1
|
Jin KT, Yao JY, Ying XJ, Lin Y, Chen YF. Nanomedicine and Early Cancer Diagnosis: Molecular Imaging using Fluorescence Nanoparticles. Curr Top Med Chem 2020; 20:2737-2761. [PMID: 32962614 DOI: 10.2174/1568026620666200922112640] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
Incorporating nanotechnology into fluorescent imaging and magnetic resonance imaging (MRI) has shown promising potential for accurate diagnosis of cancer at an earlier stage than the conventional imaging modalities. Molecular imaging (MI) aims to quantitatively characterize, visualize, and measure the biological processes or living cells at molecular and genetic levels. MI modalities have been exploited in different applications including noninvasive determination and visualization of diseased tissues, cell trafficking visualization, early detection, treatment response monitoring, and in vivo visualization of living cells. High-affinity molecular probe and imaging modality to detect the probe are the two main requirements of MI. Recent advances in nanotechnology and allied modalities have facilitated the use of nanoparticles (NPs) as MI probes. Within the extensive group of NPs, fluorescent NPs play a prominent role in optical molecular imaging. The fluorescent NPs used in molecular and cellular imaging can be categorized into three main groups including quantum dots (QDs), upconversion, and dyedoped NPs. Fluorescent NPs have great potential in targeted theranostics including cancer imaging, immunoassay- based cells, proteins and bacteria detections, imaging-guided surgery, and therapy. Fluorescent NPs have shown promising potentials for drug and gene delivery, detection of the chromosomal abnormalities, labeling of DNA, and visualizing DNA replication dynamics. Multifunctional NPs have been successfully used in a single theranostic modality integrating diagnosis and therapy. The unique characteristics of multifunctional NPs make them potential theranostic agents that can be utilized concurrently for diagnosis and therapy. This review provides the state of the art of the applications of nanotechnologies in early cancer diagnosis focusing on fluorescent NPs, their synthesis methods, and perspectives in clinical theranostics.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Jinhua Hosptial, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Jia-Yu Yao
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, P.R. China,Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital Hangzhou Medical College), Hangzhou 310014, P.R. China
| | - Xiao-Jiang Ying
- Department of Colorectal Surgery Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang Province, P.R. China
| | - Yan Lin
- Department of Gastroenterology, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R China
| | - Yun-Fang Chen
- Department of Stomatology, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, P.R. China
| |
Collapse
|
2
|
Kennedy RB, Ovsyannikova IG, Palese P, Poland GA. Current Challenges in Vaccinology. Front Immunol 2020; 11:1181. [PMID: 32670279 PMCID: PMC7329983 DOI: 10.3389/fimmu.2020.01181] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
The development of vaccines, which prime the immune system to respond to future infections, has led to global declines in morbidity and mortality from dreadful infectious communicable diseases. However, many pathogens of public health importance are highly complex and/or rapidly evolving, posing unique challenges to vaccine development. Several of these challenges include an incomplete understanding of how immunity develops, host and pathogen genetic variability, and an increased societal skepticism regarding vaccine safety. In particular, new high-dimensional omics technologies, aided by bioinformatics, are driving new vaccine development (vaccinomics). Informed by recent insights into pathogen biology, host genetic diversity, and immunology, the increasing use of genomic approaches is leading to new models and understanding of host immune system responses that may provide solutions in the rapid development of novel vaccine candidates.
Collapse
Affiliation(s)
- Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Peter Palese
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
3
|
Bianconi I, Alcalá-Franco B, Scarselli M, Dalsass M, Buccato S, Colaprico A, Marchi S, Masignani V, Bragonzi A. Genome-Based Approach Delivers Vaccine Candidates Against Pseudomonas aeruginosa. Front Immunol 2019; 9:3021. [PMID: 30687303 PMCID: PMC6334337 DOI: 10.3389/fimmu.2018.03021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/06/2018] [Indexed: 01/08/2023] Open
Abstract
High incidence, severity and increasing antibiotic resistance characterize Pseudomonas aeruginosa infections, highlighting the need for new therapeutic options. Vaccination strategies to prevent or limit P. aeruginosa infections represent a rational approach to positively impact the clinical outcome of risk patients; nevertheless this bacterium remains a challenging vaccine target. To identify novel vaccine candidates, we started from the genome sequence analysis of the P. aeruginosa reference strain PAO1 exploring the reverse vaccinology approach integrated with additional bioinformatic tools. The bioinformatic approaches resulted in the selection of 52 potential antigens. These vaccine candidates were conserved in P. aeruginosa genomes from different origin and among strains isolated longitudinally from cystic fibrosis patients. To assess the immune-protection of single or antigens combination against P. aeruginosa infection, a vaccination protocol was established in murine model of acute respiratory infection. Combinations of selected candidates, rather than single antigens, effectively controlled P. aeruginosa infection in the in vivo model of murine pneumonia. Five combinations were capable of significantly increase survival rate among challenged mice and all included PA5340, a hypothetical protein exclusively present in P. aeruginosa. PA5340 combined with PA3526-MotY gave the maximum protection. Both proteins were surface exposed by immunofluorescence and triggered a specific immune response. Combination of these two protein antigens could represent a potential vaccine to prevent P. aeruginosa infection.
Collapse
Affiliation(s)
- Irene Bianconi
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Beatriz Alcalá-Franco
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Mattia Dalsass
- GSK, Siena, Italy.,Dipartimento di Scienze Cliniche e Biologiche, Universitá degli Studi di Torino, Turin, Italy
| | | | | | | | | | - Alessandra Bragonzi
- Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
4
|
Donner DB, Ruan DT, Toriguchi K, Bergsland EK, Nakakura EK, Lin MH, Antonia RJ, Warren RS. Mitogen Inducible Gene-6 Is a Prognostic Marker for Patients with Colorectal Liver Metastases. Transl Oncol 2019; 12:550-560. [PMID: 30639964 PMCID: PMC6328378 DOI: 10.1016/j.tranon.2018.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Prognostic schemes that rely on clinical variables to predict outcome after resection of colorectal metastases remain imperfect. We hypothesized that molecular markers can improve the accuracy of prognostic schemes. METHODS We screened the transcriptome of matched colorectal liver metastases (CRCLM) and primary tumors from 42 patients with unresected CRCLM to identify differentially expressed genes. Among the differentially expressed genes identified, we looked for associations between expression and time to disease progression or overall survival. To validate such associations, mRNA levels of the candidate genes were assayed by qRT-PCR from CRCLM in 56 additional patients who underwent hepatectomy. RESULTS Seven candidate genes were selected for validation based on their differential expression between metastases and primary tumors and a correlation between expression and surgical outcome: lumican; tissue inhibitor metalloproteinase 1; basic helix-loop-helix domain containing class B2; fibronectin; transmembrane 4 superfamily member 1; mitogen inducible gene 6 (MIG-6); and serpine 2. In the hepatectomy group, only MIG-6 expression was predictive of poor survival after hepatectomy. Quantitative PCR of MIG-6 mRNA was performed on 25 additional hepatectomy patients to determine if MIG-6 expression could substratify patients beyond the clinical risk score. Patients within defined clinical risk score categories were effectively substratified into distinct groups by relative MIG-6 expression. CONCLUSIONS MIG-6 expression is inversely associated with survival after hepatectomy and may be used to improve traditional prognostic schemes that rely on clinicopathologic data such as the Clinical Risk Score.
Collapse
Affiliation(s)
- David B Donner
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143.
| | - Dan T Ruan
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Kan Toriguchi
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Emily K Bergsland
- The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; Department of Medicine, Division of Hematology/Oncology, The University of California San Francisco, San Francisco, CA. 94143
| | - Eric K Nakakura
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Meng Hsun Lin
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Ricardo J Antonia
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Robert S Warren
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| |
Collapse
|
5
|
Association between antibodies against group B Streptococcus surface proteins and recto-vaginal colonisation during pregnancy. Sci Rep 2017; 7:16454. [PMID: 29184151 PMCID: PMC5705700 DOI: 10.1038/s41598-017-16757-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/16/2017] [Indexed: 11/08/2022] Open
Abstract
Group B Streptococcus (GBS) recto-vaginal colonisation in pregnant women is the major risk factor for early-onset invasive GBS disease in their newborns. We aimed to determine the association between serum antibody levels against 11 GBS surface proteins and recto-vaginal acquisition of GBS colonisation during pregnancy. Sera collected from pregnant women at 20-25 weeks and ≥37 weeks of gestation age were measured for IgG titres against GBS surface proteins using a multiplex immunoassay. Women were evaluated for recto-vaginal colonisation every 4-5 weeks. We observed that the likelihood of becoming colonised with GBS during pregnancy was lower in women with IgG titres ≥200 U/mL against gbs0233 (adjusted OR = 0.47 [95% CI: 0.25-0.89], p = 0.021) and ≥85 U/mL for gbs1539 (adjusted OR = 0.44 [95% CI: 0.24-0.82], p = 0.01) when comparing between women who acquired GBS colonisation and those that remained free of GBS colonisation throughout pregnancy. IgG titres (U/mL) specific to BibA and Sip were higher in pregnant women colonised with GBS (380.19 and 223.87, respectively) compared to women with negative GBS cultures (234.42 and 186.21, respectively; p < 0.01) at ≥37 weeks gestation. Antibodies induced by gbs0233 and gbs1539 were associated with a reduced likelihood of recto-vaginal GBS acquisition during pregnancy and warrant further investigation as vaccine targets.
Collapse
|
6
|
Genomic, Transcriptomic, and Phenotypic Analyses of Neisseria meningitidis Isolates from Disease Patients and Their Household Contacts. mSystems 2017; 2:mSystems00127-17. [PMID: 29152586 PMCID: PMC5686521 DOI: 10.1128/msystems.00127-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/18/2017] [Indexed: 12/30/2022] Open
Abstract
Neisseria meningitidis causes meningococcal disease but is frequently carried in the throats of healthy individuals; the factors that determine whether invasive disease develops are not completely understood. We carried out detailed studies of isolates, collected from patients and their household contacts, to identify differences between commensal throat isolates and those that caused invasive disease. Though isolates were identical by laboratory typing methods, we uncovered many differences in their genomes, in gene expression, and in their interactions with host cells. In particular, we found that several carriage isolates had lost their type IV pili, a surprising finding since pili are often described as essential for colonization. However, loss of type IV pili correlated with reduced secretion of a proinflammatory cytokine, TNF-α, when meningococci were cocultured with human bronchial epithelial cells; hence, the loss of pili could provide an advantage to meningococci, by resulting in a dampened localized host immune response. Neisseria meningitidis (meningococcus) can cause meningococcal disease, a rapidly progressing and often fatal disease that can occur in previously healthy children. Meningococci are found in healthy carriers, where they reside in the nasopharynx as commensals. While carriage is relatively common, invasive disease, associated with hypervirulent strains, is a comparatively rare event. The basis of increased virulence in some strains is not well understood. New Zealand suffered a protracted meningococcal disease epidemic, from 1991 to 2008. During this time, a household carriage study was carried out in Auckland: household contacts of index meningococcal disease patients were swabbed for isolation of carriage strains. In many households, healthy carriers harbored strains identical, as determined by laboratory typing, to the ones infecting the associated patient. We carried out more-detailed analyses of carriage and disease isolates from a select number of households. We found that isolates, although indistinguishable by laboratory typing methods and likely closely related, had many differences. We identified multiple genome variants and transcriptional differences between isolates. These studies enabled the identification of two new phase-variable genes. We also found that several carriage strains had lost their type IV pili and that this loss correlated with reduced tumor necrosis factor alpha (TNF-α) expression when cultured with epithelial cells. While nonpiliated meningococcal isolates have been previously found in carriage strains, this is the first evidence of an association between type IV pili from meningococci and a proinflammatory epithelial response. We also identified potentially important metabolic differences between carriage and disease isolates, including the sulfate assimilation pathway. IMPORTANCENeisseria meningitidis causes meningococcal disease but is frequently carried in the throats of healthy individuals; the factors that determine whether invasive disease develops are not completely understood. We carried out detailed studies of isolates, collected from patients and their household contacts, to identify differences between commensal throat isolates and those that caused invasive disease. Though isolates were identical by laboratory typing methods, we uncovered many differences in their genomes, in gene expression, and in their interactions with host cells. In particular, we found that several carriage isolates had lost their type IV pili, a surprising finding since pili are often described as essential for colonization. However, loss of type IV pili correlated with reduced secretion of a proinflammatory cytokine, TNF-α, when meningococci were cocultured with human bronchial epithelial cells; hence, the loss of pili could provide an advantage to meningococci, by resulting in a dampened localized host immune response.
Collapse
|
7
|
Masforrol Y, Gil J, García D, Noda J, Ramos Y, Betancourt L, Guirola O, González S, Acevedo B, Besada V, Reyes O, González LJ. A deeper mining on the protein composition of VA-MENGOC-BC®: An OMV-based vaccine against N. meningitidis serogroup B and C. Hum Vaccin Immunother 2017; 13:2548-2560. [PMID: 29083947 DOI: 10.1080/21645515.2017.1356961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The protein composition of an Outer Membrane Vesicle (OMV) preparation that constitutes the active pharmaceutical ingredient of VA-MENGOC-BC®, an effective vaccine against Neisseria meningitidis serogroups B, and C is presented. This preparation has a high lipid content and five abundant membrane proteins (FetA, PorA, PorB, RmpM, and Opc), constituting approximately 70% of the total protein mass. The protein composition was determined by combining the use of the Hexapeptide Ligand Library and an orthogonal tandem fractionation of tryptic peptides by reverse-phase chromatography at alkaline and acid pH. This approach equalizes the concentration of tryptic peptides derived from low- and high-abundance proteins as well as considerably simplifying the number of peptides analyzed by LC-MS/MS, enhancing the possibility of identifying low-abundance species. Fifty-one percent of the proteins originally annotated as membrane proteins in the genome of the MC58 strain were identified. One hundred and sixty-eight low-abundance cytosolic proteins presumably occluded within OMV were also identified. Four (NadA, NUbp, GNA2091, and fHbp), out of the five antigens constituting the Bexsero® vaccine, were detected in this OMV preparation. In particular, fHbp is also the active principle of the Trumenba® vaccine developed by Pfizer. The HpuA and HpuB gene products (not annotated in the MC58 genome) were identified in the CU385 strain, a clinical isolate that is used to produce this OMV. Considering the proteins identified here and previous work done by our group, the protein catalogue of this OMV preparation was extended to 266 different protein species.
Collapse
Affiliation(s)
- Yordanka Masforrol
- a Peptide Synthesis Group, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Jeovanis Gil
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Darien García
- d Vaccine Department, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Jesús Noda
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Yassel Ramos
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Lázaro Betancourt
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Osmany Guirola
- c Bioinformatics Department, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Sonia González
- d Vaccine Department, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Boris Acevedo
- e Quality Assurance Departments, Center for Genetic Engineering and Biotechnology, Havana , Cuba
| | - Vladimir Besada
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Osvaldo Reyes
- a Peptide Synthesis Group, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Luis Javier González
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| |
Collapse
|
8
|
Abstract
Neisseria meningitidis is a harmless commensal bacterium finely adapted to humans. Unfortunately, under “privileged” conditions, it adopts a “devious” lifestyle leading to uncontrolled behavior characterized by the unleashing of molecular weapons causing potentially lethal disease such as sepsis and acute meningitis. Indeed, despite the lack of a classic repertoire of virulence genes in
N. meningitidis separating commensal from invasive strains, molecular epidemiology and functional genomics studies suggest that carriage and invasive strains belong to genetically distinct populations characterized by an exclusive pathogenic potential. In the last few years, “omics” technologies have helped scientists to unwrap the framework drawn by
N. meningitidis during different stages of colonization and disease. However, this scenario is still incomplete and would benefit from the implementation of physiological tissue models for the reproduction of mucosal and systemic interactions
in vitro. These emerging technologies supported by recent advances in the world of stem cell biology hold the promise for a further understanding of
N. meningitidis pathogenesis.
Collapse
|
9
|
Quinteros DA, Bermúdez JM, Ravetti S, Cid A, Allemandi DA, Palma SD. Therapeutic use of monoclonal antibodies: general aspects and challenges for drug delivery. NANOSTRUCTURES FOR DRUG DELIVERY 2017. [PMCID: PMC7151974 DOI: 10.1016/b978-0-323-46143-6.00025-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Monoclonal antibodies are routinely used in several fields but the great challenge has been their use as therapeutic agents for the treatment of diseases, such as breast cancer, leukemia, asthma, macular degeneration, arthritis, Crohn’s disease, and transplants, among others. Monoclonal antibodies are protein molecules made in the laboratory from hybridoma cells by recombinant DNA technology. Important advances have been made over the past decade to improve some critical points, such as safety and efficacy of the first generation of therapeutic antibodies. This type of molecules presents a significant challenge from the pharmaceutical point of view due to their characteristics, such as molecular size, stability, and solubility. In this chapter we have attempted to identify the major issues associated with therapeutic approaches, formulating drawbacks and delivering antibody drugs, particularly focused on the challenges and opportunities that these present for the future.
Collapse
Affiliation(s)
| | | | | | - Alicia Cid
- National University of Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|
10
|
|
11
|
Wang C, Peng B, Li H, Peng XX. TolC plays a crucial role in immune protection conferred by Edwardsiella tarda whole-cell vaccines. Sci Rep 2016; 6:29488. [PMID: 27406266 PMCID: PMC4942608 DOI: 10.1038/srep29488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/21/2016] [Indexed: 12/26/2022] Open
Abstract
Although vaccines developed from live organisms have better efficacy than those developed from dead organisms, the mechanisms underlying this differential efficacy remain unexplored. In this study, we combined sub-immunoproteomics with immune challenge to investigate the action of the outer membrane proteome in the immune protection conferred by four Edwardsiella tarda whole-cell vaccines prepared via different treatments and to identify protective immunogens that play a key role in this immune protection. Thirteen spots representing five outer membrane proteins and one cytoplasmic protein were identified, and it was found that their abundance was altered in relation with the immune protective abilities of the four vaccines. Among these proteins, TolC and OmpA were found to be the key immunogens conferring the first and second highest degrees of protection, respectively. TolC was detected in the two effective vaccines (live and inactivated-30-F). The total antiserum and anti-OmpA titers were higher for the two effective vaccines than for the two ineffective vaccines (inactivated-80-F and inactivated-100). Further evidence demonstrated that the live and inactivated-30-F vaccines demonstrated stronger abilities to induce CD8+ and CD4+ T cell differentiation than the other two evaluated vaccines. Our results indicate that the outer membrane proteome changes dramatically following different treatments, which contributes to the effectiveness of whole-cell vaccines.
Collapse
Affiliation(s)
- Chao Wang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China.,Freshwater fisheries Academy of Shandong province, Jinan 250117, People's Republic of China
| | - Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| |
Collapse
|
12
|
Peng B, Ye JZ, Han Y, Zeng L, Zhang JY, Li H. Identification of polyvalent protective immunogens from outer membrane proteins in Vibrio parahaemolyticus to protect fish against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2016; 54:204-10. [PMID: 27071519 DOI: 10.1016/j.fsi.2016.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 05/21/2023]
Abstract
Vaccination is one of the most effective and economic way to prevent infectious diseases in aquaculture. The development of effective vaccines, however, is still limited, especially for polyvalent vaccines, which are against multiple species. With this regard, identification of polyvalent protective immunogens, serving as polyvalent vaccines, became a key step in vaccine development. In the current study, 17 outer membrane proteins from Vibrio parahaemolyticus were identified as immunogens. Further, four of the 17 proteins including VP2309, VP0887, VPA0548 and VP1019 were characterized as efficiently protective immunogens against V. parahaemolyticus' infection through passive and active immunizations in zebrafish. Importantly, these four proteins showed cross-protective capability against infections by Aeromonas hydrophila or/and Pseudomonas fluorescens, which shared similar epitopes with V. parahaemolyticus in homology of these proteins. Further investigation showed that the expression level of the four protective immunogens elevated in response to fish plasma in a dose-dependent manner. These results indicate that the four protective immunogens are polyvalent vaccine candidates in aquaculture.
Collapse
Affiliation(s)
- Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Jin-Zhou Ye
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Yi Han
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Li Zeng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Jian-Ying Zhang
- Univ Texas, Dept Biol Sci, 500 W Univ Ave, El Paso, TX 79968, USA
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
13
|
Moorthy S, Keklak J, Klein EA. Perspective: Adhesion Mediated Signal Transduction in Bacterial Pathogens. Pathogens 2016; 5:pathogens5010023. [PMID: 26901228 PMCID: PMC4810144 DOI: 10.3390/pathogens5010023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/28/2016] [Accepted: 02/13/2016] [Indexed: 11/25/2022] Open
Abstract
During the infection process, pathogenic bacteria undergo large-scale transcriptional changes to promote virulence and increase intrahost survival. While much of this reprogramming occurs in response to changes in chemical environment, such as nutrient availability and pH, there is increasing evidence that adhesion to host-tissue can also trigger signal transduction pathways resulting in differential gene expression. Determining the molecular mechanisms of adhesion-mediated signaling requires disentangling the contributions of chemical and mechanical stimuli. Here we highlight recent work demonstrating that surface attachment drives a transcriptional response in bacterial pathogens, including uropathogenic Escherichia coli (E. coli), and discuss the complexity of experimental design when dissecting the specific role of adhesion-mediated signaling during infection.
Collapse
Affiliation(s)
- Sudha Moorthy
- Biology Department, Rutgers University-Camden, 200 Federal St., Suite 520, Camden, NJ 08103, USA.
| | - Julia Keklak
- Biology Department, Rutgers University-Camden, 200 Federal St., Suite 520, Camden, NJ 08103, USA.
| | - Eric A Klein
- Biology Department, Rutgers University-Camden, 200 Federal St., Suite 520, Camden, NJ 08103, USA.
- Center for Computational and Integrative Biology, Rutgers University-Camden, 200 Federal St., Suite 520, Camden, NJ 08103, USA.
| |
Collapse
|
14
|
A review of reverse vaccinology approaches for the development of vaccines against ticks and tick borne diseases. Ticks Tick Borne Dis 2015; 7:573-85. [PMID: 26723274 DOI: 10.1016/j.ttbdis.2015.12.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/24/2015] [Accepted: 12/12/2015] [Indexed: 02/07/2023]
Abstract
The field of reverse vaccinology developed as an outcome of the genome sequence revolution. Following the introduction of live vaccinations in the western world by Edward Jenner in 1798 and the coining of the phrase 'vaccine', in 1881 Pasteur developed a rational design for vaccines. Pasteur proposed that in order to make a vaccine that one should 'isolate, inactivate and inject the microorganism' and these basic rules of vaccinology were largely followed for the next 100 years leading to the elimination of several highly infectious diseases. However, new technologies were needed to conquer many pathogens which could not be eliminated using these traditional technologies. Thus increasingly, computers were used to mine genome sequences to rationally design recombinant vaccines. Several vaccines for bacterial and viral diseases (i.e. meningococcus and HIV) have been developed, however the on-going challenge for parasite vaccines has been due to their comparatively larger genomes. Understanding the immune response is important in reverse vaccinology studies as this knowledge will influence how the genome mining is to be conducted. Vaccine candidates for anaplasmosis, cowdriosis, theileriosis, leishmaniasis, malaria, schistosomiasis, and the cattle tick have been identified using reverse vaccinology approaches. Some challenges for parasite vaccine development include the ability to address antigenic variability as well the understanding of the complex interplay between antibody, mucosal and/or T cell immune responses. To understand the complex parasite interactions with the livestock host, there is the limitation where algorithms for epitope mining using the human genome cannot directly be adapted for bovine, for example the prediction of peptide binding to major histocompatibility complex motifs. As the number of genomes for both hosts and parasites increase, the development of new algorithms for pan-genomic mining will continue to impact the future of parasite and ricketsial (and other tick borne pathogens) disease vaccine development.
Collapse
|
15
|
Large screen approaches to identify novel malaria vaccine candidates. Vaccine 2015; 33:7496-505. [PMID: 26428458 DOI: 10.1016/j.vaccine.2015.09.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022]
Abstract
Until recently, malaria vaccine development efforts have focused almost exclusively on a handful of well characterized Plasmodium falciparum antigens. Despite dedicated work by many researchers on different continents spanning more than half a century, a successful malaria vaccine remains elusive. Sequencing of the P. falciparum genome has revealed more than five thousand genes, providing the foundation for systematic approaches to discover candidate vaccine antigens. We are taking advantage of this wealth of information to discover new antigens that may be more effective vaccine targets. Herein, we describe different approaches to large-scale screening of the P. falciparum genome to identify targets of either antibody responses or T cell responses using human specimens collected in Controlled Human Malaria Infections (CHMI) or under conditions of natural exposure in the field. These genome, proteome and transcriptome based approaches offer enormous potential for the development of an efficacious malaria vaccine.
Collapse
|
16
|
Ali Y, Zohre R, Mostafa J, Samaneh R. Dye-Doped Fluorescent Nanoparticles in Molecular Imaging: A Review of Recent Advances and Future Opportunities. ACTA ACUST UNITED AC 2014. [DOI: 10.13005/msri/110203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular imaging (MI) is an in vivo assessment of characterization and quantitatively measurement of biological processes at the molecular level. Determination of pathologies of malfunctioned tissues without invasive biopsies or surgical procedures, early detection, monitoring of treatment process and visualization of cell trafficking are advantages of this approach. One example of basic requirement of MI is high affinity molecular probe that acts as the source of image contrast. Recent advances in nanotechnology have developed the use of nanoparticles as MI probe. Optical molecular imaging is one of the main categories of molecular imaging with great potentials for in vivo cell trafficking. Fluorescent nanoparticles are a major group of nanoparticles in optical molecular imaging. Dye-doped, quantum dots and up conversion particles are three classes of fluorescent nanoparticles. This paper reviews the basic principles of molecular imaging based on nanoparticles focusing on the optical molecular imaging. The characteristics of dye-doped nanoparticles, their as well as of that are reviewed in this paper.
Collapse
Affiliation(s)
- Yadollahpour Ali
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Golestan Blvd., Ahvaz, Iran
| | - Rezaee Zohre
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Golestan Blvd., Ahvaz, Iran
| | - Jalilifar Mostafa
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Golestan Blvd., Ahvaz, Iran
| | - Rashidi Samaneh
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Golestan Blvd., Ahvaz, Iran
| |
Collapse
|
17
|
The environment of "Mycobacterium avium subsp. hominissuis" microaggregates induces synthesis of small proteins associated with efficient infection of respiratory epithelial cells. Infect Immun 2014; 83:625-36. [PMID: 25422262 DOI: 10.1128/iai.02699-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"Mycobacterium avium subsp. hominissuis" is an opportunistic environmental pathogen that causes respiratory illness in immunocompromised patients, such as those with cystic fibrosis as well as other chronic respiratory diseases. Currently, there is no efficient approach to prevent or treat M. avium subsp. hominissuis infection in the lungs. During initial colonization of the airways, M. avium subsp. hominissuis forms microaggregates composed of 3 to 20 bacteria on human respiratory epithelial cells, which provides an environment for phenotypic changes leading to efficient mucosal invasion in vitro and in vivo. DNA microarray analysis was employed to identify genes associated with the microaggregate phenotype. The gene encoding microaggregate-binding protein 1 (MBP-1) (MAV_3013) is highly expressed during microaggregate formation. When expressed in noninvasive Mycobacterium smegmatis, MBP-1 increased the ability of the bacteria to bind to HEp-2 epithelial cells. Using anti-MBP-1 immune serum, microaggregate binding to HEp-2 cells was significantly reduced. By far-Western blotting, and verified by coimmunoprecipitation, we observed that MBP-1 interacts with the host cytoskeletal protein vimentin. As visualized by confocal microscopy, microaggregates, as well as MBP-1, induced vimentin polymerization at the site of bacterium-host cell contact. Binding of microaggregates to HEp-2 cells was inhibited by treatment with an antivimentin antibody, suggesting that MBP-1 expression is important for M. avium subsp. hominissuis adherence to the host cell. MBP-1 immune serum significantly inhibited M. avium subsp. hominissuis infection throughout the respiratory tracts of mice. This study characterizes a pathogenic mechanism utilized by M. avium subsp. hominissuis to bind and invade the host respiratory epithelium, suggesting new potential targets for the development of antivirulence therapy.
Collapse
|
18
|
Schoen C, Kischkies L, Elias J, Ampattu BJ. Metabolism and virulence in Neisseria meningitidis. Front Cell Infect Microbiol 2014; 4:114. [PMID: 25191646 PMCID: PMC4138514 DOI: 10.3389/fcimb.2014.00114] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/31/2014] [Indexed: 01/14/2023] Open
Abstract
A longstanding question in infection biology addresses the genetic basis for invasive behavior in commensal pathogens. A prime example for such a pathogen is Neisseria meningitidis. On the one hand it is a harmless commensal bacterium exquisitely adapted to humans, and on the other hand it sometimes behaves like a ferocious pathogen causing potentially lethal disease such as sepsis and acute bacterial meningitis. Despite the lack of a classical repertoire of virulence genes in N. meningitidis separating commensal from invasive strains, molecular epidemiology suggests that carriage and invasive strains belong to genetically distinct populations. In recent years, it has become increasingly clear that metabolic adaptation enables meningococci to exploit host resources, supporting the concept of nutritional virulence as a crucial determinant of invasive capability. Here, we discuss the contribution of core metabolic pathways in the context of colonization and invasion with special emphasis on results from genome-wide surveys. The metabolism of lactate, the oxidative stress response, and, in particular, glutathione metabolism as well as the denitrification pathway provide examples of how meningococcal metabolism is intimately linked to pathogenesis. We further discuss evidence from genome-wide approaches regarding potential metabolic differences between strains from hyperinvasive and carriage lineages and present new data assessing in vitro growth differences of strains from these two populations. We hypothesize that strains from carriage and hyperinvasive lineages differ in the expression of regulatory genes involved particularly in stress responses and amino acid metabolism under infection conditions.
Collapse
Affiliation(s)
- Christoph Schoen
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany ; Research Center for Infectious Diseases (ZINF), University of Würzburg Würzburg, Germany
| | - Laura Kischkies
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany
| | - Johannes Elias
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany ; National Reference Centre for Meningococci and Haemophilus influenzae (NRZMHi), University of Würzburg Würzburg, Germany
| | - Biju Joseph Ampattu
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany
| |
Collapse
|
19
|
Yao J, Yang M, Duan Y. Chemistry, Biology, and Medicine of Fluorescent Nanomaterials and Related Systems: New Insights into Biosensing, Bioimaging, Genomics, Diagnostics, and Therapy. Chem Rev 2014; 114:6130-78. [DOI: 10.1021/cr200359p] [Citation(s) in RCA: 592] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jun Yao
- Research
Center of Analytical Instrumentation, Analytical and Testing Center,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Mei Yang
- Research
Center of Analytical Instrumentation, Analytical and Testing Center,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yixiang Duan
- Research
Center of Analytical Instrumentation, Analytical and Testing Center,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Research
Center of Analytical Instrumentation, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
20
|
Identification of an outer membrane lipoprotein involved in nasopharyngeal colonization by Moraxella catarrhalis in an animal model. Infect Immun 2014; 82:2287-99. [PMID: 24643539 DOI: 10.1128/iai.01745-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Colonization of the human nasopharynx by Moraxella catarrhalis is presumed to involve attachment of this bacterium to the mucosa. DNA microarray analysis was used to determine whether attachment of M. catarrhalis to human bronchial epithelial (HBE) cells in vitro affected gene expression in this bacterium. Attachment affected expression of at least 454 different genes, with 163 being upregulated and 291 being downregulated. Among the upregulated genes was one (ORF113) previously annotated as encoding a protein with some similarity to outer membrane protein A (OmpA). The protein encoded by ORF113 was predicted to have a signal peptidase II cleavage site, and globomycin inhibition experiments confirmed that this protein was indeed a lipoprotein. The ORF113 protein also contained a predicted peptidoglycan-binding domain in its C-terminal half. The use of mutant and recombinant M. catarrhalis strains confirmed that the ORF113 protein was present in outer membrane preparations, and this protein was also shown to be at least partially exposed on the bacterial cell surface. A mutant unable to produce the ORF113 protein showed little or no change in its growth rate in vitro, in its ability to attach to HBE cells in vitro, or in its autoagglutination characteristics, but it did exhibit a reduced ability to survive in the chinchilla nasopharynx. This is the first report of a lipoprotein essential to the ability of M. catarrhalis to persist in an animal model.
Collapse
|
21
|
Tsolakos N, Brookes C, Taylor S, Gorringe A, Tang CM, Feavers IM, Wheeler JX. Identification of vaccine antigens using integrated proteomic analyses of surface immunogens from serogroup B Neisseria meningitidis. J Proteomics 2014; 101:63-76. [PMID: 24561796 DOI: 10.1016/j.jprot.2014.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 01/19/2023]
Abstract
UNLABELLED Meningococcal surface proteins capable of evoking a protective immune response are candidates for inclusion in protein-based vaccines against serogroup B Neisseria meningitidis (NmB). In this study, a 2-dimensional (2-D) gel-based platform integrating surface and immune-proteomics was developed to characterize NmB surface protein antigens. The surface proteome was analyzed by differential 2-D gel electrophoresis following treatment of live bacteria with proteinase K. Alongside, proteins recognized by immune sera from mice challenged with live meningococci were detected using 2-D immunoblots. In combination, seventeen proteins were identified including the well documented antigens PorA, OpcA and factor H-binding protein, previously reported potential antigens and novel potential immunogens. Results were validated for the macrophage infectivity potentiator (MIP), a recently proposed NmB vaccine candidate. MIP-specific antisera bound to meningococci in whole-cell ELISA and facilitated opsonophagocytosis and deposition of complement factors on the surface of meningococcal isolates of different serosubtypes. Cleavage by proteinase K was confirmed in western blots and shown to occur in a fraction of the MIP expressed by meningococci suggesting transient or limited surface exposure. These observations add knowledge for the development of a protein NmB vaccine. The proteomic workflow presented here may be used for the discovery of vaccine candidates against other pathogens. BIOLOGICAL SIGNIFICANCE This study presents an integrated proteomic strategy to identify proteins from N. meningitidis with desirable properties (i.e. surface exposure and immunogenicity) for inclusion in subunit vaccines against bacterial meningitis. The effectiveness of the method was demonstrated by the identification of some of the major meningococcal vaccine antigens. Information was also obtained about novel potential immunogens as well as the recently described potential antigen macrophage infectivity potentiator which can be useful for its consideration as a vaccine candidate. Additionally, the proteomic strategy presented in this study provides a generic 2-D gel-based platform for the discovery of vaccine candidates against other bacterial infections.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/isolation & purification
- Antigens, Bacterial/metabolism
- Antigens, Surface/analysis
- Antigens, Surface/isolation & purification
- Antigens, Surface/metabolism
- Bacterial Proteins/immunology
- Bacterial Proteins/isolation & purification
- Bacterial Proteins/metabolism
- Endopeptidase K/pharmacology
- Female
- Meningitis, Meningococcal/immunology
- Meningococcal Vaccines/isolation & purification
- Meningococcal Vaccines/metabolism
- Mice
- Mice, Inbred BALB C
- Neisseria meningitidis, Serogroup B/chemistry
- Neisseria meningitidis, Serogroup B/immunology
- Neisseria meningitidis, Serogroup B/metabolism
- Proteomics/methods
Collapse
Affiliation(s)
- Nikos Tsolakos
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom; Centre for Molecular Microbiology and Infection, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Charlotte Brookes
- Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Stephen Taylor
- Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Andrew Gorringe
- Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Christoph M Tang
- Centre for Molecular Microbiology and Infection, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ian M Feavers
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Jun X Wheeler
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| |
Collapse
|
22
|
Bai X, Borrow R. Genetic shifts ofNeisseria meningitidisserogroup B antigens and the quest for a broadly cross-protective vaccine. Expert Rev Vaccines 2014; 9:1203-17. [DOI: 10.1586/erv.10.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Bernardini G, Braconi D, Martelli P, Santucci A. Postgenomics ofNeisseria meningitidisfor vaccines development. Expert Rev Proteomics 2014; 4:667-77. [DOI: 10.1586/14789450.4.5.667] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Feavers I. Choosing isolates for the evaluation of meningococcal protein vaccines. Expert Rev Vaccines 2014; 8:1461-3. [DOI: 10.1586/erv.09.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
|
26
|
Hey A, Li MS, Hudson MJ, Langford PR, Kroll JS. Transcriptional profiling of Neisseria meningitidis interacting with human epithelial cells in a long-term in vitro colonization model. Infect Immun 2013; 81:4149-59. [PMID: 23980104 PMCID: PMC3811814 DOI: 10.1128/iai.00397-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/15/2013] [Indexed: 12/12/2022] Open
Abstract
Neisseria meningitidis is a commensal of humans that can colonize the nasopharyngeal epithelium for weeks to months and occasionally invades to cause life-threatening septicemia and meningitis. Comparatively little is known about meningococcal gene expression during colonization beyond those first few hours. In this study, the transcriptome of adherent serogroup B N. meningitidis strain MC58 was determined at intervals during prolonged cocultivation with confluent monolayers of the human respiratory epithelial cell line 16HBE14. At different time points up to 21 days, 7 to 14% of the meningococcal genome was found to be differentially regulated. The transcriptome of adherent meningococci obtained after 4 h of coculture was markedly different from that obtained after prolonged cocultivation (24 h, 96 h, and 21 days). Genes persistently upregulated during prolonged cocultivation included three genes (hfq, misR/phoP, and lrp) encoding global regulatory proteins. Many genes encoding known adhesins involved in epithelial adherence were upregulated, including those of a novel locus (spanning NMB0342 to NMB0348 [NMB0342-NMB0348]) encoding epithelial cell-adhesive function. Sixteen genes (including porA, porB, rmpM, and fbpA) encoding proteins previously identified by their immunoreactivity to sera from individuals colonized long term with serogroup B meningococci were also upregulated during prolonged cocultivation, indicating that our system models growth conditions in vivo during the commensal state. Surface-expressed proteins downregulated in the nasopharynx (and thus less subject to selection pressure) but upregulated in the bloodstream (and thus vulnerable to antibody-mediated bactericidal activity) should be interesting candidate vaccine antigens, and in this study, three new proteins fulfilling these criteria have been identified: NMB0497, NMB0866, and NMB1882.
Collapse
Affiliation(s)
- Ariann Hey
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Ming-Shi Li
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Michael J. Hudson
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
- Public Health England, Porton Down, Salisbury, United Kingdom
| | - Paul R. Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - J. Simon Kroll
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| |
Collapse
|
27
|
Peak IR, Srikhanta YN, Weynants VE, Feron C, Poolman JT, Jennings MP. Evaluation of truncated NhhA protein as a candidate meningococcal vaccine antigen. PLoS One 2013; 8:e72003. [PMID: 24039731 PMCID: PMC3765393 DOI: 10.1371/journal.pone.0072003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/11/2013] [Indexed: 11/19/2022] Open
Abstract
NhhA (Neisseria hia homologue) is an outer membrane protein from Neisseria meningitidis, the causative agent of meningococcal disease. The protein is surface exposed and its expression in a wide range of meningococcal strains suggests it is a promising vaccine candidate. In addition, immunization of mice with outer membrane vesicles of strains that overexpress NhhA in conjunction with one of TbpA, Omp85 or NspA results in synergistic bactericidal responses. We previously showed that the NhhA sequence is highly conserved between strains, with the majority of the differences localized to four distinct variable regions located in the amino-terminal region of the mature protein. In this study, N. meningitidis strains were constructed that over-express wild-type NhhA. Strains expressing truncated versions of NhhA, with deletions from the amino-terminal region that removed the most variable regions, were also made. These expression strains were also modified so that immunodominant, phase- and antigenically-variable outer membrane proteins were not expressed, truncated lipooligosaccharide (LOS) expression was genetically fixed (no phase variability), and capsular polysaccharide expression abolished. Outer membrane vesicles derived from these strains were used to immunize mice. As previously observed, a synergistic effect involving another antigen, TbpA, was required to demonstrate bactericidal activity. The highest bactericidal response against a heterologous strain was obtained with a truncated variant of NhhA. These results indicate that removal of (a) variable region(s) does not reduce bactericidal responses against NhhA, and that bactericidal targets exist in regions other than the variable N-teminus. This provides the basis for future examination of responses against truncated NhhA in protecting against heterologous NhhA strains, and further evaluation of truncated NhhA as a candidate for inclusion in a vaccine against all serogroups of N. meningitidis.
Collapse
Affiliation(s)
- Ian R. Peak
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Yogitha N. Srikhanta
- School of Molecular and Microbial Science, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
- * E-mail:
| |
Collapse
|
28
|
Abstract
The enterotoxigenic Escherichia coli are a pervasive cause of serious diarrheal illness in developing countries. Presently, there is no vaccine to prevent these infections, and many features of the basic pathogenesis of these organisms remain poorly understood. Until very recently most pathogenesis studies had focused almost exclusively on a small subset of known "classical" virulence genes, namely fimbrial colonization factors and the heat-labile (LT) and heat stable (ST) enterotoxins. However, recent investigations of pathogen-host interactions reveal a surprisingly complex and intricately orchestrated engagement involving the interplay of classical and "novel" virulence genes, as well as participation of genes highly conserved in the E. coli species. These studies may inform further rational approaches to vaccine development for these important pathogens.
Collapse
Affiliation(s)
- James M Fleckenstein
- Department of Medicine; Washington University School of Medicine; St. Louis, MO USA,Medicine Service; Veterans Affairs Medical Center; St. Louis, MO USA,Correspondence to: James M Fleckenstein,
| | - George M Munson
- Department of Microbiology and Immunology; University of Miami; Miller School of Medicine; Miami, FL USA
| | - David A Rasko
- Department of Microbiology and Immunology; University of Maryland School of Medicine; Baltimore, MD USA,Institute for Genome Sciences; University of Maryland School of Medicine; Baltimore, MD USA
| |
Collapse
|
29
|
Arpaci T, Ugurluer G, Akbas T, Arpaci RB, Serin M. Imaging of the skeletal muscle metastases. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2013. [PMID: 23280019 PMCID: PMC7163697 DOI: 10.1002/ddr.21049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Copyright 2011 Wiley-Liss, Inc., A Wiley CompanyThis article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency. Omics technologies include genomics, transcriptomics, proteomics, metabolomics, and immunomics. These technologies have been used in vaccine research, which can be summarized using the term “vaccinomics.” These omics technologies combined with advanced bioinformatics analysis form the core of “systems vaccinology.” Omics technologies provide powerful methods in vaccine target identification. The genomics‐based reverse vaccinology starts with predicting vaccine protein candidates through in silico bioinformatics analysis of genome sequences. The VIOLIN Vaxign vaccine design program (http://www.violinet.org/vaxign) is the first web‐based vaccine target prediction software based on the reverse vaccinology strategy. Systematic transcriptomics and proteomics analyses facilitate rational vaccine target identification by detesting genome‐wide gene expression profiles. Immunomics is the study of the set of antigens recognized by host immune systems and has also been used for efficient vaccine target prediction. With the large amount of omics data available, it is necessary to integrate various vaccine data using ontologies, including the Gene Ontology (GO) and Vaccine Ontology (VO), for more efficient vaccine target prediction and assessment. All these omics technologies combined with advanced bioinformatics analysis methods for a systems biology‐based vaccine target prediction strategy. This article reviews the various omics technologies and how they can be used in vaccine target identification.
Collapse
Affiliation(s)
- T Arpaci
- Department of Radiology, Acibadem Adana Hospital, Adana, Turkey.
| | | | | | | | | |
Collapse
|
30
|
Del Tordello E, Serruto D. Functional genomics studies of the human pathogen Neisseria meningitidis. Brief Funct Genomics 2013; 12:328-40. [PMID: 23723380 DOI: 10.1093/bfgp/elt018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neisseria meningitidis is a strictly human pathogen and is one of the major causes of septicemia and meningitis worldwide. Functional genomics approaches have been extensively applied to study how N. meningitidis adapts to grow and survive in different human niches encountered during the infection. DNA microarrays performed in in vitro and ex vivo conditions have revealed changes in the transcriptome profiles of N. meningitidis upon interaction with human cells and after incubation in human serum and blood. Mutagenesis studies allowed detecting mutants in genes crucial for N. meningitidis colonization and systemic infection. The analysis of N. meningitidis genomes has been also successful in the identification of vaccine candidates used to develop an effective protein-based vaccine. The application of all these approaches revealed the potential to identify new virulence factors and vaccine candidates and to assign functions to previously uncharacterized genes providing new insights in the biology and pathogenesis of N. meningitidis.
Collapse
|
31
|
Donati C, Rappuoli R. Reverse vaccinology in the 21st century: improvements over the original design. Ann N Y Acad Sci 2013; 1285:115-32. [PMID: 23527566 DOI: 10.1111/nyas.12046] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Reverse vaccinology (RV), the first application of genomic technologies in vaccine research, represented a major revolution in the process of discovering novel vaccines. By determining their entire antigenic repertoire, researchers could identify protective targets and design efficacious vaccines for pathogens where conventional approaches had failed. Bexsero, the first vaccine developed using RV, has recently received positive opinion from the European Medicines Agency. The use of RV initiated a cascade of changes that affected the entire vaccine development process, shifting the focus from the identification of a list of vaccine candidates to the definition of a set of high throughput screens to reduce the need for costly and labor intensive tests in animal models. It is now clear that a deep understanding of the epidemiology of vaccine candidates, and their regulation and role in host-pathogen interactions, must become an integral component of the screening workflow. Far from being outdated by technological advancements, RV still represents a paradigm of how high-throughput technologies and scientific insight can be integrated into biotechnology research.
Collapse
|
32
|
Prachi P, Donati C, Masciopinto F, Rappuoli R, Bagnoli F. Deep sequencing in pre- and clinical vaccine research. Public Health Genomics 2013; 16:62-8. [PMID: 23548719 DOI: 10.1159/000345611] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vaccine research has experienced a quantum leap after the beginning of the genomics era. High-throughput sequencing techniques, unlimited computing resources, as well as new bioinformatic algorithms are now changing the way we perform genomic studies. Whole genome sequencing will soon become the gold standard for phylogenetic and epidemiology studies and is already shedding new light on the dynamics of bacterial evolution. We believe that deep sequencing projects, together with structural studies on vaccine candidates, will allow targeting constant epitopes and avoid vaccine failure due to antigenic variability. Systems biology, which is expected to revolutionize vaccine research and clinical studies, greatly relies on high-throughput technologies such as RNA-seq. Furthermore, genomics is a key element to develop safer vaccines, and the accuracy of deep sequencing will allow monitoring vaccine coverage after their introduction on the market.
Collapse
Affiliation(s)
- P Prachi
- Novartis Vaccines, Research Center, Siena, Italy
| | | | | | | | | |
Collapse
|
33
|
Neisseria meningitidis serogroup B vaccine development. Microb Pathog 2013; 57:33-40. [PMID: 23416222 DOI: 10.1016/j.micpath.2013.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/04/2013] [Indexed: 11/22/2022]
Abstract
Neisseria meningitidis is an air-borne, gram-negative pathogen that actively invades its human host leading to the development of life-threatening pathologies. As one of the leading causes of death in the world, during an epidemic period N. meningitidis can be responsible for nearly 1000 new infections per 100,000 individuals. The bacterial species is further categorized into 13 serotypes, with five, A, B, C, W-135, and Y, being the most clinically relevant, causing the overwhelming majority of diseases. There are two contemporary, purified protein conjugate vaccines available that function by targeting serogroups A, C, W-135, and Y. Historically, serogroup B has posed a vaccination challenge; however, there are currently two vaccines in development able to target serotype B. This review will highlight N. meningitidis as a pathogen and explore the recent literature providing a current review of meningococcal vaccination development.
Collapse
|
34
|
van de Waterbeemd B, Zomer G, van den Ijssel J, van Keulen L, Eppink MH, van der Ley P, van der Pol LA. Cysteine depletion causes oxidative stress and triggers outer membrane vesicle release by Neisseria meningitidis; implications for vaccine development. PLoS One 2013; 8:e54314. [PMID: 23372704 PMCID: PMC3553081 DOI: 10.1371/journal.pone.0054314] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/11/2012] [Indexed: 12/13/2022] Open
Abstract
Outer membrane vesicles (OMV) contain immunogenic proteins and contribute to in vivo survival and virulence of bacterial pathogens. The first OMV vaccines successfully stopped Neisseria meningitidis serogroup B outbreaks but required detergent-extraction for endotoxin removal. Current vaccines use attenuated endotoxin, to preserve immunological properties and allow a detergent-free process. The preferred process is based on spontaneously released OMV (sOMV), which are most similar to in vivo vesicles and easier to purify. The release mechanism however is poorly understood resulting in low yield. This study with N. meningitidis demonstrates that an external stimulus, cysteine depletion, can trigger growth arrest and sOMV release in sufficient quantities for vaccine production (±1500 human doses per liter cultivation). Transcriptome analysis suggests that cysteine depletion impairs iron-sulfur protein assembly and causes oxidative stress. Involvement of oxidative stress is confirmed by showing that addition of reactive oxygen species during cysteine-rich growth also triggers vesiculation. The sOMV in this study are similar to vesicles from natural infection, therefore cysteine-dependent vesiculation is likely to be relevant for the in vivo pathogenesis of N. meningitidis.
Collapse
Affiliation(s)
- Bas van de Waterbeemd
- Vaccinology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
35
|
Liu X, She XT, Zhu QF, Li H, Peng XX. Heterogeneous interactome between Litopenaeus vannamei plasma proteins and Vibrio parahaemolyticus outer membrane proteins. FISH & SHELLFISH IMMUNOLOGY 2013; 34:192-198. [PMID: 23099052 DOI: 10.1016/j.fsi.2012.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 09/14/2012] [Accepted: 10/14/2012] [Indexed: 06/01/2023]
Abstract
A great loss has been suffered by microbial infectious diseases under intensive shrimp farming in recent years. In this background, the understanding of shrimp innate immunity becomes an importantly scientific issue, but little is known about the heterogeneous protein-protein interaction between pathogenic cells and hosts, which is a key step for the invading microbes to infect internet organs through bloodstream. In the present study, bacterial outer membrane (OM) protein array and pull-down approaches are used to isolate both Vibrio parahaemolyticus OM proteins that bind to shrimp serum proteins and the shrimp serum proteins that interact with bacterial cells, respectively. Three interacting shrimp serum proteins, hemocyanin, β-1,3-glucan binding protein and LV_HP_RA36F08r and thirty interacting OM proteins were determined. They form 63 heterogeneous protein-protein interactions. Nine out of the 30 OM proteins were randomly demonstrated to be up-regulated or down-regulated when bacterial cells were cultured with shrimp sera, indicating the biological significance of the network. The interesting findings uncover the complexity of struggle between host immunity and bacterial infection. Compared with our previous report on heterogeneous interactome between fish grill and bacterial OM proteins, the present study further extends the investigation from lower vertebrates to invertebrates and develops a bacterial OM protein array to identify the OM proteins bound with shrimp serum proteins, which elevates the frequencies of the bound OM proteins. Our results highlight the way to determine and understand the heterogeneous interaction between hosts and microbes.
Collapse
Affiliation(s)
- Xiang Liu
- Center for Proteomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | | | | | | | | |
Collapse
|
36
|
Piek S, Kahler CM. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis. Front Cell Infect Microbiol 2012; 2:162. [PMID: 23267440 PMCID: PMC3526765 DOI: 10.3389/fcimb.2012.00162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/01/2012] [Indexed: 01/13/2023] Open
Abstract
The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism.
Collapse
Affiliation(s)
- Susannah Piek
- Department of Pathology and Laboratory Medicine, The University of Western Australia Perth, WA, Australia
| | | |
Collapse
|
37
|
Transcriptional modulation of enterotoxigenic Escherichia coli virulence genes in response to epithelial cell interactions. Infect Immun 2012; 81:259-70. [PMID: 23115039 DOI: 10.1128/iai.00919-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of morbidity and mortality due to diarrheal illness in developing countries. There is currently no effective vaccine against these important pathogens. Because genes modulated by pathogen-host interactions potentially encode putative vaccine targets, we investigated changes in gene expression and surface morphology of ETEC upon interaction with intestinal epithelial cells in vitro. Pan-genome microarrays, quantitative reverse transcriptase PCR (qRT-PCR), and transcriptional reporter fusions of selected promoters were used to study changes in ETEC transcriptomes. Flow cytometry, immunofluorescence microscopy, and scanning electron microscopy were used to investigate alterations in surface antigen expression and morphology following pathogen-host interactions. Following host cell contact, genes for motility, adhesion, toxin production, immunodominant peptides, and key regulatory molecules, including cyclic AMP (cAMP) receptor protein (CRP) and c-di-GMP, were substantially modulated. These changes were accompanied by visible changes in both ETEC architecture and the expression of surface antigens, including a novel highly conserved adhesin molecule, EaeH. The studies reported here suggest that pathogen-host interactions are finely orchestrated by ETEC and are characterized by coordinated responses involving the sequential deployment of multiple virulence molecules. Elucidation of the molecular details of these interactions could highlight novel strategies for development of vaccines for these important pathogens.
Collapse
|
38
|
Prachi P, Biagini M, Bagnoli F. Vaccinology Is Turning into an Omics-Based Science. Drug Dev Res 2012. [DOI: 10.1002/ddr.21048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Prachi Prachi
- Novartis Vaccines; Research Center; via Fiorentina 1; 53100; Siena; Italy
| | | | - Fabio Bagnoli
- Novartis Vaccines; Research Center; via Fiorentina 1; 53100; Siena; Italy
| |
Collapse
|
39
|
Chieng S, Carreto L, Nathan S. Burkholderia pseudomallei transcriptional adaptation in macrophages. BMC Genomics 2012; 13:328. [PMID: 22823543 PMCID: PMC3418162 DOI: 10.1186/1471-2164-13-328] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 07/23/2012] [Indexed: 11/10/2022] Open
Abstract
Background Burkholderia pseudomallei is a facultative intracellular pathogen of phagocytic and non-phagocytic cells. How the bacterium interacts with host macrophage cells is still not well understood and is critical to appreciate the strategies used by this bacterium to survive and how intracellular survival leads to disease manifestation. Results Here we report the expression profile of intracellular B. pseudomallei following infection of human macrophage-like U937 cells. During intracellular growth over the 6 h infection period, approximately 22 % of the B. pseudomallei genome showed significant transcriptional adaptation. B. pseudomallei adapted rapidly to the intracellular environment by down-regulating numerous genes involved in metabolism, cell envelope, motility, replication, amino acid and ion transport system and regulatory function pathways. Reduced expression in catabolic and housekeeping genes suggested lower energy requirement and growth arrest during macrophage infection, while expression of genes encoding anaerobic metabolism functions were up regulated. However, whilst the type VI secretion system was up regulated, expression of many known virulence factors was not significantly modulated over the 6hours of infection. Conclusions The transcriptome profile described here provides the first comprehensive view of how B. pseudomallei survives within host cells and will help identify potential virulence factors and proteins that are important for the survival and growth of B. pseudomallei within human cells.
Collapse
Affiliation(s)
- Sylvia Chieng
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Malaysia
| | | | | |
Collapse
|
40
|
Hedman AK, Li MS, Langford PR, Kroll JS. Transcriptional profiling of serogroup B Neisseria meningitidis growing in human blood: an approach to vaccine antigen discovery. PLoS One 2012; 7:e39718. [PMID: 22745818 PMCID: PMC3382141 DOI: 10.1371/journal.pone.0039718] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/25/2012] [Indexed: 12/14/2022] Open
Abstract
Neisseria meningitidis is a nasopharyngeal commensal of humans which occasionally invades the blood to cause septicaemia. The transcriptome of N. meningitidis strain MC58 grown in human blood for up to 4 hours was determined and around 10% of the genome was found to be differentially regulated. The nuo, pet and atp operons, involved in energy metabolism, were up-regulated, while many house-keeping genes were down-regulated. Genes encoding protein chaperones and proteases, involved in the stress response; complement resistant genes encoding enzymes for LOS sialylation and biosynthesis; and fHbp (NMB1870) and nspA (NMB0663), encoding vaccine candidates, were all up-regulated. Genes for glutamate uptake and metabolism, and biosynthesis of purine and pyrimidine were also up-regulated. Blood grown meningococci are under stress and undergo a metabolic adaptation and energy conservation strategy. The localisation of four putative outer membrane proteins encoded by genes found to be up-regulated in blood was assessed by FACS using polyclonal mouse antisera, and one (NMB0390) showed evidence of surface expression, supporting its vaccine candidacy.
Collapse
Affiliation(s)
- Asa K. Hedman
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Ming-Shi Li
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Paul R. Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - J. Simon Kroll
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| |
Collapse
|
41
|
Mahdi LK, Wang H, Van der Hoek MB, Paton JC, Ogunniyi AD. Identification of a novel pneumococcal vaccine antigen preferentially expressed during meningitis in mice. J Clin Invest 2012; 122:2208-20. [PMID: 22622042 PMCID: PMC3366392 DOI: 10.1172/jci45850] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 03/21/2012] [Indexed: 01/06/2023] Open
Abstract
Streptococcus pneumoniae is the most common cause of severe bacterial meningitis in children, the elderly, and immunocompromised individuals. To identify virulence factors preferentially expressed during meningitis, we conducted niche-specific genome-wide in vivo transcriptomic analysis after intranasal infection of mice with serotype 4 or 6A pneumococci. The expression of 34 bacterial genes was substantially altered in brain tissue of mice infected with either of the 2 strains. Ten upregulated genes were common to both strains, 7 of which were evaluated for their role in the development of meningitis. One previously uncharacterized protein, α-glycerophosphate oxidase (GlpO), was cytotoxic for human brain microvascular endothelial cells (HBMECs) via generation of H(2)O(2). A glpO deletion mutant was defective in adherence to HBMECs in vitro as well as in progression from the blood to the brain in vivo. Mutant bacteria also induced markedly reduced meningeal inflammation and brain pathology compared with wild type, despite similar levels of bacteremia. Immunization of mice with GlpO protected against invasive pneumococcal disease and provided additive protection when formulated with pneumolysin toxoid. Our results provide the basis of a strategy that can be adapted to identify genes that contribute to the development of meningitis caused by other pathogens.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/biosynthesis
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/immunology
- Bacterial Proteins/pharmacology
- Cells, Cultured
- Female
- Gene Expression Regulation, Bacterial/immunology
- Gene Expression Regulation, Enzymologic/immunology
- Glycerolphosphate Dehydrogenase/biosynthesis
- Glycerolphosphate Dehydrogenase/genetics
- Glycerolphosphate Dehydrogenase/immunology
- Humans
- Meningitis, Pneumococcal/enzymology
- Meningitis, Pneumococcal/genetics
- Meningitis, Pneumococcal/immunology
- Meningitis, Pneumococcal/prevention & control
- Mice
- Mutation
- Pneumococcal Vaccines/immunology
- Pneumococcal Vaccines/metabolism
- Streptococcus pneumoniae/enzymology
- Streptococcus pneumoniae/genetics
- Streptococcus pneumoniae/immunology
- Streptolysins/immunology
- Streptolysins/pharmacology
- Toxoids/immunology
- Toxoids/pharmacology
Collapse
Affiliation(s)
- Layla K Mahdi
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
42
|
Jackson LA, Dyer DW. Protocol for gene expression profiling using DNA microarrays in Neisseria gonorrhoeae. Methods Mol Biol 2012; 903:343-57. [PMID: 22782831 DOI: 10.1007/978-1-61779-937-2_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gene expression profiling using DNA microarrays has become commonplace in current molecular biology practices, and has dramatically enhanced our understanding of the biology of Neisseria spp., and the interaction of these organisms with the host. With the choice of microarray platforms offered for gene expression profiling and commercially available arrays, investigators must ask several central questions to make decisions based on their research focus. Are arrays on hand for their organism and if not then would it be cost-effective to design custom arrays. Other important considerations; what types of specialized equipment for array hybridization and signal detection are required and is the specificity and sensitivity of the array adequate for your application. Here, we describe the use of a custom 12K CombiMatrix ElectraSense™ oligonucleotide microarray format for assessing global gene expression profiles in Neisseria spp.
Collapse
Affiliation(s)
- Lydgia A Jackson
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | |
Collapse
|
43
|
Use of the chinchilla model for nasopharyngeal colonization to study gene expression by Moraxella catarrhalis. Infect Immun 2011; 80:982-95. [PMID: 22184412 DOI: 10.1128/iai.05918-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Young adult chinchillas were atraumatically inoculated with Moraxella catarrhalis via the nasal route. Detailed histopathologic examination of nasopharyngeal tissues isolated from these M. catarrhalis-infected animals revealed the presence of significant inflammation within the epithelium. Absence of similar histopathologic findings in sham-inoculated animals confirmed that M. catarrhalis was exposed to significant host-derived factors in this environment. Twenty-four hours after inoculation, viable M. catarrhalis organisms were recovered from the nasal cavity and nasopharynx of the animals in numbers sufficient for DNA microarray analysis. More than 100 M. catarrhalis genes were upregulated in vivo, including open reading frames (ORFs) encoding proteins that are involved in a truncated denitrification pathway or in the oxidative stress response, as well as several putative transcriptional regulators. Additionally, 200 M. catarrhalis genes were found to be downregulated when this bacterium was introduced into the nasopharynx. These downregulated genes included ORFs encoding several well-characterized M. catarrhalis surface proteins including Hag, McaP, and MchA1. Real-time reverse transcriptase PCR (RT-PCR) was utilized as a stringent control to validate the results of in vivo gene expression patterns as measured by DNA microarray analysis. Inactivation of one of the genes (MC ORF 1550) that was upregulated in vivo resulted in a decrease in the ability of M. catarrhalis to survive in the chinchilla nasopharynx over a 3-day period. This is the first evaluation of global transcriptome expression by M. catarrhalis cells in vivo.
Collapse
|
44
|
In the NadR regulon, adhesins and diverse meningococcal functions are regulated in response to signals in human saliva. J Bacteriol 2011; 194:460-74. [PMID: 22081399 DOI: 10.1128/jb.06161-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Neisseria meningitidis regulator NadR was shown to repress expression of the NadA adhesin and play a major role in NadA phase-variable expression. In this study, we identified through microarray analysis over 30 genes coregulated with nadA in the NadR mutant and defined members of the NadR regulon through in vitro DNA-binding assays. Two distinct types of promoter architectures (I and II) were identified for NadR targets, differing in both the number and position of NadR-binding sites. All NadR-regulated genes investigated were found to respond to 4-hydroxyphenylacetic acid (4HPA), a small molecule secreted in human saliva, which was previously demonstrated to induce nadA expression by alleviating NadR-dependent repression. Interestingly, two types of NadR 4HPA responsive activities were found on different NadR targets corresponding to the two types of genes identified by different promoter architectures: while NadA and the majority of NadR targets (type I) are induced, only the MafA adhesins (type II) are corepressed in response to the same 4HPA signal. This alternate behavior of NadR was confirmed in a panel of strains in response to 4HPA and after incubation in saliva. The in vitro NadR binding activity at type I and type II promoter regions is differentially affected by 4HPA, suggesting that the nature of the NadR binding sites may define the regulation to which they will be subjected. We conclude that NadR coordinates a broad transcriptional response to signals present in human saliva, mimicked in vitro by 4HPA, enabling the meningococcus to adapt to the relevant host niche.
Collapse
|
45
|
Wong HEE, Li MS, Kroll JS, Hibberd ML, Langford PR. Genome wide expression profiling reveals suppression of host defence responses during colonisation by Neisseria meningitides but not N. lactamica. PLoS One 2011; 6:e26130. [PMID: 22028815 PMCID: PMC3197596 DOI: 10.1371/journal.pone.0026130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 09/20/2011] [Indexed: 11/22/2022] Open
Abstract
Both Neisseria meningitidis and the closely related bacterium Neisseria lactamica colonise human nasopharyngeal mucosal surface, but only N. meningitidis invades the bloodstream to cause potentially life-threatening meningitis and septicaemia. We have hypothesised that the two neisserial species differentially modulate host respiratory epithelial cell gene expression reflecting their disease potential. Confluent monolayers of 16HBE14 human bronchial epithelial cells were exposed to live and/or dead N. meningitidis (including capsule and pili mutants) and N. lactamica, and their transcriptomes were compared using whole genome microarrays. Changes in expression of selected genes were subsequently validated using Q-RT-PCR and ELISAs. Live N. meningitidis and N. lactamica induced genes involved in host energy production processes suggesting that both bacterial species utilise host resources. N. meningitidis infection was associated with down-regulation of host defence genes. N. lactamica, relative to N. meningitidis, initiates up-regulation of proinflammatory genes. Bacterial secreted proteins alone induced some of the changes observed. The results suggest N. meningitidis and N. lactamica differentially regulate host respiratory epithelial cell gene expression through colonisation and/or protein secretion, and that this may contribute to subsequent clinical outcomes associated with these bacteria.
Collapse
Affiliation(s)
- Hazel En En Wong
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - Ming-Shi Li
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - J. Simon Kroll
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - Martin L. Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Paul R. Langford
- Section of Paediatrics, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Kuwae A, Sjölinder H, Eriksson J, Eriksson S, Chen Y, Jonsson AB. NafA negatively controls Neisseria meningitidis piliation. PLoS One 2011; 6:e21749. [PMID: 21747953 PMCID: PMC3128610 DOI: 10.1371/journal.pone.0021749] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/06/2011] [Indexed: 12/02/2022] Open
Abstract
Bacterial auto-aggregation is a critical step during adhesion of N. meningitidis to host cells. The precise mechanisms and functions of bacterial auto-aggregation still remain to be fully elucidated. In this work, we characterize the role of a meningococcal hypothetical protein, NMB0995/NMC0982, and show that this protein, here denoted NafA, acts as an anti-aggregation factor. NafA was confirmed to be surface exposed and was found to be induced at a late stage of bacterial adherence to epithelial cells. A NafA deficient mutant was hyperpiliated and formed bundles of pili. Further, the mutant displayed increased adherence to epithelial cells when compared to the wild-type strain. In the absence of host cells, the NafA deficient mutant was more aggregative than the wild-type strain. The in vivo role of NafA in sepsis was studied in a murine model of meningococcal disease. Challenge with the NafA deficient mutant resulted in lower bacteremia levels and mortality when compared to the wild-type strain. The present study reveals that meningococcal NafA is an anti-aggregation factor with strong impact on the disease outcome. These data also suggest that appropriate bacterial auto-aggregation is controlled by both aggregation and anti-aggregation factors during Neisseria infection in vivo.
Collapse
Affiliation(s)
- Asaomi Kuwae
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
47
|
Bagnoli F, Baudner B, Mishra RPN, Bartolini E, Fiaschi L, Mariotti P, Nardi-Dei V, Boucher P, Rappuoli R. Designing the next generation of vaccines for global public health. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:545-66. [PMID: 21682594 DOI: 10.1089/omi.2010.0127] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vaccine research and development are experiencing a renaissance of interest from the global scientific community. There are four major reasons for this: (1) the lack of efficacious treatment for many devastating infections; (2) the emergence of multidrug resistant bacteria; (3) the need for improving the safety of the more traditional licensed vaccines; and finally, (4) the great promise for innovative vaccine design and research with convergence of omics sciences, such as genomics, proteomics, immunomics, and vaccinology. Our first project based on omics was initiated in 2000 and was termed reverse vaccinology. At that time, antigen identification was mainly based on bioinformatic analysis of a singular genome. Since then, omics-guided approaches have been applied to its full potential in several proof-of-concept studies in the industry, with the first reverse vaccinology-derived vaccine now in late stage clinical trials and several vaccines developed by omics in preclinical studies. In the meantime, vaccine discovery and development has been further improved with the support of proteomics, functional genomics, comparative genomics, structural biology, and most recently vaccinomics. We illustrate in this review how omics biotechnologies and integrative biology are expected to accelerate the identification of vaccine candidates against difficult pathogens for which traditional vaccine development has thus far been failing, and how research will provide safer vaccines and improved formulations for immunocompromised patients in the near future. Finally, we present a discussion to situate omics-guided rational vaccine design in the broader context of global public health and how it can benefit citizens in both developed and developing countries.
Collapse
|
48
|
Seib KL, Pigozzi E, Muzzi A, Gawthorne JA, Delany I, Jennings MP, Rappuoli R. A novel epigenetic regulator associated with the hypervirulent
Neisseria meningitidis
clonal complex 41/44. FASEB J 2011; 25:3622-33. [DOI: 10.1096/fj.11-183590] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - Jayde A. Gawthorne
- Institute for GlycomicsGriffith University Gold Coast Queensland Australia
| | | | | | | |
Collapse
|
49
|
Echenique-Rivera H, Muzzi A, Del Tordello E, Seib KL, Francois P, Rappuoli R, Pizza M, Serruto D. Transcriptome analysis of Neisseria meningitidis in human whole blood and mutagenesis studies identify virulence factors involved in blood survival. PLoS Pathog 2011; 7:e1002027. [PMID: 21589640 PMCID: PMC3088726 DOI: 10.1371/journal.ppat.1002027] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/26/2011] [Indexed: 12/14/2022] Open
Abstract
During infection Neisseria meningitidis (Nm) encounters multiple environments within the host, which makes rapid adaptation a crucial factor for meningococcal survival. Despite the importance of invasion into the bloodstream in the meningococcal disease process, little is known about how Nm adapts to permit survival and growth in blood. To address this, we performed a time-course transcriptome analysis using an ex vivo model of human whole blood infection. We observed that Nm alters the expression of ≈30% of ORFs of the genome and major dynamic changes were observed in the expression of transcriptional regulators, transport and binding proteins, energy metabolism, and surface-exposed virulence factors. In particular, we found that the gene encoding the regulator Fur, as well as all genes encoding iron uptake systems, were significantly up-regulated. Analysis of regulated genes encoding for surface-exposed proteins involved in Nm pathogenesis allowed us to better understand mechanisms used to circumvent host defenses. During blood infection, Nm activates genes encoding for the factor H binding proteins, fHbp and NspA, genes encoding for detoxifying enzymes such as SodC, Kat and AniA, as well as several less characterized surface-exposed proteins that might have a role in blood survival. Through mutagenesis studies of a subset of up-regulated genes we were able to identify new proteins important for survival in human blood and also to identify additional roles of previously known virulence factors in aiding survival in blood. Nm mutant strains lacking the genes encoding the hypothetical protein NMB1483 and the surface-exposed proteins NalP, Mip and NspA, the Fur regulator, the transferrin binding protein TbpB, and the L-lactate permease LctP were sensitive to killing by human blood. This increased knowledge of how Nm responds to adaptation in blood could also be helpful to develop diagnostic and therapeutic strategies to control the devastating disease cause by this microorganism.
Collapse
MESH Headings
- Adaptation, Physiological
- Adult
- Antigens, Bacterial/genetics
- Bacteremia/blood
- Bacteremia/microbiology
- Bacterial Proteins/genetics
- Cluster Analysis
- Down-Regulation/genetics
- Female
- Gene Expression Regulation, Bacterial/genetics
- Genes, Bacterial/genetics
- Genome, Bacterial/genetics
- Host-Pathogen Interactions/genetics
- Humans
- Male
- Meningococcal Infections/blood
- Meningococcal Infections/microbiology
- Models, Biological
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/growth & development
- Neisseria meningitidis, Serogroup B/pathogenicity
- Neisseria meningitidis, Serogroup B/physiology
- RNA, Bacterial/genetics
- Sequence Deletion
- Transcriptome
- Up-Regulation/genetics
- Virulence Factors/genetics
Collapse
Affiliation(s)
| | | | | | | | - Patrice Francois
- Genomic Research Laboratory, University of
Geneva Hospitals (HUG), Geneva, Switzerland
| | | | | | - Davide Serruto
- Novartis Vaccines and Diagnostics, Siena,
Italy
- * E-mail:
| |
Collapse
|
50
|
Regulation of sulfur assimilation pathways in Burkholderia cenocepacia through control of genes by the SsuR transcription factor. J Bacteriol 2011; 193:1843-53. [PMID: 21317335 DOI: 10.1128/jb.00483-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Burkholderia cenocepacia contains two genes encoding closely related LysR-type transcriptional regulators, CysB and SsuR, involved in control of sulfur assimilation processes. In this study we show that the function of SsuR is essential for the utilization of a number of organic sulfur sources of either environmental or human origin. Among the genes upregulated by SsuR identified here are the tauABC operon encoding a predicted taurine transporter, three tauD-type genes encoding putative taurine dioxygenases, and atsA encoding a putative arylsulfatase. The role of SsuR in expression of these genes/operons was characterized through (i) construction of transcriptional reporter fusions to candidate promoter regions and analysis of their expression in the presence/absence of SsuR and (ii) testing the ability of SsuR to bind SsuR-responsive promoter regions. We also demonstrate that expression of SsuR-activated genes is not repressed in the presence of inorganic sulfate. A more detailed analysis of four SsuR-responsive promoter regions indicated that ~44 bp of the DNA sequence preceding and/or overlapping the predicted -35 element of such promoters is sufficient for SsuR binding. The DNA sequence homology among SsuR "recognition motifs" at different responsive promoters appears to be limited.
Collapse
|