1
|
Mojica N, Kersten F, Montserrat-Canals M, Huhn III GR, Tislevoll AM, Cordara G, Teter K, Krengel U. Using Vibrio natriegens for High-Yield Production of Challenging Expression Targets and for Protein Perdeuteration. Biochemistry 2024; 63:587-598. [PMID: 38359344 PMCID: PMC10919088 DOI: 10.1021/acs.biochem.3c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
Production of soluble proteins is essential for structure/function studies; however, this usually requires milligram amounts of protein, which can be difficult to obtain with traditional expression systems. Recently, the Gram-negative bacterium Vibrio natriegens emerged as a novel and alternative host platform for production of proteins in high yields. Here, we used a commercial strain derived from V. natriegens (Vmax X2) to produce soluble bacterial and fungal proteins in milligram scale, which we struggled to achieve in Escherichia coli. These proteins include the cholera toxin (CT) and N-acetyl glucosamine-binding protein A (GbpA) from Vibrio cholerae, the heat-labile enterotoxin (LT) from E. coli and the fungal nematotoxin CCTX2 from Coprinopsis cinerea. CT, GbpA, and LT are secreted by the Type II secretion system in their natural hosts. When these three proteins were produced in Vmax, they were also secreted and could be recovered from the growth media. This simplified the downstream purification procedure and resulted in considerably higher protein yields compared to production in E. coli (6- to 26-fold increase). We also tested Vmax for protein perdeuteration using deuterated minimal media with deuterium oxide as solvent and achieved a 3-fold increase in yield compared to the equivalent protocol in E. coli. This is good news, since isotopic labeling is expensive and often ineffective but represents a necessary prerequisite for some structural biology techniques. Thus, Vmax represents a promising host for production of challenging expression targets and for protein perdeuteration in amounts suitable for structural biology studies.
Collapse
Affiliation(s)
- Natalia Mojica
- Department
of Chemistry, University of Oslo, NO-0315 Blindern, Oslo, Norway
| | - Flore Kersten
- Department
of Chemistry, University of Oslo, NO-0315 Blindern, Oslo, Norway
- Centre
for Molecular Medicine Norway, University
of Oslo, NO-0318 Blindern, Oslo, Norway
| | - Mateu Montserrat-Canals
- Department
of Chemistry, University of Oslo, NO-0315 Blindern, Oslo, Norway
- Centre
for Molecular Medicine Norway, University
of Oslo, NO-0318 Blindern, Oslo, Norway
| | - G. Robb Huhn III
- Burnett
School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States
| | | | - Gabriele Cordara
- Department
of Chemistry, University of Oslo, NO-0315 Blindern, Oslo, Norway
| | - Ken Teter
- Burnett
School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States
| | - Ute Krengel
- Department
of Chemistry, University of Oslo, NO-0315 Blindern, Oslo, Norway
| |
Collapse
|
2
|
Mojica N, Kersten F, Montserrat-Canals M, Huhn GR, Tislevoll AM, Cordara G, Teter K, Krengel U. Using Vibrio natriegens for high-yield production of challenging expression targets and for protein deuteration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565449. [PMID: 37961550 PMCID: PMC10635113 DOI: 10.1101/2023.11.03.565449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Production of soluble proteins is essential for structure/function studies, however, this usually requires milligram amounts of protein, which can be difficult to obtain with traditional expression systems. Recently, the Gram-negative bacterium Vibrio natriegens appeared as a novel and alternative host platform for production of proteins in high yields. Here, we used a commercial strain derived from V. natriegens (Vmax™ X2) to produce soluble bacterial and fungal proteins in milligram scale, which we struggled to achieve in Escherichia coli. These proteins include the cholera toxin (CT) and N-acetyl glucosamine binding protein A (GbpA) from Vibrio cholerae, the heat-labile enterotoxin (LT) from E. coli and the fungal nematotoxin CCTX2 from Coprinopsis cinerea. CT, GbpA and LT are secreted by the Type II secretion system in their natural hosts. When these three proteins were produced in Vmax, they were also secreted, and could be recovered from the growth media. This simplified the downstream purification procedure and resulted in considerably higher protein yields compared to production in E. coli (6- to 26-fold increase). We also tested Vmax for protein deuteration using deuterated minimal media with deuterium oxide as solvent, and achieved a 3-fold increase in yield compared to the equivalent protocol in E. coli. This is good news since isotopic labeling is expensive and often ineffective, but represents a necessary prerequisite for some structural techniques. Thus, Vmax represents a promising host for production of challenging expression targets and for protein deuteration in amounts suitable for structural biology studies.
Collapse
Affiliation(s)
- Natalia Mojica
- Department of Chemistry, University of Oslo, Blindern, Norway
| | - Flore Kersten
- Department of Chemistry, University of Oslo, Blindern, Norway
- Centre for Molecular Medicine Norway, University of Oslo, Blindern, Norway
| | - Mateu Montserrat-Canals
- Department of Chemistry, University of Oslo, Blindern, Norway
- Centre for Molecular Medicine Norway, University of Oslo, Blindern, Norway
| | - G. Robb Huhn
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, U.S.A
| | | | | | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, U.S.A
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Blindern, Norway
| |
Collapse
|
3
|
Jamgochian HH, Zamakhaev MV, Sluchanko NN, Goncharenko AV, Shumkov MS. Development of Heterologous Expression System and Optimization of the Method of Cholera Toxin β-Subunit Production in E. coli. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1304-1317. [PMID: 37770397 DOI: 10.1134/s0006297923090109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023]
Abstract
Cholera is a deadly infection disease, which is usually associated with low hygiene levels and limited access to high-quality drinking water. An effective way to prevent cholera is the use of vaccines. Among active vaccine components there is the CtxB protein (cholera toxin β-subunit). In the current work, we have developed a genetic system for production of the recombinant CtxB in E. coli cells and studied conditions for synthesis and purification of the target product at the laboratory scale. It has been found that the optimal algorithm for isolation of the recombinant protein is to grow E. coli culture in the synthetic M9 medium with glycerol, followed by CtxB purification out of the spent culture medium using Ni2+-chelate affinity chromatography techniques. Forty-eight hours after induction of CtxB expression, concentration of the target product could be up to 50 mg/liter in the culture medium. The CtxB protein retains its pentameric structure during expression and through purification. The latter makes it possible to consider the developed system as a promising tool for the industrial-level production of recombinant CtxB for medical and research purposes.
Collapse
Affiliation(s)
- Hamesd H Jamgochian
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Mikhail V Zamakhaev
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Nikolai N Sluchanko
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Anna V Goncharenko
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Mikhail S Shumkov
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
4
|
Danielewicz N, Dai W, Rosato F, Webb ME, Striedner G, Römer W, Turnbull WB, Mairhofer J. In-Depth Characterization of a Re-Engineered Cholera Toxin Manufacturing Process Using Growth-Decoupled Production in Escherichia coli. Toxins (Basel) 2022; 14:396. [PMID: 35737057 PMCID: PMC9228256 DOI: 10.3390/toxins14060396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 12/10/2022] Open
Abstract
Non-toxic derivatives of the cholera toxin are extensively used in neuroscience, as neuronal tracers to reveal the location of cells in the central nervous system. They are, also, being developed as vaccine components and drug-delivery vehicles. Production of cholera-toxin derivatives is often non-reproducible; the quality and quantity require extensive fine-tuning to produce them in lab-scale settings. In our studies, we seek a resolution to this problem, by expanding the molecular toolbox of the Escherichia coli expression system with suitable production, purification, and offline analytics, to critically assess the quality of a probe or drug delivery, based on a non-toxic derivative of the cholera toxin. We present a re-engineered Cholera Toxin Complex (rCTC), wherein its toxic A1 domain was replaced with Maltose Binding Protein (MBP), as a model for an rCTC-based targeted-delivery vehicle. Here, we were able to improve the rCTC production by 11-fold (168 mg/L vs. 15 mg/L), in comparison to a host/vector combination that has been previously used (BL21(DE3) pTRBAB5-G1S). This 11-fold increase in the rCTC production capability was achieved by (1) substantial vector backbone modifications, (2) using Escherichia coli strains capable of growth-decoupling (V strains), (3) implementing a well-tuned fed-batch production protocol at a 1 L scale, and (4) testing the stability of the purified product. By an in-depth characterization of the production process, we revealed that secretion of rCTC across the E. coli Outer Membrane (OM) is processed by the Type II secretion-system general secretory pathway (gsp-operon) and that cholera toxin B-pentamerization is, likely, the rate-limiting step in complex formation. Upon successful manufacturing, we have validated the biological activity of rCTC, by measuring its binding affinity to its carbohydrate receptor GM1 oligosaccharide (Kd = 40 nM), or binding to Jurkat cells (93 pM) and delivering the cargo (MBP) in a retrograde fashion to the cell.
Collapse
Affiliation(s)
- Natalia Danielewicz
- enGenes Biotech GmbH, Mooslackengasse 17, 1190 Vienna, Austria;
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria;
| | - Wenyue Dai
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (W.D.); (M.E.W.); (W.B.T.)
| | - Francesca Rosato
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; (F.R.); (W.R.)
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Michael E. Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (W.D.); (M.E.W.); (W.B.T.)
| | - Gerald Striedner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria;
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; (F.R.); (W.R.)
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (W.D.); (M.E.W.); (W.B.T.)
| | | |
Collapse
|
5
|
Danielewicz N, Rosato F, Dai W, Römer W, Turnbull WB, Mairhofer J. Microbial carbohydrate-binding toxins – From etiology to biotechnological application. Biotechnol Adv 2022; 59:107951. [DOI: 10.1016/j.biotechadv.2022.107951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
|
6
|
Cervin J, Boucher A, Youn G, Björklund P, Wallenius V, Mottram L, Sampson NS, Yrlid U. Fucose-Galactose Polymers Inhibit Cholera Toxin Binding to Fucosylated Structures and Galactose-Dependent Intoxication of Human Enteroids. ACS Infect Dis 2020; 6:1192-1203. [PMID: 32134631 PMCID: PMC7227030 DOI: 10.1021/acsinfecdis.0c00009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
A promising strategy to limit cholera
severity involves blockers
mimicking the canonical cholera toxin ligand (CT) ganglioside GM1.
However, to date the efficacies of most of these blockers have been
evaluated in noncellular systems that lack ligands other than GM1.
Importantly, the CT B subunit (CTB) has a noncanonical site that binds
fucosylated structures, which in contrast to GM1 are highly expressed
in the human intestine. Here we evaluate the capacity of norbornene
polymers displaying galactose and/or fucose to block CTB binding to
immobilized protein-linked glycan structures and also to primary human
and murine small intestine epithelial cells (SI ECs). We show that
the binding of CTB to human SI ECs is largely dependent on the noncanonical
binding site, and interference with the canonical site has a limited
effect while the opposite is observed with murine SI ECs. The galactose–fucose
polymer blocks binding to fucosylated glycans but not to GM1. However,
the preincubation of CT with the galactose–fucose polymer only
partially blocks toxic effects on cultured human enteroid cells, while
preincubation with GM1 completely blocks CT-mediated secretion. Our
results support a model whereby the binding of fucose to the noncanonical
site places CT in close proximity to scarcely expressed galactose
receptors such as GM1 to enable binding via the canonical site leading
to CT internalization and intoxication. Our finding also highlights
the importance of complementing CTB binding studies with functional
intoxication studies when assessing the efficacy inhibitors of CT.
Collapse
Affiliation(s)
- Jakob Cervin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Andrew Boucher
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gyusaang Youn
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, United States
| | - Per Björklund
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital/Östra, 416 85 Gothenburg, Sweden
| | - Ville Wallenius
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital/Östra, 416 85 Gothenburg, Sweden
| | - Lynda Mottram
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, United States
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
7
|
Wands AM, Cervin J, Huang H, Zhang Y, Youn G, Brautigam CA, Matson Dzebo M, Björklund P, Wallenius V, Bright DK, Bennett CS, Wittung-Stafshede P, Sampson NS, Yrlid U, Kohler JJ. Fucosylated Molecules Competitively Interfere with Cholera Toxin Binding to Host Cells. ACS Infect Dis 2018; 4:758-770. [PMID: 29411974 DOI: 10.1021/acsinfecdis.7b00085] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cholera toxin (CT) enters host intestinal epithelia cells, and its retrograde transport to the cytosol results in the massive loss of fluids and electrolytes associated with severe dehydration. To initiate this intoxication process, the B subunit of CT (CTB) first binds to a cell surface receptor displayed on the apical surface of the intestinal epithelia. While the monosialoganglioside GM1 is widely accepted to be the sole receptor for CT, intestinal epithelial cell lines also utilize fucosylated glycan epitopes on glycoproteins to facilitate cell surface binding and endocytic uptake of the toxin. Further, l-fucose can competively inhibit CTB binding to intestinal epithelia cells. Here, we use competition binding assays with l-fucose analogs to decipher the molecular determinants for l-fucose inhibition of cholera toxin subunit B (CTB) binding. Additionally, we find that mono- and difucosylated oligosaccharides are more potent inhibitors than l-fucose alone, with the LeY tetrasaccharide emerging as the most potent inhibitor of CTB binding to two colonic epithelial cell lines (T84 and Colo205). Finally, a non-natural fucose-containing polymer inhibits CTB binding two orders of magnitude more potently than the LeY glycan when tested against Colo205 cells. This same polymer also inhibits CTB binding to T84 cells and primary human jejunal epithelial cells in a dose-dependent manner. These findings suggest the possibility that polymeric display of fucose might be exploited as a prophylactic or therapeutic approach to block the action of CT toward the human intestinal epithelium.
Collapse
Affiliation(s)
| | - Jakob Cervin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - He Huang
- Department of Chemistry, Stony Brook University, 100 Toll Road, Stony Brook, New York 11790-3400, United States
| | - Ye Zhang
- Department of Chemistry, Stony Brook University, 100 Toll Road, Stony Brook, New York 11790-3400, United States
| | - Gyusaang Youn
- Department of Chemistry, Stony Brook University, 100 Toll Road, Stony Brook, New York 11790-3400, United States
| | | | - Maria Matson Dzebo
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Per Björklund
- Department of Gastrosurgical Research and Education, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital/Östra, SE-41345 Gothenburg, Sweden
| | - Ville Wallenius
- Department of Gastrosurgical Research and Education, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital/Östra, SE-41345 Gothenburg, Sweden
| | - Danielle K. Bright
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Clay S. Bennett
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, 100 Toll Road, Stony Brook, New York 11790-3400, United States
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | | |
Collapse
|
8
|
Cervin J, Wands AM, Casselbrant A, Wu H, Krishnamurthy S, Cvjetkovic A, Estelius J, Dedic B, Sethi A, Wallom KL, Riise R, Bäckström M, Wallenius V, Platt FM, Lebens M, Teneberg S, Fändriks L, Kohler JJ, Yrlid U. GM1 ganglioside-independent intoxication by Cholera toxin. PLoS Pathog 2018; 14:e1006862. [PMID: 29432456 PMCID: PMC5825173 DOI: 10.1371/journal.ppat.1006862] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 02/23/2018] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors via its B subunit (CTB). We have recently shown that in addition to the previously described binding partner ganglioside GM1, CTB binds to fucosylated proteins. Using flow cytometric analysis of primary human jejunal epithelial cells and granulocytes, we now show that CTB binding correlates with expression of the fucosylated Lewis X (LeX) glycan. This binding is competitively blocked by fucosylated oligosaccharides and fucose-binding lectins. CTB binds the LeX glycan in vitro when this moiety is linked to proteins but not to ceramides, and this binding can be blocked by mAb to LeX. Inhibition of glycosphingolipid synthesis or sialylation in GM1-deficient C6 rat glioma cells results in sensitization to CT-mediated intoxication. Finally, CT gavage produces an intact diarrheal response in knockout mice lacking GM1 even after additional reduction of glycosphingolipids. Hence our results show that CT can induce toxicity in the absence of GM1 and support a role for host glycoproteins in CT intoxication. These findings open up new avenues for therapies to block CT action and for design of detoxified enterotoxin-based adjuvants.
Collapse
Affiliation(s)
- Jakob Cervin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Amberlyn M. Wands
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Anna Casselbrant
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Han Wu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Soumya Krishnamurthy
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Aleksander Cvjetkovic
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Estelius
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Benjamin Dedic
- Department of Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anirudh Sethi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Kerri-Lee Wallom
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rebecca Riise
- Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Malin Bäckström
- Mammalian Protein Expression Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Ville Wallenius
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Michael Lebens
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Susann Teneberg
- Department of Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Fändriks
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer J. Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Surface expression of Helicobacter pylori HpaA adhesion antigen on Vibrio cholerae, enhanced by co-expressed enterotoxigenic Escherichia coli fimbrial antigens. Microb Pathog 2017; 105:177-184. [PMID: 28215587 DOI: 10.1016/j.micpath.2017.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 12/23/2022]
Abstract
Helicobacter pylori infection can cause peptic ulceration and is associated with gastric adenocarcinoma. This study aimed to construct and characterize a non-virulent Vibrio cholerae O1 strain, which grows more rapidly than H. pylori, as vector for H. pylori antigens for possible use as a vaccine strain against H. pylori. This was done by recombinant expression of the H. pylori adhesion antigen HpaA alone or, as a proof of principle, together with different colonization factor (CF) antigens of enterotoxigenic Escherichia coli (ETEC) which may enhance immune responses against HpaA. A recombinant V. cholerae strain co-expressing HpaA and a fimbrial CF antigens CFA/I or CS5, but not the non-fimbrial CF protein CS6, was shown to express larger amounts of HpaA on the surface when compared with the same V. cholerae strain expressing HpaA alone. Mutations in the CFA/I operon showed that the chaperon, possibly together with the usher, was involved in enhancing the surface expression of HpaA. Oral immunization of mice with formaldehyde-inactivated recombinant V. cholerae expressing HpaA alone or together with CFA/I induced significantly higher serum antibody responses against HpaA than mice similarly immunized with inactivated HpaA-expressing H. pylori bacteria. Our results demonstrate that a non-virulent V. cholerae strain can be engineered to allow strong surface expression of HpaA, and that the expression can be further increased by co-expressing it with ETEC fimbrial antigens. Such recombinant V. cholerae strains expressing HpaA, and possibly also other H. pylori antigens, may have the potential as oral inactivated vaccine candidates against H. pylori.
Collapse
|
10
|
Lebens M, Terrinoni M, Karlsson SL, Larena M, Gustafsson-Hedberg T, Källgård S, Nygren E, Holmgren J. Construction and preclinical evaluation of mmCT, a novel mutant cholera toxin adjuvant that can be efficiently produced in genetically manipulated Vibrio cholerae. Vaccine 2016; 34:2121-8. [PMID: 26973069 DOI: 10.1016/j.vaccine.2016.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/12/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
There is an urgent need for new adjuvants that are effective with mucosally administered vaccines. Cholera toxin (CT) is the most powerful known mucosal adjuvant but is much too toxic for human use. In an effort to develop a useful mucosal adjuvant we have generated a novel non-toxic mutant CT molecule that retains much of the adjuvant activity of native CT. This was achieved by making the enzymatically active A subunit (CTA) recalcitrant to the site-specific proteolytic cleavage ("nicking") required for toxicity, which was found to require mutations not only in the two residues rendering the molecule resistant to trypsin but also in neighboring sites protecting against cleavage by Vibrio cholerae proteases. This multiple-mutated CT (mmCT) adjuvant protein could be efficiently produced in and purified from the extracellular medium of CT-deleted V. cholerae. The mmCT completely lacked detectable enterotoxicity in an infant mouse model and had >1000-fold reduced cAMP inducing activity compared to native CT in a sensitive mammalian target cell system. It nonetheless proved to have potent adjuvant activity on mucosal and systemic antibody as well as cellular immune responses to mucosally co-administered antigens including oral cholera and intranasal influenza vaccines. We conclude that mmCT is an attractive novel non-toxic mucosal adjuvant for enhancing immune responses to co-administered mucosal vaccines.
Collapse
Affiliation(s)
- Michael Lebens
- Department of Microbiology and Immunology and Gothenburg University Vaccine Research Institute (GUVAX), Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Box 435, SE-405 30 Göteborg, Sweden.
| | - Manuela Terrinoni
- Department of Microbiology and Immunology and Gothenburg University Vaccine Research Institute (GUVAX), Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Box 435, SE-405 30 Göteborg, Sweden
| | - Stefan L Karlsson
- Department of Microbiology and Immunology and Gothenburg University Vaccine Research Institute (GUVAX), Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Box 435, SE-405 30 Göteborg, Sweden
| | - Maximilian Larena
- Department of Microbiology and Immunology and Gothenburg University Vaccine Research Institute (GUVAX), Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Box 435, SE-405 30 Göteborg, Sweden
| | - Tobias Gustafsson-Hedberg
- Department of Microbiology and Immunology and Gothenburg University Vaccine Research Institute (GUVAX), Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Box 435, SE-405 30 Göteborg, Sweden
| | - Susanne Källgård
- Department of Microbiology and Immunology and Gothenburg University Vaccine Research Institute (GUVAX), Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Box 435, SE-405 30 Göteborg, Sweden
| | - Erik Nygren
- Department of Microbiology and Immunology and Gothenburg University Vaccine Research Institute (GUVAX), Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Box 435, SE-405 30 Göteborg, Sweden
| | - Jan Holmgren
- Department of Microbiology and Immunology and Gothenburg University Vaccine Research Institute (GUVAX), Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Box 435, SE-405 30 Göteborg, Sweden
| |
Collapse
|
11
|
Cholera toxin B subunit pentamer reassembled from Escherichia coli inclusion bodies for use in vaccination. Vaccine 2016; 34:1268-74. [DOI: 10.1016/j.vaccine.2016.01.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/08/2015] [Accepted: 01/17/2016] [Indexed: 11/18/2022]
|
12
|
Soh HS, Chung HY, Lee HH, Ajjappala H, Jang K, Park JH, Sim JS, Lee GY, Lee HJ, Han YH, Lim JW, Choi I, Chung IS, Hahn BS. Expression and functional validation of heat-labile enterotoxin B (LTB) and cholera toxin B (CTB) subunits in transgenic rice (Oryza sativa). SPRINGERPLUS 2015; 4:148. [PMID: 25853032 PMCID: PMC4380882 DOI: 10.1186/s40064-015-0847-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 01/22/2015] [Indexed: 11/10/2022]
Abstract
We expressed the heat-labile enterotoxin B (LTB) subunit from enterotoxigenic Escherichia coli and the cholera toxin B (CTB) subunit from Vibrio cholerae under the control of the rice (Oryza sativa) globulin (Glb) promoter. Binding of recombinant LTB and CTB proteins was confirmed based on GM1-ganglioside binding enzyme-linked immunosorbent assays (GM1-ELISA). Real-time PCR of three generations (T3, T4, and T5) in homozygous lines (LCI-11) showed single copies of LTB, CTB, bar and Tnos. LTB and CTB proteins in rice transgenic lines were detected by Western blot analysis. Immunogenicity trials of rice-derived CTB and LTB antigens were evaluated through oral and intraperitoneal administration in mice, respectively. The results revealed that LTB- and CTB-specific IgG levels were enhanced in the sera of intraperitoneally immunized mice. Similarly, the toxin-neutralizing activity of CTB and LTB in serum of orally immunized mice was associated with elevated levels of both IgG and IgA. The results of the present study suggest that the combined expression of CTB and LTB proteins can be utilized to produce vaccines against enterotoxigenic strains of Escherichia coli and Vibrio cholera, for the prevention of diarrhea.
Collapse
Affiliation(s)
- Ho Seob Soh
- Division of Environmental Agricultural Research, Gyeonggido Agricultural Research & Extension Services, Hwaseong, 445-784 South Korea
| | - Ha Young Chung
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Nongsaengmyeong-ro 370, Jeonju-si, Jeollabuk-do 560-550 South Korea
| | - Hyun Ho Lee
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701 South Korea
| | - Hemavathi Ajjappala
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Nongsaengmyeong-ro 370, Jeonju-si, Jeollabuk-do 560-550 South Korea
| | - Kyoungok Jang
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701 South Korea
| | - Jong-Hwa Park
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701 South Korea
| | - Joon-Soo Sim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Nongsaengmyeong-ro 370, Jeonju-si, Jeollabuk-do 560-550 South Korea
| | - Gee Young Lee
- Division of Environmental Agricultural Research, Gyeonggido Agricultural Research & Extension Services, Hwaseong, 445-784 South Korea
| | - Hyun Ju Lee
- Division of Environmental Agricultural Research, Gyeonggido Agricultural Research & Extension Services, Hwaseong, 445-784 South Korea
| | - Young Hee Han
- Division of Environmental Agricultural Research, Gyeonggido Agricultural Research & Extension Services, Hwaseong, 445-784 South Korea
| | - Jae Wook Lim
- Division of Environmental Agricultural Research, Gyeonggido Agricultural Research & Extension Services, Hwaseong, 445-784 South Korea
| | - Inchan Choi
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Nongsaengmyeong-ro 370, Jeonju-si, Jeollabuk-do 560-550 South Korea
| | - In Sik Chung
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701 South Korea
| | - Bum-Soo Hahn
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Nongsaengmyeong-ro 370, Jeonju-si, Jeollabuk-do 560-550 South Korea
| |
Collapse
|
13
|
Baldauf KJ, Royal JM, Hamorsky KT, Matoba N. Cholera toxin B: one subunit with many pharmaceutical applications. Toxins (Basel) 2015; 7:974-96. [PMID: 25802972 PMCID: PMC4379537 DOI: 10.3390/toxins7030974] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/16/2015] [Indexed: 12/22/2022] Open
Abstract
Cholera, a waterborne acute diarrheal disease caused by Vibrio cholerae, remains prevalent in underdeveloped countries and is a serious health threat to those living in unsanitary conditions. The major virulence factor is cholera toxin (CT), which consists of two subunits: the A subunit (CTA) and the B subunit (CTB). CTB is a 55 kD homopentameric, non-toxic protein binding to the GM1 ganglioside on mammalian cells with high affinity. Currently, recombinantly produced CTB is used as a component of an internationally licensed oral cholera vaccine, as the protein induces potent humoral immunity that can neutralize CT in the gut. Additionally, recent studies have revealed that CTB administration leads to the induction of anti-inflammatory mechanisms in vivo. This review will cover the potential of CTB as an immunomodulatory and anti-inflammatory agent. We will also summarize various recombinant expression systems available for recombinant CTB bioproduction.
Collapse
Affiliation(s)
- Keegan J Baldauf
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Joshua M Royal
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY 42303, USA.
| | - Krystal Teasley Hamorsky
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY 42303, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY 42303, USA.
| |
Collapse
|
14
|
Branson TR, McAllister TE, Garcia-Hartjes J, Fascione MA, Ross JF, Warriner SL, Wennekes T, Zuilhof H, Turnbull WB. A protein-based pentavalent inhibitor of the cholera toxin B-subunit. Angew Chem Int Ed Engl 2014; 53:8323-7. [PMID: 24989497 PMCID: PMC4499251 DOI: 10.1002/anie.201404397] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 01/04/2023]
Abstract
Protein toxins produced by bacteria are the cause of many life-threatening diarrheal diseases. Many of these toxins, including cholera toxin (CT), enter the cell by first binding to glycolipids in the cell membrane. Inhibiting these multivalent protein/carbohydrate interactions would prevent the toxin from entering cells and causing diarrhea. Here we demonstrate that the site-specific modification of a protein scaffold, which is perfectly matched in both size and valency to the target toxin, provides a convenient route to an effective multivalent inhibitor. The resulting pentavalent neoglycoprotein displays an inhibition potency (IC50) of 104 pM for the CT B-subunit (CTB), which is the most potent pentavalent inhibitor for this target reported thus far. Complexation of the inhibitor and CTB resulted in a protein heterodimer. This inhibition strategy can potentially be applied to many multivalent receptors and also opens up new possibilities for protein assembly strategies.
Collapse
Affiliation(s)
- Thomas R Branson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT (UK)
| | - Tom E McAllister
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT (UK)
| | - Jaime Garcia-Hartjes
- Laboratory of Organic Chemistry, Wageningen UniversityDreijenplein 8, 6703 HB Wageningen (The Netherlands)
| | - Martin A Fascione
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT (UK)
| | - James F Ross
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT (UK)
| | - Stuart L Warriner
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT (UK)
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen UniversityDreijenplein 8, 6703 HB Wageningen (The Netherlands)
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen UniversityDreijenplein 8, 6703 HB Wageningen (The Netherlands)
- Department of Chemical and Materials Engineering, King Abdulaziz UniversityJeddah (Saudi-Arabia)
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT (UK)
| |
Collapse
|
15
|
Branson TR, McAllister TE, Garcia-Hartjes J, Fascione MA, Ross JF, Warriner SL, Wennekes T, Zuilhof H, Turnbull WB. A Protein-Based Pentavalent Inhibitor of the Cholera Toxin B-Subunit. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Kaushik H, Deshmukh S, Mathur DD, Tiwari A, Garg LC. Recombinant expression of in silico identified Bcell epitope of epsilon toxin of Clostridium perfringens in translational fusion with a carrier protein. Bioinformation 2013; 9:617-21. [PMID: 23904738 PMCID: PMC3725002 DOI: 10.6026/97320630009617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/01/2013] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED Epsilon toxin secreted by Clostridium perfringens types B and D has been directly implicated as the causative agent of fatal enterotoxemia in domestic animals. The aim of the present study is to use in silico approach for identification of B-cell epitope(s) of epsilon toxin, and its expression in fusion with a carrier protein to analyze its potential as vaccine candidate(s). Using different computational analyses and bioinformatics tools, a number of antigenic determinant regions of epsilon toxin were identified. One of the B cell epitopes of epsilon toxin comprising the region (amino acids 40-62) was identified as a promising antigenic determinant. This Etx epitope (Etx40-62) was cloned and expressed as a translational fusion with B-subunit of heat labile enterotoxin (LTB) of E. coli in a secretory expression system. Similar to the native LTB, the recombinant fusion protein retained the ability to pentamerize and bind to GM1 ganglioside receptor of LTB. The rLTB.Etx40-62 could be detected both with anti-Etx and anti-LTB antisera. The rLTB.Etx40-62 fusion protein thus can be evaluated as a potential vaccine candidate against C. perfringens. ABBREVIATIONS aa - amino acid(s), Etx - epsilon toxin of Clostridium perfringens, LTB - B-subunit of heat labile enterotoxin of E. coli.
Collapse
Affiliation(s)
- Himani Kaushik
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi – 110067, India
- Authors equally contributed
| | - Sachin Deshmukh
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi – 110067, India
- Authors equally contributed
| | - Deepika Dayal Mathur
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi – 110067, India
| | - Archana Tiwari
- School of Biotechnololgy, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Airport Bypass Road, Gandhi Nagar, Bhopal, MP – 462036, India
| | - Lalit C Garg
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi – 110067, India
| |
Collapse
|
17
|
Hamorsky KT, Kouokam JC, Bennett LJ, Baldauf KJ, Kajiura H, Fujiyama K, Matoba N. Rapid and scalable plant-based production of a cholera toxin B subunit variant to aid in mass vaccination against cholera outbreaks. PLoS Negl Trop Dis 2013; 7:e2046. [PMID: 23505583 PMCID: PMC3591335 DOI: 10.1371/journal.pntd.0002046] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/18/2012] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Cholera toxin B subunit (CTB) is a component of an internationally licensed oral cholera vaccine. The protein induces neutralizing antibodies against the holotoxin, the virulence factor responsible for severe diarrhea. A field clinical trial has suggested that the addition of CTB to killed whole-cell bacteria provides superior short-term protection to whole-cell-only vaccines; however, challenges in CTB biomanufacturing (i.e., cost and scale) hamper its implementation to mass vaccination in developing countries. To provide a potential solution to this issue, we developed a rapid, robust, and scalable CTB production system in plants. METHODOLOGY/PRINCIPAL FINDINGS In a preliminary study of expressing original CTB in transgenic Nicotiana benthamiana, the protein was N-glycosylated with plant-specific glycans. Thus, an aglycosylated CTB variant (pCTB) was created and overexpressed via a plant virus vector. Upon additional transgene engineering for retention in the endoplasmic reticulum and optimization of a secretory signal, the yield of pCTB was dramatically improved, reaching >1 g per kg of fresh leaf material. The protein was efficiently purified by simple two-step chromatography. The GM1-ganglioside binding capacity and conformational stability of pCTB were virtually identical to the bacteria-derived original B subunit, as demonstrated in competitive enzyme-linked immunosorbent assay, surface plasmon resonance, and fluorescence-based thermal shift assay. Mammalian cell surface-binding was corroborated by immunofluorescence and flow cytometry. pCTB exhibited strong oral immunogenicity in mice, inducing significant levels of CTB-specific intestinal antibodies that persisted over 6 months. Moreover, these antibodies effectively neutralized the cholera holotoxin in vitro. CONCLUSIONS/SIGNIFICANCE Taken together, these results demonstrated that pCTB has robust producibility in Nicotiana plants and retains most, if not all, of major biological activities of the original protein. This rapid and easily scalable system may enable the implementation of pCTB to mass vaccination against outbreaks, thereby providing better protection of high-risk populations in developing countries.
Collapse
Affiliation(s)
- Krystal Teasley Hamorsky
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - J. Calvin Kouokam
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Lauren J. Bennett
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
| | - Keegan J. Baldauf
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Nobuyuki Matoba
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| |
Collapse
|
18
|
Boberg A, Stålnacke A, Bråve A, Hinkula J, Wahren B, Carlin N. Receptor Binding by Cholera Toxin B-Subunit and Amino Acid Modification Improves Minimal Peptide Immunogenicity. ISRN MOLECULAR BIOLOGY 2012; 2012:170676. [PMID: 27335661 PMCID: PMC4890861 DOI: 10.5402/2012/170676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/20/2012] [Indexed: 11/30/2022]
Abstract
We increase our understanding of augmenting a cellular immune response, by using an HIV-1 protease-derived epitope (PR75–84), and variants thereof, coupled to the C-terminal, of the B subunit of cholera toxin (CTB). Fusion proteins were used for immunizations of HLA-A0201 transgenic C57BL/6 mice. We observed different capacities to elicit a cellular immune response by peptides with additions of five to ten amino acids to the PR epitope. There was a positive correlation between the magnitude of the elicited cellular immune response and the capacity of the fusion protein to bind GM-1. This binding capacity is affected by its ability to form natural pentamers of CTB. Our results suggest that functional CTB pentamers containing a foreign amino acid-modified epitope is a novel way to overcome the limited cellular immunogenicity of minimal peptide antigens. This way of using a functional assay as readout for improved cellular immunogenicity might become highly valuable for difficult immunogens such as short peptides (epitopes).
Collapse
Affiliation(s)
- Andreas Boberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 82 Stockholm, Sweden; Division of Education and Research administration, Mälardalen University, P.O. Box 883, 721 23 Västerås, Sweden
| | | | - Andreas Bråve
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 82 Stockholm, Sweden
| | - Jorma Hinkula
- Institution of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 82 Stockholm, Sweden
| | - Nils Carlin
- Etvax AB, Gunnar Asplunds Alle 16, 171 63 Solna, Sweden
| |
Collapse
|
19
|
Miyata T, Harakuni T, Taira T, Matsuzaki G, Arakawa T. Merozoite surface protein-1 of Plasmodium yoelii fused via an oligosaccharide moiety of cholera toxin B subunit glycoprotein expressed in yeast induced protective immunity against lethal malaria infection in mice. Vaccine 2011; 30:948-58. [PMID: 22119928 DOI: 10.1016/j.vaccine.2011.11.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 11/13/2011] [Accepted: 11/15/2011] [Indexed: 11/20/2022]
Abstract
Methylotrophic yeast (Pichia pastoris) secreted cholera toxin B subunit (CTB) predominantly as a biologically active pentamer (PpCTB) with identical ganglioside binding affinity profiles to that of choleragenoid. Unlike choleragenoid, however, the PpCTB did not induce a footpad edema response in mice. Of the two potential glycosylation sites (NIT(4-6) and NKT(90-92)) for this protein, a N-linked oligosaccharide was identified at Asn4. The oligosaccharide, presumed to extend from the lateral circumference of the CTB pentamer ring structure, was exploited as a site-specific anchoring scaffold for the C-terminal 19-kDa merozoite surface protein-1 (MSP1-19) of the rodent malaria parasite, Plasmodium yoelii. Conjugation of MSP1-19 to PpCTB via its oligosaccharide moiety induced higher protective efficacy against lethal parasite infection than conjugation directly to the PpCTB protein body in both intranasal and subcutaneous immunization regimes. Such increased protection was potentially due to the higher antigen loading capacity of CTB achieved when the antigen was linked to the extended branches of the oligosaccharide. This might have allowed the antigen to reside in more spacious molecular environment with less steric hindrance between the constituent molecules of the fusion complex.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Cholera Toxin/genetics
- Cholera Toxin/immunology
- Disease Models, Animal
- Female
- Glycoproteins/genetics
- Glycoproteins/immunology
- Injections, Subcutaneous
- Malaria/immunology
- Malaria/prevention & control
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Merozoite Surface Protein 1/genetics
- Merozoite Surface Protein 1/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Pichia/genetics
- Pichia/metabolism
- Plasmodium yoelii/genetics
- Plasmodium yoelii/immunology
- Survival Analysis
- Vaccines, Conjugate/administration & dosage
- Vaccines, Conjugate/genetics
- Vaccines, Conjugate/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Takeshi Miyata
- Molecular Microbiology Group, Department of Tropical Infectious Diseases, COMB, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | | | | | | | | |
Collapse
|
20
|
Holmner A, Mackenzie A, Okvist M, Jansson L, Lebens M, Teneberg S, Krengel U. Crystal structures exploring the origins of the broader specificity of escherichia coli heat-labile enterotoxin compared to cholera toxin. J Mol Biol 2010; 406:387-402. [PMID: 21168418 DOI: 10.1016/j.jmb.2010.11.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 11/28/2022]
Abstract
Cholera toxin (CT) and Escherichia coli heat-labile enterotoxin (LT) are structurally and functionally related and share the same primary receptor, the GM1 ganglioside. Despite their extensive similarities, these two toxins exhibit distinct ligand specificities, with LT being more promiscuous than CT. Here, we have attempted to rationalize the broader binding specificity of LT and the subtle differences between the binding characteristics of LTs from human and porcine origins (mediated by their B subunit pentamers, hLTB and pLTB, respectively). The analysis is based on two crystal structures of pLTB in complexes with the pentasaccharide of its primary ligand, GM1, and with neolactotetraose, the carbohydrate determinant of a typical secondary ligand of LTs, respectively. Important molecular determinants underlying the different binding specificities of LTB and CTB are found to be contributed by Ser95, Tyr18 and Thr4 (or Ser4 of hLTB), which together prestabilize the binding site by positioning Lys91, Glu51 and the adjacent loop region (50-61) containing Ile58 for ligand binding. Glu7 and Ala1 may also play an important role. Many of these residues are closely connected with a recently identified second binding site, and there appears to be cross-talk between the two sites. Binding to N-acetyllactosamine-terminated receptors is further augmented by Arg13 (present in pLT and some hLT variants), as previously predicted.
Collapse
Affiliation(s)
- Asa Holmner
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
21
|
Carbohydrate binding specificities and crystal structure of the cholera toxin-like B-subunit from Citrobacter freundii. Biochimie 2010; 92:482-90. [DOI: 10.1016/j.biochi.2010.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 02/10/2010] [Indexed: 11/23/2022]
|
22
|
No direct binding of the heat-labile enterotoxin of Escherichia coli to E. coli lipopolysaccharides. Glycoconj J 2009; 27:171-9. [PMID: 19844789 DOI: 10.1007/s10719-009-9264-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 08/28/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
A novel carbohydrate binding site recognizing blood group A and B determinants in a hybrid of cholera toxin and Escherichia coli heat-labile enterotoxin B-subunits (termed LCTBK) has previously been described, and also the native heat-labile enterotoxin bind to some extent to blood group A/B terminated glycoconjugates. The blood group antigen binding site is located at the interface of the B-subunits. Interestingly, the same area of the B-subunits has been proposed to be involved in binding of the heat-labile enterotoxin to lipopolysaccharides on the bacterial cell surface. Binding of the toxin to lipopolysaccharides does not affect the GM1 binding capacity. The present study aimed at characterizing the relationship between the blood group A/B antigen binding site and the lipopolysaccharide binding site. However, no binding of the B-subunits to E. coli lipopolysaccharides in microtiter wells or on thin-layer chromatograms was obtained. Incubation with lipopolysaccharides did not affect the binding of the B-subunits of heat-labile enterotoxin of human isolates to blood group A-carrying glycosphingolipids, indicating that the blood group antigen site is not involved in LPS binding. However, the saccharide competition experiments showed that GM1 binding reduced the affinity for blood group A determinants and vice versa, suggesting that a concurrent occupancy of the two binding sites does not occur. The latter finding is related to a connection between the blood group antigen binding site and the GM1 binding site through residues interacting with both ligands.
Collapse
|
23
|
CD4+ T-cell responses to an oral inactivated cholera vaccine in young children in a cholera endemic country and the enhancing effect of zinc supplementation. Vaccine 2009; 28:422-9. [PMID: 19837094 DOI: 10.1016/j.vaccine.2009.10.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/26/2009] [Accepted: 10/08/2009] [Indexed: 12/26/2022]
Abstract
Immunization of young children with the oral inactivated whole cell cholera vaccine Dukoral((R)) containing recombinant cholera toxin B subunit (CTB) induces antibody responses which can be further enhanced by zinc supplementation. We have investigated if immunization with the cholera vaccine induces specific T-cell responses in young children and also whether zinc supplementation influences these responses. Bangladeshi children (10-18 months old) received vaccine alone, vaccine together with zinc supplementation or only zinc. T-cell blast formation indicating a proliferative response was analyzed by the flow cytometric assay of cell-mediated immune response in activated whole blood (FASCIA) and cytokines were measured by ELISA. Stronger T-cell responses were detected if a modified CTB molecule (mCTB) with reduced binding to GM1 ganglioside was used for cell stimulation compared to normal CTB. After vaccination, CD4+ T cells responded to mCTB with significantly increased blast formation (P<0.01) and IFN-gamma production (P<0.05) compared to before vaccination. No responses to mCTB were detected in children receiving zinc alone (P>0.05). The IFN-gamma production was significantly higher (P<0.01) but the blast formation comparable (P>0.05) in children receiving zinc plus vaccine compared to in children receiving vaccine alone. The vibriocidal antibody responses induced by the vaccine were also significantly higher in children receiving zinc supplementation (P<0.001). Our results thus show that oral cholera vaccination induces a Th1 T-cell response in young children, and that the IFN-gamma as well as the vibriocidal antibody responses can be enhanced by zinc supplementation.
Collapse
|
24
|
Tobias J, Lebens M, Bölin I, Wiklund G, Svennerholm AM. Construction of non-toxic Escherichia coli and Vibrio cholerae strains expressing high and immunogenic levels of enterotoxigenic E. coli colonization factor I fimbriae. Vaccine 2008; 26:743-52. [DOI: 10.1016/j.vaccine.2007.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 12/05/2007] [Accepted: 12/06/2007] [Indexed: 11/29/2022]
|
25
|
Gong ZH, Jin HQ, Jin YF, Zhang YZ. Expression of Cholera Toxin B Subunit and Assembly as Functional Oligomers in Silkworm. BMB Rep 2005; 38:717-24. [PMID: 16336788 DOI: 10.5483/bmbrep.2005.38.6.717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nontoxic B subunit of cholera toxin (CTB) can significantly increase the ability of proteins to induce immunological tolerance after oral administration, when it was conjugated to various proteins. Recombinant CTB offers great potential for treatment of autoimmune disease. Here we firstly investigated the feasibility of silkworm baculovirus expression vector system for the cost-effective production of CTB under the control of a strong polyhedrin promoter. Higher expression was achieved via introducing the partial non-coding and coding sequences (ATAAAT and ATGCCGAAT) of polyhedrin to the 5' end of the native CTB gene, with the maximal accumulation being approximately 54.4 mg/L of hemolymph. The silkworm bioreactor produced this protein vaccine as the glycoslated pentameric form, which retained the GM1-ganglioside binding affinity and the native antigenicity of CTB. Further studies revealed that mixing with silkworm-derived CTB increases the tolerogenic potential of insulin. In the nonconjugated form, an insulin : CTB ratio of 100 : 1 was optimal for the prominent reduction in pancreatic islet inflammation. The data presented here demonstrate that the silkworm bioreactor is an ideal production and delivery system for an oral protein vaccine designed to develop immunological tolerance against autoimmune diabetes and CTB functions as an effective mucosal adjuvant for oral tolerance induction.
Collapse
Affiliation(s)
- Zhao-Hui Gong
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Second Avenue, Hangzhou 310018, China
| | | | | | | |
Collapse
|
26
|
Rouquette-Jazdanian AK, Foussat A, Lamy L, Pelassy C, Lagadec P, Breittmayer JP, Aussel C. Cholera toxin B-subunit prevents activation and proliferation of human CD4+ T cells by activation of a neutral sphingomyelinase in lipid rafts. THE JOURNAL OF IMMUNOLOGY 2005; 175:5637-48. [PMID: 16237053 DOI: 10.4049/jimmunol.175.9.5637] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The inhibition of human CD4+ T lymphocyte activation and proliferation by cholera toxin B-subunit (CTB) is a well-established phenomenon; nevertheless, the exact mechanism remained unclear. In the present study, we propose an explanation for the rCTB-induced inhibition of CD4+ T lymphocytes. rCTB specifically binds to GM1, a raft marker, and strongly modifies the lipid composition of rafts. First, rCTB inhibits sphingomyelin synthesis; second, it enhances phosphatidylcholine synthesis; and third, it activates a raft-resident neutral sphingomyelinase resembling to neutral sphingomyelinase type 1, thus generating a transient ceramide production. We demonstrated that these ceramides inhibit protein kinase Calpha phosphorylation and its translocation into the modified lipid rafts. Furthermore, we show that rCTB-induced ceramide production activate NF-kappaB. Combined all together: raft modification in terms of lipids, ceramide production, protein kinase Calpha inhibition, and NF-kappaB activation lead to CD4+ T cell inhibition.
Collapse
Affiliation(s)
- Alexandre K Rouquette-Jazdanian
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit 576, IFR 50, Hôpital de l'Archet I, Nice Cedex 3, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Flach CF, Lange S, Jennische E, Lönnroth I, Holmgren J. Cholera toxin induces a transient depletion of CD8+ intraepithelial lymphocytes in the rat small intestine as detected by microarray and immunohistochemistry. Infect Immun 2005; 73:5595-602. [PMID: 16113276 PMCID: PMC1231117 DOI: 10.1128/iai.73.9.5595-5602.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cholera toxin (CT), besides causing intestinal hypersecretion after intragastric administration or during cholera infection, affects a multitude of regulatory mechanisms within the gut mucosal network, including T cells. By use of microarray screening, real-time PCR, and immunohistochemistry, we demonstrate here a rapid depletion of jejunal CD8(+) intraepithelial lymphocytes (IEL) in rats after intragastric CT challenge. This depletion may depend on CT-induced migration of IEL, since it was associated with a progressive decrease of CD8(+) cells in the epithelium and a contemporary transient increase of such cells, preferentially at the base of the villi, in the lamina propria. A significant decrease in the total number of villous CD8(+) cells at 6 and 18 h after CT challenge was detected; this possibly reflects an efflux from the jejunal mucosa. The kinetics of the CD8(+) IEL demonstrate the return to normal intraepithelial position at original numbers already 72 h after the single CT dose. The induced migration seems to be dependent on the enzymatic A-subunit of CT, since challenge with neither sorbitol nor CT B-subunit did mimic the effects of CT on CD8(+) IEL. Furthermore, a decrease in the level of both RANTES transcript and protein was detected, most likely as a consequence of the CT-induced migration of CD8(+) IEL. These results point to a complex interaction between CT, epithelial cells, and IEL, resulting in a disturbance of the gut homeostasis, which might have relevance for the strong immunomodulatory effects of intragastrically administered CT.
Collapse
Affiliation(s)
- Carl-Fredrik Flach
- Department of Medical Microbiology and Immunology, Göteborg University, 40530 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
28
|
Holmner A, Lebens M, Teneberg S, Angström J, Okvist M, Krengel U. Novel binding site identified in a hybrid between cholera toxin and heat-labile enterotoxin: 1.9 A crystal structure reveals the details. Structure 2005; 12:1655-67. [PMID: 15341730 DOI: 10.1016/j.str.2004.06.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Revised: 06/10/2004] [Accepted: 06/24/2004] [Indexed: 10/26/2022]
Abstract
A hybrid between the B subunits of cholera toxin and Escherichia coli heat-labile enterotoxin has been described, which exhibits a novel binding specificity to blood group A and B type 2 determinants. In the present investigation, we have determined the crystal structure of this protein hybrid, termed LCTBK, in complex with the blood group A pentasaccharide GalNAcalpha3(Fucalpha2)Galbeta4(Fucalpha3)GlcNAcbeta, confirming not only the novel binding specificity but also a distinct new oligosaccharide binding site. Binding studies revealed that the new specificity can be ascribed to a single mutation (S4N) introduced into the sequence of Escherichia coli heat-labile enterotoxin. At a resolution of 1.9 A, the new binding site is resolved in excellent detail. Main features include a complex network of water molecules, which is well preserved by the parent toxins, and an unexpectedly modest contribution to binding by the critical residue Asn4, which interacts with the ligand only via a single water molecule.
Collapse
Affiliation(s)
- Asa Holmner
- Department of Chemistry and Bioscience, Chalmers University of Technology, PO Box 462, SE-40530 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
29
|
Anjuère F, Luci C, Lebens M, Rousseau D, Hervouet C, Milon G, Holmgren J, Ardavin C, Czerkinsky C. In vivo adjuvant-induced mobilization and maturation of gut dendritic cells after oral administration of cholera toxin. THE JOURNAL OF IMMUNOLOGY 2004; 173:5103-11. [PMID: 15470054 DOI: 10.4049/jimmunol.173.8.5103] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although dendritic cells (DCs) regulate immune responses, they exhibit functional heterogeneity depending on their anatomical location. We examined the functional properties of intestinal DCs after oral administration of cholera toxin (CT), the most potent mucosal adjuvant. Two CD11c+ DC subsets were identified both in Peyer's patches and mesenteric lymph nodes (MLN) based on the expression of CD8alpha (CD8+ and CD8- DCs, respectively). A third subset of CD11c+CD8int was found exclusively in MLN. Feeding mice with CT induced a rapid and transient mobilization of a new CD11c+CD8- DC subset near the intestinal epithelium. This recruitment was associated with an increased production of the chemokine CCL20 in the small intestine and was followed by a massive accumulation of CD8int DCs in MLN. MLN DCs from CT-treated mice were more potent activators of naive T cells than DCs from control mice and induced a Th2 response. This increase in immunostimulating properties was accounted for by CD8int and CD8- DCs, whereas CD8+ DCs remained insensitive to CT treatment. Consistently, the CD8int and CD8- subsets expressed higher levels of costimulatory molecules than CD8+ and corresponding control DCs. Adoptive transfer experiments showed that these two DC subsets, unlike CD8+ DCs, were able to present Ags orally coadministered with CT in an immunostimulating manner. The ability of CT to mobilize immature DCs in the intestinal epithelium and to promote their emigration and differentiation in draining lymph nodes may explain the exceptional adjuvant properties of this toxin on mucosal immune responses.
Collapse
Affiliation(s)
- Fabienne Anjuère
- Institut National de la Santé et de la Recherche Médicale, Institut Fédératif de Recherche, Faculté de Médecine Pasteur, Nice, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chou SF. Production and purification of monoclonal and polyclonal antibodies against cholera toxin. ACTA ACUST UNITED AC 2004; 23:258-61. [PMID: 15319074 DOI: 10.1089/1536859041651376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to produce monoclonal and polyclonal antibodies against cholera toxin (CT). Hyperimmune ICR mice produced polyclonal antibodies (PAbs) after injection with 0.5 mL of pristane and were injected with NS-1 myeloma cells 2 weeks later. Hyperimmune Balb/c mice were used for the production of monoclonal antibodies (MAbs). After these mice were immunized four times and given a final boost, their spleen cells were collected and fused with NS-1 myeloma cells under the presence of PEG 1500. The fused cells were then selected in the hypoxanthine, aminopterin, and thymidine (HAT)-RPMIX medium. Anti-CT antibody-secreting hybridoma cell lines with high titer were cloned by enzyme-linked immunosorbent assay (ELISA) and then subcloned by limiting dilution in 15% fetal bovine serum (FBS) HT-RPMIX medium. Eleven murine hybridoma producing anti-CT MAbs were obtained and designated CT-A2, CT-B4, CT-B11, CT-C7, CT-D7, CT-E8, CT-F4, CT-F2, CT-F8, CT-E3, CT-E6. Isotypes of MAbs were identified as IgM heavy chain and all were lambda light chain. Hitrap rProtein A and Hitrap IgM purification columns were used for the purification of PAbs and MAbs, respectively.
Collapse
Affiliation(s)
- Shu-Fen Chou
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan, Republic of China.
| |
Collapse
|
31
|
Sun JB, Eriksson K, Li BL, Lindblad M, Azem J, Holmgren J. Vaccination with dendritic cells pulsed in vitro with tumor antigen conjugated to cholera toxin efficiently induces specific tumoricidal CD8+ cytotoxic lymphocytes dependent on cyclic AMP activation of dendritic cells. Clin Immunol 2004; 112:35-44. [PMID: 15207780 DOI: 10.1016/j.clim.2004.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 03/01/2004] [Indexed: 10/26/2022]
Abstract
We investigated the development of CD8+ tumor-specific cytotoxic lymphocytes (CTL) and protection against tumor growth after vaccination with bone marrow-derived dendritic cells (DC) pulsed with a model protein ovalbumin conjugated to cholera toxin (OVA-CT) in B6 mice using E.G7 tumor cells expressing OVA(257-264) peptide (SIINFEKL) as target cells in vitro and in vivo. Vaccination with OVA-CT-pulsed DC concurrently induced strong CTL in vitro activity and anti-E.G7 tumor protection in vivo in WT, NK-depleted and CD4-deficient mice as well as in IL-12-/- and IFN-gamma-/- mice but not in CD8-deficient mice. Importantly, activation of CTL by OVA-CT-pulsed DC was dependent on CT-induced activation of adenylate cyclase and increased cAMP production by DC associated with increased expression of MHC class I and co-stimulatory molecules (CD80, CD86 and CD40). These results show that vaccination with DC pulsed with antigens (Ag) conjugated to CT induces a strong CTL response and suggest that conjugation of tumor Ag to CT for DC vaccination represents a promising approach for tumor vaccination and immunotherapy.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Animals
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/pharmacology
- Cholera Toxin/immunology
- Cholera Toxin/pharmacology
- Cyclic AMP/immunology
- Cytotoxicity Tests, Immunologic
- Dendritic Cells/immunology
- Egg Proteins/immunology
- Egg Proteins/pharmacology
- Flow Cytometry
- Immunologic Memory
- Immunotherapy, Adoptive/methods
- Immunotoxins/immunology
- Immunotoxins/pharmacology
- Interferon-gamma/immunology
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/therapy
- Ovalbumin/immunology
- Ovalbumin/pharmacology
- Peptide Fragments
- Specific Pathogen-Free Organisms
- T-Lymphocytes, Cytotoxic/immunology
- Vaccination
Collapse
Affiliation(s)
- J-B Sun
- Department of Medical Microbiology and Immunology, and Göteborg University Vaccine Research Institute (GUVAX), Göteborg University, S-405 30, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
32
|
Larsson C, Holmgren J, Lindahl G, Bergquist C. Intranasal immunization of mice with group B streptococcal protein rib and cholera toxin B subunit confers protection against lethal infection. Infect Immun 2004; 72:1184-7. [PMID: 14742572 PMCID: PMC321638 DOI: 10.1128/iai.72.2.1184-1187.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intranasal immunization of mice with Rib, a cell surface protein of group B streptococcus (GBS), conjugated to or simply coadministered with the recombinant cholera toxin B subunit, induces systemic immunoglobulin G (IgG) and local IgA antibody responses and confers protection against lethal GBS infection. These findings have implications for the development of a human GBS vaccine.
Collapse
Affiliation(s)
- Charlotte Larsson
- Department of Medical Microbiology, Dermatology and Infection, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
33
|
Tinker JK, Erbe JL, Hol WGJ, Holmes RK. Cholera holotoxin assembly requires a hydrophobic domain at the A-B5 interface: mutational analysis and development of an in vitro assembly system. Infect Immun 2003; 71:4093-101. [PMID: 12819100 PMCID: PMC162025 DOI: 10.1128/iai.71.7.4093-4101.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera toxin (CT) and related Escherichia coli enterotoxins LTI and LTIIb have a conserved hydrophobic region at the AB(5) interface postulated to be important for toxin assembly. Hydrophobic residue F223 in the A subunit of CT (CTA) as well as residues 174, L77, and T78 in the B subunit of CT (CTB) were replaced individually with aspartic acid, and the resulting CTA and CTB variants were analyzed for their ability to assemble into holotoxin in vivo. CTA-F223D holotoxin exhibited decreased stability and toxicity and increased susceptibility to proteolysis by trypsin. CTB-L77D was unable to form functional pentamers. CTB-I74D and CTB-T78D formed pentamers that bound to GM(1) and D-galactose but failed to assemble with CTA to form holotoxin. In contrast, CTB-T78D and CTA-F223H interacted with each other to form a significant amount of holotoxin in vivo. Our findings support the importance of hydrophobic interactions between CTA and CTB in holotoxin assembly. We also developed an efficient method for assembly of CT in vitro, and we showed that CT assembled in vitro was comparable to wild-type CT in toxicity and antigenicity. CTB-I74D and CTB-T78D did not form pentamers or holotoxin in vitro, and CTA-F223D did not form holotoxin in vitro. The efficient system for in vitro assembly of CT described here should be useful for future studies on the development of drugs to inhibit CT assembly as well as the development of chimeric CT-like molecules as potential vaccine candidates.
Collapse
Affiliation(s)
- Juliette K Tinker
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
34
|
Eriksson K, Fredriksson M, Nordström I, Holmgren J. Cholera toxin and its B subunit promote dendritic cell vaccination with different influences on Th1 and Th2 development. Infect Immun 2003; 71:1740-7. [PMID: 12654787 PMCID: PMC152034 DOI: 10.1128/iai.71.4.1740-1747.2003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera toxin (CT) is a strong mucosal adjuvant for codelivered antigens, whereas its nontoxic B subunit (CTB) is an efficient mucosal carrier molecule for the generation of immune responses to linked antigens. We investigated the effects of CT and CTB on the immunogenicity of in vitro-treated antigen-pulsed dendritic cells (DC) following intravenous injection into mice. Prior to infusion, DC were pulsed for 90 min with either free ovalbumin (OVA), OVA mixed with CT or CTB, or chemical conjugates of OVA with CT and CTB (OVA-CT and OVA-CTB). DC pulsed with OVA or with OVA and CTB gave rise to modest antibody and T-cell responses. Conjugation of OVA with CTB enhanced both the subsequent B-cell and T-cell responses to OVA and preferentially induced Th2 responses. CT was shown to be a strong adjuvant when it was coadministered to DC with OVA and was even stronger when it was coadministered with OVA-CTB and primed for a mixed Th1-Th2 response. The antibody and T-cell responses were further enhanced if OVA was coupled to CT, implying that CT can utilize a combined carrier and adjuvant function vis-a-vis linked antigens for DC vaccination. The immunopotentiating capacity of CT- and CTB-linked antigen was associated with both upregulated secretion of interleukin-1beta by the pulsed DC and increased expression of CD80 and CD86 on the DC surface. These results imply that CT and CTB can be used to both markedly increase and partially direct the DC vaccine-induced immune response with respect to Th1 and Th2 responses, which has obvious implications for DC-based vaccine development.
Collapse
Affiliation(s)
- Kristina Eriksson
- Department of Medical Microbiology & Immunology, Box 435, Göteborg University Vaccine Research Institute (GUVAX), Göteborg University, 405-30 Göteborg, Sweden.
| | | | | | | |
Collapse
|
35
|
Anjuère F, George-Chandy A, Audant F, Rousseau D, Holmgren J, Czerkinsky C. Transcutaneous immunization with cholera toxin B subunit adjuvant suppresses IgE antibody responses via selective induction of Th1 immune responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1586-92. [PMID: 12538724 DOI: 10.4049/jimmunol.170.3.1586] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Topical application of cholera toxin (CT) onto mouse skin can induce a humoral immune response to CT as well as to coadministered Ags. In this study, we examined the nontoxic cell-binding B subunit of CT (CTB) as a potential adjuvant for cutaneous immune responses when coadministered with the prototype protein Ag, OVA. CTB applied onto skin induced serum Ab responses to itself with magnitudes comparable to those evoked by CT but was poorly efficient at promoting systemic Ab responses to coadministered OVA. However, transcutaneous immunization (TCI) with either CT or CTB and OVA led to vigorous OVA-specific T cell proliferative responses. Furthermore, CTB potentiated Th1-driven responses (IFN-gamma production) whereas CT induced both Th1 and Th2 cytokine production. Coadministration of the toxic subunit CTA, together with CTB and OVA Ag, led to enhanced Th1 and Th2 responses. Moreover, whereas TCI with CT enhanced serum IgE responses to coadministered OVA, CTB suppressed these responses. TCI with either CT or CTB led to an increased accumulation of dendritic cells in the exposed epidermis and the underlying dermis. Thus, in contrast to CT, CTB appears to behave very differently when given by the transcutaneous as opposed to a mucosal route and the results suggest that the adjuvanticity of CT on Th1- and Th2-dependent responses induced by TCI involves two distinct moieties, the B and the A subunits, respectively.
Collapse
Affiliation(s)
- Fabienne Anjuère
- Institut National de la Santé et de la Recherche Médicale, Nice, France
| | | | | | | | | | | |
Collapse
|
36
|
George-Chandy A, Eriksson K, Lebens M, Nordström I, Schön E, Holmgren J. Cholera toxin B subunit as a carrier molecule promotes antigen presentation and increases CD40 and CD86 expression on antigen-presenting cells. Infect Immun 2001; 69:5716-25. [PMID: 11500448 PMCID: PMC98688 DOI: 10.1128/iai.69.9.5716-5725.2001] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera toxin B subunit (CTB) is an efficient mucosal carrier molecule for the generation of mucosal antibody responses and/or induction of systemic T-cell tolerance to linked antigens. CTB binds with high affinity to GM1 ganglioside cell surface receptors. In this study, we evaluated how conjugation of a peptide or protein antigen to CTB by chemical coupling or genetic fusion influences the T-cell-activating capacity of different antigen-presenting cell (APC) subsets. Using an in vitro system in which antigen-pulsed APCs were incubated with antigen-specific, T-cell receptor-transgenic T cells, we found that the dose of antigen required for T-cell activation could be decreased >10,000-fold using CTB-conjugated compared to free antigen. In contrast, no beneficial effects were observed when CTB was simply admixed with antigen. CTB conjugation enhanced the antigen-presenting capacity not only of dendritic cells and B cells but also of macrophages, which expressed low levels of cell surface major histocompatibility complex (MHC) class II and were normally poor activators of naive T cells. Enhanced antigen-presenting activity by CTB-linked antigen resulted in both increased T-cell proliferation and increased interleukin-12 and gamma interferon secretion and was associated with up-regulation of CD40 and CD86 on the APC surface. These results imply that conjugation to CTB dramatically lowers the threshold concentration of antigen required for immune cell activation and also permits low-MHC II-expressing APCs to prime for a specific immune response.
Collapse
Affiliation(s)
- A George-Chandy
- Department of Medical Microbiology and Immunology, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
37
|
Daniell H, Lee SB, Panchal T, Wiebe PO. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol 2001; 311:1001-9. [PMID: 11531335 PMCID: PMC3473180 DOI: 10.1006/jmbi.2001.4921] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2001] [Revised: 07/02/2001] [Accepted: 07/02/2001] [Indexed: 11/22/2022]
Abstract
The B subunits of enterotoxigenic Escherichia coli (LTB) and cholera toxin of Vibrio cholerae (CTB) are candidate vaccine antigens. Integration of an unmodified CTB-coding sequence into chloroplast genomes (up to 10,000 copies per cell), resulted in the accumulation of up to 4.1 % of total soluble tobacco leaf protein as functional oligomers (410-fold higher expression levels than that of the unmodified LTB gene expressed via the nuclear genome). However, expression levels reported are an underestimation of actual accumulation of CTB in transgenic chloroplasts, due to aggregation of the oligomeric forms in unboiled samples similar to the aggregation observed for purified bacterial antigen. PCR and Southern blot analyses confirmed stable integration of the CTB gene into the chloroplast genome. Western blot analysis showed that the chloroplast- synthesized CTB assembled into oligomers and were antigenically identical with purified native CTB. Also, binding assays confirmed that chloroplast-synthesized CTB binds to the intestinal membrane GM1-ganglioside receptor, indicating correct folding and disulfide bond formation of CTB pentamers within transgenic chloroplasts. In contrast to stunted nuclear transgenic plants, chloroplast transgenic plants were morphologically indistinguishable from untransformed plants, when CTB was constitutively expressed in chloroplasts. Introduced genes were inherited stably in subsequent generations, as confirmed by PCR and Southern blot analyses. Increased production of an efficient transmucosal carrier molecule and delivery system, like CTB, in transgenic chloroplasts makes plant-based oral vaccines and fusion proteins with CTB needing oral administration commercially feasible. Successful expression of foreign genes in transgenic chromoplasts and availability of marker-free chloroplast transformation techniques augurs well for development of vaccines in edible parts of transgenic plants. Furthermore, since the quaternary structure of many proteins is essential for their function, this investigation demonstrates the potential for other foreign multimeric proteins to be properly expressed and assembled in transgenic chloroplasts.
Collapse
Affiliation(s)
- H Daniell
- Department of Molecular Biology and Microbiology and Center for Discovery of Drugs and Diagnostics, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826-3227, USA.
| | | | | | | |
Collapse
|
38
|
Frisk A, Lebens M, Johansson C, Ahmed H, Svensson L, Ahlman K, Lagergård T. The role of different protein components from the Haemophilus ducreyi cytolethal distending toxin in the generation of cell toxicity. Microb Pathog 2001; 30:313-24. [PMID: 11399138 DOI: 10.1006/mpat.2000.0436] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytolethal distending toxin of Haemophilus ducreyi (HdCDT) is a multicomponent toxin, encoded by an operon consisting of three genes, cdtABC. To investigate the role of the individual products in generation of toxicity, recombinant plasmids were constructed allowing expression of each of the genes individually or in different combinations in Escherichia coli and Vibrio cholerae. Expression of all three genes (cdtABC) was necessary to generate toxicity on cells, and no activity was obtained using combinations in which only one or two of the genes were expressed. Of the individual gene products, the CdtA was shown to exist in two forms with an MW of 23 and 17 kDa, respectively. The CdtB protein alone resulted in DNase activity. CdtC purified from both toxic and non-toxic extracts (from strains expressing cdtCAB and cdtC, respectively) had a molecular weight of about 20 kDa and reacted with a CdtC-specific monoclonal antibody. However, the protein isoelectric point (pI) of CdtC from toxic preparations was about 1.5 pH units more basic than from non-toxic ones. Both forms were immunogenic giving rise to toxin-neutralizing antibodies. Toxicity was reconstructed by combining non-toxic cell sonicates from E. coli, expressing CdtA, CdtB and CdtC proteins individually. Only combinations including all three products gave toxicity, indicating that all are actively involved in the generation of toxic activity on cells. The reconstruction resulted in a 1.5 pH unit shift in the PI of CdtC, making it identical to that of the protein isolated from bacteria expressing cdtABC. The results showed that the CdtB component produces DNase activity, but cell toxicity depends on the involvement of the other two components of CDT and is associated with absorption of all three proteins by HEp-2 cells.
Collapse
Affiliation(s)
- A Frisk
- Department of Medical Microbiology and Immunology, Göteborg University, SE-40530 Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
39
|
Shen X, Lagergård T, Yang Y, Lindblad M, Fredriksson M, Wallerström G, Holmgren J. Effect of pre-existing immunity for systemic and mucosal immune responses to intranasal immunization with group B Streptococcus type III capsular polysaccharide-cholera toxin B subunit conjugate. Vaccine 2001; 19:3360-8. [PMID: 11348699 DOI: 10.1016/s0264-410x(00)00532-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effects of priming with a group B Streptococcus type III capsular polysaccharide (GBS CPS III)-recombinant cholera toxin B subunit (rCTB) conjugate, purified GBS CPS III or rCTB alone on the systemic and mucosal immune responses to CPS III after intranasal (i.n.) immunization were investigated in mice. Priming with purified GBS CPS III followed by boosting with GBS CPS III-rCTB conjugate or priming with the conjugate followed by boosting with free CPS induced comparable levels of specific IgG and IgA in both serum and in lungs and vagina. However, i.n. immunization comprising both priming and boosting with conjugate was superior to priming with CPS and boosting with conjugate or the reverse, especially with regard to inducing mucosal IgA anti-CPS responses. All the immunization schemes, except priming and boosting with free CPS, induced high and similar levels of IgG1 in serum. In contrast, mice primed with free CPS III and then boosted with CPS III-rCTB conjugate by the i.n. route failed to produce significant levels of IgG2a, IgG2b and IgG3 in serum, at difference from mice primed with the conjugate and boosted with either conjugate or free CPS. Pre-immunization with rCTB either i.n. or i.p. did not suppress specific serum IgG responses induced by GBS CPS III-rCTB conjugate intranasally, but did inhibit serum and especially mucosal IgA responses. Our findings suggest that priming with CPS affects the distribution of IgG subclasses to GBS CPS and that pre-existing anti-carrier rCTB immunity can have an inhibitory effect on mucosal immune responses elicited by the conjugate vaccine given by the i.n. route.
Collapse
Affiliation(s)
- X Shen
- Department of Medical Microbiology and Immunology, Göteborg University, Guldhedsgatan 10, SE-413 46, Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
40
|
Boirivant M, Fuss IJ, Ferroni L, De Pascale M, Strober W. Oral administration of recombinant cholera toxin subunit B inhibits IL-12-mediated murine experimental (trinitrobenzene sulfonic acid) colitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3522-32. [PMID: 11207312 DOI: 10.4049/jimmunol.166.5.3522] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Trinitrobenzene sulfonic acid (TNBS)-induced colitis is an IL-12-driven, Th1 T cell-mediated colitis that resembles human Crohn's disease. In the present study, we showed initially that the oral administration of recombinant subunit B of cholera toxin (rCT-B) at the time of TNBS-induced colitis by intrarectal TNBS instillation inhibits the development of colitis or, at later time when TNBS-induced colitis is well established, brings about resolution of the colitis. Dose-response studies showed that a majority of mice (68%) treated with rCT-B at a dose of 100 microg (times four daily doses) exhibited complete inhibition of the development of colitis, whereas a minority (30%) treated with rCT-B at a dose of 10 microg (times four daily doses) exhibited complete inhibition; in both cases, however, the remaining mice exhibited some reduction in the severity of inflammation. In further studies, we showed that rCT-B administration is accompanied by prevention/reversal of increased IFN-gamma secretion (the hallmark of a Th1 response) without at the same time causing an increase in IL-4 secretion. This decreased IFN-gamma secretion was not associated with the up-regulation of the secretion of counterregulatory cytokines (IL-10 or TGF-beta), but was associated with a marked inhibition of IL-12 secretion, i.e., the secretion of the cytokine driving the Th1 response. Finally, we showed that rCT-B administration results in increased apoptosis of lamina propria cells, an effect previously shown to be indicative of IL-12 deprivation. From these studies, rCT-B emerges as a powerful inhibitor of Th1 T cell-driven inflammation that can conceivably be applied to the treatment of Crohn's disease.
Collapse
Affiliation(s)
- M Boirivant
- Laboratory of Immunology, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | |
Collapse
|
41
|
Shen X, Lagergård T, Yang Y, Lindblad M, Fredriksson M, Holmgren J. Group B Streptococcus capsular polysaccharide-cholera toxin B subunit conjugate vaccines prepared by different methods for intranasal immunization. Infect Immun 2001; 69:297-306. [PMID: 11119518 PMCID: PMC97884 DOI: 10.1128/iai.69.1.297-306.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2000] [Accepted: 10/11/2000] [Indexed: 11/20/2022] Open
Abstract
Group B Streptococcus (GBS) type III capsular polysaccharide (CPS III) was conjugated to recombinant cholera toxin B subunit (rCTB) using three different methods which employed (i) cystamine and N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP), (ii) carbodiimide with adipic acid dihydrazide (ADH) as a spacer, or (iii) reductive amination (RA). The CPS III-rCTB conjugates were divided into large- and small-molecular-weight (M(r)) fractions, and the immunogenicities of the different preparations after intranasal (i.n.) immunization were studied in mice. Both large- and small-M(r) conjugates of CPS III-rCTB(RA) or CPS III-rCTB(ADH) induced high, almost comparable levels of CPS-specific immunoglobulin G (IgG) in serum, lungs, and vagina that were generally superior to those obtained with CPS III-rCTB(SPDP) conjugates or a CPS III and rCTB mixture. However, the smaller-M(r) conjugates of CPS III-rCTB(RA) or CPS III-rCTB(ADH) in most cases elicited a lower anti-CPS IgA immune response than the large-M(r) conjugates, and the highest anti-CPS IgA titers in both tissues and serum were obtained with the large-M(r) CPS III-rCTB(RA) conjugate. Serum IgG anti-CPS titers induced by the CPS III-rCTB(RA) conjugate had high levels of specific IgG1, IgG2a, IgG2b, and IgG3 antibodies. Based on the effectiveness of RA for coupling CPS III to rCTB, RA was also tested for conjugating GBS CPS Ia with rCTB. As for the CPS III-rCTB conjugates, the immunogenicity of CPS Ia was greatly increased by conjugation to rCTB. Intranasal immunization with a combination of CPS Ia-rCTB and CPS III-rCTB conjugates was shown to induce anti-CPS Ia and III immune responses in serum and lungs that were fully comparable with the responses to immunization with the monovalent CPS Ia-rCTB or CPS III-rCTB conjugates. These results suggest that the GBS CPS III-rCTB and CPS Ia-rCTB conjugates prepared by the RA method may be used in bivalent and possibly also in multivalent mucosal GBS conjugate vaccines.
Collapse
Affiliation(s)
- X Shen
- Department of Medical Microbiology and Immunology, Göteborg University, S-413 46 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
42
|
Rask C, Fredriksson M, Lindblad M, Czerkinsky C, Holmgren J. Mucosal and systemic antibody responses after peroral or intranasal immunization: effects of conjugation to enterotoxin B subunits and/or of co-administration with free toxin as adjuvant. APMIS 2000; 108:178-86. [PMID: 10752686 DOI: 10.1034/j.1600-0463.2000.d01-42.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mucosa-binding molecules cholera toxin (CT) from Vibrio cholerae and heat-labile enterotoxin (LT) from Escherichia coli have previously been used as mucosal adjuvants and carriers for many types of antigen. However, since these molecules are toxic and cannot be used in human vaccines, it is important to study whether their non-toxic mucosa-binding B subunits, CTB and LTB, can be used as alternative safe mucosal adjuvants and/or carrier molecules. We have as a model protein antigen used human gammaglobulin (HGG) for admixture with or chemical conjugation to recombinantly produced CTB and LTB, respectively, and measured antigen-specific local secretory IgA antibodies in saponin extracts from intestine and lung tissue by ELISA following intra-nasal (i.n.) or per-oral (p.o.) immunization. The results show that local antibody formation against HGG was increased after immunization with conjugated as compared to free HGG. However, while the conjugates alone gave rise to significant immune responses in the lung and also, to a lesser degree, in the intestine after i.n. immunization, co-administration of a small amount of free CT/LT as adjuvant was needed to induce a significant immune response in the intestine after p.o. immunization. We also found that following i.n. immunization, the addition of CTB to HGG, without coupling, increased the mucosal immune response to some extent, indicating that CTB by itself can work as an adjuvant by the i.n. route of immunization. A striking finding was that, as a carrier, CTB was superior to LTB when the conjugates were used by the oral but not by the i.n. route of immunization. In conclusion, conjugation of an antigen to mucosa-binding molecules such as CTB and/or LTB can dramatically increase their mucosal immunogenicity. This approach may thus be useful in the preparation of mucosal vaccines.
Collapse
Affiliation(s)
- C Rask
- Department of Medical Microbiology and Immunology, Göteborg University, Sweden
| | | | | | | | | |
Collapse
|
43
|
Wiedermann U, Jahn-Schmid B, Lindblad M, Rask C, Holmgren J, Kraft D, Ebner C. Suppressive versus stimulatory effects of allergen/cholera toxoid (CTB) conjugates depending on the nature of the allergen in a murine model of type I allergy. Int Immunol 1999; 11:1717-24. [PMID: 10508191 DOI: 10.1093/intimm/11.10.1717] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent reports have demonstrated that feeding small amounts of antigen conjugated to the B subunit of cholera toxin (CTB) suppress immune responses in experimental models of certain T(h)1-based autoimmune diseases. We have established a model of aerosol sensitization leading to T(h)2-mediated allergic immune responses in BALB/c mice. In the present study two different antigens, the dietary antigen ovalbumin (OVA) and the inhalant allergen Bet v 1 (the major birch pollen allergen), chemically coupled to recombinant CTB were tested for their potential to influence T(h)2-like immune responses. Intranasal administration of OVA-CTB prior to sensitization with OVA led to a significant decrease of antigen-specific IgE antibody levels, but a marked increase of OVA-specific IgG2a antibodies as compared to non-pretreated, sensitized animals. Antigen-specific lympho-proliferative responses in vitro were reduced by 65% in the pretreated group; IL-5 and IL-4 production were decreased in responder cells of lungs and spleens of nasally pretreated mice. In contrast, mucosal administration of rBet v 1-CTB conjugates prior to sensitization led to an up-regulation of allergen-specific IgE, IgG1 and IgG2a, increased in vitro lympho-proliferative responses as well as augmented production of IL-5, IL-4, IL-10 and IFN-gamma. Intranasal administration prior to sensitization of unconjugated allergens showed also contrasting effects: OVA could not significantly influence antigen-specific antibody or cytokine production, whereas intranasal pretreatment with unconjugated Bet v 1 suppressed allergen-specific immune responses in vivo and in vitro. These results demonstrated that the two antigens-in conjugated as in unconjugated form-had different effects on the T(h)2 immune responses. We therefore conclude that the tolerogenic or immunogenic properties of CTB-and probably also other antigen-delivery systems-strongly depend on the nature of the coupled antigen-allergen.
Collapse
Affiliation(s)
- U Wiedermann
- Division of Immunopathology, Institute of General and Experimental Pathology, University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
44
|
Sun JB, Mielcarek N, Lakew M, Grzych JM, Capron A, Holmgren J, Czerkinsky C. Intranasal Administration of a Schistosoma mansoni Glutathione S-Transferase-Cholera Toxoid Conjugate Vaccine Evokes Antiparasitic and Antipathological Immunity in Mice. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.1045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Mucosal administration of Ags linked to cholera toxin B subunit (CTB) can induce both strong mucosal secretory IgA immune responses and peripheral T cell hyporeactivity. In this study, intranasal (i.n.) administration of CTB-conjugated Schistosoma mansoni 28-kDa GST (CTB-Sm28GST) was found to protect infected animals from schistosomiasis, especially from immunopathological complications associated with chronic inflammation. Worm burden and liver egg counts were reduced in infected animals treated with the CTB-Sm28GST conjugate as compared with mice infected only, or with mice treated with a control (CTB-OVA) conjugate. However, a more striking and consistent effect was that granuloma formations in liver and lungs of mice treated with CTB-Sm28GST were markedly suppressed. Such treatment was associated with reduced systemic delayed-type hypersensitivity and lymphocyte proliferative responses to Sm28GST. Production of IFN-γ, IL-3, and IL-5 by liver cells was also markedly reduced after i.n. treatment of CTB-Sm28GST, whereas IL-4 production was not impaired. Intranasal treatment of infected mice with CTB-Sm28GST increased IgG1-, IgG2a-, IgA-, and IgE-Ab-forming cell responses in liver in comparison with treatment with CTB-OVA, or free Sm28GST. Most importantly, mucosal treatment with CTB-Sm28GST significantly reduced animal mortality when administered to chronically infected mice. Our results suggest that it may be possible to design a therapeutic vaccine against schistosomiasis that both limits infection and suppresses parasite-induced pathology.
Collapse
Affiliation(s)
- Jia-Bin Sun
- *Department of Medical Microbiology and Immunology, University of Göteborg, Göteborg, Sweden
| | - Nathalie Mielcarek
- *Department of Medical Microbiology and Immunology, University of Göteborg, Göteborg, Sweden
| | - Mekuria Lakew
- *Department of Medical Microbiology and Immunology, University of Göteborg, Göteborg, Sweden
- ‡Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia; and
| | - Jean-Marie Grzych
- †Centre d’Immunologie et de Biologie Parasitaire, Institut National de la Santé et de la Recherche Médicale U167, Institut Pasteur de Lille, Lille, France
| | - Andre Capron
- †Centre d’Immunologie et de Biologie Parasitaire, Institut National de la Santé et de la Recherche Médicale U167, Institut Pasteur de Lille, Lille, France
| | - Jan Holmgren
- *Department of Medical Microbiology and Immunology, University of Göteborg, Göteborg, Sweden
| | - Cecil Czerkinsky
- *Department of Medical Microbiology and Immunology, University of Göteborg, Göteborg, Sweden
- §Institut National de la Santé et de la Recherche Médicale U364, Nice, France
| |
Collapse
|
45
|
Wiedermann U, Jahn-Schmid B, Lindblad M, Rask C, Holmgren J, Kraft D, Ebner C. Suppressive versus stimulatory effects of allergen/cholera toxoid (CTB) conjugates depending on the nature of the allergen in a murine model of type I allergy. Int Immunol 1999; 11:1131-8. [PMID: 10383946 DOI: 10.1093/intimm/11.7.1131] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent reports have demonstrated that feeding small amounts of antigen conjugated to the B subunit of cholera toxin (CTB) suppress immune responses in experimental models of certain Th1-based autoimmune diseases. We have established a model of aerosol sensitization leading to Th2-mediated allergic immune responses in BALB/c mice. In the present study two different antigens, the dietary antigen ovalbumin (OVA) and the inhalant allergen Bet v 1 (the major birch pollen allergen), chemically coupled to recombinant CTB were tested for their potential to influence Th2-like immune responses. Intranasal administration of OVA-CTB prior to sensitization with OVA led to a significant decrease of antigen-specific IgE antibody levels, but a marked increase of OVA-specific IgG2a antibodies as compared to non-pretreated, sensitized animals. Antigen-specific lympho-proliferative responses in vitro were reduced by 65% in the pretreated group; IL-5 and IL-4, but not IFN-gamma, production were markedly decreased in responder cells of lungs and spleens of nasally pretreated mice. In contrast, mucosal administration of rBet v 1-CTB conjugates prior to sensitization led to an up-regulation of allergen-specific IgE, IgG1 and IgG2a, increased in vitro lympho-proliferative responses as well as augmented production of IL-5, IL-4, IL-10 and IFN-gamma. Intranasal administration prior to sensitization of unconjugated allergens showed also contrasting effects: OVA could not significantly influence antigen-specific antibody or cytokine production, whereas intranasal pretreatment with unconjugated Bet v 1 suppressed allergen-specific immune responses in vivo and in vitro. These results demonstrated that the two antigens--in conjugated as in unconjugated form--had different effects on the Th2 immune responses. We therefore conclude that the tolerogenic or immunogenic properties of CTB--and probably also other antigen-delivery systems--strongly depend on the nature of the coupled antigen-allergen.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Allergens
- Animals
- Antigens, Plant
- Cholera Toxin
- Cytokines/biosynthesis
- Desensitization, Immunologic
- Disease Models, Animal
- Female
- Hypersensitivity, Immediate/immunology
- Hypersensitivity, Immediate/metabolism
- Hypersensitivity, Immediate/therapy
- Immunity, Mucosal/immunology
- Immunoconjugates/immunology
- Interleukin-4/biosynthesis
- Interleukin-5/biosynthesis
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred BALB C
- Ovalbumin/immunology
- Plant Proteins/immunology
- Th2 Cells/immunology
- Toxoids/immunology
Collapse
Affiliation(s)
- U Wiedermann
- Division of Immunopathology, Institute of General and Experimental Pathology, University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
46
|
Bagdasarian MM, Nagai M, Frey J, Bagdasarian M. Immunogenicity of Actinobacillus ApxIA toxin epitopes fused to the E. coli heat-labile enterotoxin B subunit. Vaccine 1999; 17:441-7. [PMID: 10073721 DOI: 10.1016/s0264-410x(98)00216-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peptides KDYGASTGSSL (Epil). SLLRRRRNGEDVSV (Epi3) and DDEIYGNDGHP (Epi6), predicted to constitute immunogenic epitopes of the hemolysin-cytotoxin ApxIA of Actinobacillus pleuropneumoniae were inserted into a surface-exposed loop of the B subunit of the E. coli heat-labile enterotoxin (EtxB). The resulting chimeric proteins were recognized by monospecific antibodies against purified native ApxI and by convalescent sera of pigs that were positive for A. pleuropneumoniae serotype 1. Mice anti-sera against chimeric proteins EtxB::ApxIAEpi3 and EtxB::ApxIAEpi6 reacted with purified ApxI. These results indicate that Epi3 and Epi6 regions constitute linear epitopes of the structural ApxIA protein toxin. Epitope Epi6 which is located in the structure of the glycine rich repeats in ApxI elicits the formation of hemolysin neutralizing antibodies when introduced into mice in the form of a chimeric EtxB fusion protein. We suggest that fusion of peptide sequences to EtxB is a useful tool for the analysis of epitopes of complex proteins such as RTX toxins.
Collapse
Affiliation(s)
- M M Bagdasarian
- Department of Microbiology, Michigan State University, East Lansing 48824-1312, USA
| | | | | | | |
Collapse
|
47
|
van Baar BL, Hulst AG, Wils ER. Characterisation of cholera toxin by liquid chromatography--electrospray mass spectrometry. Toxicon 1999; 37:85-108. [PMID: 9920483 DOI: 10.1016/s0041-0101(98)00136-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cholera toxin, one of the toxins that may be generated by various strains of the bacterium Vibrio cholerae, can be considered as a substance possibly used in biological warfare. The possibilities of characterising the toxin by liquid chromatography electrospray mass spectrometry (LC-ES-MS) were investigated. The toxin can be detected by flow-injection (FIA) ES-MS of a dialysed solution and observation of the charge envelope signals of its A-unit and B-chain protein; sufficient information for identification by the molecular mass of either protein could be obtained for quantities in the order of 10 fmol. Confirmatory analysis was carried out by 2-mercaptoethanol reduction and FIA-ES-MS detection of the product proteins or by tryptic digest LC-ES-MS with ion chromatogram detection of most of the tryptic fragments of the A-unit and B-chain from the singly, doubly or triply charged ion signals. The confirmatory tryptic digest LC-ES-MS analysis could be achieved with quantities as low as 1 pmol. Possible biovariations in the toxin can mostly be determined by sequencing, where the amino acid composition of tryptic fragments of the A1-chain, T5 and T15, and of the B-chain, T1, T4 and T5, cover all known biovariations. Partial sequencing of cholera toxin, originating from a classical strain, O1/569B, was achieved by LC-ES-MS/MS of most tryptic fragments larger than three amino acid residues.
Collapse
Affiliation(s)
- B L van Baar
- TNO Prins Maurits Laboratory, Rijswijk, The Netherlands
| | | | | |
Collapse
|
48
|
Blanchard TG, Lycke N, Czinn SJ, Nedrud JG. Recombinant cholera toxin B subunit is not an effective mucosal adjuvant for oral immunization of mice against Helicobacter felis. Immunol Suppl 1998; 94:22-7. [PMID: 9708182 PMCID: PMC1364326 DOI: 10.1046/j.1365-2567.1998.00482.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cholera toxin is a potent oral mucosal adjuvant for enteric immunization. Several studies suggest that commercial cholera toxin B subunit (cCTB; purified from holotoxin) may be an effective non-toxic alternative for oral immunization. The present study was performed, using an infectious disease model, to determine if the oral mucosal adjuvanticity of CTB is dependent on contaminating holotoxin. Mice were orally immunized with Helicobacter felis sonicate and either cholera holotoxin, cCTB or recombinant cholera toxin B subunit (rCTB). Serum immunoglobulin G (IgG) and intestinal immunoglobulin A (IgA) antibody responses were determined and the mice were challenged with live H. felis to determine the degree of protective immunity induced. All orally immunized mice responded with serum IgG antibody titres regardless of the adjuvant used. However, only mice immunized with either holotoxin or the cCTB responded with an intestinal mucosal IgA response. Consistent with the production of mucosal antibodies, mice immunized with either holotoxin or cCTB as adjuvants were protected from challenge while mice receiving H. felis sonicate and rCTB all became infected. cCTB induced the accumulation of cAMP in mouse thymocytes at a level equal to 0.1% of that induced by holotoxin, whereas rCTB was devoid of any activity. These results indicate that CTB possesses no intrinsic mucosal adjuvant activity when administered orally. Therefore, when used as an oral adjuvant, CTB should also include small, non-toxic doses of cholera toxin.
Collapse
Affiliation(s)
- T G Blanchard
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106-4943, USA
| | | | | | | |
Collapse
|
49
|
Johansson EL, Rask C, Fredriksson M, Eriksson K, Czerkinsky C, Holmgren J. Antibodies and antibody-secreting cells in the female genital tract after vaginal or intranasal immunization with cholera toxin B subunit or conjugates. Infect Immun 1998; 66:514-20. [PMID: 9453604 PMCID: PMC107936 DOI: 10.1128/iai.66.2.514-520.1998] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We studied the antibody response including antibody-secreting cells (ASC) in the female genital tract of mice after mucosal immunizations with the recombinant B subunit of cholera toxin (rCTB) perorally, intraperitoneally, vaginally, and intranasally (i.n.). The strongest genital antibody responses as measured with a novel perfusion-extraction method were induced after vaginal and i.n. immunizations, and these routes also gave rise to specific immunoglobulin A (IgA) and IgG ASC in the genital mucosa. Specific ASC in the iliac lymph nodes, which drain the female genital tract, were seen only after vaginal immunization. Progesterone treatment increased the ASC response in the genital tissue after all mucosal immunizations but most markedly after vaginal immunization. We also tested rCTB as a carrier for human gamma globulin (HGG) and the effect of adding cholera toxin (CT) as an adjuvant for the induction of systemic and genital antibody responses to HGG after vaginal and i.n. immunizations. Vaginal immunizations with HGG conjugated to rCTB resulted in high levels of genital anti-HGG antibodies whether or not CT was added, while after i.n. immunization the strongest antibody response was seen with the conjugate together with CT. In summary, vaginal and i.n. immunization give rise to a specific mucosal immune response including ASC in the genital tissue, and vaginal immunization also elicits ASC in the iliac lymph nodes. We have also shown that rCTB can act as an efficient carrier for a conjugated antigen for induction of a specific antibody response in the genital tract of mice after vaginal or i.n. immunization.
Collapse
Affiliation(s)
- E L Johansson
- Department of Medical Microbiology and Immunology, Göteborg University, Sweden
| | | | | | | | | | | |
Collapse
|
50
|
Jobling MG, Palmer LM, Erbe JL, Holmes RK. Construction and characterization of versatile cloning vectors for efficient delivery of native foreign proteins to the periplasm of Escherichia coli. Plasmid 1998; 38:158-73. [PMID: 9435018 DOI: 10.1006/plas.1997.1309] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Induction of the wild type cholera toxin operon (ctxAB) from multicopy clones in Escherichia coli inhibited growth and resulted in low yields of cholera toxin (CT). We found that production of wild type CT or its B subunit (CT-B) as a periplasmic protein was toxic for E. coli, but by replacing the native signal sequences of both CT-A and CT-B with the signal sequence from the B subunit of E. coli heat-labile enterotoxin LTIIb we succeeded for the first time in producing CT holotoxin in high yield in E. coli. Based on these findings, we designed and constructed versatile cloning vectors that use the LTIIb-B signal sequence to direct recombinant native proteins with high efficiency to the periplasm of E. coli. We confirmed the usefulness of these vectors by producing two other secreted recombinant proteins. First, using phoA from E. coli, we demonstrated that alkaline phosphatase activity was 17-fold greater when the LTIIb-B signal sequence was used than when the native leader for alkaline phosphatase was used. Second, using the pspA gene that encodes pneumococcal surface protein A from Streptococcus pneumoniae, we produced a 299-residue amino-terminal fragment of PspA in E. coli in large amounts as a soluble periplasmic protein and showed that it was immunoreactive in Western blots with antibodies against native PspA. The vectors described here will be useful for further studies on structure-function relationships and vaccine development with CT and PspA, and they should be valuable as general tools for delivery of other secretion-competent recombinant proteins to the periplasm in E. coli.
Collapse
Affiliation(s)
- M G Jobling
- Department of Microbiology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|