1
|
Nishizawa-Yokoi A, Toki S. Gene Targeting via CRISPR/Cas9-Mediated DNA Double-Strand Break Induction in Rice. Methods Mol Biol 2025; 2869:91-100. [PMID: 39499470 DOI: 10.1007/978-1-0716-4204-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Gene targeting (GT) is a precise genome editing tool to achieve desired modification of a target gene, e.g., introduction of point mutations, knock-in of a reporter gene, or swapping of a functional domain, through homologous recombination. However, due to its low frequency, it has proved difficult to establish a universal GT system. The availability of the CRISPR/Cas9 system for genome editing in plants has opened up possibilities to apply GT successfully to some plant species. Here, we provide protocols for CRISPR/Cas9-mediated DNA double-strand break (DSB)-induced GT in rice.
Collapse
Affiliation(s)
- Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Graduate School of Nanobioscience, Yokohama City University, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
- Department of Life Science, Faculty of Agriculture, Ryukoku University, Kyoto, Japan
| |
Collapse
|
2
|
Matsushima R, Hisano H, Kim JS, McNelly R, Oitome NF, Seung D, Fujita N, Sato K. Mutations in starch BRANCHING ENZYME 2a suppress the traits caused by the loss of ISOAMYLASE1 in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:212. [PMID: 39217239 PMCID: PMC11365852 DOI: 10.1007/s00122-024-04725-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
KEY MESSAGE The hvbe2a mutations restore the starch-deficient phenotype caused by the hvisa1 and hvflo6 mutations in barley endosperm. The genetic interactions among starch biosynthesis genes can be exploited to alter starch properties, but they remain poorly understood due to the various combinations of mutations to be tested. Here, we isolated two novel barley mutants defective in starch BRANCHING ENZYME 2a (hvbe2a-1 and hvbe2a-2) based on the starch granule (SG) morphology. Both hvbe2a mutants showed elongated SGs in the endosperm and increased resistant starch content. hvbe2a-1 had a base change in HvBE2a gene, substituting the amino acid essential for its enzyme activity, while hvbe2a-2 is completely missing HvBE2a due to a chromosomal deletion. Further genetic crosses with barley isoamylase1 mutants (hvisa1) revealed that both hvbe2a mutations could suppress defects in endosperm caused by hvisa1, such as reduction in starch, increase in phytoglycogen, and changes in the glucan chain length distribution. Remarkably, hvbe2a mutations also transformed the endosperm SG morphology from the compound SG caused by hvisa1 to bimodal simple SGs, resembling that of wild-type barley. The suppressive impact was in competition with floury endosperm 6 mutation (hvflo6), which could enhance the phenotype of hvisa1 in the endosperm. In contrast, the compound SG formation induced by the hvflo6 hvisa1 mutation in pollen was not suppressed by hvbe2a mutations. Our findings provide new insights into genetic interactions in the starch biosynthetic pathway, demonstrating how specific genetic alterations can influence starch properties and SG morphology, with potential applications in cereal breeding for desired starch properties.
Collapse
Affiliation(s)
- Ryo Matsushima
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
- John Innes Centre, Norwich Research Park, Norwich,, NR4 7UH, UK.
| | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - June-Sik Kim
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Rose McNelly
- John Innes Centre, Norwich Research Park, Norwich,, NR4 7UH, UK
| | - Naoko F Oitome
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich,, NR4 7UH, UK
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| |
Collapse
|
3
|
Wang J, Li M, Nan N, Ma A, Ao M, Yu J, Wang X, Han K, Yun DJ, Liu B, Li N, Xu ZY. OsGADD45a1: a multifaceted regulator of rice architecture, grain yield, and blast resistance. PLANT CELL REPORTS 2024; 43:88. [PMID: 38461436 DOI: 10.1007/s00299-024-03191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
KEY MESSAGE The homolog gene of the Growth Arrest and DNA Damage-inducible 45 (GADD45) in rice functions in the regulation of plant architecture, grain yield, and blast resistance. The Growth Arrest and DNA Damage-inducible 45 (GADD45) family proteins, well-established stress sensors and tumor suppressors in mammals, serve as pivotal regulators of genotoxic stress responses and tumorigenesis. In contrast, the homolog and role of GADD45 in plants have remained unclear. Herein, using forward genetics, we identified an activation tagging mutant AC13 exhibited dwarf characteristics resulting from the loss-of-function of the rice GADD45α homolog, denoted as OsGADD45a1. osgadd45a1 mutants displayed reduced plant height, shortened panicle length, and decreased grain yield compared to the wild-type Kitaake. Conversely, no obvious differences in plant height, panicle length, or grain yield were observed between wild-type and OsGADD45a1 overexpression plants. OsGADD45a1 displayed relatively high expression in germinated seeds and panicles, with localization in both the nucleus and cytoplasm. RNA-sequencing analysis suggested a potential role for OsGADD45a1 in the regulation of photosynthesis, and binding partner identification indicates OsGADD45a1 interacts with OsRML1 to regulate rice growth. Intriguingly, our study unveiled a novel role for OsGADD45a1 in rice blast resistance, as osgadd45a1 mutant showed enhanced resistance to Magnaporthe oryzae, and the expression of OsGADD45a1 was diminished upon blast fungus treatment. The involvement of OsGADD45a1 in rice blast fungus resistance presents a groundbreaking finding. In summary, our results shed light on the multifaceted role of OsGADD45a1 in rice, encompassing biotic stress response and the modulation of several agricultural traits, including plant height, panicle length, and grain yield.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Mengting Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Nan Nan
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Ao Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Min Ao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinlei Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaohang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Kangshun Han
- Rice Institute, Tonghua Academy of Agricultural Science, Tonghua, 135007, China
| | - Dae-Jin Yun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 132-798, South Korea
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
4
|
Sun C, Lei Y, Li B, Gao Q, Li Y, Cao W, Yang C, Li H, Wang Z, Li Y, Wang Y, Liu J, Zhao KT, Gao C. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nat Biotechnol 2024; 42:316-327. [PMID: 37095350 DOI: 10.1038/s41587-023-01769-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023]
Abstract
A technique for chromosomal insertion of large DNA segments is much needed in plant breeding and synthetic biology to facilitate the introduction of desired agronomic traits and signaling and metabolic pathways. Here we describe PrimeRoot, a genome editing approach to generate targeted precise large DNA insertions in plants. Third-generation PrimeRoot editors employ optimized prime editing guide RNA designs, an enhanced plant prime editor and superior recombinases to enable precise large DNA insertions of up to 11.1 kilobases into plant genomes. We demonstrate the use of PrimeRoot to accurately introduce gene regulatory elements in rice. In this study, we also integrated a gene cassette comprising PigmR, which confers rice blast resistance driven by an Act1 promoter, into a predicted genomic safe harbor site of Kitaake rice and obtain edited plants harboring the expected insertion with an efficiency of 6.3%. We found that these rice plants have increased blast resistance. These results establish PrimeRoot as a promising approach to precisely insert large segments of DNA in plants.
Collapse
Affiliation(s)
- Chao Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Lei
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Boshu Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Gao
- Qi Biodesign, Life Science Park, Beijing, China
| | - Yunjia Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Cao
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing, China
| | - Chao Yang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing, China
| | - Hongchao Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zhiwei Wang
- Qi Biodesign, Life Science Park, Beijing, China
| | - Yan Li
- Qi Biodesign, Life Science Park, Beijing, China
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing, China
| | | | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Nishizawa-Yokoi A, Toki S. Precise genetic engineering with piggyBac transposon in plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:255-262. [PMID: 38434112 PMCID: PMC10905368 DOI: 10.5511/plantbiotechnology.23.0525a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/25/2023] [Indexed: 03/05/2024]
Abstract
Transposons are mobile genetic elements that can move to a different position within a genome or between genomes. They have long been used as a tool for genetic engineering, including transgenesis, insertional mutagenesis, and marker excision, in a variety of organisms. The piggyBac transposon derived from the cabbage looper moth is one of the most promising transposon tools ever identified because piggyBac has the advantage that it can transpose without leaving a footprint at the excised site. Applying the piggyBac transposon to precise genome editing in plants, we have demonstrated efficient and precise piggyBac transposon excision from a transgene locus integrated into the rice genome. Furthermore, introduction of only desired point mutations into the target gene can be achieved by a combination of precise gene modification via homologous recombination-mediated gene targeting with subsequent marker excision from target loci using piggyBac transposition in rice. In addition, we have designed a piggyBac-mediated transgenesis system for the temporary expression of sequence-specific nucleases to eliminate the transgene from the host genome without leaving unnecessary sequences after the successful induction of targeted mutagenesis via sequence-specific nucleases for use in vegetatively propagated plants. In this review, we summarize our previous works and the future prospects of genetic engineering with piggyBac transposon.
Collapse
Affiliation(s)
- Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Yokohama
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| |
Collapse
|
6
|
Jin SK, Xu LN, Leng YJ, Zhang MQ, Yang QQ, Wang SL, Jia SW, Song T, Wang RA, Tao T, Liu QQ, Cai XL, Gao JP. The OsNAC24-OsNAP protein complex activates OsGBSSI and OsSBEI expression to fine-tune starch biosynthesis in rice endosperm. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2224-2240. [PMID: 37432878 PMCID: PMC10579716 DOI: 10.1111/pbi.14124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023]
Abstract
Starch accounts for up to 90% of the dry weight of rice endosperm and is a key determinant of grain quality. Although starch biosynthesis enzymes have been comprehensively studied, transcriptional regulation of starch-synthesis enzyme-coding genes (SECGs) is largely unknown. In this study, we explored the role of a NAC transcription factor, OsNAC24, in regulating starch biosynthesis in rice. OsNAC24 is highly expressed in developing endosperm. The endosperm of osnac24 mutants is normal in appearance as is starch granule morphology, while total starch content, amylose content, chain length distribution of amylopectin and the physicochemical properties of the starch are changed. In addition, the expression of several SECGs was altered in osnac24 mutant plants. OsNAC24 is a transcriptional activator that targets the promoters of six SECGs; OsGBSSI, OsSBEI, OsAGPS2, OsSSI, OsSSIIIa and OsSSIVb. Since both the mRNA and protein abundances of OsGBSSI and OsSBEI were decreased in the mutants, OsNAC24 functions to regulate starch synthesis mainly through OsGBSSI and OsSBEI. Furthermore, OsNAC24 binds to the newly identified motifs TTGACAA, AGAAGA and ACAAGA as well as the core NAC-binding motif CACG. Another NAC family member, OsNAP, interacts with OsNAC24 and coactivates target gene expression. Loss-of-function of OsNAP led to altered expression in all tested SECGs and reduced the starch content. These results demonstrate that the OsNAC24-OsNAP complex plays key roles in fine-tuning starch synthesis in rice endosperm and further suggest that manipulating the OsNAC24-OsNAP complex regulatory network could be a potential strategy for breeding rice cultivars with improved cooking and eating quality.
Collapse
Affiliation(s)
- Su-Kui Jin
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Na Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Jia Leng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Ming-Qiu Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qing-Qing Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Shui-Lian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shu-Wen Jia
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruo-An Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Tao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Xiu-Ling Cai
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ji-Ping Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory /Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Nishizawa‐Yokoi A, Gelvin SB. Transformation and regeneration of DNA polymerase Θ mutant rice plants. PLANT DIRECT 2023; 7:e526. [PMID: 37681196 PMCID: PMC10480422 DOI: 10.1002/pld3.526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
Agrobacterium T-DNA integration into the plant genome is essential for the process of transgenesis and is widely used for genome engineering. The importance of the non-homologous end-joining (NHEJ) protein DNA polymerase Θ, encoded by the PolQ gene, for T-DNA integration is controversial, with some groups claiming it is essential whereas others claim T-DNA integration in Arabidopsis and rice polQ mutant plant tissue. Because of pleiotropic effects of PolQ loss on plant development, scientists have previously had difficulty regenerating transgenic polQ mutant plants. We describe a protocol for regenerating transgenic polQ mutant rice plants using a sequential transformation method. This protocol may be applicable to other plant species.
Collapse
Affiliation(s)
- Ayako Nishizawa‐Yokoi
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Stanton B. Gelvin
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
8
|
Zhang W, Wang R, Kong D, Peng F, Chen M, Zeng W, Giaume F, He S, Zhang H, Wang Z, Kyozuka J, Zhu JK, Fornara F, Miki D. Precise and heritable gene targeting in rice using a sequential transformation strategy. CELL REPORTS METHODS 2023; 3:100389. [PMID: 36814841 PMCID: PMC9939429 DOI: 10.1016/j.crmeth.2022.100389] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/18/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Gene targeting (GT) is a powerful tool for modifying endogenous genomic sequences of interest, such as sequence replacement and gene knockin. Although the efficiency of GT is extremely low in higher plants, engineered sequence-specific nucleases (SSNs)-mediated double-strand breaks (DSBs) can improve GT frequency. We recently reported a CRISPR-Cas9-mediated approach for heritable GT in Arabidopsis, called the "sequential transformation" strategy. For efficient establishment of GT via the sequential transformation method, strong Cas9 activity and robust DSBs are required in the plant cells being infected with Agrobacterium carrying sgRNA and donor DNA. Accordingly, we generated two independent parental lines with maize Ubiquitin 1 promoter-driven Cas9 and established sequential transformation-mediated GT in the Japonica rice cultivar Oryza sativa Nipponbare. We achieved precise GFP knockin into the endogenous OsFTL1 and OsROS1a loci. We believe that our GT technology could be widely utilized in rice research and breeding applications.
Collapse
Affiliation(s)
- Wenxin Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dali Kong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fangnan Peng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Chen
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjie Zeng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Francesca Giaume
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Sheng He
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hui Zhang
- College of Life Science, Shanghai Normal University, Shanghai 200234, China
| | - Zhen Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fabio Fornara
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
9
|
Jin SK, Xu LN, Yang QQ, Zhang MQ, Wang SL, Wang RA, Tao T, Hong LM, Guo QQ, Jia SW, Song T, Leng YJ, Cai XL, Gao JP. High-resolution quantitative trait locus mapping for rice grain quality traits using genotyping by sequencing. FRONTIERS IN PLANT SCIENCE 2023; 13:1050882. [PMID: 36714703 PMCID: PMC9878556 DOI: 10.3389/fpls.2022.1050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Rice is a major food crop that sustains approximately half of the world population. Recent worldwide improvements in the standard of living have increased the demand for high-quality rice. Accurate identification of quantitative trait loci (QTLs) for rice grain quality traits will facilitate rice quality breeding and improvement. In the present study, we performed high-resolution QTL mapping for rice grain quality traits using a genotyping-by-sequencing approach. An F2 population derived from a cross between an elite japonica variety, Koshihikari, and an indica variety, Nona Bokra, was used to construct a high-density genetic map. A total of 3,830 single nucleotide polymorphism markers were mapped to 12 linkage groups spanning a total length of 2,456.4 cM, with an average genetic distance of 0.82 cM. Seven grain quality traits-the percentage of whole grain, percentage of head rice, percentage of area of head rice, transparency, percentage of chalky rice, percentage of chalkiness area, and degree of chalkiness-of the F2 population were investigated. In total, 15 QTLs with logarithm of the odds (LOD) scores >4 were identified, which mapped to chromosomes 6, 7, and 9. These loci include four QTLs for transparency, four for percentage of chalky rice, four for percentage of chalkiness area, and three for degree of chalkiness, accounting for 0.01%-61.64% of the total phenotypic variation. Of these QTLs, only one overlapped with previously reported QTLs, and the others were novel. By comparing the major QTL regions in the rice genome, several key candidate genes reported to play crucial roles in grain quality traits were identified. These findings will expedite the fine mapping of these QTLs and QTL pyramiding, which will facilitate the genetic improvement of rice grain quality.
Collapse
Affiliation(s)
- Su-Kui Jin
- JiangsuKey Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Na Xu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Qing Yang
- JiangsuKey Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Ming-Qiu Zhang
- JiangsuKey Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Shui-Lian Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ruo-An Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Tao
- JiangsuKey Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Lian-Min Hong
- JiangsuKey Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Qian-Qian Guo
- JiangsuKey Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Shu-Wen Jia
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Jia Leng
- JiangsuKey Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Xiu-Ling Cai
- JiangsuKey Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ji-Ping Gao
- JiangsuKey Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Hassan MM, Yuan G, Liu Y, Alam M, Eckert CA, Tuskan GA, Golz JF, Yang X. Precision genome editing in plants using gene targeting and prime editing: existing and emerging strategies. Biotechnol J 2022; 17:e2100673. [PMID: 35766313 DOI: 10.1002/biot.202100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022]
Abstract
Precise modification of plant genomes, such as seamless insertion, deletion, or replacement of DNA sequences at a predefined site, is a challenging task. Gene targeting (GT) and prime editing are currently the best approaches for this purpose. However, these techniques are inefficient in plants, which limits their applications for crop breeding programs. Recently, substantial developments have been made to improve the efficiency of these techniques in plants. Several strategies, such as RNA donor templating, chemically modified donor DNA template, and tandem-repeat homology-directed repair, are aimed at improving GT. Additionally, improved prime editing gRNA design, use of engineered reverse transcriptase enzymes, and splitting prime editing components have improved the efficacy of prime editing in plants. These emerging strategies and existing technologies are reviewed along with various perspectives on their future improvement and the development of robust precision genome editing technologies for plants.
Collapse
Affiliation(s)
- Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Mobashwer Alam
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Nambour, Queensland, Australia
| | - Carrie A Eckert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| | - John F Golz
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, Victoria, 3010, Australia
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| |
Collapse
|
11
|
Kan M, Huang T, Zhao P. Artificial chromosome technology and its potential application in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:970943. [PMID: 36186059 PMCID: PMC9519882 DOI: 10.3389/fpls.2022.970943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Plant genetic engineering and transgenic technology are powerful ways to study the function of genes and improve crop yield and quality in the past few years. However, only a few genes could be transformed by most available genetic engineering and transgenic technologies, so changes still need to be made to meet the demands for high throughput studies, such as investigating the whole genetic pathway of crop traits and avoiding undesirable genes simultaneously in the next generation. Plant artificial chromosome (PAC) technology provides a carrier which allows us to assemble multiple and specific genes to produce a variety of products by minichromosome. However, PAC technology also have limitations that may hinder its further development and application. In this review, we will introduce the current state of PACs technology from PACs formation, factors on PACs formation, problems and potential solutions of PACs and exogenous gene(s) integration.
Collapse
Affiliation(s)
- Manman Kan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Panpan Zhao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Evaluation of protein production in rice seedlings under dark conditions. Sci Rep 2022; 12:7759. [PMID: 35545638 PMCID: PMC9095683 DOI: 10.1038/s41598-022-11672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/27/2022] [Indexed: 11/08/2022] Open
Abstract
Although plants have several advantages for foreign protein production, cultivation of transgenic plants in artificial plant growth facilities involves the use of a great amount of electricity for lightning and air conditioning, reducing cost-effectiveness. Protein production in plants grown in darkness can overcome this problem, but the amount of protein produced in the dark is unknown. In this study, the total amount of soluble protein produced in rice seedlings germinated and grown in light or darkness were examined at several time points after germination and under different temperature, nutritional, and seedling density conditions. Our results indicate that rice seedlings grown in darkness produce a comparable amount of total soluble protein to those grown in light. Furthermore, we found that the best conditions for protein production in dark-grown rice seedlings are large seeds germinated and grown for 10-12 days at 28 °C supplemented with Murashige and Skoog medium and 30 g/l sucrose in dense planting. Therefore, our results suggest that foreign proteins can be produced in rice seedlings in the dark, with a reduced electricity use and an increase in cost-effectiveness.
Collapse
|
13
|
Chen H, Neubauer M, Wang JP. Enhancing HR Frequency for Precise Genome Editing in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:883421. [PMID: 35592579 PMCID: PMC9113527 DOI: 10.3389/fpls.2022.883421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Gene-editing tools, such as Zinc-fingers, TALENs, and CRISPR-Cas, have fostered a new frontier in the genetic improvement of plants across the tree of life. In eukaryotes, genome editing occurs primarily through two DNA repair pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). NHEJ is the primary mechanism in higher plants, but it is unpredictable and often results in undesired mutations, frameshift insertions, and deletions. Homology-directed repair (HDR), which proceeds through HR, is typically the preferred editing method by genetic engineers. HR-mediated gene editing can enable error-free editing by incorporating a sequence provided by a donor template. However, the low frequency of native HR in plants is a barrier to attaining efficient plant genome engineering. This review summarizes various strategies implemented to increase the frequency of HDR in plant cells. Such strategies include methods for targeting double-strand DNA breaks, optimizing donor sequences, altering plant DNA repair machinery, and environmental factors shown to influence HR frequency in plants. Through the use and further refinement of these methods, HR-based gene editing may one day be commonplace in plants, as it is in other systems.
Collapse
Affiliation(s)
- Hao Chen
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, NC, United States
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Matthew Neubauer
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, NC, United States
| | - Jack P. Wang
- Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, NC, United States
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
14
|
Sukegawa S, Toki S, Saika H. Genome Editing Technology and Its Application to Metabolic Engineering in Rice. RICE (NEW YORK, N.Y.) 2022; 15:21. [PMID: 35366102 PMCID: PMC8976860 DOI: 10.1186/s12284-022-00566-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/18/2022] [Indexed: 05/18/2023]
Abstract
Genome editing technology can be used for gene engineering in many organisms. A target metabolite can be fortified by the knockout and modification of target genes encoding enzymes involved in catabolic and biosynthesis pathways, respectively, via genome editing technology. Genome editing is also applied to genes encoding proteins other than enzymes, such as chaperones and transporters. There are many reports of such metabolic engineering using genome editing technology in rice. Genome editing is used not only for site-directed mutagenesis such as the substitution of a single base in a target gene but also for random mutagenesis at a targeted region. The latter enables the creation of novel genetic alleles in a target gene. Recently, genome editing technology has been applied to random mutagenesis in a targeted gene and its promoter region in rice, enabling the screening of plants with a desirable trait from these mutants. Moreover, the expression level of a target gene can be artificially regulated by a combination of genome editing tools such as catalytically inactivated Cas protein with transcription activator or repressor. This approach could be useful for metabolic engineering, although expression cassettes for inactivated Cas fused to a transcriptional activator or repressor should be stably transformed into the rice genome. Thus, the rapid development of genome editing technology has been expanding the scope of molecular breeding including metabolic engineering. In this paper, we review the current status of genome editing technology and its application to metabolic engineering in rice.
Collapse
Affiliation(s)
- Satoru Sukegawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa Japan
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga Japan
| | - Hiroaki Saika
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 Japan
| |
Collapse
|
15
|
Yoshioka H, Kimura K, Ogo Y, Ohtsuki N, Nishizawa-Yokoi A, Itoh H, Toki S, Izawa T. Real-Time Monitoring of Key Gene Products Involved in Rice Photoperiodic Flowering. FRONTIERS IN PLANT SCIENCE 2021; 12:766450. [PMID: 34975949 PMCID: PMC8715009 DOI: 10.3389/fpls.2021.766450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Flowering is an important biological process through which plants determine the timing of reproduction. In rice, florigen mRNA is induced more strongly when the day length is shorter than the critical day length through recognition of 30-min differences in the photoperiod. Grain number, plant height, and heading date 7 (Ghd7), which encodes a CCT-domain protein unique to monocots, has been identified as a key floral repressor in rice, and Heading date 1 (Hd1), a rice ortholog of the Arabidopsis floral activator CONSTANS (CO), is another key floral regulator gene. The Hd1 gene product has been shown to interact with the Ghd7 gene product to form a strong floral repressor complex under long-day conditions. However, the mRNA dynamics of these genes cannot explain the day-length responses of their downstream genes. Thus, a real-time monitoring system of these key gene products is needed to elucidate the molecular mechanisms underlying accurate photoperiod recognition in rice. Here, we developed a monitoring system using luciferase (LUC) fusion protein lines derived from the Ghd7-LUC and Hd1-LUC genes. We successfully obtained a functionally complemented gene-targeted line for Ghd7-LUC. Using this system, we found that the Ghd7-LUC protein begins to accumulate rapidly after dawn and reaches its peak more rapidly under a short-day condition than under a long-day condition. Our system provides a powerful tool for revealing the accurate time-keeping regulation system incorporating these key gene products involved in rice photoperiodic flowering.
Collapse
Affiliation(s)
- Hayato Yoshioka
- Laboratory of Plant Breeding and Genetics, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keiko Kimura
- Laboratory of Plant Breeding and Genetics, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuko Ogo
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Namie Ohtsuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Hironori Itoh
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Takeshi Izawa
- Laboratory of Plant Breeding and Genetics, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Lawrenson T, Hinchliffe A, Clarke M, Morgan Y, Harwood W. In-planta Gene Targeting in Barley Using Cas9 With and Without Geminiviral Replicons. Front Genome Ed 2021; 3:663380. [PMID: 34713258 PMCID: PMC8525372 DOI: 10.3389/fgeed.2021.663380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Advances in the use of RNA-guided Cas9-based genome editing in plants have been rapid over the last few years. A desirable application of genome editing is gene targeting (GT), as it allows a wide range of precise modifications; however, this remains inefficient especially in key crop species. Here, we describe successful, heritable gene targeting in barley at the target site of Cas9 using an in-planta strategy but fail to achieve the same using a wheat dwarf virus replicon to increase the copy number of the repair template. Without the replicon, we were able to delete 150 bp of the coding sequence of our target gene whilst simultaneously fusing in-frame mCherry in its place. Starting from 14 original transgenic plants, two plants appeared to have the required gene targeting event. From one of these T0 plants, three independent gene targeting events were identified, two of which were heritable. When the replicon was included, 39 T0 plants were produced and shown to have high copy numbers of the repair template. However, none of the 17 lines screened in T1 gave rise to significant or heritable gene targeting events despite screening twice the number of plants in T1 compared with the non-replicon strategy. Investigation indicated that high copy numbers of repair template created by the replicon approach cause false-positive PCR results which are indistinguishable at the sequence level to true GT events in junction PCR screens widely used in GT studies. In the successful non-replicon approach, heritable gene targeting events were obtained in T1, and subsequently, the T-DNA was found to be linked to the targeted locus. Thus, physical proximity of target and donor sites may be a factor in successful gene targeting.
Collapse
Affiliation(s)
- Tom Lawrenson
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Martha Clarke
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Yvie Morgan
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Wendy Harwood
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
17
|
Miki D, Wang R, Li J, Kong D, Zhang L, Zhu JK. Gene Targeting Facilitated by Engineered Sequence-Specific Nucleases: Potential Applications for Crop Improvement. PLANT & CELL PHYSIOLOGY 2021; 62:752-765. [PMID: 33638992 PMCID: PMC8484935 DOI: 10.1093/pcp/pcab034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 05/04/2023]
Abstract
Humans are currently facing the problem of how to ensure that there is enough food to feed all of the world's population. Ensuring that the food supply is sufficient will likely require the modification of crop genomes to improve their agronomic traits. The development of engineered sequence-specific nucleases (SSNs) paved the way for targeted gene editing in organisms, including plants. SSNs generate a double-strand break (DSB) at the target DNA site in a sequence-specific manner. These DSBs are predominantly repaired via error-prone non-homologous end joining and are only rarely repaired via error-free homology-directed repair if an appropriate donor template is provided. Gene targeting (GT), i.e. the integration or replacement of a particular sequence, can be achieved with combinations of SSNs and repair donor templates. Although its efficiency is extremely low, GT has been achieved in some higher plants. Here, we provide an overview of SSN-facilitated GT in higher plants and discuss the potential of GT as a powerful tool for generating crop plants with desirable features.
Collapse
Affiliation(s)
- Daisuke Miki
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Rui Wang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dali Kong
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
18
|
Huang L, Tan H, Zhang C, Li Q, Liu Q. Starch biosynthesis in cereal endosperms: An updated review over the last decade. PLANT COMMUNICATIONS 2021; 2:100237. [PMID: 34746765 PMCID: PMC8554040 DOI: 10.1016/j.xplc.2021.100237] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/08/2021] [Accepted: 08/27/2021] [Indexed: 05/13/2023]
Abstract
Starch is a vital energy source for living organisms and is a key raw material and additive in the food and non-food industries. Starch has received continuous attention in multiple research fields. The endosperm of cereals (e.g., rice, corn, wheat, and barley) is the most important site for the synthesis of storage starch. Around 2010, several excellent reviews summarized key progress in various fields of starch research, serving as important references for subsequent research. In the past 10 years, many achievements have been made in the study of starch synthesis and regulation in cereals. The present review provides an update on research progress in starch synthesis of cereal endosperms over the past decade, focusing on new enzymes and non-enzymatic proteins involved in starch synthesis, regulatory networks of starch synthesis, and the use of elite alleles of starch synthesis-related genes in cereal breeding programs. We also provide perspectives on future research directions that will further our understanding of cereal starch biosynthesis and regulation to support the rational design of ideal quality grain.
Collapse
Affiliation(s)
- Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Tan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
19
|
Vu TV, Doan DTH, Tran MT, Sung YW, Song YJ, Kim JY. Improvement of the LbCas12a-crRNA System for Efficient Gene Targeting in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:722552. [PMID: 34447405 PMCID: PMC8383147 DOI: 10.3389/fpls.2021.722552] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/16/2021] [Indexed: 05/03/2023]
Abstract
Plant gene targeting (GT) can be utilized to precisely replace up to several kilobases of a plant genome. Recent studies using the powerful clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) nucleases significantly improved plant GT efficiency. However, GT for loci without associated selection markers is still inefficient. We previously utilized Lachnospiraceae bacterium Cas12a (LbCas12a) in combination with a replicon for tomato GT and obtained high GT efficiency with some selection markers. In this study, we advance our GT system by inhibiting the cNHEJ pathway with small chemical molecules such as NU7441. Further optimization of the GT is also possible with the treatment of silver nitrate possibly via its pronounced actions in ethylene inhibition and polyamine production. Importantly, the GT efficiency is significantly enhanced with the use of a temperature-tolerant LbCas12a (ttLbCas12a) that is capable of performing target cleavage even at low temperatures. Targeted deep sequencing, as well as conventional methods, are used for the assessment of the editing efficiency at both cell and plant levels. Our work demonstrates the significance of the selection of gene scissors, the appropriate design and number of LbCas12a crRNAs, the use of chemical treatments, and the establishment of favorable experimental conditions for further enhancement of plant HDR to enable efficient GT in tomato.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Hanoi, Vietnam
| | - Duong Thi Hai Doan
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Mil Thi Tran
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Crop Science and Rural Development Division, College of Agriculture, Bac Lieu University, Bạc Liêu, Vietnam
| | - Yeon Woo Sung
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Young Jong Song
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Division of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
20
|
Matres JM, Hilscher J, Datta A, Armario-Nájera V, Baysal C, He W, Huang X, Zhu C, Valizadeh-Kamran R, Trijatmiko KR, Capell T, Christou P, Stoger E, Slamet-Loedin IH. Genome editing in cereal crops: an overview. Transgenic Res 2021; 30:461-498. [PMID: 34263445 PMCID: PMC8316241 DOI: 10.1007/s11248-021-00259-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/15/2021] [Indexed: 02/06/2023]
Abstract
Genome-editing technologies offer unprecedented opportunities for crop improvement with superior precision and speed. This review presents an analysis of the current state of genome editing in the major cereal crops- rice, maize, wheat and barley. Genome editing has been used to achieve important agronomic and quality traits in cereals. These include adaptive traits to mitigate the effects of climate change, tolerance to biotic stresses, higher yields, more optimal plant architecture, improved grain quality and nutritional content, and safer products. Not all traits can be achieved through genome editing, and several technical and regulatory challenges need to be overcome for the technology to realize its full potential. Genome editing, however, has already revolutionized cereal crop improvement and is poised to shape future agricultural practices in conjunction with other breeding innovations.
Collapse
Affiliation(s)
- Jerlie Mhay Matres
- Genetic Design and Validation Unit, International Rice Research Institute, Los Banos, Philippines
| | - Julia Hilscher
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Akash Datta
- Genetic Design and Validation Unit, International Rice Research Institute, Los Banos, Philippines
| | - Victoria Armario-Nájera
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Can Baysal
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Wenshu He
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Xin Huang
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Rana Valizadeh-Kamran
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Kurniawan R Trijatmiko
- Genetic Design and Validation Unit, International Rice Research Institute, Los Banos, Philippines
| | - Teresa Capell
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Inez H Slamet-Loedin
- Genetic Design and Validation Unit, International Rice Research Institute, Los Banos, Philippines.
| |
Collapse
|
21
|
Zhou X, Shafique K, Sajid M, Ali Q, Khalili E, Javed MA, Haider MS, Zhou G, Zhu G. Era-like GTP protein gene expression in rice. BRAZ J BIOL 2021; 82:e250700. [PMID: 34259718 DOI: 10.1590/1519-6984.250700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/19/2021] [Indexed: 11/22/2022] Open
Abstract
The mutations are genetic changes in the genome sequences and have a significant role in biotechnology, genetics, and molecular biology even to find out the genome sequences of a cell DNA along with the viral RNA sequencing. The mutations are the alterations in DNA that may be natural or spontaneous and induced due to biochemical reactions or radiations which damage cell DNA. There is another cause of mutations which is known as transposons or jumping genes which can change their position in the genome during meiosis or DNA replication. The transposable elements can induce by self in the genome due to cellular and molecular mechanisms including hypermutation which caused the localization of transposable elements to move within the genome. The use of induced mutations for studying the mutagenesis in crop plants is very common as well as a promising method for screening crop plants with new and enhanced traits for the improvement of yield and production. The utilization of insertional mutations through transposons or jumping genes usually generates stable mutant alleles which are mostly tagged for the presence or absence of jumping genes or transposable elements. The transposable elements may be used for the identification of mutated genes in crop plants and even for the stable insertion of transposable elements in mutated crop plants. The guanine nucleotide-binding (GTP) proteins have an important role in inducing tolerance in rice plants to combat abiotic stress conditions.
Collapse
Affiliation(s)
- X Zhou
- Linyi University, College of Life Science, Linyi, Shandong, China
| | - K Shafique
- Government Sadiq College Women University, Department of Botany, Bahawalpur, Pakistan
| | - M Sajid
- University of Okara, Faculty of Life Sciences, Department of Biotechnology, Okara, Pakistan
| | - Q Ali
- University of Lahore, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
| | - E Khalili
- Tarbiat Modarres University, Faculty of Science, Department of Plant Science, Tehran, Iran
| | - M A Javed
- University of the Punjab Lahore, Department of Plant Breeding and Genetics, Lahore, Pakistan
| | - M S Haider
- University of the Punjab Lahore, Department of Plant Pathology, Lahore, Pakistan
| | - G Zhou
- Yangzhou University, The Ministry of Education of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
| | - G Zhu
- Yangzhou University, The Ministry of Education of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
| |
Collapse
|
22
|
Čermák T. Sequence modification on demand: search and replace tools for precise gene editing in plants. Transgenic Res 2021; 30:353-379. [PMID: 34086167 DOI: 10.1007/s11248-021-00253-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/05/2021] [Indexed: 12/26/2022]
Abstract
Until recently, our ability to generate allelic diversity in plants was limited to introduction of variants from domesticated and wild species by breeding via uncontrolled recombination or the use of chemical and physical mutagens-processes that are lengthy and costly or lack specificity, respectively. Gene editing provides a faster and more precise way to create new variation, although its application in plants has been dominated by the creation of short insertion and deletion mutations leading to loss of gene function, mostly due to the dependence of editing outcomes on DNA repair pathway choices intrinsic to higher eukaryotes. Other types of edits such as point mutations and precise and pre-designed targeted sequence insertions have rarely been implemented, despite providing means to modulate the expression of target genes or to engineer the function and stability of their protein products. Several advancements have been developed in recent years to facilitate custom editing by regulation of repair pathway choices or by taking advantage of alternative types of DNA repair. We have seen the advent of novel gene editing tools that are independent of DNA double-strand break repair, and methods completely independent of host DNA repair processes are being increasingly explored. With the aim to provide a comprehensive review of the state-of-the-art methodology for allele replacement in plants, I discuss the adoption of these improvements for plant genome engineering.
Collapse
|
23
|
Sukegawa S, Saika H, Toki S. Plant genome editing: ever more precise and wide reaching. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1208-1218. [PMID: 33730414 DOI: 10.1111/tpj.15233] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Genome-editing technologies consisting of targeted mutagenesis and gene targeting enable us to modify genes of interest rapidly and precisely. The discovery in 2012 of CRISPR/Cas9 systems and their development as sequence-specific nucleases has brought about a paradigm shift in biology. Initially, CRISPR/Cas9 was applied in targeted mutagenesis to knock out a target gene. Thereafter, advances in genome-editing technologies using CRISPR/Cas9 developed rapidly, with base editing systems for transition substitution using a combination of Cas9 nickase and either cytidine or adenosine deaminase being reported in 2016 and 2017, respectively, and later in 2021 bringing reports of transversion substitution using Cas9 nickase, cytidine deaminase and uracil DNA glycosylase. Moreover, technologies for gene targeting and prime editing systems using DNA or RNA as donors have also been developed in recent years. Besides these precise genome-editing strategies, reports of successful chromosome engineering using CRISPR/Cas9 have been published recently. The application of genome editing to crop breeding has advanced in parallel with the development of these technologies. Genome-editing enzymes can be introduced into plant cells, and there are now many examples of crop breeding using genome-editing technologies. At present, it is no exaggeration to say that we are now in a position to be able to modify a gene precisely and rearrange genomes and chromosomes in a predicted way. In this review, we introduce and discuss recent highlights in the field of precise gene editing, chromosome engineering and genome engineering technology in plants.
Collapse
Affiliation(s)
- Satoru Sukegawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hiroaki Saika
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
| |
Collapse
|
24
|
Abstract
Conventional methods of DNA sequence insertion into plants, using Agrobacterium-mediated transformation or microprojectile bombardment, result in the integration of the DNA at random sites in the genome. These plants may exhibit altered agronomic traits as a consequence of disruption or silencing of genes that serve a critical function. Also, genes of interest inserted at random sites are often not expressed at the desired level. For these reasons, targeted DNA insertion at suitable genomic sites in plants is a desirable alternative. In this paper we review approaches of targeted DNA insertion in plant genomes, discuss current technical challenges, and describe promising applications of targeted DNA insertion for crop genetic improvement.
Collapse
|
25
|
Taoka KI, Shimatani Z, Yamaguchi K, Ogawa M, Saitoh H, Ikeda Y, Akashi H, Terada R, Kawasaki T, Tsuji H. Novel assays to monitor gene expression and protein-protein interactions in rice using the bioluminescent protein, NanoLuc. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:89-99. [PMID: 34177328 PMCID: PMC8215459 DOI: 10.5511/plantbiotechnology.20.1209a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/09/2020] [Indexed: 05/21/2023]
Abstract
Luciferases have been widely utilized as sensitive reporters to monitor gene expression and protein-protein interactions. Compared to firefly luciferase (Fluc), a recently developed luciferase, Nanoluciferase (NanoLuc or Nluc), has several superior properties such as a smaller size and stronger luminescence activity. We compared the reporter properties of Nluc and Fluc in rice (Oryza sativa). In both plant-based two-hybrid and split luc complementation (SLC) assays, Nluc activity was detected with higher sensitivity and specificity than that with Fluc. To apply Nluc to research involving the photoperiodic regulation of flowering, we made a knock-in rice plant in which the Nluc coding region was inserted in-frame with the OsMADS15 gene, a target of the rice florigen Hd3a. Strong Nluc activity in response to Hd3a, and in response to change in day length, was detected in rice protoplasts and in a single shoot apical meristem, respectively. Our results indicate that Nluc assay systems will be powerful tools to monitor gene expression and protein-protein interaction in plant research.
Collapse
Affiliation(s)
- Ken-ichiro Taoka
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa 244-0813, Japan
- E-mail: Tel & Fax: +81-45-275-2475
| | - Zenpei Shimatani
- Graduate School of Science, Technology and Innovation, Kobe University, Hyogo 657-8501, Japan
| | - Koji Yamaguchi
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Mana Ogawa
- Graduate School of Agriculture, Meijo University, Aichi 468-8502, Japan
| | - Hiromi Saitoh
- Graduate School of Agriculture, Meijo University, Aichi 468-8502, Japan
| | - Yoichi Ikeda
- Graduate School of Agriculture, Meijo University, Aichi 468-8502, Japan
| | - Hiroko Akashi
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa 244-0813, Japan
| | - Rie Terada
- Graduate School of Agriculture, Meijo University, Aichi 468-8502, Japan
| | - Tsutomu Kawasaki
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa 244-0813, Japan
| |
Collapse
|
26
|
Amritha PP, Shah JM. Can genetic engineering-based methods for gene function identification be eclipsed by genome editing in plants? A comparison of methodologies. Mol Genet Genomics 2021; 296:485-500. [PMID: 33751237 DOI: 10.1007/s00438-021-01769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Finding and explaining the functions of genes in plants have promising applications in crop improvement and bioprospecting and hence, it is important to compare various techniques available for gene function identification in plants. Today, the most popular technology among researchers to identify the functions of genes is the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9)-based genome editing method. But by no means can we say that CRISPR/Cas9 is the go-to method for all purposes. It comes with its own baggage. Researchers will agree and have lived through at least seven more technologies deployed to find the functions of genes, which come under three umbrellas: 1. genetic engineering, 2. transient expression, and 3. chemical/physical mutagenesis. Each of the methods evolved when the previous one ran into an insurmountable problem. In this review, we compare the eight technologies against one another on 14 parameters. This review lays bare the pros and cons, and similarities and dissimilarities of various methods. Every method comes with its advantages and disadvantages. For example, the CRISPR/Cas9-based genome editing is an excellent method for modifying gene sequences, creating allelic versions of genes, thereby aiding the understanding of gene function. But it comes with the baggage of unwanted or off-target mutations. Then, we have methods based on random or targeted knockout of the gene, knockdown, and overexpression of the gene. Targeted disruption of genes is required for complete knockout of gene function, which may not be accomplished by editing. We have also discussed the strategies to overcome the shortcomings of the targeted gene-knockout and the CRISPR/Cas9-based methods. This review serves as a comprehensive guide towards the understanding and comparison of various technologies available for gene function identification in plants and hence, it will find application for crop improvement and bioprospecting related research.
Collapse
Affiliation(s)
- P P Amritha
- Department of Plant Science, Central University of Kerala, Periya, Kasaragod, Kerala, 671320, India
| | - Jasmine M Shah
- Department of Plant Science, Central University of Kerala, Periya, Kasaragod, Kerala, 671320, India.
| |
Collapse
|
27
|
Endo M, Iwakami S, Toki S. Precision genome editing in plants via gene targeting and subsequent break-induced single-strand annealing. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:563-574. [PMID: 33001567 PMCID: PMC7955887 DOI: 10.1111/pbi.13485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 05/29/2023]
Abstract
Genome editing via artificial nucleases such as CRISPR/Cas9 has become popular in plants now. However, small insertions or deletions are major mutations and nucleotide substitutions rarely occur when DNA cleavage is induced. To induce nucleotide substitutions, a base editor utilizing dead or nickase-type Cas9 fused with deaminase have been developed. However, the direction and position of practical substitution are still limited. In this context, homologous recombination (HR)-mediated gene targeting (GT) has advantages because any mutations existing on the donor DNA are copied and passed onto the endogenous DNA. As HR-mediated GT is extremely rare in higher plants, positive-negative selection has been used to isolate cells in which GT has occurred. After successful selection, positive selection marker is no longer needed and should ideally be eliminated. In a previous study, we reported a seamless piggyBac-transposon-mediated marker elimination system. Precision marker elimination efficiency in this system is very high. The piggyBac transposon integrates into the host genome at TTAA elements and excises without leaving a footprint at the excised site, so a TTAA sequence is necessary at the location of a positive selection marker. To compensate for this limitation, we have developed a novel marker elimination system using an I-SceI break and subsequent single-strand annealing (SSA)-mediated DNA repair system.
Collapse
Affiliation(s)
- Masaki Endo
- Plant Genome Engineering Research UnitInstitute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaJapan
| | | | - Seiichi Toki
- Plant Genome Engineering Research UnitInstitute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaJapan
- Graduate School of NanobioscienceYokohama City UniversityYokohamaJapan
- Kihara Institute for Biological ResearchYokohama City UniversityYokohamaJapan
| |
Collapse
|
28
|
Van Vu T, Thi Hai Doan D, Kim J, Sung YW, Thi Tran M, Song YJ, Das S, Kim J. CRISPR/Cas-based precision genome editing via microhomology-mediated end joining. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:230-239. [PMID: 33047464 PMCID: PMC7868975 DOI: 10.1111/pbi.13490] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/11/2020] [Accepted: 10/03/2020] [Indexed: 05/05/2023]
Abstract
Gene editing and/or allele introgression with absolute precision and control appear to be the ultimate goals of genetic engineering. Precision genome editing in plants has been developed through various approaches, including oligonucleotide-directed mutagenesis (ODM), base editing, prime editing and especially homologous recombination (HR)-based gene targeting. With the advent of CRISPR/Cas for the targeted generation of DNA breaks (single-stranded breaks (SSBs) or double-stranded breaks (DSBs)), a substantial advancement in HR-mediated precise editing frequencies has been achieved. Nonetheless, further research needs to be performed for commercially viable applications of precise genome editing; hence, an alternative innovative method for genome editing may be required. Within this scope, we summarize recent progress regarding precision genome editing mediated by microhomology-mediated end joining (MMEJ) and discuss their potential applications in crop improvement.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
- National Key Laboratory for Plant Cell BiotechnologyAgricultural Genetics InstituteKm 02, Pham Van Dong RoadCo Nhue 1, Bac Tu Liem, Hanoi11917Vietnam
| | - Duong Thi Hai Doan
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Yeon Woo Sung
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Mil Thi Tran
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Young Jong Song
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Swati Das
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
| | - Jae‐Yean Kim
- Division of Applied Life Science (BK21 Plus Program)Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinju 660‐701Republic of Korea
- Division of Life ScienceGyeongsang National University501 Jinju‐daeroJinju52828Republic of Korea
| |
Collapse
|
29
|
Kannan P, Chongloi GL, Majhi BB, Basu D, Veluthambi K, Vijayraghavan U. Characterization of a new rice OsMADS1 null mutant generated by homologous recombination-mediated gene targeting. PLANTA 2021; 253:39. [PMID: 33474591 DOI: 10.1007/s00425-020-03547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
A new, stable, null mutant of OsMADS1 generated by homologous recombination-based gene targeting in an indica rice confirms its regulatory role for floral meristem identity, its determinate development and floral organ differentiation. OsMADS1, an E-class MADS-box gene, is an important regulator of rice flower development. Studies of several partial loss-of-function and knockdown mutants show varied floret organ defects and degrees of meristem indeterminacy. The developmental consequences of a true null mutant on floret meristem identity, its determinate development and differentiation of grass-specific organs such as the lemma and palea remain unclear. In this study, we generated an OsMADS1 null mutant by homologous recombination-mediated gene targeting by inserting a selectable marker gene (hpt) in OsMADS1 and replacing parts of its cis-regulatory and coding sequences. A binary vector was constructed with diphtheria toxin A chain gene (DT-A) as a negative marker to eliminate random integrations and the hpt marker for positive selection of homologous recombination. Precise disruption of the endogenous OsMADS1 locus in the rice genome was confirmed by Southern hybridization. The homozygous osmads1ko null mutant displayed severe defects in all floral organs including the lemma and palea. We also noticed striking instances of floral reversion to inflorescence and vegetative states which has not been reported for other mutant alleles of OsMADS1 and further reinforces the role of OsMADS1 in controlling floral meristem determinacy. Our data suggest, OsMADS1 commits and maintains determinate floret development by regulating floral meristem termination, carpel and ovule differentiation genes (OsMADS58, OsMADS13) while its modulation of genes such as OsMADS15, OsIG1 and OsMADS32 could be relevant in the differentiation and development of palea. Further, our study provides an important perspective on developmental stage-dependent modulation of some OsMADS1 target genes.
Collapse
Affiliation(s)
- Pachamuthu Kannan
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | | | - Bharat Bhusan Majhi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Debjani Basu
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Karuppannan Veluthambi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
30
|
Ohtsuki N, Kizawa K, Mori A, Nishizawa-Yokoi A, Komatsuda T, Yoshida H, Hayakawa K, Toki S, Saika H. Precise Genome Editing in miRNA Target Site via Gene Targeting and Subsequent Single-Strand-Annealing-Mediated Excision of the Marker Gene in Plants. Front Genome Ed 2021; 2:617713. [PMID: 34713238 PMCID: PMC8525353 DOI: 10.3389/fgeed.2020.617713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
Gene targeting (GT) enables precise genome modification-e.g., the introduction of base substitutions-using donor DNA as a template. Combined with clean excision of the selection marker used to select GT cells, GT is expected to become a standard, generally applicable, base editing system. Previously, we demonstrated marker excision via a piggyBac transposon from GT-modified loci in rice. However, piggyBac-mediated marker excision has the limitation that it recognizes only the sequence TTAA. Recently, we proposed a novel and universal precise genome editing system consisting of GT with subsequent single-strand annealing (SSA)-mediated marker excision, which has, in principle, no limitation of target sequences. In this study, we introduced base substitutions into the microRNA miR172 target site of the OsCly1 gene-an ortholog of the barley Cleistogamy1 gene involved in cleistogamous flowering. To ensure efficient SSA, the GT vector harbors 1.2-kb overlapped sequences at both ends of a selection marker. The frequency of positive-negative selection-mediated GT using the vector with overlapped sequences was comparable with that achieved using vectors for piggyBac-mediated marker excision without overlapped sequences, with the frequency of SSA-mediated marker excision calculated as ~40% in the T0 generation. This frequency is thought to be adequate to produce marker-free cells, although it is lower than that achieved with piggyBac-mediated marker excision, which approaches 100%. To date, introduction of precise substitutions in discontinuous multiple bases of a targeted gene using base editors and the prime editing system based on CRISPR/Cas9 has been quite difficult. Here, using GT and our SSA-mediated marker excision system, we succeeded in the precise base substitution not only of single bases but also of artificial discontinuous multiple bases in the miR172 target site of the OsCly1 gene. Precise base substitution of miRNA target sites in target genes using this precise genome editing system will be a powerful tool in the production of valuable crops with improved traits.
Collapse
Affiliation(s)
- Namie Ohtsuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | | | - Akiko Mori
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Japan
| | | | - Hitoshi Yoshida
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | | | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Hiroaki Saika
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| |
Collapse
|
31
|
Zhan X, Lu Y, Zhu JK, Botella JR. Genome editing for plant research and crop improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:3-33. [PMID: 33369120 DOI: 10.1111/jipb.13063] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 05/27/2023]
Abstract
The advent of clustered regularly interspaced short palindromic repeat (CRISPR) has had a profound impact on plant biology, and crop improvement. In this review, we summarize the state-of-the-art development of CRISPR technologies and their applications in plants, from the initial introduction of random small indel (insertion or deletion) mutations at target genomic loci to precision editing such as base editing, prime editing and gene targeting. We describe advances in the use of class 2, types II, V, and VI systems for gene disruption as well as for precise sequence alterations, gene transcription, and epigenome control.
Collapse
Affiliation(s)
- Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Xianyang, 712100, China
| | - Yuming Lu
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Jose Ramon Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
32
|
Nishizawa-Yokoi A, Mikami M, Toki S. A Universal System of CRISPR/Cas9-Mediated Gene Targeting Using All-in-One Vector in Plants. Front Genome Ed 2020; 2:604289. [PMID: 34713227 PMCID: PMC8525384 DOI: 10.3389/fgeed.2020.604289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/19/2020] [Indexed: 01/18/2023] Open
Abstract
Homologous recombination-mediated genome editing, also called gene targeting (GT), is an essential technique that allows precise modification of a target sequence, including introduction of point mutations, knock-in of a reporter gene, and/or swapping of a functional domain. However, due to its low frequency, it has been difficult to establish GT approaches that can be applied widely to a large number of plant species. We have developed a simple and universal clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated DNA double-strand break (DSB)-induced GT system using an all-in-one vector comprising a CRISPR/Cas9 expression construct, selectable marker, and GT donor template. This system enabled introduction of targeted point mutations with non-selectable traits into several target genes in both rice and tobacco. Since it was possible to evaluate the GT frequency on endogenous target genes precisely using this system, we investigated the effect of treatment with Rad51-stimulatory compound 1 (RS-1) on the frequency of DSB-induced GT. GT frequency was slightly, but consistently, improved by RS-1 treatment in both target plants.
Collapse
Affiliation(s)
- Ayako Nishizawa-Yokoi
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Masafumi Mikami
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- *Correspondence: Seiichi Toki
| |
Collapse
|
33
|
Cesarino I, Dello Ioio R, Kirschner GK, Ogden MS, Picard KL, Rast-Somssich MI, Somssich M. Plant science's next top models. ANNALS OF BOTANY 2020; 126:1-23. [PMID: 32271862 PMCID: PMC7304477 DOI: 10.1093/aob/mcaa063] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/08/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Model organisms are at the core of life science research. Notable examples include the mouse as a model for humans, baker's yeast for eukaryotic unicellular life and simple genetics, or the enterobacteria phage λ in virology. Plant research was an exception to this rule, with researchers relying on a variety of non-model plants until the eventual adoption of Arabidopsis thaliana as primary plant model in the 1980s. This proved to be an unprecedented success, and several secondary plant models have since been established. Currently, we are experiencing another wave of expansion in the set of plant models. SCOPE Since the 2000s, new model plants have been established to study numerous aspects of plant biology, such as the evolution of land plants, grasses, invasive and parasitic plant life, adaptation to environmental challenges, and the development of morphological diversity. Concurrent with the establishment of new plant models, the advent of the 'omics' era in biology has led to a resurgence of the more complex non-model plants. With this review, we introduce some of the new and fascinating plant models, outline why they are interesting subjects to study, the questions they will help to answer, and the molecular tools that have been established and are available to researchers. CONCLUSIONS Understanding the molecular mechanisms underlying all aspects of plant biology can only be achieved with the adoption of a comprehensive set of models, each of which allows the assessment of at least one aspect of plant life. The model plants described here represent a step forward towards our goal to explore and comprehend the diversity of plant form and function. Still, several questions remain unanswered, but the constant development of novel technologies in molecular biology and bioinformatics is already paving the way for the next generation of plant models.
Collapse
Affiliation(s)
- Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, Butantã, São Paulo, Brazil
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie, Università di Roma La Sapienza, Rome, Italy
| | - Gwendolyn K Kirschner
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Division of Crop Functional Genomics, Bonn, Germany
| | - Michael S Ogden
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Kelsey L Picard
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Madlen I Rast-Somssich
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, VIC, Australia
| | - Marc Somssich
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
34
|
Affiliation(s)
- Masaki Endo
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
35
|
Abstract
Recent advances in genome engineering are revolutionizing crop research and plant breeding. The ability to make specific modifications to a plant's genetic material creates opportunities for rapid development of elite cultivars with desired traits. The plant genome can be altered in several ways, including targeted introduction of nucleotide changes, deleting DNA segments, introducing exogenous DNA fragments and epigenetic modifications. Targeted changes are mediated by sequence specific nucleases (SSNs), such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR (clustered regularly interspersed short palindromic repeats)-Cas (CRISPR associated protein) systems. Recent advances in engineering chimeric Cas nucleases fused to base editing enzymes permit for even greater precision in base editing and control over gene expression. In addition to gene editing technologies, improvement in delivery systems of exogenous DNA into plant cells have increased the rate of successful gene editing events. Regeneration of fertile plants containing the desired edits remains challenging; however, manipulation of embryogenesis-related genes such as BABY BOOM (BBM) has been shown to facilitate regeneration through tissue culture, often a major hurdle in recalcitrant cultivars. Epigenome reprogramming for improved crop performance is another possibility for future breeders, with recent studies on MutS HOMOLOG 1 (MSH1) demonstrating epigenetic-dependent hybrid vigor in several crops. While these technologies offer plant breeders new tools in creating high yielding, better adapted crop varieties, constantly evolving government policy regarding the cultivation of plants containing transgenes may impede the widespread adoption of some of these techniques. This chapter summarizes advances in genome editing tools and discusses the future of these techniques for crop improvement.
Collapse
Affiliation(s)
- Andriy Bilichak
- Morden Research and Development Center, Agriculture and Agri-Food Canada, Morden, MB, Canada.
| | - Daniel Gaudet
- The University of Lethbridge, Lethbridge, AB, Canada
| | - John Laurie
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
36
|
Van Vu T, Sung YW, Kim J, Doan DTH, Tran MT, Kim JY. Challenges and Perspectives in Homology-Directed Gene Targeting in Monocot Plants. RICE (NEW YORK, N.Y.) 2019; 12:95. [PMID: 31858277 PMCID: PMC6923311 DOI: 10.1186/s12284-019-0355-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/04/2019] [Indexed: 05/18/2023]
Abstract
Continuing crop domestication/redomestication and modification is a key determinant of the adaptation and fulfillment of the food requirements of an exploding global population under increasingly challenging conditions such as climate change and the reduction in arable lands. Monocotyledonous crops are not only responsible for approximately 70% of total global crop production, indicating their important roles in human life, but also the first crops to be challenged with the abovementioned hurdles; hence, monocot crops should be the first to be engineered and/or de novo domesticated/redomesticated. A long time has passed since the first green revolution; the world is again facing the challenge of feeding a predicted 9.7 billion people in 2050, since the decline in world hunger was reversed in 2015. One of the major lessons learned from the first green revolution is the importance of novel and advanced trait-carrying crop varieties that are ideally adapted to new agricultural practices. New plant breeding techniques (NPBTs), such as genome editing, could help us succeed in this mission to create novel and advanced crops. Considering the importance of NPBTs in crop genetic improvement, we attempt to summarize and discuss the latest progress with major approaches, such as site-directed mutagenesis using molecular scissors, base editors and especially homology-directed gene targeting (HGT), a very challenging but potentially highly precise genome modification approach in plants. We therefore suggest potential approaches for the improvement of practical HGT, focusing on monocots, and discuss a potential approach for the regulation of genome-edited products.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Km 02, Pham Van Dong Road, Co Nhue 1, Bac Tu Liem, Hanoi, 11917, Vietnam
| | - Yeon Woo Sung
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Duong Thi Hai Doan
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Mil Thi Tran
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
37
|
Anand A, Wu E, Li Z, TeRonde S, Arling M, Lenderts B, Mutti JS, Gordon‐Kamm W, Jones TJ, Chilcoat ND. High efficiency Agrobacterium-mediated site-specific gene integration in maize utilizing the FLP-FRT recombination system. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1636-1645. [PMID: 30706638 PMCID: PMC6662307 DOI: 10.1111/pbi.13089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 05/20/2023]
Abstract
An efficient Agrobacterium-mediated site-specific integration (SSI) technology using the flipase/flipase recognition target (FLP/FRT) system in elite maize inbred lines is described. The system allows precise integration of a single copy of a donor DNA flanked by heterologous FRT sites into a predefined recombinant target line (RTL) containing the corresponding heterologous FRT sites. A promoter-trap system consisting of a pre-integrated promoter followed by an FRT site enables efficient selection of events. The efficiency of this system is dependent on several factors including Agrobacterium tumefaciens strain, expression of morphogenic genes Babyboom (Bbm) and Wuschel2 (Wus2) and choice of heterologous FRT pairs. Of the Agrobacterium strains tested, strain AGL1 resulted in higher transformation frequency than strain LBA4404 THY- (0.27% vs. 0.05%; per cent of infected embryos producing events). The addition of morphogenic genes increased transformation frequency (2.65% in AGL1; 0.65% in LBA4404 THY-). Following further optimization, including the choice of FRT pairs, a method was developed that achieved 19%-22.5% transformation frequency. Importantly, >50% of T0 transformants contain the desired full-length site-specific insertion. The frequencies reported here establish a new benchmark for generating targeted quality events compatible with commercial product development.
Collapse
Affiliation(s)
- Ajith Anand
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Emily Wu
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Zhi Li
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Sue TeRonde
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Maren Arling
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Brian Lenderts
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Jasdeep S. Mutti
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | | | - Todd J. Jones
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | | |
Collapse
|
38
|
Miki D, Zhang W, Zeng W, Feng Z, Zhu JK. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat Commun 2018; 9:1967. [PMID: 29773790 PMCID: PMC5958078 DOI: 10.1038/s41467-018-04416-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
Homologous recombination-based gene targeting is a powerful tool for precise genome modification and has been widely used in organisms ranging from yeast to higher organisms such as Drosophila and mouse. However, gene targeting in higher plants, including the most widely used model plant Arabidopsis thaliana, remains challenging. Here we report a sequential transformation method for gene targeting in Arabidopsis. We find that parental lines expressing the bacterial endonuclease Cas9 from the egg cell- and early embryo-specific DD45 gene promoter can improve the frequency of single-guide RNA-targeted gene knock-ins and sequence replacements via homologous recombination at several endogenous sites in the Arabidopsis genome. These heritable gene targeting can be identified by regular PCR. Our approach enables routine and fine manipulation of the Arabidopsis genome.
Collapse
Affiliation(s)
- Daisuke Miki
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.
| | - Wenxin Zhang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenjie Zeng
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhengyan Feng
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
39
|
Advancing Agrobacterium-Based Crop Transformation and Genome Modification Technology for Agricultural Biotechnology. Curr Top Microbiol Immunol 2018; 418:489-507. [PMID: 29959543 DOI: 10.1007/82_2018_97] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The last decade has seen significant strides in Agrobacterium-mediated plant transformation technology. This has not only expanded the number of crop species that can be transformed by Agrobacterium, but has also made it possible to routinely transform several recalcitrant crop species including cereals (e.g., maize, sorghum, and wheat). However, the technology is limited by the random nature of DNA insertions, genotype dependency, low frequency of quality events, and variation in gene expression arising from genomic insertion sites. A majority of these deficiencies have now been addressed by improving the frequency of quality events, developing genotype-independent transformation capability in maize, developing an Agrobacterium-based site-specific integration technology for precise gene targeting, and adopting Agrobacterium-delivered CRISPR-Cas genes for gene editing. These improved transformation technologies are discussed in detail in this chapter.
Collapse
|
40
|
Zienkiewicz M, Krupnik T, Drożak A, Wasilewska W, Golke A, Romanowska E. Deletion of psbQ' gene in Cyanidioschyzon merolae reveals the function of extrinsic PsbQ' in PSII. PLANT MOLECULAR BIOLOGY 2018; 96:135-149. [PMID: 29196904 PMCID: PMC5778172 DOI: 10.1007/s11103-017-0685-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/22/2017] [Indexed: 05/24/2023]
Abstract
We have successfully produced single-cell colonies of C. merolae mutants, lacking the PsbQ' subunit in its PSII complex by application of DTA-aided mutant selection. We have investigated the physiological changes in PSII function and structure and proposed a tentative explanation of the function of PsbQ' subunit in the PSII complex. We have improved the selectivity of the Cyanidioschyzon merolae nuclear transformation method by the introduction of diphtheria toxin genes into the transformation vector as an auxiliary selectable marker. The revised method allowed us to obtained single-cell colonies of C. merolae, lacking the gene of the PsbQ' extrinsic protein. The efficiency of gene replacement was extraordinarily high, allowing for a complete deletion of the gene of interest, without undesirable illegitimate integration events. We have confirmed the absence of PsbQ' protein at genetic and protein level. We have characterized the physiology of mutant cells and isolated PSII protein complex and concluded that PsbQ' is involved in nuclear regulation of PSII activity, by influencing several parameters of PSII function. Among these: oxygen evolving activity, partial dissociation of PsbV, regulation of dimerization, downsizing of phycobilisomes rods and regulation of zeaxanthin abundance. The adaptation of cellular physiology appeared to favorite upregulation of PSII and concurrent downregulation of PSI, resulting in an imbalance of energy distribution, decrease of photosynthesis and inhibition of cell proliferation.
Collapse
Affiliation(s)
| | - Tomasz Krupnik
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Drożak
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Wioleta Wasilewska
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Golke
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Elżbieta Romanowska
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| |
Collapse
|
41
|
Sugano SS, Nishihama R. CRISPR/Cas9-Based Genome Editing of Transcription Factor Genes in Marchantia polymorpha. Methods Mol Biol 2018; 1830:109-126. [PMID: 30043367 DOI: 10.1007/978-1-4939-8657-6_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plant transcription factors (TFs) belong to a wide variety of gene families. The systematic and rapid establishment of knockout lines of TF genes is critical for functional genetics. Genome engineering techniques for dissecting out the molecular function of TFs have been dramatically improved by CRISPR/Cas9-based genome editing technology. In the CRISPR/Cas9 system, Cas9 functions as a Cas9-gRNA ribonucleoprotein complex and uses its DNA endonuclease activity to induce the cleavage of the genome, which is targeted by gRNA. Double-strand breaks sometimes induce insertions and deletions at the target site, leading to frameshift mutations of TF genes. In this chapter, we describe a detailed protocol for the targeted mutagenesis of TFs using the CRISPR/Cas9 system, specifically in the case of Marchantia polymorpha, an emerging model plant for functional genomics. The CRISPR/Cas9 system is highly versatile for targeting genomic sequences because only an alteration of the gRNA sequence is needed to change target sequences. The labor and cost required to establish genome-edited lines are low enough that multiple mutants of TF genes can be generated in one laboratory. The CRISPR/Cas9-based genome editing technique consists of four steps: (1) gRNA design; (2) vector construction; (3) transformation; and (4) isolation of genome-edited lines. This manuscript focuses mainly on the strategy of gRNA design, the workflow for off-target searches, and the selection and identification of genome-edited lines by genotyping. Although we describe a protocol for M. polymorpha, the basic strategy of generating genome-edited lines of TF genes should be applicable widely to other plants.
Collapse
Affiliation(s)
- Shigeo S Sugano
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | | |
Collapse
|
42
|
Zhao D, Feng X, Zhu X, Wu T, Zhang X, Bi C. CRISPR/Cas9-assisted gRNA-free one-step genome editing with no sequence limitations and improved targeting efficiency. Sci Rep 2017; 7:16624. [PMID: 29192199 PMCID: PMC5709385 DOI: 10.1038/s41598-017-16998-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/20/2017] [Indexed: 01/17/2023] Open
Abstract
The CRISPR/Cas9 system is a powerful, revolutionary tool for genome editing. However, it is not without limitations. There are PAM-free and CRISPR-tolerant regions that cannot be modified by the standard CRISPR/Cas9 system, and off-target activity impedes its broader applications. To avoid these drawbacks, we developed a very simple CRISPR/Cas9-assisted gRNA-free one-step (CAGO) genome editing technique which does not require the construction of a plasmid to express a specific gRNA. Instead, a universal N20 sequence with a very high targeting efficiency is inserted into the E. coli chromosome by homologous recombination, which in turn undergoes a double-stranded break by CRISPR/Cas9 and induces an intra-chromosomal recombination event to accomplish the editing process. This technique was shown to be able to edit PAM-free and CRISPR-tolerant regions with no off-target effects in Escherichia coli. When applied to multi-locus editing, CAGO was able to modify one locus in two days with a near 100% editing efficiency. Furthermore, modified CAGO was used to edit large regions of up to 100 kbp with at least 75% efficiency. Finally, genome editing by CAGO only requires a transformation procedure and the construction of a linear donor DNA cassette, which was further simplified by applying a modular design strategy. Although the technique was established in E. coli, it should be applicable to other organisms with only minor modifications.
Collapse
Affiliation(s)
- Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xu Feng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- School of life sciences, China West Normal University, Nanchong, 637002, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tao Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
43
|
|
44
|
Effect of gene order in DNA constructs on gene expression upon integration into plant genome. 3 Biotech 2017; 7:94. [PMID: 28555430 DOI: 10.1007/s13205-017-0729-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/29/2017] [Indexed: 10/19/2022] Open
Abstract
Several plant biotechnology applications are based on the expression of multiple genes located on a single transformation vector. The principles of stable expression of foreign genes in plant cells include integration of full-length gene fragments consisting of promoter and transcription terminator sequences, and avoiding converging orientation of the gene transcriptional direction. Therefore, investigators usually generate constructs in which genes are assembled in the same orientation. However, no specific information is available on the effect of the order in which genes should be assembled in the construct to support optimum expression of each gene upon integration in the genome. While many factors, including genomic position and the integration structure, could affect gene expression, the investigators judiciously design DNA constructs to avoid glitches. However, the gene order in a multigene assembly remains an open question. This study addressed the effect of gene order in the DNA construct on gene expression in rice using a simple design of two genes placed in two possible orders with respect to the genomic context. Transgenic rice lines containing green fluorescent protein (GFP) and β-glucuronidase (GUS) genes in two distinct orders were developed by Cre-lox-mediated site-specific integration. Gene expression analysis of transgenic lines showed that both genes were expressed at similar levels in either orientation, and different transgenic lines expressed each gene within 1-2× range. Thus, no significant effect of the gene order on gene expression was found in the transformed rice lines containing precise site-specific integrations and stable gene expression in plant cells could be obtained with altered gene orders. Therefore, gene orientation and integration structures are more important factors governing gene expression than gene orders in the genomic context.
Collapse
|
45
|
Collonnier C, Guyon-Debast A, Maclot F, Mara K, Charlot F, Nogué F. Towards mastering CRISPR-induced gene knock-in in plants: Survey of key features and focus on the model Physcomitrella patens. Methods 2017; 121-122:103-117. [PMID: 28478103 DOI: 10.1016/j.ymeth.2017.04.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022] Open
Abstract
Beyond its predominant role in human and animal therapy, the CRISPR-Cas9 system has also become an essential tool for plant research and plant breeding. Agronomic applications rely on the mastery of gene inactivation and gene modification. However, if the knock-out of genes by non-homologous end-joining (NHEJ)-mediated repair of the targeted double-strand breaks (DSBs) induced by the CRISPR-Cas9 system is rather well mastered, the knock-in of genes by homology-driven repair or end-joining remains difficult to perform efficiently in higher plants. In this review, we describe the different approaches that can be tested to improve the efficiency of CRISPR-induced gene modification in plants, which include the use of optimal transformation and regeneration protocols, the design of appropriate guide RNAs and donor templates and the choice of nucleases and means of delivery. We also present what can be done to orient DNA repair pathways in the target cells, and we show how the moss Physcomitrella patens can be used as a model plant to better understand what DNA repair mechanisms are involved, and how this knowledge could eventually be used to define more performant strategies of CRISPR-induced gene knock-in.
Collapse
Affiliation(s)
- Cécile Collonnier
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France.
| | - Anouchka Guyon-Debast
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France
| | - François Maclot
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France
| | - Kostlend Mara
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France
| | - Florence Charlot
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France
| | - Fabien Nogué
- INRA Centre de Versailles-Grignon, IJPB (UMR1318) - route de St-Cyr, 78026 Versailles cedex, France.
| |
Collapse
|
46
|
Liu X, Xie C, Si H, Yang J. CRISPR/Cas9-mediated genome editing in plants. Methods 2017; 121-122:94-102. [PMID: 28315486 DOI: 10.1016/j.ymeth.2017.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/09/2017] [Accepted: 03/03/2017] [Indexed: 01/09/2023] Open
Abstract
The increasing burden of the world's population on agriculture necessitates the development of more robust crops. As the amount of information from sequenced crop genomes increases, technology can be used to investigate the function of genes in detail and to design improved crops at the molecular level. Recently, an RNA-programmed genome-editing system composed of a clustered regularly interspaced short palindromic repeats (CRISPR)-encoded guide RNA and the nuclease Cas9 has provided a powerful platform to achieve these goals. By combining versatile tools to study and modify plants at different molecular levels, the CRISPR/Cas9 system is paving the way towards a new horizon for basic research and crop development. In this review, the accomplishments, problems and improvements of this technology in plants, including target sequence cleavage, knock-in/gene replacement, transcriptional regulation, epigenetic modification, off-target effects, delivery system and potential applications, will be highlighted.
Collapse
Affiliation(s)
- Xuejun Liu
- TianJin Crops Research Institute, China.
| | - Chuanxiao Xie
- Institute of Crop Science of Chinese Academy of Agricultural Sciences, China.
| | - Huaijun Si
- College of Life Science and Technology, GanSu Agricultural University, China.
| | | |
Collapse
|
47
|
Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 2017; 35:441-443. [PMID: 28346401 DOI: 10.1038/nbt.3833] [Citation(s) in RCA: 436] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/21/2017] [Indexed: 12/18/2022]
Abstract
We applied a fusion of CRISPR-Cas9 and activation-induced cytidine deaminase (Target-AID) for point mutagenesis at genomic regions specified by single guide RNAs (sgRNAs) in two crop plants. In rice, we induced multiple herbicide-resistance point mutations by multiplexed editing using herbicide selection, while in tomato we generated marker-free plants with homozygous heritable DNA substitutions, demonstrating the feasibility of base editing for crop improvement.
Collapse
|
48
|
Horvath M, Steinbiss HH, Reiss B. Gene Targeting Without DSB Induction Is Inefficient in Barley. FRONTIERS IN PLANT SCIENCE 2017; 7:1973. [PMID: 28105032 PMCID: PMC5214849 DOI: 10.3389/fpls.2016.01973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/13/2016] [Indexed: 05/29/2023]
Abstract
Double strand-break (DSB) induction allowed efficient gene targeting in barley (Hordeum vulgare), but little is known about efficiencies in its absence. To obtain such data, an assay system based on the acetolactate synthase (ALS) gene was established, a target gene which had been used previously in rice and Arabidopsis thaliana. Expression of recombinases RAD51 and RAD54 had been shown to improve gene targeting in A. thaliana and positive-negative (P-N) selection allows the routine production of targeted mutants without DSB induction in rice. We implemented these approaches in barley and analysed gene targeting with the ALS gene in wild type and RAD51 and RAD54 transgenic lines. In addition, P-N selection was tested. In contrast to the high gene targeting efficiencies obtained in the absence of DSB induction in A. thaliana or rice, not one single gene targeting event was obtained in barley. These data suggest that gene targeting efficiencies are very low in barley and can substantially differ between different plants, even at the same target locus. They also suggest that the amount of labour and time would become unreasonably high to use these methods as a tool in routine applications. This is particularly true since DSB induction offers efficient alternatives. Barley, unlike rice and A. thaliana has a large, complex genome, suggesting that genome size or complexity could be the reason for the low efficiencies. We discuss to what extent transformation methods, genome size or genome complexity could contribute to the striking differences in the gene targeting efficiencies between barley, rice and A. thaliana.
Collapse
Affiliation(s)
| | | | - Bernd Reiss
- Plant DNA Recombination Group, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
49
|
Butt H, Eid A, Ali Z, Atia MAM, Mokhtar MM, Hassan N, Lee CM, Bao G, Mahfouz MM. Efficient CRISPR/Cas9-Mediated Genome Editing Using a Chimeric Single-Guide RNA Molecule. FRONTIERS IN PLANT SCIENCE 2017; 8:1441. [PMID: 28883826 PMCID: PMC5573723 DOI: 10.3389/fpls.2017.01441] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/03/2017] [Indexed: 05/17/2023]
Abstract
The CRISPR/Cas9 system has been applied in diverse eukaryotic organisms for targeted mutagenesis. However, targeted gene editing is inefficient and requires the simultaneous delivery of a DNA template for homology-directed repair (HDR). Here, we used CRISPR/Cas9 to generate targeted double-strand breaks and to deliver an RNA repair template for HDR in rice (Oryza sativa). We used chimeric single-guide RNA (cgRNA) molecules carrying both sequences for target site specificity (to generate the double-strand breaks) and repair template sequences (to direct HDR), flanked by regions of homology to the target. Gene editing was more efficient in rice protoplasts using repair templates complementary to the non-target DNA strand, rather than the target strand. We applied this cgRNA repair method to generate herbicide resistance in rice, which showed that this cgRNA repair method can be used for targeted gene editing in plants. Our findings will facilitate applications in functional genomics and targeted improvement of crop traits.
Collapse
Affiliation(s)
- Haroon Butt
- Laboratory for Genome Engineering, Division of Biological Sciences, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Ayman Eid
- Laboratory for Genome Engineering, Division of Biological Sciences, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Zahir Ali
- Laboratory for Genome Engineering, Division of Biological Sciences, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Mohamed A. M. Atia
- Molecular Genetics and Genome Mapping Laboratory, Agricultural Genetic Engineering Research Institute, Agricultural Research CenterGiza, Egypt
| | - Morad M. Mokhtar
- Molecular Genetics and Genome Mapping Laboratory, Agricultural Genetic Engineering Research Institute, Agricultural Research CenterGiza, Egypt
| | - Norhan Hassan
- Laboratory for Genome Engineering, Division of Biological Sciences, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Ciaran M. Lee
- Department of Bioengineering, Rice University, HoustonTX, United States
| | - Gang Bao
- Department of Bioengineering, Rice University, HoustonTX, United States
| | - Magdy M. Mahfouz
- Laboratory for Genome Engineering, Division of Biological Sciences, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
- *Correspondence: Magdy M. Mahfouz,
| |
Collapse
|
50
|
Zhu C, Bortesi L, Baysal C, Twyman RM, Fischer R, Capell T, Schillberg S, Christou P. Characteristics of Genome Editing Mutations in Cereal Crops. TRENDS IN PLANT SCIENCE 2017; 22:38-52. [PMID: 27645899 DOI: 10.1016/j.tplants.2016.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/26/2016] [Accepted: 08/17/2016] [Indexed: 05/20/2023]
Abstract
Designer nucleases allow the creation of new plant genotypes by introducing precisely-targeted double-strand breaks that are resolved by endogenous repair pathways. The major nuclease technologies are meganucleases, zinc-finger nucleases, transcription activator-like effector nucleases, and the CRISPR/Cas9 system. Each comprises a promiscuous endonuclease guided by protein-DNA or RNA-DNA interactions. A great deal is known about the principles of designer nucleases but much remains to be learned about their detailed behavioral characteristics in different plant species. The outcome of genome engineering reflects the intrinsic properties of each nuclease and target genome, causing variations in efficiency, accuracy, and mutation structure. In this article, we critically discuss the activities of designer nucleases in different cereals representing a broad range of genome characteristics.
Collapse
Affiliation(s)
- Changfu Zhu
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Luisa Bortesi
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Can Baysal
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain
| | | | - Rainer Fischer
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Teresa Capell
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Paul Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain; ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|