1
|
Ubiquitination of the ubiquitin-binding machinery: how early ESCRT components are controlled. Essays Biochem 2022; 66:169-177. [PMID: 35352804 PMCID: PMC9400068 DOI: 10.1042/ebc20210042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022]
Abstract
To be able to quickly and accurately respond to the environment, cells need to tightly control the amount and localization of plasma membrane proteins. The post-translation modification by the protein modifier ubiquitin is the key signal for guiding membrane-associated cargo to the lysosome/vacuole for their degradation. The machinery responsible for such sorting contains several subunits that function as ubiquitin receptors, many of which are themselves subjected to ubiquitination. This review will focus on what is currently known about the modulation of the machinery itself by ubiquitination and how this might affect its function with a special emphasis on current findings from the plant field.
Collapse
|
2
|
Magits W, Sablina AA. The regulation of the protein interaction network by monoubiquitination. Curr Opin Struct Biol 2022; 73:102333. [PMID: 35176591 DOI: 10.1016/j.sbi.2022.102333] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 11/03/2022]
Abstract
The conjugation of a single ubiquitin or monoubiquitination acts as a versatile signal that can have both degradative and non-degradative functions. The latter is of particular interest as emerging evidence indicates that ubiquitin-driven alterations of the protein interaction landscape play a key role in multiple signaling pathways. Whereas early studies were focused on how monoubiquitination alters the interactions of proteins containing ubiquitin-binding domains, more recent reports demonstrate that ubiquitin conjugation can also affect the binding mode by changing the surface of the ubiquitinated substrate. Furthermore, monoubiquitination modulates the interactions with other macromolecules, such as DNA or lipids, underscoring the diverse role of monoubiquitination in cellular processes. In this review, we discussed how monoubiquitination achieves its function by modulating the interaction landscape.
Collapse
Affiliation(s)
- Wout Magits
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Anna A Sablina
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Santonico E. Old and New Concepts in Ubiquitin and NEDD8 Recognition. Biomolecules 2020; 10:biom10040566. [PMID: 32272761 PMCID: PMC7226360 DOI: 10.3390/biom10040566] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Post-translational modifications by ubiquitin and ubiquitin-like proteins (Ubls) have known roles in a myriad of cellular processes. Ubiquitin- and Ubl-binding domains transmit the information conferred by these post-translational modifications by recognizing functional surfaces and, when present, different chain structures. Numerous domains binding to ubiquitin have been characterized and their structures solved. Analogously, motifs selectively interacting with SUMO (small ubiquitin-like modifier) have been identified in several proteins and their role in SUMO-dependent processes investigated. On the other hand, proteins that specifically recognize other Ubl modifications are known only in a few cases. The high sequence identity between NEDD8 and ubiquitin has made the identification of specific NEDD8-binding domains further complicated due to the promiscuity in the recognition by several ubiquitin-binding domains. Two evolutionarily related domains, called CUBAN (cullin-binding domain associating with NEDD8) and CoCUN (cousin of CUBAN), have been recently described. The CUBAN binds monomeric NEDD8 and neddylated cullins, but it also interacts with di-ubiquitin chains. Conversely, the CoCUN domain only binds ubiquitin. CUBAN and CoCUN provide an intriguing example of how nature solved the issue of promiscuity versus selectivity in the recognition of these two highly related molecules. The structural information available to date suggests that the ancestor of CUBAN and CoCUN was a three-helix bundle domain that diversified in KHNYN (KH and NYN domain-containing) and N4BP1 (NEDD4-binding protein-1) by acquiring different features. Indeed, these domains diverged towards two recognition modes, that recall respectively the electrostatic interaction utilized by the E3-ligase RBX1/2 in the interaction with NEDD8, and the hydrophobic features described in the recognition of ubiquitin by CUE (coupling ubiquitin conjugation to ER degradation) domains. Intriguingly, CUBAN and CoCUN domains are only found in KHNYN and N4BP1, respectively, both proteins belonging to the PRORP family whose members are characterized by the combination of protein modules involved in RNA metabolism with domains mediating ubiquitin/NEDD8 recognition. This review recapitulates the current knowledge and recent findings of CUBAN and CoCUN domains and the proteins containing them.
Collapse
Affiliation(s)
- Elena Santonico
- Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy
| |
Collapse
|
4
|
Nepravishta R, Ferrentino F, Mandaliti W, Mattioni A, Weber J, Polo S, Castagnoli L, Cesareni G, Paci M, Santonico E. CoCUN, a Novel Ubiquitin Binding Domain Identified in N4BP1. Biomolecules 2019; 9:biom9070284. [PMID: 31319543 PMCID: PMC6681339 DOI: 10.3390/biom9070284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin binding domains (UBDs) are modular elements that bind non-covalently to ubiquitin and act as downstream effectors and amplifiers of the ubiquitination signal. With few exceptions, UBDs recognize the hydrophobic path centered on Ile44, including residues Leu8, Ile44, His68, and Val70. A variety of different orientations, which can be attributed to specific contacts between each UBD and surface residues surrounding the hydrophobic patch, specify how each class of UBD specifically contacts ubiquitin. Here, we describe the structural model of a novel ubiquitin-binding domain that we identified in NEDD4 binding protein 1 (N4BP1). By performing protein sequence analysis, mutagenesis, and nuclear magnetic resonance (NMR) spectroscopy of the 15N isotopically labeled protein, we demonstrate that a Phe-Pro motif in N4BP1 recognizes the canonical hydrophobic patch of ubiquitin. This recognition mode resembles the molecular mechanism evolved in the coupling of ubiquitin conjugation to endoplasmic-reticulum (ER) degradation (CUE) domain family, where an invariant proline, usually following a phenylalanine, is required for ubiquitin binding. Interestingly, this novel UBD, which is not evolutionary related to CUE domains, shares a 40% identity and 47% similarity with cullin binding domain associating with NEDD8 (CUBAN), a protein module that also recognizes the ubiquitin-like NEDD8. Based on these features, we dubbed the region spanning the C-terminal 50 residues of N4BP1 the CoCUN domain, for Cousin of CUBAN. By performing circular dichroism and 15N NMR chemical shift perturbation of N4BP1 in complex with ubiquitin, we demonstrate that the CoCUN domain lacks the NEDD8 binding properties observed in CUBAN. We also show that, in addition to mediating the interaction with ubiquitin and ubiquitinated substrates, both CUBAN and CoCUN are poly-ubiquitinated in cells. The structural and the functional characterization of this novel UBD can contribute to a deeper understanding of the molecular mechanisms governing N4BP1 function, providing at the same time a valuable tool for clarifying how the discrimination between ubiquitin and the highly related NEDD8 is achieved.
Collapse
Affiliation(s)
- Ridvan Nepravishta
- School of Pharmacy East Anglia, University of Norwich, Norwich NR4 7TJ, UK
| | | | - Walter Mandaliti
- Department of Chemical Sciences and Technologies, Tor Vergata University, 00133 Rome, Italy
| | - Anna Mattioni
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy. (G.C.)
| | - Janine Weber
- IFOM, The FIRC Institute for Molecular Oncology, 20139 Milan, Italy
| | - Simona Polo
- IFOM, The FIRC Institute for Molecular Oncology, 20139 Milan, Italy
| | - Luisa Castagnoli
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy. (G.C.)
| | - Gianni Cesareni
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy. (G.C.)
- DIPO, Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, 20122 Milan, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| | - Maurizio Paci
- Department of Chemical Sciences and Technologies, Tor Vergata University, 00133 Rome, Italy
| | - Elena Santonico
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy. (G.C.)
| |
Collapse
|
5
|
Miyamoto K, Saito K. Concise machinery for monitoring ubiquitination activities using novel artificial RING fingers. Protein Sci 2018; 27:1354-1363. [PMID: 29663561 DOI: 10.1002/pro.3427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 01/20/2023]
Abstract
Protein ubiquitination is involved in many cellular processes, such as protein degradation, DNA repair, and signal transduction pathways. Ubiquitin-conjugating (E2) enzymes of the ubiquitination pathway are associated with various cancers, such as leukemia, lung cancer, and gastric cancer. However, to date, detection of E2 activities is not practicable for capturing the pathological conditions of cancers due to complications related to the enzymatic cascade reaction. To overcome this hurdle, we have recently investigated a novel strategy for measuring E2 activities. Artificial RING fingers (ARFs) were developed to conveniently detect E2 activities during the ubiquitination reaction. ARFs were created by grafting the active sites of ubiquitin-ligating (E3) enzymes onto amino acid sequences with 38 residues. The grafting design downsized E3s to small molecules (ARFs). Such an ARF is a multifunctional molecule that possesses specific E2-binding capabilities and ubiquitinates itself without a substrate. In this review, we discuss the major findings from recent investigations on a new molecular design for ARFs and their simplified detection system for E2 activities. The use of the ARF allowed us to monitor E2 activities using acute promyelocytic leukemia (APL)-derived cells following treatment with the anticancer drug bortezomib. The molecular design of ARFs is extremely simple and convenient, and thus, may be a powerful tool for protein engineering. The ARF methodology may reveal a new screening method of E2s that will contribute to diagnostic techniques for cancers.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Kazuki Saito
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| |
Collapse
|
6
|
Dong H, Dumenil J, Lu FH, Na L, Vanhaeren H, Naumann C, Klecker M, Prior R, Smith C, McKenzie N, Saalbach G, Chen L, Xia T, Gonzalez N, Seguela M, Inze D, Dissmeyer N, Li Y, Bevan MW. Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis. Genes Dev 2017; 31:197-208. [PMID: 28167503 PMCID: PMC5322733 DOI: 10.1101/gad.292235.116] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/11/2017] [Indexed: 12/31/2022]
Abstract
The characteristic shapes and sizes of organs are established by cell proliferation patterns and final cell sizes, but the underlying molecular mechanisms coordinating these are poorly understood. Here we characterize a ubiquitin-activated peptidase called DA1 that limits the duration of cell proliferation during organ growth in Arabidopsis thaliana The peptidase is activated by two RING E3 ligases, Big Brother (BB) and DA2, which are subsequently cleaved by the activated peptidase and destabilized. In the case of BB, cleavage leads to destabilization by the RING E3 ligase PROTEOLYSIS 1 (PRT1) of the N-end rule pathway. DA1 peptidase activity also cleaves the deubiquitylase UBP15, which promotes cell proliferation, and the transcription factors TEOSINTE BRANCED 1/CYCLOIDEA/PCF 15 (TCP15) and TCP22, which promote cell proliferation and repress endoreduplication. We propose that DA1 peptidase activity regulates the duration of cell proliferation and the transition to endoreduplication and differentiation during organ formation in plants by coordinating the destabilization of regulatory proteins.
Collapse
Affiliation(s)
- Hui Dong
- John Innes Centre, Norwich NR4 7QA, United Kingdom
| | - Jack Dumenil
- John Innes Centre, Norwich NR4 7QA, United Kingdom
| | - Fu-Hao Lu
- John Innes Centre, Norwich NR4 7QA, United Kingdom
| | - Li Na
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre of Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hannes Vanhaeren
- VIB-UGent Centre for Plant Systems Biology, Ghent University, 9052 Gent, Belgium
| | - Christin Naumann
- Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle, Germany
| | - Maria Klecker
- Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle, Germany
| | - Rachel Prior
- John Innes Centre, Norwich NR4 7QA, United Kingdom
| | | | | | | | - Liangliang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre of Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tian Xia
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre of Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nathalie Gonzalez
- VIB-UGent Centre for Plant Systems Biology, Ghent University, 9052 Gent, Belgium
| | | | - Dirk Inze
- VIB-UGent Centre for Plant Systems Biology, Ghent University, 9052 Gent, Belgium
| | - Nico Dissmeyer
- Leibniz Institute of Plant Biochemistry (IPB), D-06120 Halle, Germany
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre of Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
7
|
McIntyre J, Woodgate R. Regulation of translesion DNA synthesis: Posttranslational modification of lysine residues in key proteins. DNA Repair (Amst) 2015; 29:166-79. [PMID: 25743599 PMCID: PMC4426011 DOI: 10.1016/j.dnarep.2015.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/30/2023]
Abstract
Posttranslational modification of proteins often controls various aspects of their cellular function. Indeed, over the past decade or so, it has been discovered that posttranslational modification of lysine residues plays a major role in regulating translesion DNA synthesis (TLS) and perhaps the most appreciated lysine modification is that of ubiquitination. Much of the recent interest in ubiquitination stems from the fact that proliferating cell nuclear antigen (PCNA) was previously shown to be specifically ubiquitinated at K164 and that such ubiquitination plays a key role in regulating TLS. In addition, TLS polymerases themselves are now known to be ubiquitinated. In the case of human polymerase η, ubiquitination at four lysine residues in its C-terminus appears to regulate its ability to interact with PCNA and modulate TLS. Within the past few years, advances in global proteomic research have revealed that many proteins involved in TLS are, in fact, subject to a previously underappreciated number of lysine modifications. In this review, we will summarize the known lysine modifications of several key proteins involved in TLS; PCNA and Y-family polymerases η, ι, κ and Rev1 and we will discuss the potential regulatory effects of such modification in controlling TLS in vivo.
Collapse
Affiliation(s)
- Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| |
Collapse
|
8
|
Su H, Carter CB, Laur O, Sands JM, Chen G. Forskolin stimulation promotes urea transporter UT-A1 ubiquitination, endocytosis, and degradation in MDCK cells. Am J Physiol Renal Physiol 2012; 303:F1325-32. [PMID: 22914781 PMCID: PMC3518190 DOI: 10.1152/ajprenal.00248.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/21/2012] [Indexed: 11/22/2022] Open
Abstract
The adenylyl cyclase stimulator forskolin (FSK) stimulates UT-A1 phosphorylation, membrane trafficking, and urea transport activity. Here, we found that FSK stimulation induces UT-A1 ubiquitination in UT-A1 Madin-Darby canine kidney (MDCK) cells. This suggests that phosphorylation by FSK also triggers the protein degradation machinery for UT-A1. UT-A1-MDCK cells were treated with 100 μg/ml cycloheximide to inhibit protein synthesis, with or without 10 μM FSK. Total UT-A1 protein abundance was significantly reduced after FSK treatment, concomitantly ubiquitinated UT-A1 was increased. We then specifically investigated the effect of FSK on UT-A1 expressed on the cell plasma membrane. FSK treatment accelerated UT-A1 removal from the cell plasma membrane by increasing UT-A1 endocytosis as judged by biotinylation/MesNa treatment and confocal microscopy. We further found that inhibition of the clathrin-mediated endocytic pathway, but not the caveolin-mediated endocytic pathway, significantly blocks FSK-stimulated UT-A1 endocytosis. The PKA inhibitor H89 and the proteasome inhibitors MG132 and lactacystin reduced FSK-induced membrane UT-A1 reduction. Our study shows that FSK activates the UT-A1 urea transporter and the activation/phosphorylation subsequently triggers the downregulation of UT-A1, which represents an important mechanism for the cell to return to the basal conditions after vasopressin stimulation.
Collapse
Affiliation(s)
- Hua Su
- Department of Medicine, Renal Division, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
9
|
Chadwick L, Gentle L, Strachan J, Layfield R. Review: unchained maladie - a reassessment of the role of Ubb(+1) -capped polyubiquitin chains in Alzheimer's disease. Neuropathol Appl Neurobiol 2012; 38:118-31. [PMID: 22082077 DOI: 10.1111/j.1365-2990.2011.01236.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular misreading allows the formation of mutant proteins in the absence of gene mutations. A mechanism has been proposed by which a frameshift mutant of the ubiquitin protein, Ubb(+1) , which accumulates in an age-dependent manner as a result of molecular misreading, contributes to neuropathology in Alzheimer's disease (Lam et al. 2000). Specifically, in the Ubb(+1) -mediated proteasome inhibition hypothesis Ubb(+1) 'caps' unanchored (that is, nonsubstrate linked) polyubiquitin chains, which then act as dominant inhibitors of the 26S proteasome. A review of subsequent literature indicates that this original hypothesis is broadly supported, and offers new insights into the mechanisms accounting for the age-dependent accumulation of Ubb(+1) , and how Ubb(+1) -mediated proteasome inhibition may contribute to Alzheimer's disease. Further, recent studies have highlighted a physiological role for free endogenous unanchored polyubiquitin chains in the direct activation of certain protein kinases. This raises the possibility that Ubb(+1) -capped unanchored polyubiquitin chains could also exert harmful effects through the aberrant activation of tau or other ubiquitin-dependent kinases, neuronal NF-κB activity or NF-κB-mediated neuroinflammatory processes.
Collapse
Affiliation(s)
- L Chadwick
- School of Biomedical Sciences, University of Nottingham, UK
| | | | | | | |
Collapse
|
10
|
Abstract
The endosomal-sorting complex required for transport (ESCRT) apparatus has multiple ubiquitin (Ub)-binding domains and participates in a wide variety of cellular processes. Many of these ESCRT-dependent processes are keenly regulated by Ub, which serves as a lysosomal-sorting signal for membrane proteins targeted into multivesicular bodies (MVBs) and which may serve as a mediator of viral budding from the cell surface. Hints that both ESCRTs and Ub work together in the processes such as cytokinesis, transcription and autophagy are beginning to emerge. Here, we explore the relationship between ESCRTs and Ub in MVB sorting and viral budding.
Collapse
Affiliation(s)
- S Brookhart Shields
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52246, USA
| | | |
Collapse
|
11
|
Oberle C, Blattner C. Regulation of the DNA Damage Response to DSBs by Post-Translational Modifications. Curr Genomics 2011; 11:184-98. [PMID: 21037856 PMCID: PMC2878983 DOI: 10.2174/138920210791110979] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 11/22/2022] Open
Abstract
Damage to the genetic material can affect cellular function in many ways. Therefore, maintenance of the genetic integrity is of primary importance for all cells. Upon DNA damage, cells respond immediately with proliferation arrest and repair of the lesion or apoptosis. All these consequences require recognition of the lesion and transduction of the information to effector systems. The accomplishment of DNA repair, but also of cell cycle arrest and apoptosis furthermore requires protein-protein interactions and the formation of larger protein complexes. More recent research shows that the formation of many of these aggregates depends on post-translational modifications. In this article, we have summarized the different cellular events in response to a DNA double strand break, the most severe lesion of the DNA.
Collapse
Affiliation(s)
- C Oberle
- Karlsruher Institute of Technology, Institute of Toxicology and Genetics, Karlsruhe PO-Box 3640, 76021 Karlsruhe, Germany
| | | |
Collapse
|
12
|
Stringer DK, Piper RC. A single ubiquitin is sufficient for cargo protein entry into MVBs in the absence of ESCRT ubiquitination. ACTA ACUST UNITED AC 2011; 192:229-42. [PMID: 21242292 PMCID: PMC3172180 DOI: 10.1083/jcb.201008121] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
While ESCRT-0 is ubiquitinated by the Rsp5 E3 ligase, loss of Rsp5 does not disrupt monoubiquitin-dependent sorting into multivesicular bodies. ESCRTs (endosomal sorting complexes required for transport) bind and sequester ubiquitinated membrane proteins and usher them into multivesicular bodies (MVBs). As Ubiquitin (Ub)-binding proteins, ESCRTs themselves become ubiquitinated. However, it is unclear whether this regulates a critical aspect of their function or is a nonspecific consequence of their association with the Ub system. We investigated whether ubiquitination of the ESCRTs was required for their ability to sort cargo into the MVB lumen. Although we found that Rsp5 was the main Ub ligase responsible for ubiquitination of ESCRT-0, elimination of Rsp5 or elimination of the ubiquitinatable lysines within ESCRT-0 did not affect MVB sorting. Moreover, by fusing the catalytic domain of deubiquitinating peptidases onto ESCRTs, we could block ESCRT ubiquitination and the sorting of proteins that undergo Rsp5-dependent ubiquitination. Yet, proteins fused to a single Ub moiety were efficiently delivered to the MVB lumen, which strongly indicates that a single Ub is sufficient in sorting MVBs in the absence of ESCRT ubiquitination.
Collapse
Affiliation(s)
- Daniel K Stringer
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52246, USA
| | | |
Collapse
|
13
|
Lauwers E, Erpapazoglou Z, Haguenauer-Tsapis R, André B. The ubiquitin code of yeast permease trafficking. Trends Cell Biol 2010; 20:196-204. [PMID: 20138522 DOI: 10.1016/j.tcb.2010.01.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/24/2009] [Accepted: 01/05/2010] [Indexed: 11/26/2022]
Abstract
Yeast permeases, that act as transporters for nutrients including amino acids, nucleobases and metals, provide a powerful model system for dissecting the physiological control of membrane protein trafficking. Modification of these transporters by ubiquitin is known to target them for degradation in the vacuole, the degradation organelle of fungi. Recent studies have uncovered the role of specific adaptors for recruiting the Rsp5 ubiquitin ligase to these proteins. In addition, the role of ubiquitin at different trafficking steps including early endocytosis, sorting into the multivesicular body (MVB) pathway and Golgi-to-endosome transit is now becoming clear. In particular, K63-linked ubiquitin chains now emerge as a specific signal for protein sorting into the MVB pathway. A complete view of the ubiquitin code governing yeast permease trafficking might not be far off.
Collapse
Affiliation(s)
- Elsa Lauwers
- Physiologie Moléculaire de la Cellule, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | | | | | | |
Collapse
|
14
|
Srilunchang KO, Krohn NG, Dresselhaus T. DiSUMO-like DSUL is required for nuclei positioning, cell specification and viability during female gametophyte maturation in maize. Development 2010; 137:333-45. [PMID: 20040499 DOI: 10.1242/dev.035964] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reversible post-translational modification of numerous proteins by small ubiquitin-related modifiers (SUMOs) represents a major regulatory process in various eukaryotic cellular and developmental processes. To study the role of sumoylation during female gametophyte (FG) development in maize, we identified Zea mays genes encoding SUMO (ZmSUMO1a and ZmSUMO1b) and a diSUMO-like protein called ZmDSUL that contains two head-to-tail SUMO-like domains. Whereas ZmSUMO1a and ZmSUMO1b are almost ubiquitously expressed, ZmDSUL transcripts were detected exclusively in the egg apparatus and zygote. ZmDSUL was selected for detailed studies. ZmDSUL is processed close to the C-terminus, generating a dimeric protein that is similar to animal FAT10 and ISG15, which contain two ubiquitin-like domains. Whereas GFP fused to the ZmDSUL N-terminus was located in the cytoplasm and predominately in the nucleoplasm of some transiently transformed maize suspension cells, C-terminal GFP fusions exclusively accumulated at the nuclear surface. GFP or ZmDSUL-GFP under control of the ZmDSUL promoter first displayed GFP signals in the micropylar-most position of the FG at stage 5/6, when migration of polar nuclei and cellularization occurs. Mature FGs displayed GFP signals exclusively in the egg cell, but the strongest signals were observed shortly after fertilization and disappeared during the first asymmetric zygotic division. RNAi silencing of ZmDSUL showed that it is required for FG viability. Moreover, nuclei segregation and positioning defects occurred at stage FG 5 after mitotic nuclear divisions were completed. In summary, we report a diSUMO-like protein that appears to be essential for nuclei segregation and positioning, the prerequisite for cell specification during FG maturation.
Collapse
Affiliation(s)
- Kanok-orn Srilunchang
- Cell Biology and Plant Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | | | |
Collapse
|
15
|
Shields SB, Oestreich AJ, Winistorfer S, Nguyen D, Payne JA, Katzmann DJ, Piper R. ESCRT ubiquitin-binding domains function cooperatively during MVB cargo sorting. ACTA ACUST UNITED AC 2009; 185:213-24. [PMID: 19380877 PMCID: PMC2700381 DOI: 10.1083/jcb.200811130] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ubiquitin (Ub) sorting receptors facilitate the targeting of ubiquitinated membrane proteins into multivesicular bodies (MVBs). Ub-binding domains (UBDs) have been described in several endosomal sorting complexes required for transport (ESCRT). Using available structural information, we have investigated the role of the multiple UBDs within ESCRTs during MVB cargo selection. We found a novel UBD within ESCRT-I and show that it contributes to MVB sorting in concert with the known UBDs within the ESCRT complexes. These experiments reveal an unexpected level of coordination among the ESCRT UBDs, suggesting that they collectively recognize a diverse set of cargo rather than act sequentially at discrete steps.
Collapse
Affiliation(s)
- S Brookhart Shields
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52240, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Uchiki T, Kim HT, Zhai B, Gygi SP, Johnston JA, O'Bryan JP, Goldberg AL. The ubiquitin-interacting motif protein, S5a, is ubiquitinated by all types of ubiquitin ligases by a mechanism different from typical substrate recognition. J Biol Chem 2009; 284:12622-32. [PMID: 19240029 DOI: 10.1074/jbc.m900556200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
S5a/Rpn10 is a ubiquitin (Ub)-binding protein that is a subunit of the 26S proteasome but also exists free in the cytosol. It binds poly-Ub chains through its two Ub-interacting motifs (UIMs). We discovered that, unlike typical substrates of Ub ligases (E3s), S5a can be ubiquitinated by all E3s tested including multimeric and monomeric Ring finger E3s (MuRF1, Siah2, Parkin, APC, and SCF(betaTRCP1)), the U-box E3, CHIP, and HECT domain E3s (E6AP and Nedd4) when assayed with UbcH5 or related Ub-conjugating enzymes. However, the E2s, UbcH1 and UbcH13/Uev1a, which function by distinct mechanisms, do not support S5a ubiquitination. Thus, S5a can be used for assay of probably all E3s with UbcH5. Ubiquitination of S5a results from its binding to Ub chains on the E3 (after self-ubiquitination) or on the substrate, as a mutant lacking the UIM domain was not ubiquitinated. Furthermore, if the S5a UIM domains were fused to GST, the protein was rapidly ubiquitinated by MuRF1 and CHIP. In addition, polyubiquitination (but not monoubiquitination) of MuRF1 allowed S5a to bind to MuRF1 and accelerated S5a ubiquitination. This tendency of S5a to associate with the growing Ub chain can explain how S5a, unlike typical substrates, which are recognized by certain E3s through specific motifs, is ubiquitinated by all E3s tested and is rapidly degraded in vivo.
Collapse
Affiliation(s)
- Tomoaki Uchiki
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Rego MA, Kolling FW, Howlett NG. The Fanconi anemia protein interaction network: casting a wide net. Mutat Res 2008; 668:27-41. [PMID: 19101576 DOI: 10.1016/j.mrfmmm.2008.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/16/2008] [Accepted: 11/25/2008] [Indexed: 11/26/2022]
Abstract
It has long been hypothesized that a defect in the repair of damaged DNA is central to the etiology of Fanconi anemia (FA). Indeed, an increased sensitivity of FA patient-derived cells to the lethal effects of various forms of DNA damaging agents was described over three decades ago [A.J. Fornace, Jr., J.B. Little, R.R. Weichselbaum, DNA repair in a Fanconi's anemia fibroblast cell strain, Biochim. Biophys. Acta 561 (1979) 99-109; Y. Fujiwara, M. Tatsumi, Repair of mitomycin C damage to DNA in mammalian cells and its impairment in Fanconi's anemia cells, Biochem. Biophys. Res. Commun. 66 (1975) 592-598; A.J. Rainbow, M. Howes, Defective repair of ultraviolet- and gamma-ray-damaged DNA in Fanconi's anaemia, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 31 (1977) 191-195]. Furthermore, the cytological hallmark of FA, the DNA crosslink-induced radial chromosome formation, exemplifies an innate impairment in the repair of these particularly cytotoxic DNA lesions [A.D. Auerbach, Fanconi anemia diagnosis and the diepoxybutane (DEB) test, Exp. Hematol. 21 (1993) 731-733]. Precisely defining the collective role of the FA proteins in DNA repair, however, continues to be one of the most enigmatic and challenging questions in the FA field. The first six identified FA proteins (A, C, E, F, G, and D2) harbored no recognizable enzymatic features, precluding association with a specific metabolic process. Consequently, our knowledge of the role of the FA proteins in the DNA damage response has been gleaned primarily through biochemical association studies with non-FA proteins. Here, we provide a chronological discourse of the major FA protein interaction network discoveries, with particular emphasis on the DNA damage response, that have defined our current understanding of the molecular basis of FA.
Collapse
Affiliation(s)
- Meghan A Rego
- Department of Cell and Molecular Biology, University of Rhode Island, 115 Morrill Hall, 45 Lower College Road, Kingston, RI 02881, USA
| | | | | |
Collapse
|
18
|
Abstract
The discovery of the ubiquitin system was awarded with the Nobel Prize in Chemistry in 2004. Labeling of intracellular proteins for degradation by a multienzymatic complex, called the proteasome, was identified as the main function of this system. Subsequently, it was discovered that the attachment of ubiquitin to proteins can modify their function without degradation. Finally, a number of other molecules were recognized to be conjugated to proteins in a manner similar to ubiquitin and were henceforth called ubiquitin-like proteins. This review provides an overview of this class of molecules and its implication for function, subcellular location, and half-life of proteins.
Collapse
Affiliation(s)
- Joerg Herrmann
- Division of Cardiovascular Diseases, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | | | | |
Collapse
|