D-10117 Berlin, Germany
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
34
|
Angart P, Vocelle D, Chan C, Walton SP. Design of siRNA Therapeutics from the Molecular Scale. Pharmaceuticals (Basel) 2013; 6:440-68. [PMID: 23976875 PMCID: PMC3749788 DOI: 10.3390/ph6040440] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While protein-based therapeutics is well-established in the market, development of nucleic acid therapeutics has lagged. Short interfering RNAs (siRNAs) represent an exciting new direction for the pharmaceutical industry. These small, chemically synthesized RNAs can knock down the expression of target genes through the use of a native eukaryotic pathway called RNA interference (RNAi). Though siRNAs are routinely used in research studies of eukaryotic biological processes, transitioning the technology to the clinic has proven challenging. Early efforts to design an siRNA therapeutic have demonstrated the difficulties in generating a highly-active siRNA with good specificity and a delivery vehicle that can protect the siRNA as it is transported to a specific tissue. In this review article, we discuss design considerations for siRNA therapeutics, identifying criteria for choosing therapeutic targets, producing highly-active siRNA sequences, and designing an optimized delivery vehicle. Taken together, these design considerations provide logical guidelines for generating novel siRNA therapeutics.
Collapse
Affiliation(s)
- Phillip Angart
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, Room 2527, East Lansing, MI 48824, USA; (P.A.); (D.V.); (C.C.)
| | | | | | | |
Collapse
|
35
|
Kumar R, Singh SP, Kumari P, Mitra A. Small interfering RNA (siRNA)-mediated knockdown of myostatin influences the expression of myogenic regulatory factors in caprine foetal myoblasts. Appl Biochem Biotechnol 2013; 172:1714-24. [PMID: 24254256 DOI: 10.1007/s12010-013-0582-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/03/2013] [Indexed: 01/01/2023]
Abstract
Myostatin (MSTN) acts as a negative regulator of skeletal muscle development. Naturally occurring inactivating mutations in the coding region and knockout as well as knockdown of MSTN result in an increase in the muscle mass. However, the effect of MSTN knockdown on the expression of myogenic regulatory factors (MRFs) has not been studied in farm animals including goats. In the present study, using different synthetic siRNAs (n = 3), we demonstrated as high as 69 (p < 0.01) and 89% downregulation of MSTN mRNA and protein in the primary caprine foetal myoblast cells. Further, we also examined the effect of MSTN knockdown on the transcripts of MRFs including MyoD, Myf5 and MYOG. The expression of Myf5 remained unaffected (p = 0.60); however, MSTN downregulation caused a significant (p < 0.05) decrease and increase of MYOG and MyoD expression, respectively. Assessment of OAS1 expression confirmed the absence of any siRNA-elicited interferon response. Our results demonstrate that the downregulation of MSTN expression was accompanied by differential expressions of MRFs without any adverse interferon response. This study also suggests the importance of siRNA-mediated knockdown of MSTN as a potential alternative to increase muscle mass and meat production.
Collapse
Affiliation(s)
- Rohit Kumar
- Genome Analysis Laboratory, Animal Genetics Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | | | | | | |
Collapse
|
36
|
Fiszer A, Olejniczak M, Galka-Marciniak P, Mykowska A, Krzyzosiak WJ. Self-duplexing CUG repeats selectively inhibit mutant huntingtin expression. Nucleic Acids Res 2013; 41:10426-37. [PMID: 24038471 PMCID: PMC3905887 DOI: 10.1093/nar/gkt825] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative genetic disorder caused by the expansion of the CAG repeat in the translated sequence of the HTT gene. This expansion generates a mutant huntingtin protein that contains an abnormally elongated polyglutamine tract, which, together with mutant transcript, causes cellular dysfunction. Currently, there is no curative treatment available to patients suffering from HD; however, the selective inhibition of the mutant allele expression is a promising therapeutic option. In this study, we developed a new class of CAG repeat-targeting silencing reagents that consist of self-duplexing CUG repeats. Self-duplex formation was induced through one or several U-base substitutions. A number of self-duplexing guide-strand-only short interfering RNAs have been tested through transfection into cells derived from HD patients, showing distinct activity profiles. The best reagents were highly discriminatory between the normal and mutant HTT alleles (allele selectivity) and the HTT transcript and other transcripts containing shorter CAG repeats (gene selectivity). We also demonstrated that the self-duplexing CUG repeat short interfering RNAs use the RNA interference pathway to elicit silencing, and repeat-targeting reagents showed similar activity and selectivity when expressed from short hairpin RNA vectors to achieve more durable silencing effects.
Collapse
Affiliation(s)
- Agnieszka Fiszer
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | | | | | |
Collapse
|
37
|
Sergeeva AM, Pinzón Restrepo N, Seitz H. Quantitative aspects of RNA silencing in metazoans. BIOCHEMISTRY. BIOKHIMIIA 2013; 78:613-626. [PMID: 23980888 DOI: 10.1134/s0006297913060072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Small regulatory RNAs (microRNAs, siRNAs, and piRNAs) exhibit several unique features that clearly distinguish them from other known gene regulators. Their genomic organization, mode of action, and proposed biological functions raise specific questions. In this review, we focus on the quantitative aspect of small regulatory RNA biology. The original nature of these small RNAs accelerated the development of novel detection techniques and improved statistical methods and promoted new concepts that may unexpectedly generalize to other gene regulators. Quantification of natural phenomena is at the core of scientific practice, and the unique challenges raised by small regulatory RNAs have prompted many creative innovations by the scientific community.
Collapse
Affiliation(s)
- A M Sergeeva
- IGH du CNRS UPR 1142, 34396 Montpellier, France.
| | | | | |
Collapse
|
38
|
Whole-genome thermodynamic analysis reduces siRNA off-target effects. PLoS One 2013; 8:e58326. [PMID: 23484018 PMCID: PMC3590146 DOI: 10.1371/journal.pone.0058326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/01/2013] [Indexed: 11/19/2022] Open
Abstract
Small interfering RNAs (siRNAs) are important tools for knocking down targeted genes, and have been widely applied to biological and biomedical research. To design siRNAs, two important aspects must be considered: the potency in knocking down target genes and the off-target effect on any nontarget genes. Although many studies have produced useful tools to design potent siRNAs, off-target prevention has mostly been delegated to sequence-level alignment tools such as BLAST. We hypothesize that whole-genome thermodynamic analysis can identify potential off-targets with higher precision and help us avoid siRNAs that may have strong off-target effects. To validate this hypothesis, two siRNA sets were designed to target three human genes IDH1, ITPR2 and TRIM28. They were selected from the output of two popular siRNA design tools, siDirect and siDesign. Both siRNA design tools have incorporated sequence-level screening to avoid off-targets, thus their output is believed to be optimal. However, one of the sets we tested has off-target genes predicted by Picky, a whole-genome thermodynamic analysis tool. Picky can identify off-target genes that may hybridize to a siRNA within a user-specified melting temperature range. Our experiments validated that some off-target genes predicted by Picky can indeed be inhibited by siRNAs. Similar experiments were performed using commercially available siRNAs and a few off-target genes were also found to be inhibited as predicted by Picky. In summary, we demonstrate that whole-genome thermodynamic analysis can identify off-target genes that are missed in sequence-level screening. Because Picky prediction is deterministic according to thermodynamics, if a siRNA candidate has no Picky predicted off-targets, it is unlikely to cause off-target effects. Therefore, we recommend including Picky as an additional screening step in siRNA design.
Collapse
|
39
|
What parameters to consider and which software tools to use for target selection and molecular design of small interfering RNAs. Methods Mol Biol 2013; 942:1-16. [PMID: 23027043 DOI: 10.1007/978-1-62703-119-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The design of small gene silencing RNAs with a high probability of being efficient still has some elements of an art, especially when the lowest concentration of small molecules needs to be utilized. The design of highly target-specific small interfering RNAs or short hairpin RNAs is even a greater challenging task. Some logical schemes and software tools that can be used for simplifying both tasks are presented here. In addition, sequence motifs and sequence composition biases of small interfering RNAs that have to be avoided because of specificity concerns are also detailed.
Collapse
|
40
|
Liu Q, Zhou H, Zhang K, Shi X, Fan W, Zhu R, Yu PS, Cao Z. In silico target-specific siRNA design based on domain transfer in heterogeneous data. PLoS One 2012; 7:e50697. [PMID: 23284642 PMCID: PMC3528743 DOI: 10.1371/journal.pone.0050697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/23/2012] [Indexed: 11/17/2022] Open
Abstract
RNA interference via exogenous small interference RNAs (siRNA) is a powerful tool in gene function study and disease treatment. Designing efficient and specific siRNA on target gene remains the key issue in RNAi. Although various in silico models have been proposed for rational siRNA design, most of them focus on the efficiencies of selected siRNAs, while limited effort has been made to improve their specificities targeted on specific mRNAs, which is related to reducing off-target effects (OTEs) in RNAi. In our study, we propose for the first time that the enhancement of target specificity of siRNA design can be achieved computationally by domain transfer in heterogeneous data sources from different siRNA targets. A transfer learning based method i.e., heterogeneous regression (HEGS) is presented for target-specific siRNA efficacy modeling and feature selection. Based on the model, (1) the target regression model can be built by extracting information from related data in other targets/experiments, thus increasing the target specificity in siRNA design with the help of information from siRNAs binding to other homologous genes, and (2) the potential features correlated to the current siRNA design can be identified even when there is lack of experimental validated siRNA affinity data on this target. In summary, our findings present useful instructions for a better target-specific siRNA design, with potential applications in genome-wide high-throughput screening of effective siRNA, and will provide further insights on the mechanism of RNAi.
Collapse
Affiliation(s)
- Qi Liu
- Department of Bioinformatics, Tongji University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kozak K. SiRNA sequence model: redesign algorithm based on available genome-wide libraries. J Biomol Struct Dyn 2012; 31:1519-30. [PMID: 23252789 DOI: 10.1080/07391102.2012.742247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The evolution of RNA interference (RNAi) and the development of technologies exploiting its biology have enabled scientists to rapidly examine the consequences of depleting a particular gene product in cells. Design tools have been developed based on experimental data to increase the knockdown efficiency of siRNAs. Not all siRNAs that are developed to a given target mRNA are equally effective. Currently available design algorithms take an accession, identify conserved regions among their transcript space, find accessible regions within the mRNA, design all possible siRNAs for these regions, filter them based on multi-scores thresholds, and then perform off-target filtration. These different criteria are used by commercial suppliers to produce siRNA genome-wide libraries for different organisms. In this article, we analyze existing siRNA design algorithms and evaluate weight of design parameters for libraries produced in the last decade. We proved that not all essential parameters are currently applied by siRNA vendors. Based on our evaluation results, we were able to suggest an siRNA sequence pattern. The findings in our study can be useful for commercial vendors improving the design of RNAi constructs, by addressing both the issue of potency and the issue of specificity.
Collapse
Affiliation(s)
- Karol Kozak
- a LMSC, ETH Zurich , Schafmattstr, 18 CH-8093 , Zurich , Switzerland
| |
Collapse
|
42
|
Sciabola S, Cao Q, Orozco M, Faustino I, Stanton RV. Improved nucleic acid descriptors for siRNA efficacy prediction. Nucleic Acids Res 2012; 41:1383-94. [PMID: 23241392 PMCID: PMC3561943 DOI: 10.1093/nar/gks1191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although considerable progress has been made recently in understanding how gene silencing is mediated by the RNAi pathway, the rational design of effective sequences is still a challenging task. In this article, we demonstrate that including three-dimensional descriptors improved the discrimination between active and inactive small interfering RNAs (siRNAs) in a statistical model. Five descriptor types were used: (i) nucleotide position along the siRNA sequence, (ii) nucleotide composition in terms of presence/absence of specific combinations of di- and trinucleotides, (iii) nucleotide interactions by means of a modified auto- and cross-covariance function, (iv) nucleotide thermodynamic stability derived by the nearest neighbor model representation and (v) nucleic acid structure flexibility. The duplex flexibility descriptors are derived from extended molecular dynamics simulations, which are able to describe the sequence-dependent elastic properties of RNA duplexes, even for non-standard oligonucleotides. The matrix of descriptors was analysed using three statistical packages in R (partial least squares, random forest, and support vector machine), and the most predictive model was implemented in a modeling tool we have made publicly available through SourceForge. Our implementation of new RNA descriptors coupled with appropriate statistical algorithms resulted in improved model performance for the selection of siRNA candidates when compared with publicly available siRNA prediction tools and previously published test sets. Additional validation studies based on in-house RNA interference projects confirmed the robustness of the scoring procedure in prospective studies.
Collapse
Affiliation(s)
- Simone Sciabola
- Pfizer Oligonucleotide Therapeutic Unit, 620 Memorial Drive, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Dieterich C, Stadler PF. Computational biology of RNA interactions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:107-20. [PMID: 23139167 DOI: 10.1002/wrna.1147] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The biodiversity of the RNA world has been underestimated for decades. RNA molecules are key building blocks, sensors, and regulators of modern cells. The biological function of RNA molecules cannot be separated from their ability to bind to and interact with a wide space of chemical species, including small molecules, nucleic acids, and proteins. Computational chemists, physicists, and biologists have developed a rich tool set for modeling and predicting RNA interactions. These interactions are to some extent determined by the binding conformation of the RNA molecule. RNA binding conformations are approximated with often acceptable accuracy by sequence and secondary structure motifs. Secondary structure ensembles of a given RNA molecule can be efficiently computed in many relevant situations by employing a standard energy model for base pair interactions and dynamic programming techniques. The case of bi-molecular RNA-RNA interactions can be seen as an extension of this approach. However, unbiased transcriptome-wide scans for local RNA-RNA interactions are computationally challenging yet become efficient if the binding motif/mode is known and other external information can be used to confine the search space. Computational methods are less developed for proteins and small molecules, which bind to RNA with very high specificity. Binding descriptors of proteins are usually determined by in vitro high-throughput assays (e.g., microarrays or sequencing). Intriguingly, recent experimental advances, which are mostly based on light-induced cross-linking of binding partners, render in vivo binding patterns accessible yet require new computational methods for careful data interpretation. The grand challenge is to model the in vivo situation where a complex interplay of RNA binders competes for the same target RNA molecule. Evidently, bioinformaticians are just catching up with the impressive pace of these developments.
Collapse
Affiliation(s)
- Christoph Dieterich
- Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Robert-Rössle-Straße 10, Berlin, Germany.
| | | |
Collapse
|
45
|
Matveeva OV, Nazipova NN, Ogurtsov AY, Shabalina SA. Optimized models for design of efficient miR30-based shRNAs. Front Genet 2012; 3:163. [PMID: 22952469 PMCID: PMC3429853 DOI: 10.3389/fgene.2012.00163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/10/2012] [Indexed: 11/13/2022] Open
Abstract
Small hairpin RNAs (shRNAs) became an important research tool in cell biology. Reliable design of these molecules is essential for the needs of large functional genomics projects. To optimize the design of efficient shRNAs, we performed comparative, thermodynamic, and correlation analyses of ~18,000 miR30-based shRNAs with known functional efficiencies, derived from the Sensor Assay project (Fellmann et al., 2011). We identified features of the shRNA guide strand that significantly correlate with the silencing efficiency and performed multiple regression analysis, using 4/5 of the data for training purposes and 1/5 for cross validation. A model that included the position-dependent nucleotide preferences was predictive in the cross-validation data subset (R = 0.39). However, a model, which in addition to the nucleotide preferences included thermodynamic shRNA features such as a thermodynamic duplex stability and position-dependent thermodynamic profile (dinucleotide free energy) was performing better (R = 0.53). Software "miR_Scan" was developed based upon the optimized models. Calculated mRNA target secondary structure stability showed correlation with shRNA silencing efficiency but failed to improve the model. Correlation analysis demonstrates that our algorithm for identification of efficient miR30-based shRNA molecules performs better than approaches that were developed for design of chemically synthesized siRNAs (R(max) = 0.36).
Collapse
Affiliation(s)
- Olga V Matveeva
- Department of Human Genetics, University of Utah Salt Lake City, UT, USA
| | | | | | | |
Collapse
|
46
|
Tripathi AK, Aparnathi MK, Vyavahare SS, Ramani UV, Rank DN, Joshi CG. Myostatin gene silencing by RNA interference in chicken embryo fibroblast cells. J Biotechnol 2012; 160:140-5. [PMID: 22445467 DOI: 10.1016/j.jbiotec.2012.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 03/01/2012] [Accepted: 03/07/2012] [Indexed: 11/24/2022]
Abstract
Myostatin (MSTN), a member of transforming growth factor-β (TGF-β) superfamily, is a negative regulator of the skeletal muscle growth, and suppresses the proliferation and differentiation of myoblast cells. Dysfunction of MSTN gene either by natural mutation or genetic manipulation (knockout or knockdown) has been reported to interrupt its proper function and to increase the muscle mass in many mammalian species. RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) has become a powerful tool for gene knockdown studies. In the present study transient silencing of MSTN gene in chicken embryo fibroblast cells was evaluated using five different shRNA expression constructs. We report here up to 68% silencing of myostatin mRNA using these shRNA constructs in transiently transfected fibroblasts (p<0.05). This was, however, associated with induction of interferon responsive genes (OAS1, IFN-β) (3.7-64 folds; p<0.05). Further work on stable expression of antimyostatin shRNA with minimum interferon induction will be of immense value to increase the muscle mass in the transgenic animals.
Collapse
Affiliation(s)
- Ajai K Tripathi
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand 388001, Gujarat, India.
| | | | | | | | | | | |
Collapse
|
47
|
Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther 2012; 20:513-24. [PMID: 22252451 DOI: 10.1038/mt.2011.294] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RNA interference (RNAi)-based therapeutics have significant potential for the treatment of human disease. Safe and effective delivery of RNA to target tissues remains a major barrier to realizing its clinical potential. Several factors can affect the in vivo performance of short interfering RNA (siRNA) delivery formulations, including siRNA sequence, structure, chemical modification, and delivery formulation. This review provides an introduction to the principles underlying the pharmacokinetics and pharmacodynamics of systemically administered siRNA and its delivery formulations, including the factors that lead to its degradation, clearance, and tissue uptake, as well as its potential for immunogenicity, toxicity, and off-target effects within the body.
Collapse
|
48
|
Wu H, Ma H, Ye C, Ramirez D, Chen S, Montoya J, Shankar P, Wang XA, Manjunath N. Improved siRNA/shRNA functionality by mismatched duplex. PLoS One 2011; 6:e28580. [PMID: 22174840 PMCID: PMC3235145 DOI: 10.1371/journal.pone.0028580] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/10/2011] [Indexed: 11/26/2022] Open
Abstract
siRNA (small interfering RNA) and shRNA (small hairpin RNA) are powerful and commonly used tools in biomedical research. Currently, siRNAs are generally designed as two 21 nt strands of RNA that include a 19 nt completely complementary part and a 2 nt overhang. However, since the si/shRNAs use the endogenous miRNA machinery for gene silencing and the miRNAs are generally 22 nt in length and contain multiple internal mismatches, we tested if the functionality can be increased by designing the si/shRNAs to mimic a miRNA structure. We systematically investigated the effect of single or multiple mismatches introduced in the passenger strand at different positions on siRNA functionality. Mismatches at certain positions could significantly increase the functionality of siRNAs and also, in some cases decreased the unwanted passenger strand functionality. The same strategy could also be used to design shRNAs. Finally, we showed that both si and miRNA structured oligos (siRNA with or without mismatches in the passenger strand) can repress targets in all individual Ago containing cells, suggesting that the Ago proteins do not differentiate between si/miRNA-based structure for silencing activity.
Collapse
Affiliation(s)
- Haoquan Wu
- Center of Excellence in Infectious Disease Research, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
- * E-mail: (HW); (NM)
| | - Hongming Ma
- Center of Excellence in Infectious Disease Research, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
| | - Chunting Ye
- Center of Excellence in Infectious Disease Research, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
| | - Danielle Ramirez
- Center of Excellence in Infectious Disease Research, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
| | - Shuiping Chen
- Center of Excellence in Infectious Disease Research, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
| | - Jessica Montoya
- Center of Excellence in Infectious Disease Research, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
| | - Premlata Shankar
- Center of Excellence in Infectious Disease Research, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
| | - Xiaozhong A. Wang
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
| | - N. Manjunath
- Center of Excellence in Infectious Disease Research, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
- * E-mail: (HW); (NM)
| |
Collapse
|
49
|
Abstract
The design of small interfering RNA (siRNA) is a multi factorial problem that has gained the attention of many researchers in the area of therapeutic and functional genomics. MysiRNA score was previously introduced that improves the correlation of siRNA activity prediction considering state of the art algorithms. In this paper, a new program, MysiRNA-Designer, is described which integrates several factors in an automated work-flow considering mRNA transcripts variations, siRNA and mRNA target accessibility, and both near-perfect and partial off-target matches. It also features the MysiRNA score, a highly ranked correlated siRNA efficacy prediction score for ranking the designed siRNAs, in addition to top scoring models Biopredsi, DISR, Thermocomposition21 and i-Score, and integrates them in a unique siRNA score-filtration technique. This multi-score filtration layer filters siRNA that passes the 90% thresholds calculated from experimental dataset features. MysiRNA-Designer takes an accession, finds conserved regions among its transcript space, finds accessible regions within the mRNA, designs all possible siRNAs for these regions, filters them based on multi-scores thresholds, and then performs SNP and off-target filtration. These strict selection criteria were tested against human genes in which at least one active siRNA was designed from 95.7% of total genes. In addition, when tested against an experimental dataset, MysiRNA-Designer was found capable of rejecting 98% of the false positive siRNAs, showing superiority over three state of the art siRNA design programs. MysiRNA is a freely accessible (Microsoft Windows based) desktop application that can be used to design siRNA with a high accuracy and specificity. We believe that MysiRNA-Designer has the potential to play an important role in this area.
Collapse
|
50
|
ElHefnawi M, Hassan N, Kamar M, Siam R, Remoli AL, El-Azab I, AlAidy O, Marsili G, Sgarbanti M. The design of optimal therapeutic small interfering RNA molecules targeting diverse strains of influenza A virus. Bioinformatics 2011; 27:3364-70. [DOI: 10.1093/bioinformatics/btr555] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|