1
|
Kong W, Hara M, Tokunaga Y, Okumura K, Hirano Y, Miao J, Takenoshita Y, Hashimoto M, Sasaki H, Fujimori T, Wakabayashi Y, Fukagawa T. CENP-C-Mis12 complex establishes a regulatory loop through Aurora B for chromosome segregation. Life Sci Alliance 2025; 8:e202402927. [PMID: 39433344 PMCID: PMC11494776 DOI: 10.26508/lsa.202402927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Establishing the correct kinetochore-microtubule attachment is crucial for faithful chromosome segregation. The kinetochore has various regulatory mechanisms for establishing correct bipolar attachment. However, how the regulations are coupled is not fully understood. Here, we demonstrate a regulatory loop between the kinetochore protein CENP-C and Aurora B kinase, which is critical for the error correction of kinetochore-microtubule attachment. This regulatory loop is mediated through the binding of CENP-C to the outer kinetochore Mis12 complex (Mis12C). Although the Mis12C-binding region of CENP-C is dispensable for mouse development and proliferation in human RPE-1 cells, those cells lacking this region display increased mitotic defects. The CENP-C-Mis12C interaction facilitates the centromeric recruitment of Aurora B and the mitotic error correction in human cells. Given that Aurora B reinforces the CENP-C-Mis12C interaction, our findings reveal a positive regulatory loop between Aurora B recruitment and the CENP-C-Mis12C interaction, which ensures chromosome biorientation for accurate chromosome segregation.
Collapse
Affiliation(s)
- Weixia Kong
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masatoshi Hara
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yurika Tokunaga
- https://ror.org/02120t614 Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Kazuhiro Okumura
- https://ror.org/02120t614 Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yasuhiro Hirano
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Jiahang Miao
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yusuke Takenoshita
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masakazu Hashimoto
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Sasaki
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Yuichi Wakabayashi
- https://ror.org/02120t614 Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Tatsuo Fukagawa
- https://ror.org/035t8zc32 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Ballmer D, Lou HJ, Ishii M, Turk BE, Akiyoshi B. Aurora B controls anaphase onset and error-free chromosome segregation in trypanosomes. J Cell Biol 2024; 223:e202401169. [PMID: 39196069 PMCID: PMC11354203 DOI: 10.1083/jcb.202401169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/12/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Kinetochores form the interface between chromosomes and spindle microtubules and are thus under tight control by a complex regulatory circuitry. The Aurora B kinase plays a central role within this circuitry by destabilizing improper kinetochore-microtubule attachments and relaying the attachment status to the spindle assembly checkpoint. Intriguingly, Aurora B is conserved even in kinetoplastids, a group of early-branching eukaryotes which possess a unique set of kinetochore proteins. It remains unclear how their kinetochores are regulated to ensure faithful chromosome segregation. Here, we show in Trypanosoma brucei that Aurora B activity controls the metaphase-to-anaphase transition through phosphorylation of the divergent Bub1-like protein KKT14. Depletion of KKT14 overrides the metaphase arrest resulting from Aurora B inhibition, while expression of non-phosphorylatable KKT14 delays anaphase onset. Finally, we demonstrate that re-targeting Aurora B to the outer kinetochore suffices to promote mitotic exit but causes extensive chromosome missegregation in anaphase. Our results indicate that Aurora B and KKT14 are involved in an unconventional circuitry controlling cell cycle progression in trypanosomes.
Collapse
Affiliation(s)
- Daniel Ballmer
- Department of Biochemistry, University of Oxford, Oxford, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Midori Ishii
- Department of Biochemistry, University of Oxford, Oxford, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Benjamin E. Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Bellutti L, Macaisne N, El Mossadeq L, Ganeswaran T, Canman JC, Dumont J. Regulation of outer kinetochore assembly during meiosis I and II by CENP-A and KNL-2/M18BP1 in C. elegans oocytes. Curr Biol 2024:S0960-9822(24)01215-6. [PMID: 39353426 DOI: 10.1016/j.cub.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/24/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024]
Abstract
During cell division, chromosomes build kinetochores that attach to spindle microtubules. Kinetochores usually form at the centromeres, which contain CENP-A nucleosomes. The outer kinetochore, which is the core attachment site for microtubules, is composed of the KMN network (Knl1c, Mis12c, and Ndc80c complexes) and is recruited downstream of CENP-A and its partner CENP-C. In C. elegans oocytes, kinetochores have been suggested to form independently of CENP-A nucleosomes. Yet kinetochore formation requires CENP-C, which acts in parallel to the nucleoporin MEL-28ELYS. Here, we used a combination of RNAi and Degron-based depletion of CENP-A (or downstream CENP-C) to demonstrate that both proteins are in fact responsible for a portion of outer kinetochore assembly during meiosis I and are essential for accurate chromosome segregation. The remaining part requires the coordinated action of KNL-2 (ortholog of human M18BP1) and of the nucleoporin MEL-28ELYS. Accordingly, co-depletion of CENP-A (or CENP-C) and KNL-2M18BP1 (or MEL-28ELYS) prevented outer kinetochore assembly in oocytes during meiosis I. We further found that KNL-2M18BP1 and MEL-28ELYS are interdependent for kinetochore localization. Using engineered mutants, we demonstrated that KNL-2M18BP1 recruits MEL-28ELYS at meiotic kinetochores through a specific N-terminal domain, independently of its canonical CENP-A loading factor activity. Finally, we found that meiosis II outer kinetochore assembly was solely dependent on the canonical CENP-A/CENP-C pathway. Thus, like in most cells, outer kinetochore assembly in C. elegans oocytes depends on centromeric chromatin. However, during meiosis I, an additional KNL-2M18BP1 and MEL-28ELYS pathway acts in a non-redundant manner and in parallel to canonical centromeric chromatin.
Collapse
Affiliation(s)
- Laura Bellutti
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Nicolas Macaisne
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Layla El Mossadeq
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | | | - Julie C Canman
- Columbia University, Irving Medical Center, Department of Pathology and Cell Biology, New York, NY 10032, USA
| | - Julien Dumont
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France.
| |
Collapse
|
4
|
Huang M, Qin S, Gao H, Kim W, Xie F, Yin P, John A, Weinshilboum RM, Wang L. The Role of CENPK Splice Variant in Abiraterone Response in Metastatic Castration-Resistant Prostate Cancer. Cells 2024; 13:1622. [PMID: 39404386 PMCID: PMC11475995 DOI: 10.3390/cells13191622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Most patients with metastatic prostate cancer eventually develop resistance to primary androgen deprivation therapy. To identify predictive biomarker for Abiraterone acetate/prednisone resistance, we screened alternative splice variants between responders and non-responders from the PROMOTE clinical study and pinned down the most significant variant, CENPK-delta8. Through preclinical patient-derived mouse xenograft (PDX) and 3D organoids obtained from responders and non-responders, as well as in vitro models, aberrant CENPK-delta8 expression was determined to link to drug resistance via enhanced migration and proliferation. The FLNA and FLOT1 were observed to specifically bind to CENK-delta8 rather than wild-type CENPK, underscoring the role of CENPK-delta8 in cytoskeleton organization and cell migration. Our study, leveraging data from the PROMOTE study, TCGA, and TCGA SpliceReq databases, highlights the important function of alternative splice variants in drug response and their potential to be prognostic biomarkers for improving individual therapeutic outcomes in precision medicine.
Collapse
Affiliation(s)
- Minhong Huang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Fang Xie
- Division of Medical Oncology and Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ping Yin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - August John
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard M. Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Li G, Shen J, Cheng W, Wang X, Wang D, Song Y, Chen Y, Li X, Zhang M, Ding Y, Ma X, Qian Q, Zhang G, Ji J, Liu B. CENPK orchestrates ovarian cancer progression via GOLPH3-Mediated activation of mTOR signaling. Mol Cell Endocrinol 2024; 589:112253. [PMID: 38670220 DOI: 10.1016/j.mce.2024.112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Ovarian cancer stands as a formidable clinical challenge, with limited therapeutic options. This investigation delves into the intricate molecular mechanisms governing ovarian cancer progression and uncovers Centromere Protein K (CENPK) as a central figure in disease pathogenesis. Elevated CENPK levels within ovarian cancer tissues conspicuously align with adverse clinical outcomes, positioning CENPK as a promising prognostic biomarker. Deeper exploration reveals a direct transcriptional connection between CENPK and the E2F1 transcription factor and clearly establishes E2F1's role as the master regulator of CENPK expression in ovarian cancer. Our inquiry revealing a suppression of tumor-promoting signaling pathways, most notably the mTOR pathway, upon CENPK silencing. Intriguingly, CENPK renders ovarian cancer cells more responsive to the mTOR inhibitor rapamycin, introducing a promising avenue for therapeutic intervention. In summation, our study unravels the multifaceted role of CENPK in ovarian cancer progression. It emerges as a prognostic indicator, a pivotal mediator of cell proliferation and tumorigenicity, and a regulator of the mTOR pathway, shedding light on potential therapeutic avenues for this formidable disease.
Collapse
Affiliation(s)
- Gaolian Li
- Department of Gynaecology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, 434100, China
| | - Jing Shen
- Department of Gynaecology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, 434100, China
| | - Wenhao Cheng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiaoshuo Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Dan Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yizhuo Song
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yulu Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiuming Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Meiqi Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yuanyuan Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinhui Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Qilan Qian
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Geng Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
6
|
Curtis GH, Reeve RE, Crespi EJ. Leptin signaling promotes blood vessel formation in the Xenopus tail during the embryo-larval transition. Dev Biol 2024; 512:26-34. [PMID: 38705558 DOI: 10.1016/j.ydbio.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
The signals that regulate peripheral blood vessel formation during development are still under investigation. The hormone leptin promotes blood vessel formation, adipose tissue establishment and expansion, tumor growth, and wound healing, but the underlying mechanisms for these actions are currently unknown. We investigated whether leptin promotes angiogenesis in the developing tail fin using embryonic transgenic xflk-1:GFP Xenopus laevis, which express a green fluorescent protein on vascular endothelial cells to mark blood vessels. We found that leptin protein is expressed in endothelial cells of developing blood vessels and that leptin treatment via injection increased phosphorylated STAT3 signaling, which is indicative of leptin activation of its receptor, in blood vessels of the larval tail fin. Leptin administration via media increased vessel length, branching, and reconnection with the cardinal vein, while decreased leptin signaling via immunoneutralization had an opposing effect on vessel development. We also observed disorganization of major vessels and microvessels of the tail fin and muscle when leptin signaling was decreased. Reduced leptin signaling lowered mRNA expression of cenpk, gpx1, and mmp9, markers for cell proliferation, antioxidation, and extracellular matrix remodeling/cell migration, respectively, in the developing tail, providing insight into three possible mechanisms underlying leptin's promotion of angiogenesis. Together these results illustrate that leptin levels are correlated with embryonic angiogenesis and that leptin coordinates multiple aspects of blood vessel growth and development, showing that leptin is an important morphogen during embryonic development.
Collapse
Affiliation(s)
- Grace H Curtis
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA, 99164.
| | - Robyn E Reeve
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA, 99164
| | - Erica J Crespi
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA, 99164
| |
Collapse
|
7
|
Balachandra V, Shrestha RL, Hammond CM, Lin S, Hendriks IA, Sethi SC, Chen L, Sevilla S, Caplen NJ, Chari R, Karpova TS, McKinnon K, Todd MA, Koparde V, Cheng KCC, Nielsen ML, Groth A, Basrai MA. DNAJC9 prevents CENP-A mislocalization and chromosomal instability by maintaining the fidelity of histone supply chains. EMBO J 2024; 43:2166-2197. [PMID: 38600242 PMCID: PMC11148058 DOI: 10.1038/s44318-024-00093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
The centromeric histone H3 variant CENP-A is overexpressed in many cancers. The mislocalization of CENP-A to noncentromeric regions contributes to chromosomal instability (CIN), a hallmark of cancer. However, pathways that promote or prevent CENP-A mislocalization remain poorly defined. Here, we performed a genome-wide RNAi screen for regulators of CENP-A localization which identified DNAJC9, a J-domain protein implicated in histone H3-H4 protein folding, as a factor restricting CENP-A mislocalization. Cells lacking DNAJC9 exhibit mislocalization of CENP-A throughout the genome, and CIN phenotypes. Global interactome analysis showed that DNAJC9 depletion promotes the interaction of CENP-A with the DNA-replication-associated histone chaperone MCM2. CENP-A mislocalization upon DNAJC9 depletion was dependent on MCM2, defining MCM2 as a driver of CENP-A deposition at ectopic sites when H3-H4 supply chains are disrupted. Cells depleted for histone H3.3, also exhibit CENP-A mislocalization. In summary, we have defined novel factors that prevent mislocalization of CENP-A, and demonstrated that the integrity of H3-H4 supply chains regulated by histone chaperones such as DNAJC9 restrict CENP-A mislocalization and CIN.
Collapse
Grants
- 75N91019D00024 NCI NIH HHS
- HHSN261201500003I NCI NIH HHS
- ZIA BC 010822 HHS | NIH | NCI | Center for Cancer Research (CCR)
- ZIA BC 011704 HHS | NIH | NCI | Center for Cancer Research (CCR)
- 75N91019D00024 NCI NIH HHS
- HHSN261201500003I NCI NIH HHS
- 0135-00096B and 8020-00220B,EPIC-XS-823839,R146-A9159-16-S2 Independent Research Fund Denmark, European Union's Horizon 2020 research and innovation program, Danish Cancer Society
- ERC CoG 724436,R198-2015-269 and R313-2019-448,7016-00042B,NNF21OC0067425,NNF14CC0001 European Research Council, Lund-beck Foundation, Independent Research Fund Denmark, Novo Nordisk Foundation
- HHS | NIH | National Cancer Institute (NCI)
- Independent Research Fund Denmark, European Union’s Horizon 2020 research and innovation program, Danish Cancer Society
- NIH Intramural Research Program, Intramural Research Program of the National Center for Advancing Translational Sciences (NCATS)
Collapse
Affiliation(s)
- Vinutha Balachandra
- Yeast Genome Stability Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roshan L Shrestha
- Yeast Genome Stability Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Colin M Hammond
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Shinjen Lin
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Ivo A Hendriks
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Subhash Chandra Sethi
- Yeast Genome Stability Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lu Chen
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Samantha Sevilla
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raj Chari
- Genome Modification Core (GMC), Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Tatiana S Karpova
- Optical Microscopy Core, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine McKinnon
- Flow Cytometry Core, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Am Todd
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vishal Koparde
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ken Chih-Chien Cheng
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Michael L Nielsen
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Munira A Basrai
- Yeast Genome Stability Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Kixmoeller K, Chang YW, Black BE. Centromeric chromatin clearings demarcate the site of kinetochore formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591177. [PMID: 38712116 PMCID: PMC11071481 DOI: 10.1101/2024.04.26.591177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The centromere is the chromosomal locus that recruits the kinetochore, directing faithful propagation of the genome during cell division. The kinetochore has been interrogated by electron microscopy since the middle of the last century, but with methodologies that compromised fine structure. Using cryo-ET on human mitotic chromosomes, we reveal a distinctive architecture at the centromere: clustered 20-25 nm nucleosome-associated complexes within chromatin clearings that delineate them from surrounding chromatin. Centromere components CENP-C and CENP-N are each required for the integrity of the complexes, while CENP-C is also required to maintain the chromatin clearing. We further visualize the scaffold of the fibrous corona, a structure amplified at unattached kinetochores, revealing crescent-shaped parallel arrays of fibrils that extend >1 μm. Thus, we reveal how the organization of centromeric chromatin creates a clearing at the site of kinetochore formation as well as the nature of kinetochore amplification mediated by corona fibrils.
Collapse
Affiliation(s)
- Kathryn Kixmoeller
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Biochemistry Biophysics Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Biochemistry Biophysics Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Biochemistry Biophysics Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, PA, USA
| |
Collapse
|
9
|
Ballmer D, Akiyoshi B. Dynamic localization of the chromosomal passenger complex in trypanosomes is controlled by the orphan kinesins KIN-A and KIN-B. eLife 2024; 13:RP93522. [PMID: 38564240 PMCID: PMC10987093 DOI: 10.7554/elife.93522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The chromosomal passenger complex (CPC) is an important regulator of cell division, which shows dynamic subcellular localization throughout mitosis, including kinetochores and the spindle midzone. In traditional model eukaryotes such as yeasts and humans, the CPC consists of the catalytic subunit Aurora B kinase, its activator INCENP, and the localization module proteins Borealin and Survivin. Intriguingly, Aurora B and INCENP as well as their localization pattern are conserved in kinetoplastids, an evolutionarily divergent group of eukaryotes that possess unique kinetochore proteins and lack homologs of Borealin or Survivin. It is not understood how the kinetoplastid CPC assembles nor how it is targeted to its subcellular destinations during the cell cycle. Here, we identify two orphan kinesins, KIN-A and KIN-B, as bona fide CPC proteins in Trypanosoma brucei, the kinetoplastid parasite that causes African sleeping sickness. KIN-A and KIN-B form a scaffold for the assembly of the remaining CPC subunits. We show that the C-terminal unstructured tail of KIN-A interacts with the KKT8 complex at kinetochores, while its N-terminal motor domain promotes CPC translocation to spindle microtubules. Thus, the KIN-A:KIN-B complex constitutes a unique 'two-in-one' CPC localization module, which directs the CPC to kinetochores from S phase until metaphase and to the central spindle in anaphase. Our findings highlight the evolutionary diversity of CPC proteins and raise the possibility that kinesins may have served as the original transport vehicles for Aurora kinases in early eukaryotes.
Collapse
Affiliation(s)
- Daniel Ballmer
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological SciencesEdinburghUnited Kingdom
| | - Bungo Akiyoshi
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological SciencesEdinburghUnited Kingdom
| |
Collapse
|
10
|
Di Tommaso E, Giunta S. Dynamic interplay between human alpha-satellite DNA structure and centromere functions. Semin Cell Dev Biol 2024; 156:130-140. [PMID: 37926668 DOI: 10.1016/j.semcdb.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
Maintenance of genome stability relies on functional centromeres for correct chromosome segregation and faithful inheritance of the genetic information. The human centromere is the primary constriction within mitotic chromosomes made up of repetitive alpha-satellite DNA hierarchically organized in megabase-long arrays of near-identical higher order repeats (HORs). Centromeres are epigenetically specified by the presence of the centromere-specific histone H3 variant, CENP-A, which enables the assembly of the kinetochore for microtubule attachment. Notably, centromeric DNA is faithfully inherited as intact haplotypes from the parents to the offspring without intervening recombination, yet, outside of meiosis, centromeres are akin to common fragile sites (CFSs), manifesting crossing-overs and ongoing sequence instability. Consequences of DNA changes within the centromere are just starting to emerge, with unclear effects on intra- and inter-generational inheritance driven by centromere's essential role in kinetochore assembly. Here, we review evidence of meiotic selection operating to mitigate centromere drive, as well as recent reports on centromere damage, recombination and repair during the mitotic cell division. We propose an antagonistic pleiotropy interpretation to reconcile centromere DNA instability as both driver of aneuploidy that underlies degenerative diseases, while also potentially necessary for the maintenance of homogenized HORs for centromere function. We attempt to provide a framework for this conceptual leap taking into consideration the structural interface of centromere-kinetochore interaction and present case scenarios for its malfunctioning. Finally, we offer an integrated working model to connect DNA instability, chromatin, and structural changes with functional consequences on chromosome integrity.
Collapse
Affiliation(s)
- Elena Di Tommaso
- Laboratory of Genome Evolution, Department of Biology & Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Simona Giunta
- Laboratory of Genome Evolution, Department of Biology & Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
11
|
Feng Z, Cui G, Tan J, Liu P, Chen Y, Jiang Z, Han Y, Zeng S, Shen H, Cai C. Immune infiltration related CENPI associates with the malignant features and drug resistance of lung adenocarcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167017. [PMID: 38232915 DOI: 10.1016/j.bbadis.2024.167017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/14/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024]
Abstract
Centromere protein I (CENPI) is an important member of centromeric proteins family, which is crucial to chromosome alignment and segregation. Nevertheless, the interrelation between CENPI expression and tumor progression is in the shadows. In this reserch, we carried out a panoramic bioinformatic analysis about CENPI with TCGA, Timer 2.0, Oncomine, GEPIA, Cbioportal, LinkedOmics and CancerSEA databases. Besides, our bioinformatic results have been further confirmed through in vitro experiments, including Real-Time quantitative PCR (RT-qPCR), immunofluorescence (IF), immunohistochemistry (IHC), western blotting (WB), cell proliferation assays, EdU, cell cycle and apoptosis test. Our results suggested that CENPI was increased in most of the cancers, and may serve as a potential biomarker. What's more, the knock down of CENPI inhibited the expression of CDK2 in lung adenocarcinoma (LUAD), and resulted in the arrest of G0/G1 phase and apoptosis. Besides, CENPI was related to immune cells infiltration and drug sensitivity in pan-cancer, and can act as a potential treatment target to cure cancer patients.
Collapse
Affiliation(s)
- Ziyang Feng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guangzu Cui
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhaohui Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
12
|
Cao J, Hori T, Ariyoshi M, Fukagawa T. Artificial tethering of constitutive centromere-associated network proteins induces CENP-A deposition without Knl2 in DT40 cells. J Cell Sci 2024; 137:jcs261639. [PMID: 38319136 DOI: 10.1242/jcs.261639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024] Open
Abstract
The kinetochore is an essential structure for chromosome segregation. Although the kinetochore is usually formed on a centromere locus, it can be artificially formed at a non-centromere locus by protein tethering. An artificial kinetochore can be formed by tethering of CENP-C or CENP-I, members of the constitutive centromere-associated network (CCAN). However, how CENP-C or CENP-I recruit the centromere-specific histone CENP-A to form an artificial kinetochore remains unclear. In this study, we analyzed this issue using the tethering assay combined with an auxin-inducible degron (AID)-based knockout method in chicken DT40 cells. We found that tethering of CENP-C or CENP-I induced CENP-A incorporation at the non-centromeric locus in the absence of Knl2 (or MIS18BP1), a component of the Mis18 complex, and that Knl2 tethering recruited CENP-A in the absence of CENP-C. We also showed that CENP-C coimmunoprecipitated with HJURP, independently of Knl2. Considering these results, we propose that CENP-C recruits CENP-A by HJURP binding to form an artificial kinetochore. Our results suggest that CENP-C or CENP-I exert CENP-A recruitment activity, independently of Knl2, for artificial kinetochore formation in chicken DT40 cells. This gives us a new insight into mechanisms for CENP-A incorporation.
Collapse
Affiliation(s)
- JingHui Cao
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Ballmer D, Lou HJ, Ishii M, Turk BE, Akiyoshi B. An unconventional regulatory circuitry involving Aurora B controls anaphase onset and error-free chromosome segregation in trypanosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576407. [PMID: 38293145 PMCID: PMC10827227 DOI: 10.1101/2024.01.20.576407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Accurate chromosome segregation during mitosis requires that all chromosomes establish stable bi-oriented attachments with the spindle apparatus. Kinetochores form the interface between chromosomes and spindle microtubules and as such are under tight control by complex regulatory circuitry. As part of the chromosomal passenger complex (CPC), the Aurora B kinase plays a central role within this circuitry by destabilizing improper kinetochore-microtubule attachments and relaying the attachment status to the spindle assembly checkpoint, a feedback control system that delays the onset of anaphase by inhibiting the anaphase-promoting complex/cyclosome. Intriguingly, Aurora B is conserved even in kinetoplastids, an evolutionarily divergent group of eukaryotes, whose kinetochores are composed of a unique set of structural and regulatory proteins. Kinetoplastids do not have a canonical spindle checkpoint and it remains unclear how their kinetochores are regulated to ensure the fidelity and timing of chromosome segregation. Here, we show in Trypanosoma brucei, the kinetoplastid parasite that causes African sleeping sickness, that inhibition of Aurora B using an analogue-sensitive approach arrests cells in metaphase, with a reduction in properly bi-oriented kinetochores. Aurora B phosphorylates several kinetochore proteins in vitro, including the N-terminal region of the divergent Bub1-like protein KKT14. Depletion of KKT14 partially overrides the cell cycle arrest caused by Aurora B inhibition, while overexpression of a non-phosphorylatable KKT14 protein results in a prominent delay in the metaphase-to-anaphase transition. Finally, we demonstrate using a nanobody-based system that re-targeting the catalytic module of the CPC to the outer kinetochore is sufficient to promote mitotic exit but causes massive chromosome mis-segregation in anaphase. Our results indicate that the CPC and KKT14 are involved in an unconventional pathway controlling mitotic exit and error-free chromosome segregation in trypanosomes.
Collapse
Affiliation(s)
- Daniel Ballmer
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Midori Ishii
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent Edinburgh, EH9 3BF, United Kingdom
| | - Benjamin E. Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent Edinburgh, EH9 3BF, United Kingdom
| |
Collapse
|
14
|
He K, Xie M, Hong W, Li Y, Yin Y, Gao X, He Y, Chen Y, You C, Li J. CENPL accelerates cell proliferation, cell cycle, apoptosis, and glycolysis via the MEK1/2-ERK1/2 pathway in hepatocellular carcinoma. Int J Biochem Cell Biol 2024; 166:106481. [PMID: 37914022 DOI: 10.1016/j.biocel.2023.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Centromere protein L (CENPL) is involved in the mitotic process of eukaryotic cells and the development of various types of cancer. However, its role in hepatocellular carcinoma (HCC) remains unclear. This study aimed to investigate the expression and clinical significance of CENPL in HCC, and explore its involvement in regulating HCC cell proliferation, apoptosis, cell cycle, and glycolysis both in vivo and in vitro. CENPL expression was analyzed in HCC and normal liver tissues using The Cancer Genome Atlas, Gene Expression Omnibus mining, real-time quantitative polymerase chain reaction, and immunohistochemistry. Functional assays were used to assess the role of CENPL in HCC cell proliferation, apoptosis, cell cycle, and glycolysis. The potential pathways underlying the regulatory effects of CENPL, as well as the expression of mitogen-activated protein kinase (MAPK) signaling pathway-related molecules and markers of proliferation and glycolysis were investigated. CENPL was significantly upregulated in HCC tissue and associated with multiple clinicopathological features and poor patient prognosis. Univariate and multivariate analyses demonstrated that CENPL may serve as an independent prognostic factor for HCC. Upregulation of CENPL in HCC regulated tumor proliferation and glycolytic processes. Mechanistic studies revealed that differentially expressed genes between the CENPL-overexpressing and control groups were mainly concentrated in the MAPK signaling pathway. Pathway inhibition analysis indicated that CENPL activated the MEK1/2-ERK1/2 signaling pathway to promote proliferation and glycolysis in HCC cells. This study elucidated the role of CENPL in regulating cell proliferation, apoptosis, cell cycle, and glycolysis in HCC. CENPL may represent a therapeutic target and prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Kun He
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Mengyi Xie
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Weifeng Hong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yonghe Li
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yaolin Yin
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xiaojin Gao
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yi He
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yu Chen
- Department of Radiology, The People's Hospital of Yuqing County, Zunyi 564499, Guizhou, China
| | - Chuan You
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China.
| | - Jingdong Li
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China.
| |
Collapse
|
15
|
Hu W, Huang K, Zhang L, Ni J, Xu W, Bi S. Immunomodulatory effect of Atractylodis macrocephala Koidz. polysaccharides in vitro. Poult Sci 2024; 103:103171. [PMID: 37925772 PMCID: PMC10652128 DOI: 10.1016/j.psj.2023.103171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Vaccination is still the main method of preventing most infectious diseases, but there are inefficiencies and inaccuracies in immunization. Studies have reported that Atractylodis macrocephalae Koidz. polysaccharides (RAMP) have immunomodulatory effects, but the mechanisms involved in whether they can modulate the immune response in chickens are not yet clear. The aim of this study was to investigate the effect of RAMP on lymphocytes functions by analyzing cell proliferation, cell cycle, mRNA expression of cytokines and CD4 +/CD8 + ratio. To identify potential molecules involved in immune regulation, we performed a comprehensive transcriptome profiling of chicken lymphocytes. In addition, the adjuvant effect of RAMP was evaluated by detecting indicators of hemagglutination inhibition. When lymphocytes were cultured with RAMP in vitro, the proliferation rate of lymphocytes was increased (P < 0.01), more cells in S phase and G2/M phase (P < 0.01) and the mRNA expression of IFN-γ was upregulated (P < 0.05), while the mRNA expression of TGF-β (P < 0.01) and IL-4 (P < 0.05) was downregulated and the CD4 +/CD8 + ratio was increased (P < 0.05). Transcriptomic results showed that RAMP increased the expression of HIST1H46 (P < 0.05) and CENPP (P < 0.05). Validation of qPCR showed that RAMP may play an important role in regulating cellular immunity by downregulating the Notch pathway. The results also showed that RAMP could increase the serum Newcastle disease virus antibody levels in chickens. These data suggest that RAMP could enhance immune function of lymphocytes and was a candidate vaccine adjuvant in chickens.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Kaiyue Huang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Li Zhang
- Immunology Research Center, Medical Research Institute, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Jingxuan Ni
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Wei Xu
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China.
| |
Collapse
|
16
|
Lin AT, Hammond-Kaarremaa L, Liu HL, Stantis C, McKechnie I, Pavel M, Pavel SSM, Wyss SSÁ, Sparrow DQ, Carr K, Aninta SG, Perri A, Hartt J, Bergström A, Carmagnini A, Charlton S, Dalén L, Feuerborn TR, France CAM, Gopalakrishnan S, Grimes V, Harris A, Kavich G, Sacks BN, Sinding MHS, Skoglund P, Stanton DWG, Ostrander EA, Larson G, Armstrong CG, Frantz LAF, Hawkins MTR, Kistler L. The history of Coast Salish "woolly dogs" revealed by ancient genomics and Indigenous Knowledge. Science 2023; 382:1303-1308. [PMID: 38096292 PMCID: PMC7615573 DOI: 10.1126/science.adi6549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Ancestral Coast Salish societies in the Pacific Northwest kept long-haired "woolly dogs" that were bred and cared for over millennia. However, the dog wool-weaving tradition declined during the 19th century, and the population was lost. In this study, we analyzed genomic and isotopic data from a preserved woolly dog pelt from "Mutton," collected in 1859. Mutton is the only known example of an Indigenous North American dog with dominant precolonial ancestry postdating the onset of settler colonialism. We identified candidate genetic variants potentially linked with their distinct woolly phenotype. We integrated these data with interviews from Coast Salish Elders, Knowledge Keepers, and weavers about shared traditional knowledge and memories surrounding woolly dogs, their importance within Coast Salish societies, and how colonial policies led directly to their disappearance.
Collapse
Affiliation(s)
- Audrey T Lin
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA
| | - Liz Hammond-Kaarremaa
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Vancouver Island University, Nanaimo, BC, Canada
| | - Hsiao-Lei Liu
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Chris Stantis
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA
| | - Iain McKechnie
- Department of Anthropology, University of Victoria, Victoria, BC, Canada
| | - Michael Pavel
- Twana/Skokomish Indian Tribe, Skokomish Nation, WA, USA
| | - Susan sa'hLa mitSa Pavel
- Twana/Skokomish Indian Tribe, Skokomish Nation, WA, USA
- Coast Salish Wool Weaving Center, Skokomish Nation, WA, USA
- The Evergreen State College, Olympia, WA, USA
| | | | | | | | - Sabhrina Gita Aninta
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Angela Perri
- Department of Anthropology, Texas A&M University, College Station, TX, USA
- Chronicle Heritage, Phoenix, AZ, USA
| | - Jonathan Hartt
- Department of Indigenous Studies, Simon Fraser University, Burnaby, BC, Canada
| | - Anders Bergström
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Alberto Carmagnini
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sophy Charlton
- PalaeoBARN, School of Archaeology, University of Oxford, Oxford, UK
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Love Dalén
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Tatiana R Feuerborn
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vaughan Grimes
- Department of Archaeology, Memorial University of Newfoundland, St. Johns, NL, Canada
| | - Alex Harris
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gwénaëlle Kavich
- Museum Conservation Institute, Smithsonian Institution, Suitland, MD, USA
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | | | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - David W G Stanton
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Greger Larson
- PalaeoBARN, School of Archaeology, University of Oxford, Oxford, UK
| | - Chelsey G Armstrong
- Department of Indigenous Studies, Simon Fraser University, Burnaby, BC, Canada
| | - Laurent A F Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Melissa T R Hawkins
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
17
|
Ariyoshi M, Fukagawa T. An updated view of the kinetochore architecture. Trends Genet 2023; 39:941-953. [PMID: 37775394 DOI: 10.1016/j.tig.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023]
Abstract
The kinetochore is a supramolecular complex that facilitates faithful chromosome segregation by bridging the centromere and spindle microtubules. Recent functional and structural studies on the inner kinetochore subcomplex, constitutive centromere-associated network (CCAN) have updated our understanding of kinetochore architecture. While the CCAN core establishes a stable interface with centromeric chromatin, CCAN organization is dynamically altered and coupled with cell cycle progression. Furthermore, the CCAN components, centromere protein (CENP)-C and CENP-T, mediate higher-order assembly of multiple kinetochore units on the regional centromeres of vertebrates. This review highlights new insights into kinetochore rigidity, plasticity, and clustering, which are key to understanding temporal and spatial regulatory mechanisms of chromosome segregation.
Collapse
Affiliation(s)
- Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
18
|
Ding J, Su Y, Liu Y, Xu Y, Yang D, Wang X, Hao S, Zhou H, Li H. The role of CSTF2 in cancer: from technology to clinical application. Cell Cycle 2023; 22:2622-2636. [PMID: 38166492 PMCID: PMC10936678 DOI: 10.1080/15384101.2023.2299624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 12/03/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024] Open
Abstract
A protein called cleavage-stimulating factor subunit 2 (CSTF2, additionally called CSTF-64) binds RNA and is needed for the cleavage and polyadenylation of mRNA. CSTF2 is an important component subunit of the cleavage stimulating factor (CSTF), which is located on the X chromosome and encodes 557 amino acids. There is compelling evidence linking elevated CSTF2 expression to the pathological advancement of cancer and on its impact on the clinical aspects of the disease. The progression of cancers, including hepatocellular carcinoma, melanoma, prostate cancer, breast cancer, and pancreatic cancer, is correlated with the upregulation of CSTF2 expression. This review provides a fresh perspective on the investigation of the associations between CSTF2 and various malignancies and highlights current studies on the regulation of CSTF2. In particular, the mechanism of action and potential clinical applications of CSTF2 in cancer suggest that CSTF2 can serve as a new biomarker and individualized treatment target for a variety of cancer types.
Collapse
Affiliation(s)
- Jiaxiang Ding
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical University, Bengbu, Anhui, China
| | - Yue Su
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical University, Bengbu, Anhui, China
| | - Youru Liu
- The People’s Hospital of Bozhou, Bozhou, Anhui, China
| | - Yuanyuan Xu
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical University, Bengbu, Anhui, China
| | - Dashuai Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province; School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Xuefeng Wang
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical University, Bengbu, Anhui, China
| | - Shuli Hao
- The People’s Hospital of Bozhou, Bozhou, Anhui, China
| | - Huan Zhou
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical University, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical University, Bengbu, Anhui, China
| | - Hongtao Li
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
19
|
Liu R, Dou Z, Tian T, Gao X, Chen L, Yuan X, Wang C, Hao J, Gui P, Mullen M, Aikhionbare F, Niu L, Bi G, Zou P, Zhang X, Fu C, Yao X, Zang J, Liu X. Dynamic phosphorylation of CENP-N by CDK1 guides accurate chromosome segregation in mitosis. J Mol Cell Biol 2023; 15:mjad041. [PMID: 37365681 PMCID: PMC10799313 DOI: 10.1093/jmcb/mjad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/09/2023] [Accepted: 06/24/2023] [Indexed: 06/28/2023] Open
Abstract
In mitosis, accurate chromosome segregation depends on the kinetochore, a supermolecular machinery that couples dynamic spindle microtubules to centromeric chromatin. However, the structure-activity relationship of the constitutive centromere-associated network (CCAN) during mitosis remains uncharacterized. Building on our recent cryo-electron microscopic analyses of human CCAN structure, we investigated how dynamic phosphorylation of human CENP-N regulates accurate chromosome segregation. Our mass spectrometric analyses revealed mitotic phosphorylation of CENP-N by CDK1, which modulates the CENP-L-CENP-N interaction for accurate chromosome segregation and CCAN organization. Perturbation of CENP-N phosphorylation is shown to prevent proper chromosome alignment and activate the spindle assembly checkpoint. These analyses provide mechanistic insight into a previously undefined link between the centromere-kinetochore network and accurate chromosome segregation.
Collapse
Affiliation(s)
- Ran Liu
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Tian Tian
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Xinjiao Gao
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Lili Chen
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Xiao Yuan
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Chunyue Wang
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Jiahe Hao
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Ping Gui
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
- Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - McKay Mullen
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Felix Aikhionbare
- Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Liwen Niu
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Guoqiang Bi
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xuan Zhang
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Jianye Zang
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230026, China
- CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| |
Collapse
|
20
|
Chen Q, Zhao H, Hu J. A robust six-gene prognostic signature based on two prognostic subtypes constructed by chromatin regulators is correlated with immunological features and therapeutic response in lung adenocarcinoma. Aging (Albany NY) 2023; 15:12330-12368. [PMID: 37938151 PMCID: PMC10683604 DOI: 10.18632/aging.205183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023]
Abstract
Accumulating evidence has demonstrated that chromatin regulators (CRs) regulate immune cell infiltration and are correlated with prognoses of patients in some cancers. However, the immunological and prognostic roles of CRs in lung adenocarcinoma (LUAD) are still unclear. Here, we systematically revealed the correlations of CRs with immunological features and the survival in LUAD patients based on a cohort of gene expression datasets from the public TCGA and GEO databases and real RNA-seq data by an integrative analysis using a comprehensive bioinformatics method. Totals of 160 differentially expressed CRs (DECRs) were identified between LUAD and normal lung tissues, and two molecular prognostic subtypes (MPSs) were constructed and evaluated based on 27 prognostic DECRs using five independent datasets (p =0.016, <0.0001, =0.008, =0.00038 and =0.00055, respectively). Six differentially expressed genes (DEGs) (CENPK, ANGPTL4, CCL20, CPS1, GJB3, TPSB2) between two MPSs had the most important prognostic feature and a six-gene prognostic model was established. LUAD patients in the low-risk subgroup showed a higher overall survival (OS) rate than those in the high-risk subgroup in nine independent datasets (p <0.0001, =0.021, =0.016, =0.0099, <0.0001, =0.0045, <0.0001, =0.0038 and =0.00013, respectively). Six-gene prognostic signature had the highest concordance index of 0.673 compared with 19 reported prognostic signatures. The risk score was significantly correlated with immunological features and activities of oncogenic signaling pathways. LUAD patients in the low-risk subgroup benefited more from immunotherapy and were less sensitive to conventional chemotherapy agents. This study provides novel insights into the prognostic and immunological roles of CRs in LUAD.
Collapse
Affiliation(s)
- Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongbo Zhao
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| | - Jing Hu
- Department of Medical Oncology, First People’s Hospital of Yunnan Province, Kunming, China
- Department of Medical Oncology, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
21
|
Arora UP, Sullivan BA, Dumont BL. Variation in the CENP-A sequence association landscape across diverse inbred mouse strains. Cell Rep 2023; 42:113178. [PMID: 37742188 PMCID: PMC10873113 DOI: 10.1016/j.celrep.2023.113178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Centromeres are crucial for chromosome segregation, but their underlying sequences evolve rapidly, imposing strong selection for compensatory changes in centromere-associated kinetochore proteins to assure the stability of genome transmission. While this co-evolution is well documented between species, it remains unknown whether population-level centromere diversity leads to functional differences in kinetochore protein association. Mice (Mus musculus) exhibit remarkable variation in centromere size and sequence, but the amino acid sequence of the kinetochore protein CENP-A is conserved. Here, we apply k-mer-based analyses to CENP-A chromatin profiling data from diverse inbred mouse strains to investigate the interplay between centromere variation and kinetochore protein sequence association. We show that centromere sequence diversity is associated with strain-level differences in both CENP-A positioning and sequence preference along the mouse core centromere satellite. Our findings reveal intraspecies sequence-dependent differences in CENP-A/centromere association and open additional perspectives for understanding centromere-mediated variation in genome stability.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Box 3054, Durham, NC 27710, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA; Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Room 46, Orono, ME 04469, USA.
| |
Collapse
|
22
|
Kale S, Boopathi R, Belotti E, Lone IN, Graies M, Schröder M, Petrova M, Papin C, Bednar J, Ugrinova I, Hamiche A, Dimitrov S. The CENP-A nucleosome: where and when it happens during the inner kinetochore's assembly. Trends Biochem Sci 2023; 48:849-859. [PMID: 37596196 DOI: 10.1016/j.tibs.2023.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023]
Abstract
CENP-A is an essential histone variant that replaces the canonical H3 at the centromeres and marks these regions epigenetically. The CENP-A nucleosome is the specific building block of centromeric chromatin, and it is recognized by CENP-C and CENP-N, two components of the constitutive centromere-associated network (CCAN), the first protein layer of the kinetochore. Recent proposals of the yeast and human (h)CCAN structures position the assembly on exposed DNA, suggesting an elusive spatiotemporal recognition. We summarize the data on the structural organization of the CENP-A nucleosome and the binding of CENP-C and CENP-N. The latter posits an apparent contradiction in engaging the CENP-A nucleosome versus the CCAN. We propose a reconciliatory model for the assembly of CCAN on centromeric chromatin.
Collapse
Affiliation(s)
- Seyit Kale
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey.
| | - Ramachandran Boopathi
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; Laboratoire de Biologie et de Modelisation de la Cellule (LBMC), CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Edwige Belotti
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Imtiaz Nisar Lone
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey
| | - Mohamed Graies
- Institute for Advanced Biosciences, INSERM U1209, CNRS, UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Maria Schröder
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Petrova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Christophe Papin
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Illkirch-Graffenstaden, France
| | - Jan Bednar
- Institute for Advanced Biosciences, INSERM U1209, CNRS, UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Iva Ugrinova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ali Hamiche
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UdS, CNRS, INSERM, Illkirch-Graffenstaden, France.
| | - Stefan Dimitrov
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey; Institute for Advanced Biosciences, INSERM U1209, CNRS, UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
23
|
Dudka D, Akins RB, Lampson MA. FREEDA: An automated computational pipeline guides experimental testing of protein innovation. J Cell Biol 2023; 222:e202212084. [PMID: 37358475 PMCID: PMC10292211 DOI: 10.1083/jcb.202212084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/22/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023] Open
Abstract
Cell biologists typically focus on conserved regions of a protein, overlooking innovations that can shape its function over evolutionary time. Computational analyses can reveal potential innovations by detecting statistical signatures of positive selection that lead to rapid accumulation of beneficial mutations. However, these approaches are not easily accessible to non-specialists, limiting their use in cell biology. Here, we present an automated computational pipeline FREEDA that provides a simple graphical user interface requiring only a gene name; integrates widely used molecular evolution tools to detect positive selection in rodents, primates, carnivores, birds, and flies; and maps results onto protein structures predicted by AlphaFold. Applying FREEDA to >100 centromere proteins, we find statistical evidence of positive selection within loops and turns of ancient domains, suggesting innovation of essential functions. As a proof-of-principle experiment, we show innovation in centromere binding of mouse CENP-O. Overall, we provide an accessible computational tool to guide cell biology research and apply it to experimentally demonstrate functional innovation.
Collapse
Affiliation(s)
- Damian Dudka
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - R. Brian Akins
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A. Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Yatskevich S, Barford D, Muir KW. Conserved and divergent mechanisms of inner kinetochore assembly onto centromeric chromatin. Curr Opin Struct Biol 2023; 81:102638. [PMID: 37343495 DOI: 10.1016/j.sbi.2023.102638] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Kinetochores are large protein complexes built on centromeric chromatin that mediate chromosome segregation. The inner kinetochore, or constitutive centromere-associated network (CCAN), assembles onto centromeres defined by centromere protein A (CENP-A) nucleosomes (CENP-ANuc), and acts as a platform for the regulated assembly of the microtubule-binding outer kinetochore. Recent cryo-EM work revealed structural conservation of CCAN, from the repeating human regional centromeres to the point centromere of budding yeast. Centromere recognition is determined mainly through engagement of duplex DNA proximal to the CENP-A nucleosome by a DNA-binding CENP-LN channel located at the core of CCAN. Additional DNA interactions formed by other CCAN modules create an enclosed DNA-binding chamber. This configuration explains how kinetochores maintain their tight grip on centromeric DNA to withstand the forces of chromosome segregation. Defining the higher-order architecture of complete kinetochore assemblies with implications for understanding the 3D organisation of regional centromeres and mechanisms of kinetochore dynamics, including how kinetochores sense and respond to tension, are important future directions.
Collapse
Affiliation(s)
- Stanislau Yatskevich
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom. https://twitter.com/StanislauY
| | - David Barford
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom.
| | - Kyle W Muir
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom. https://twitter.com/centromuir
| |
Collapse
|
25
|
Wu F, Li G, Shen H, Huang J, Liu Z, Zhu Y, Zhong Q, Ou R, Zhang Q, Liu S. Pan-Cancer Analysis Reveals CENPI as a Potential Biomarker and Therapeutic Target in Adrenocortical Carcinoma. J Inflamm Res 2023; 16:2907-2928. [PMID: 37465344 PMCID: PMC10350421 DOI: 10.2147/jir.s408358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Background Centromere protein I (CENPI) has been shown to affect the tumorigenesis of breast and colorectal cancers. However, its biological role and prognostic value in other kinds of cancer, especially adrenocortical carcinoma (ACC), remained to be further investigated. Methods Various bioinformatics tools were adopted for exploring the significance of differential expression of CENPI in several malignant tumors from databases such as Depmap portal, GTEx, and TCGA. ACC was selected for further analyzed, and information such as clinicopathological features, the prognostic outcome of diverse subgroups, differentially expressed genes (DEGs), co-expression genes, as well as levels of tumor-infiltrating immune cells (TIIC), was extracted from multiple databases. To verify the possibility of CENPI as a therapeutic target in ACC, drug sensitivity assay and si-RNA mediate knockdown of CENPI were carried out. Results The pan-cancer analyses showed that the CENPI mRNA expression levels differed significantly among most cancer types. Additionally, a high precision in cancer prediction and close relation with cancer survival indicated that CENPI could be a potential candidate biomarker to diagnose and predict cancer prognosis. In ACC, CENPI was closely related to multiple clinical characteristics, such as pathological stage and primary therapy outcome. High CENPI levels predicted poor overall survival (OS), progression-free interval (PFI), and disease-specific survival (DSS) of ACC patients, particularly for different clinical subgroups. Moreover, the expression of CENPI showed positive relationship to Th2 cells but negatively related to most of the TIICs. Furthermore, drug sensitivity assay showed that vorinostat inhibit CENPI expression and ACC cell growth. Additionally, si-RNA mediated knockdown of CENPI inhibited ACC cell growth and invasion and showed synergistic anti-proliferation effect with AURKB inhibitor barasertib. Conclusion Pan-cancer analysis demonstrated that CENPI is a potential diagnostic and prognostic biomarker in various cancers as well as an anti-ACC therapeutic target.
Collapse
Affiliation(s)
- Feima Wu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Guangchao Li
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Huijuan Shen
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Jing Huang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Zhi Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Yangmin Zhu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Qi Zhong
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Ruiming Ou
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Qing Zhang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
26
|
Hara M, Ariyoshi M, Sano T, Nozawa RS, Shinkai S, Onami S, Jansen I, Hirota T, Fukagawa T. Centromere/kinetochore is assembled through CENP-C oligomerization. Mol Cell 2023:S1097-2765(23)00379-9. [PMID: 37295434 DOI: 10.1016/j.molcel.2023.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Kinetochore is an essential protein complex required for accurate chromosome segregation. The constitutive centromere-associated network (CCAN), a subcomplex of the kinetochore, associates with centromeric chromatin and provides a platform for the kinetochore assembly. The CCAN protein CENP-C is thought to be a central hub for the centromere/kinetochore organization. However, the role of CENP-C in CCAN assembly needs to be elucidated. Here, we demonstrate that both the CCAN-binding domain and the C-terminal region that includes the Cupin domain of CENP-C are necessary and sufficient for chicken CENP-C function. Structural and biochemical analyses reveal self-oligomerization of the Cupin domains of chicken and human CENP-C. We find that the CENP-C Cupin domain oligomerization is vital for CENP-C function, centromeric localization of CCAN, and centromeric chromatin organization. These results suggest that CENP-C facilitates the centromere/kinetochore assembly through its oligomerization.
Collapse
Affiliation(s)
- Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoki Sano
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryu-Suke Nozawa
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Soya Shinkai
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Shuichi Onami
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | | | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
27
|
Malik KK, Sridhara SC, Lone KA, Katariya PD, Pulimamidi D, Tyagi S. MLL methyltransferases regulate H3K4 methylation to ensure CENP-A assembly at human centromeres. PLoS Biol 2023; 21:e3002161. [PMID: 37379335 PMCID: PMC10335677 DOI: 10.1371/journal.pbio.3002161] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/11/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023] Open
Abstract
The active state of centromeres is epigenetically defined by the presence of CENP-A interspersed with histone H3 nucleosomes. While the importance of dimethylation of H3K4 for centromeric transcription has been highlighted in various studies, the identity of the enzyme(s) depositing these marks on the centromere is still unknown. The MLL (KMT2) family plays a crucial role in RNA polymerase II (Pol II)-mediated gene regulation by methylating H3K4. Here, we report that MLL methyltransferases regulate transcription of human centromeres. CRISPR-mediated down-regulation of MLL causes loss of H3K4me2, resulting in an altered epigenetic chromatin state of the centromeres. Intriguingly, our results reveal that loss of MLL, but not SETD1A, increases co-transcriptional R-loop formation, and Pol II accumulation at the centromeres. Finally, we report that the presence of MLL and SETD1A is crucial for kinetochore maintenance. Altogether, our data reveal a novel molecular framework where both the H3K4 methylation mark and the methyltransferases regulate stability and identity of the centromere.
Collapse
Affiliation(s)
- Kausika Kumar Malik
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Sreerama Chaitanya Sridhara
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Kaisar Ahmad Lone
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, India
| | - Payal Deepakbhai Katariya
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Deepshika Pulimamidi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Shweta Tyagi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| |
Collapse
|
28
|
Becker LS, Al Smadi MA, Koch H, Abdul-Khaliq H, Meese E, Abu-Halima M. Towards a More Comprehensive Picture of the MicroRNA-23a/b-3p Impact on Impaired Male Fertility. BIOLOGY 2023; 12:800. [PMID: 37372085 PMCID: PMC10294816 DOI: 10.3390/biology12060800] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
The expression levels of various genes involved in human spermatogenesis are influenced by microRNAs (miRNAs), specifically microRNA-23a/b-3p. While certain genes are essential for spermatogenesis and male germ cell function, the regulation of their expression remains unclear. This study aimed to investigate whether microRNA-23a/b-3p targets genes involved in spermatogenesis and the impact of this targeting on the expression levels of these genes in males with impaired fertility. In-silico prediction and dual-luciferase assays were used to determine the potential connections between microRNA-23a/b-3p overexpression and reduced expression levels of 16 target genes. Reverse transcription-quantitative PCR (RT-qPCR) was conducted on 41 oligoasthenozoospermic men receiving infertility treatment and 41 age-matched normozoospermic individuals to verify the lower expression level of target genes. By employing dual-luciferase assays, microRNA-23a-3p was found to directly target eight genes, namely NOL4, SOX6, GOLGA6C, PCDHA9, G2E3, ZNF695, CEP41, and RGPD1, while microRNA-23b-3p directly targeted three genes, namely SOX6, GOLGA6C, and ZNF695. The intentional alteration of the microRNA-23a/b binding site within the 3' untranslated regions (3'UTRs) of the eight genes resulted in the loss of responsiveness to microRNA-23a/b-3p. This confirmed that NOL4, SOX6, GOLGA6C, PCDHA9, and CEP41 are direct targets for microRNA-23a-3p, while NOL4, SOX6, and PCDHA9 are direct targets for microRNA-23b-3p. The sperm samples of oligoasthenozoospermic men had lower expression levels of target genes than age-matched normozoospermic men. Correlation analysis indicated a positive correlation between basic semen parameters and lower expression levels of target genes. The study suggests that microRNA-23a/b-3p plays a significant role in spermatogenesis by controlling the expression of target genes linked to males with impaired fertility and has an impact on basic semen parameters.
Collapse
Affiliation(s)
- Lea Simone Becker
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Mohammad A. Al Smadi
- Reproductive Endocrinology and IVF Unit, King Hussein Medical Centre, Amman 11855, Jordan
| | - Hanna Koch
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Hashim Abdul-Khaliq
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Masood Abu-Halima
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421 Homburg, Germany
| |
Collapse
|
29
|
Shi T, Hu Z, Tian L, Yang Y. Advances in lung adenocarcinoma: A novel perspective on prognoses and immune responses of CENPO as an oncogenic superenhancer. Transl Oncol 2023; 34:101691. [PMID: 37207381 DOI: 10.1016/j.tranon.2023.101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent form of lung cancer globally, and its treatment remains a significant challenge. Therefore, it is crucial to comprehend the microenvironment to improve therapy and prognosis urgently. In this study, we utilized bioinformatic methods to analyze the transcription expression profile of patient samples with complete clinical information from the TCGA-LUAD datasets. To validate our findings, we also analyzed the Gene Expression Omnibus (GEO) datasets. The super-enhancer (SE) was visualized using the peaks of the H3K27ac and H3K4me1 ChIP-seq signal, which were identified by the Integrative Genomics Viewer (IGV). To further investigate the role of Centromere protein O (CENPO) in LUAD, we conducted various assays including Western blot, qRT-PCR, flow cytometry, wound healing and transwell assays to assess the cell functions of CENPO in vitro. The overexpression of CENPO is linked to a poor prognosis in patients with LUAD. Strong signal peaks of H3K27ac and H3K4me1 were also observed near the predicted SE regions of CENPO. CENPO was found to be positively associated with the expression levels of immune checkpoints and drug IC50 value (Roscovitine and TGX221), but negatively associated with the fraction levels of several immature cells and drug IC50 value (CCT018159, GSK1904529A, Lenaildomide, and PD-173074). Additionally, CENPO-associated prognostic signature (CPS) was identified as an independent risk factor. The high-risk group for LUAD is identified based on CPS enrichment, which involved not only endocytosis that transfers mitochondria to promote cell survival in response to chemotherapy but also cell cycle promotion that leads to drug resistance. The removal of CENPO significantly suppressed metastasis and induced arrest and apoptosis of LUAD cells. The involvement of CENPO in the immunosuppression of LUAD provides a prognostic signature for LUAD patients.
Collapse
Affiliation(s)
- Tongdong Shi
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital of Chongqing Medical University, No.288 Tianwen Avenue, Nan'an District, Chongqing 401336, People's Republic of China
| | - Zaoxiu Hu
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, No.519 Kunzhou Road, Xishan District, Kunming, Yunnan 650118, People's Republic of China
| | - Li Tian
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital of Chongqing Medical University, No.288 Tianwen Avenue, Nan'an District, Chongqing 401336, People's Republic of China
| | - Yanlong Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China.
| |
Collapse
|
30
|
van den Berg SJW, Jansen LET. SUMO control of centromere homeostasis. Front Cell Dev Biol 2023; 11:1193192. [PMID: 37181753 PMCID: PMC10172491 DOI: 10.3389/fcell.2023.1193192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Centromeres are unique chromosomal loci that form the anchorage point for the mitotic spindle during mitosis and meiosis. Their position and function are specified by a unique chromatin domain featuring the histone H3 variant CENP-A. While typically formed on centromeric satellite arrays, CENP-A nucleosomes are maintained and assembled by a strong self-templated feedback mechanism that can propagate centromeres even at non-canonical sites. Central to the epigenetic chromatin-based transmission of centromeres is the stable inheritance of CENP-A nucleosomes. While long-lived at centromeres, CENP-A can turn over rapidly at non-centromeric sites and even erode from centromeres in non-dividing cells. Recently, SUMO modification of the centromere complex has come to the forefront as a mediator of centromere complex stability, including CENP-A chromatin. We review evidence from different models and discuss the emerging view that limited SUMOylation appears to play a constructive role in centromere complex formation, while polySUMOylation drives complex turnover. The deSUMOylase SENP6/Ulp2 and the proteins segregase p97/Cdc48 constitute the dominant opposing forces that balance CENP-A chromatin stability. This balance may be key to ensuring proper kinetochore strength at the centromere while preventing ectopic centromere formation.
Collapse
Affiliation(s)
- Sebastiaan J. W. van den Berg
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Instituto Gulbenkian de Ciencia, Oeiras, Portugal
| | - Lars E. T. Jansen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Taylor SJP, Bel Borja L, Soubigou F, Houston J, Cheerambathur DK, Pelisch F. BUB-1 and CENP-C recruit PLK-1 to control chromosome alignment and segregation during meiosis I in C. elegans oocytes. eLife 2023; 12:e84057. [PMID: 37067150 PMCID: PMC10156168 DOI: 10.7554/elife.84057] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 04/14/2023] [Indexed: 04/18/2023] Open
Abstract
Phosphorylation is a key post-translational modification that is utilised in many biological processes for the rapid and reversible regulation of protein localisation and activity. Polo-like kinase 1 (PLK-1) is essential for both mitotic and meiotic cell divisions, with key functions being conserved in eukaryotes. The roles and regulation of PLK-1 during mitosis have been well characterised. However, the discrete roles and regulation of PLK-1 during meiosis have remained obscure. Here, we used Caenorhabditis elegans oocytes to show that PLK-1 plays distinct roles in meiotic spindle assembly and/or stability, chromosome alignment and segregation, and polar body extrusion during meiosis I. Furthermore, by a combination of live imaging and biochemical analysis we identified the chromosomal recruitment mechanisms of PLK-1 during C. elegans oocyte meiosis. The spindle assembly checkpoint kinase BUB-1 directly recruits PLK-1 to the kinetochore and midbivalent while the chromosome arm population of PLK-1 depends on a direct interaction with the centromeric-associated protein CENP-CHCP-4. We found that perturbing both BUB-1 and CENP-CHCP-4 recruitment of PLK-1 leads to severe meiotic defects, resulting in highly aneuploid oocytes. Overall, our results shed light on the roles played by PLK-1 during oocyte meiosis and provide a mechanistic understanding of PLK-1 targeting to meiotic chromosomes.
Collapse
Affiliation(s)
- Samuel JP Taylor
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Laura Bel Borja
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Flavie Soubigou
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jack Houston
- Ludwig Institute for Cancer Research, San Diego BranchLa JollaUnited States
| | - Dhanya K Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Federico Pelisch
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
32
|
Jiang H, Ariyoshi M, Hori T, Watanabe R, Makino F, Namba K, Fukagawa T. The cryo-EM structure of the CENP-A nucleosome in complex with ggKNL2. EMBO J 2023; 42:e111965. [PMID: 36744604 PMCID: PMC10015371 DOI: 10.15252/embj.2022111965] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
Centromere protein A (CENP-A) nucleosomes containing the centromere-specific histone H3 variant CENP-A represent an epigenetic mark that specifies centromere position. The Mis18 complex is a licensing factor for new CENP-A deposition via the CENP-A chaperone, Holliday junction recognition protein (HJURP), on the centromere chromatin. Chicken KINETOCHORE NULL2 (KNL2) (ggKNL2), a Mis18 complex component, has a CENP-C-like motif, and our previous study suggested that ggKNL2 directly binds to the CENP-A nucleosome to recruit HJURP/CENP-A to the centromere. However, the molecular basis for CENP-A nucleosome recognition by ggKNL2 has remained unclear. Here, we present the cryo-EM structure of the chicken CENP-A nucleosome in complex with a ggKNL2 fragment containing the CENP-C-like motif. Chicken KNL2 distinguishes between CENP-A and histone H3 in the nucleosome using the CENP-C-like motif and its downstream region. Both the C-terminal tail and the RG-loop of CENP-A are simultaneously recognized as CENP-A characteristics. The CENP-A nucleosome-ggKNL2 interaction is thus essential for KNL2 functions. Furthermore, our structural, biochemical, and cell biology data indicate that ggKNL2 changes its binding partner at the centromere during chicken cell cycle progression.
Collapse
Affiliation(s)
- Honghui Jiang
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Mariko Ariyoshi
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Tetsuya Hori
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Reito Watanabe
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Fumiaki Makino
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- JEOL Ltd.AkishimaJapan
| | - Keiichi Namba
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- RIKEN Center for Biosystems Dynamics Research and SPring‐8 CenterSuitaJapan
- JEOL YOKOGUSHI Research Alliance LaboratoriesOsaka UniversitySuitaJapan
| | - Tatsuo Fukagawa
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| |
Collapse
|
33
|
MMR Deficiency Defines Distinct Molecular Subtype of Breast Cancer with Histone Proteomic Networks. Int J Mol Sci 2023; 24:ijms24065327. [PMID: 36982402 PMCID: PMC10049366 DOI: 10.3390/ijms24065327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Mismatch repair (MMR) alterations are important prognostic and predictive biomarkers in a variety of cancer subtypes, including colorectal and endometrial. However, in breast cancer (BC), the distinction and clinical significance of MMR are largely unknown. This may be due in part to the fact that genetic alterations in MMR genes are rare and only seen to occur in around 3% of BCs. In the present study, we analyzed TCGA data using a multi-sample protein–protein interaction (PPI) analysis tool, Proteinarium, and showed a distinct separation between specific MMR-deficient and -intact networks in a cohort of 994 BC patients. In the PPI networks specific to MMR deficiency, highly connected clusters of histone genes were identified. We also found the distribution of MMR-deficient BC to be more prevalent in HER2-enriched and triple-negative (TN) BC subtypes compared to luminal BCs. We recommend defining MMR-deficient BC by next-generation sequencing (NGS) when any somatic mutation is detected in one of the seven MMR genes.
Collapse
|
34
|
Dudka D, Akins RB, Lampson MA. FREEDA: an automated computational pipeline guides experimental testing of protein innovation by detecting positive selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530329. [PMID: 36909479 PMCID: PMC10002610 DOI: 10.1101/2023.02.27.530329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Cell biologists typically focus on conserved regions of a protein, overlooking innovations that can shape its function over evolutionary time. Computational analyses can reveal potential innovations by detecting statistical signatures of positive selection that leads to rapid accumulation of beneficial mutations. However, these approaches are not easily accessible to non-specialists, limiting their use in cell biology. Here, we present an automated computational pipeline FREEDA (Finder of Rapidly Evolving Exons in De novo Assemblies) that provides a simple graphical user interface requiring only a gene name, integrates widely used molecular evolution tools to detect positive selection, and maps results onto protein structures predicted by AlphaFold. Applying FREEDA to >100 mouse centromere proteins, we find evidence of positive selection in intrinsically disordered regions of ancient domains, suggesting innovation of essential functions. As a proof-of-principle experiment, we show innovation in centromere binding of CENP-O. Overall, we provide an accessible computational tool to guide cell biology research and apply it to experimentally demonstrate functional innovation.
Collapse
|
35
|
Martino NA, Picardi E, Ciani E, D’Erchia AM, Bogliolo L, Ariu F, Mastrorocco A, Temerario L, Mansi L, Palumbo V, Pesole G, Dell’Aquila ME. Cumulus Cell Transcriptome after Cumulus-Oocyte Complex Exposure to Nanomolar Cadmium in an In Vitro Animal Model of Prepubertal and Adult Age. BIOLOGY 2023; 12:biology12020249. [PMID: 36829526 PMCID: PMC9953098 DOI: 10.3390/biology12020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Cadmium (Cd), a highly toxic pollutant, impairs oocyte fertilization, through oxidative damage on cumulus cells (CCs). This study analysed the transcriptomic profile of CCs of cumulus-oocyte complexes (COCs) from adult and prepubertal sheep, exposed to Cd nanomolar concentration during in vitro maturation. In both age-groups, CCs of matured oocytes underwent RNA-seq, data analysis and validation. Differentially expressed genes (DEGs) were identified in adult (n = 99 DEGs) and prepubertal (n = 18 DEGs) CCs upon Cd exposure. Transcriptomes of adult CCs clustered separately between Cd-exposed and control samples, whereas prepubertal ones did not as observed by Principal Component Analysis. The transcriptomic signature of Cd-induced CC toxicity was identified by gene annotation and literature search. Genes associated with previous studies on ovarian functions and/or Cd effects were confirmed and new genes were identified, thus implementing the knowledge on their involvement in such processes. Enrichment and validation analysis showed that, in adult CCs, Cd acted as endocrine disruptor on DEGs involved in hormone biosynthesis, cumulus expansion, regulation of cell signalling, growth and differentiation and oocyte maturation, whereas in prepubertal CCs, Cd affected DEGs involved in CC development and viability and CC-oocyte communications. In conclusion, these DEGs could be used as valuable non-invasive biomarkers for oocyte competence.
Collapse
Affiliation(s)
- Nicola Antonio Martino
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
- Correspondence: ; Tel.: +39-0805443888
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Elena Ciani
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Anna Maria D’Erchia
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Via Vienna n. 2, 07100 Sassari, Italy
| | - Federica Ariu
- Department of Veterinary Medicine, University of Sassari, Via Vienna n. 2, 07100 Sassari, Italy
| | - Antonella Mastrorocco
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Letizia Temerario
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Luigi Mansi
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Valeria Palumbo
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| | - Maria Elena Dell’Aquila
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy
| |
Collapse
|
36
|
Zhang W, Wan Y, Zhang Y, Liu Q, Zhu X. CSTF2 Acts as a Prognostic Marker Correlated with Immune Infiltration in Hepatocellular Carcinoma. Cancer Manag Res 2022; 14:2691-2709. [PMID: 36117731 PMCID: PMC9481280 DOI: 10.2147/cmar.s359545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background Cleavage stimulation factor 2 (CSTF2) encodes a nuclear protein that is implicated in the development of various cancers. However, the role of CSTF2 in hepatocellular carcinoma (HCC) has not been understood. This study aims to explore the function of CSTF2 in HCC. Methods The expression, diagnostic capability, prognostic value, and immune cell effect of CSTF2 in HCC were explored using various databases. The expression level of CSTF2 were validated in our cell lines. The effect of CSTF2 on hepatocarcinogenesis was explored by CSTF2 silencing. Results CSTF2 expression was significantly elevated in HCC and correlated with multiple clinicopathological characteristics. CSTF2 exhibited good diagnostic capability in discriminating HCC samples from nontumorous samples. High CSTF2 expression was significantly related to poor overall survival. Univariate and multivariate Cox regression analyses suggested that CSTF2 expression was an independent risk factor for HCC. These results were validated in ICGC cohorts. In addition, the nomogram based on CSTF2 showed better predictive performance than the AJCC staging system in TCGA and ICGC cohorts. Functional enrichment analysis revealed that CSTF2-related genes were involved in DNA/RNA processing and the cell cycle. In addition, we found that CSTF2 expression was closely related to the levels of various infiltrating immune cells, especially neutrophils. Moreover, some immune checkpoints had positive relationships with CSTF2 expression. CSTF2 silencing inhibited proliferation, invasion and migration, and promoted apoptosis in HepG2 cells. Western blotting analysis revealed that CSTF2 silencing inactivated the Wnt/β-catenin signaling pathway. Conclusion High CSTF2 expression not only correlates with unfavorable outcomes but also affects immune cell infiltration and immune checkpoint expression in HCC. CSTF2 silencing can alleviate the malignant phenotypes of hepatic cancer cell by inactivating the Wnt/β-catenin signaling pathway. These results indicate that CSTF2 can serve as a promising prognostic marker and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Wang Zhang
- Departments of Gastroenterology and Hepatology, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yipeng Wan
- Departments of Gastroenterology and Hepatology, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yue Zhang
- Departments of Gastroenterology and Hepatology, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Qi Liu
- Departments of Gastroenterology and Hepatology, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xuan Zhu
- Departments of Gastroenterology and Hepatology, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
37
|
Structural insights into human CCAN complex assembled onto DNA. Cell Discov 2022; 8:90. [PMID: 36085283 PMCID: PMC9463443 DOI: 10.1038/s41421-022-00439-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/19/2022] [Indexed: 11/08/2022] Open
Abstract
In mitosis, accurate chromosome segregation depends on kinetochores that connect centromeric chromatin to spindle microtubules. The centromeres of budding yeast, which are relatively simple, are connected to individual microtubules via a kinetochore constitutive centromere associated network (CCAN). However, the complex centromeres of human chromosomes comprise millions of DNA base pairs and attach to multiple microtubules. Here, by use of cryo-electron microscopy and functional analyses, we reveal the molecular basis of how human CCAN interacts with duplex DNA and facilitates accurate chromosome segregation. The overall structure relates to the cooperative interactions and interdependency of the constituent sub-complexes of the CCAN. The duplex DNA is topologically entrapped by human CCAN. Further, CENP-N does not bind to the RG-loop of CENP-A but to DNA in the CCAN complex. The DNA binding activity is essential for CENP-LN localization to centromere and chromosome segregation during mitosis. Thus, these analyses provide new insights into mechanisms of action underlying kinetochore assembly and function in mitosis.
Collapse
|
38
|
Sedzro DM, Yuan X, Mullen M, Ejaz U, Yang T, Liu X, Song X, Tang YC, Pan W, Zou P, Gao X, Wang D, Wang Z, Dou Z, Liu X, Yao X. Phosphorylation of CENP-R by Aurora B regulates kinetochore-microtubule attachment for accurate chromosome segregation. J Mol Cell Biol 2022; 14:6693714. [PMID: 36069839 PMCID: PMC9802239 DOI: 10.1093/jmcb/mjac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/14/2022] [Accepted: 09/01/2022] [Indexed: 01/14/2023] Open
Abstract
Error-free mitosis depends on accurate chromosome attachment to spindle microtubules via a fine structure called the centromere that is epigenetically specified by the enrichment of CENP-A nucleosomes. Centromere maintenance during mitosis requires CENP-A-mediated deposition of constitutive centromere-associated network that establishes the inner kinetochore and connects centromeric chromatin to spindle microtubules during mitosis. Although previously proposed to be an adaptor of retinoic acid receptor, here, we show that CENP-R synergizes with CENP-OPQU to regulate kinetochore-microtubule attachment stability and ensure accurate chromosome segregation in mitosis. We found that a phospho-mimicking mutation of CENP-R weakened its localization to the kinetochore, suggesting that phosphorylation may regulate its localization. Perturbation of CENP-R phosphorylation is shown to prevent proper kinetochore-microtubule attachment at metaphase. Mechanistically, CENP-R phosphorylation disrupts its binding with CENP-U. Thus, we speculate that Aurora B-mediated CENP-R phosphorylation promotes the correction of improper kinetochore-microtubule attachment in mitosis. As CENP-R is absent from yeast, we reasoned that metazoan evolved an elaborate chromosome stability control machinery to ensure faithful chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Divine Mensah Sedzro
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Xiao Yuan
- Correspondence to: Xiao Yuan, E-mail:
| | - McKay Mullen
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Umer Ejaz
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Tongtong Yang
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Xu Liu
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xiaoyu Song
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Yun-Chi Tang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Weijun Pan
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinjiao Gao
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Dongmei Wang
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China
| | - Zhikai Wang
- MOE Key Laboratory for Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, National Center for Cross-Disciplinary Sciences & CAS Center for Excellence in Molecular Cell Science, Hefei 230026, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Zhen Dou
- Correspondence to: Zhen Dou, E-mail:
| | - Xing Liu
- Correspondence to: Xing Liu, E-mail:
| | | |
Collapse
|
39
|
Navarro AP, Cheeseman IM. Dynamic cell cycle-dependent phosphorylation modulates CENP-L-CENP-N centromere recruitment. Mol Biol Cell 2022; 33:ar87. [PMID: 35830614 PMCID: PMC9582625 DOI: 10.1091/mbc.e22-06-0239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The kinetochore is a macromolecular structure that is needed to ensure proper chromosome segregation during each cellular division. The kinetochore is assembled upon a platform of the 16-subunit constitutive centromere-associated network (CCAN), which is present at centromeres throughout the cell cycle. The nature and regulation of CCAN assembly, interactions, and dynamics needed to facilitate changing centromere properties and requirements remain to be fully elucidated. The CENP-LN complex is a CCAN component that displays unique cell cycle–dependent localization behavior, peaking in the S phase. Here, we demonstrate that phosphorylation of CENP-L and CENP-N controls CENP-LN complex formation and localization in a cell cycle–dependent manner. Mimicking constitutive phosphorylation of either CENP-L or CENP-N or simultaneously preventing phosphorylation of both proteins prevents CENP-LN localization and disrupts chromosome segregation. Our work suggests that cycles of phosphorylation and dephosphorylation are critical for CENP-LN complex recruitment and dynamics at kinetochores to enable cell cycle–dependent CCAN reorganization.
Collapse
Affiliation(s)
- Alexandra P Navarro
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
40
|
Uzoeto HO, Cosmas S, Ajima JN, Arazu AV, Didiugwu CM, Ekpo DE, Ibiang GO, Durojaye OA. Computer-aided molecular modeling and structural analysis of the human centromere protein–HIKM complex. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Protein–peptide and protein–protein interactions play an essential role in different functional and structural cellular organizational aspects. While Cryo-EM and X-ray crystallography generate the most complete structural characterization, most biological interactions exist in biomolecular complexes that are neither compliant nor responsive to direct experimental analysis. The development of computational docking approaches is therefore necessary. This starts from component protein structures to the prediction of their complexes, preferentially with precision close to complex structures generated by X-ray crystallography.
Results
To guarantee faithful chromosomal segregation, there must be a proper assembling of the kinetochore (a protein complex with multiple subunits) at the centromere during the process of cell division. As an important member of the inner kinetochore, defects in any of the subunits making up the CENP-HIKM complex lead to kinetochore dysfunction and an eventual chromosomal mis-segregation and cell death. Previous studies in an attempt to understand the assembly and mechanism devised by the CENP-HIKM in promoting the functionality of the kinetochore have reconstituted the protein complex from different organisms including fungi and yeast. Here, we present a detailed computational model of the physical interactions that exist between each component of the human CENP-HIKM, while validating each modeled structure using orthologs with existing crystal structures from the protein data bank.
Conclusions
Results from this study substantiate the existing hypothesis that the human CENP-HIK complex shares a similar architecture with its fungal and yeast orthologs, and likewise validate the binding mode of CENP-M to the C-terminus of the human CENP-I based on existing experimental reports.
Graphical abstract
Collapse
|
41
|
The Mis6 inner kinetochore subcomplex maintains CENP-A nucleosomes against centromeric non-coding transcription during mitosis. Commun Biol 2022; 5:818. [PMID: 35970865 PMCID: PMC9378642 DOI: 10.1038/s42003-022-03786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Centromeres are established by nucleosomes containing the histone H3 variant CENP-A. CENP-A is recruited to centromeres by the Mis18–HJURP machinery. During mitosis, CENP-A recruitment ceases, implying the necessity of CENP-A maintenance at centromeres, although the exact underlying mechanism remains elusive. Herein, we show that the inner kinetochore protein Mis6 (CENP-I) and Mis15 (CENP-N) retain CENP-A during mitosis in fission yeast. Eliminating Mis6 or Mis15 during mitosis caused immediate loss of pre-existing CENP-A at centromeres. CENP-A loss occurred due to the transcriptional upregulation of non-coding RNAs at the central core region of centromeres, as confirmed by the observation RNA polymerase II inhibition preventing CENP-A loss from centromeres in the mis6 mutant. Thus, we concluded that the inner kinetochore complex containing Mis6–Mis15 blocks the indiscriminate transcription of non-coding RNAs at the core centromere, thereby retaining the epigenetic inheritance of CENP-A during mitosis. The kinetochore protein Mis6 (CENP-I) plays an important role in CENP-A maintenance during mitosis in fission yeast and blocks the indiscriminate transcription of non-coding RNAs at the core centromere to retain CENP-A during mitosis.
Collapse
|
42
|
Liu Y, Yao Y, Liao B, Zhang H, Yang Z, Xia P, Jiang X, Ma W, Wu X, Mei C, Wang G, Gao M, Xu K, GongYe X, Cheng Z, Jiang P, Chen X, Yuan Y. A positive feedback loop of CENPU/E2F6/E2F1 facilitates proliferation and metastasis via ubiquitination of E2F6 in hepatocellular carcinoma. Int J Biol Sci 2022; 18:4071-4087. [PMID: 35844791 PMCID: PMC9274498 DOI: 10.7150/ijbs.69495] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/05/2022] [Indexed: 11/10/2022] Open
Abstract
Centromere protein U (CENPU), a centromere-binding protein required for cellular mitosis, has been reported to be closely associated with carcinogenesis in multiple malignancies; however, the role of CENPU in hepatocellular carcinoma (HCC) is still unclear. Herein, we investigated its biological role and molecular mechanism in the development of HCC. High CENPU expression in HCC tissue was observed and correlated positively with a poor prognosis in HCC patients. CENPU knockdown inhibited the proliferation, metastasis, and G1/S transition of HCC cells in vivo and in vitro, while ectopic expression of CENPU exerted the opposite effects. Mechanistically, CENPU physically interacted with E2F6 and promoted its ubiquitin-mediated degradation, thus affecting the transcription level of E2F1 and further accelerating the G1/S transition to promote HCC cell proliferation. E2F1 directly binds to the CENPU promoter and increases the transcription of CENPU, thereby forming a positive regulatory loop. Collectively, our findings indicate a crucial role for CENPU in E2F1-mediated signalling for cell cycle progression and reveal a role for CENPU as a predictive biomarker and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Yingyi Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Ye Yao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Bo Liao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Hao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Zhangshuo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Peng Xia
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Xiang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Weijie Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Xiaoling Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Chengjie Mei
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Ganggang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Meng Gao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Kequan Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Xiangdong GongYe
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Zhixiang Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Ping Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Xi Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430071, Hubei, PR China
| |
Collapse
|
43
|
Sridhar S, Fukagawa T. Kinetochore Architecture Employs Diverse Linker Strategies Across Evolution. Front Cell Dev Biol 2022; 10:862637. [PMID: 35800888 PMCID: PMC9252888 DOI: 10.3389/fcell.2022.862637] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/23/2022] [Indexed: 01/09/2023] Open
Abstract
The assembly of a functional kinetochore on centromeric chromatin is necessary to connect chromosomes to the mitotic spindle, ensuring accurate chromosome segregation. This connecting function of the kinetochore presents multiple internal and external structural challenges. A microtubule interacting outer kinetochore and centromeric chromatin interacting inner kinetochore effectively confront forces from the external spindle and centromere, respectively. While internally, special inner kinetochore proteins, defined as "linkers," simultaneously interact with centromeric chromatin and the outer kinetochore to enable association with the mitotic spindle. With the ability to simultaneously interact with outer kinetochore components and centromeric chromatin, linker proteins such as centromere protein (CENP)-C or CENP-T in vertebrates and, additionally CENP-QOkp1-UAme1 in yeasts, also perform the function of force propagation within the kinetochore. Recent efforts have revealed an array of linker pathways strategies to effectively recruit the largely conserved outer kinetochore. In this review, we examine these linkages used to propagate force and recruit the outer kinetochore across evolution. Further, we look at their known regulatory pathways and implications on kinetochore structural diversity and plasticity.
Collapse
Affiliation(s)
- Shreyas Sridhar
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
44
|
Vo DHT, McGleave G, Overton IM. Immune Cell Networks Uncover Candidate Biomarkers of Melanoma Immunotherapy Response. J Pers Med 2022; 12:jpm12060958. [PMID: 35743743 PMCID: PMC9225330 DOI: 10.3390/jpm12060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
The therapeutic activation of antitumour immunity by immune checkpoint inhibitors (ICIs) is a significant advance in cancer medicine, not least due to the prospect of long-term remission. However, many patients are unresponsive to ICI therapy and may experience serious side effects; companion biomarkers are urgently needed to help inform ICI prescribing decisions. We present the IMMUNETS networks of gene coregulation in five key immune cell types and their application to interrogate control of nivolumab response in advanced melanoma cohorts. The results evidence a role for each of the IMMUNETS cell types in ICI response and in driving tumour clearance with independent cohorts from TCGA. As expected, ‘immune hot’ status, including T cell proliferation, correlates with response to first-line ICI therapy. Genes regulated in NK, dendritic, and B cells are the most prominent discriminators of nivolumab response in patients that had previously progressed on another ICI. Multivariate analysis controlling for tumour stage and age highlights CIITA and IKZF3 as candidate prognostic biomarkers. IMMUNETS provide a resource for network biology, enabling context-specific analysis of immune components in orthogonal datasets. Overall, our results illuminate the relationship between the tumour microenvironment and clinical trajectories, with potential implications for precision medicine.
Collapse
Affiliation(s)
- Duong H. T. Vo
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (D.H.T.V.); (G.M.)
- Health Data Research Wales and Northern Ireland, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Gerard McGleave
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (D.H.T.V.); (G.M.)
- Health Data Research Wales and Northern Ireland, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Ian M. Overton
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (D.H.T.V.); (G.M.)
- Health Data Research Wales and Northern Ireland, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
- Correspondence:
| |
Collapse
|
45
|
Yatskevich S, Muir KW, Bellini D, Zhang Z, Yang J, Tischer T, Predin M, Dendooven T, McLaughlin SH, Barford D. Structure of the human inner kinetochore bound to a centromeric CENP-A nucleosome. Science 2022; 376:844-852. [PMID: 35420891 PMCID: PMC7612757 DOI: 10.1126/science.abn3810] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Kinetochores assemble onto specialized centromeric CENP-A (centromere protein A) nucleosomes (CENP-ANuc) to mediate attachments between chromosomes and the mitotic spindle. We describe cryo-electron microscopy structures of the human inner kinetochore constitutive centromere associated network (CCAN) complex bound to CENP-ANuc reconstituted onto α-satellite DNA. CCAN forms edge-on contacts with CENP-ANuc, and a linker DNA segment of the α-satellite repeat emerges from the fully wrapped end of the nucleosome to thread through the central CENP-LN channel that tightly grips the DNA. The CENP-TWSX histone-fold module further augments DNA binding and partially wraps the linker DNA in a manner reminiscent of canonical nucleosomes. Our study suggests that the topological entrapment of the linker DNA by CCAN provides a robust mechanism by which kinetochores withstand both pushing and pulling forces exerted by the mitotic spindle.
Collapse
Affiliation(s)
- Stanislau Yatskevich
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Kyle W. Muir
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Dom Bellini
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jing Yang
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Thomas Tischer
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Masa Predin
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Tom Dendooven
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - David Barford
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
46
|
Pesenti ME, Raisch T, Conti D, Walstein K, Hoffmann I, Vogt D, Prumbaum D, Vetter IR, Raunser S, Musacchio A. Structure of the human inner kinetochore CCAN complex and its significance for human centromere organization. Mol Cell 2022; 82:2113-2131.e8. [PMID: 35525244 PMCID: PMC9235857 DOI: 10.1016/j.molcel.2022.04.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
Centromeres are specialized chromosome loci that seed the kinetochore, a large protein complex that effects chromosome segregation. A 16-subunit complex, the constitutive centromere associated network (CCAN), connects between the specialized centromeric chromatin, marked by the histone H3 variant CENP-A, and the spindle-binding moiety of the kinetochore. Here, we report a cryo-electron microscopy structure of human CCAN. We highlight unique features such as the pseudo GTPase CENP-M and report how a crucial CENP-C motif binds the CENP-LN complex. The CCAN structure has implications for the mechanism of specific recognition of the CENP-A nucleosome. A model consistent with our structure depicts the CENP-C-bound nucleosome as connected to the CCAN through extended, flexible regions of CENP-C. An alternative model identifies both CENP-C and CENP-N as specificity determinants but requires CENP-N to bind CENP-A in a mode distinct from the classical nucleosome octamer.
Collapse
Affiliation(s)
- Marion E Pesenti
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Tobias Raisch
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Duccio Conti
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Kai Walstein
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ingrid Hoffmann
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Dorothee Vogt
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141 Essen, Germany.
| |
Collapse
|
47
|
Okazaki K, Nakano M, Ohzeki JI, Otake K, Kugou K, Larionov V, Earnshaw WC, Masumoto H. Combination of CENP-B Box Positive and Negative Synthetic Alpha Satellite Repeats Improves De Novo Human Artificial Chromosome Formation. Cells 2022; 11:cells11091378. [PMID: 35563684 PMCID: PMC9105310 DOI: 10.3390/cells11091378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 01/11/2023] Open
Abstract
Human artificial chromosomes (HACs) can be formed de novo by introducing large (>30 kb) centromeric sequences consisting of highly repeated 171-bp alpha satellite (alphoid) DNA into HT1080 cells. However, only a subset of transformed cells successfully establishes HACs. CENP-A chromatin and heterochromatin assemble on the HACs and play crucial roles in chromosome segregation. The CENP-B protein, which binds a 17-bp motif (CENP-B box) in the alphoid DNA, functions in the formation of alternative CENP-A chromatin or heterochromatin states. A balance in the coordinated assembly of these chromatin states on the introduced alphoid DNA is important for HAC formation. To obtain information about the relationship between chromatin architecture and de novo HAC formation efficiency, we tested combinations of two 60-kb synthetic alphoid sequences containing either tetO or lacO plus a functional or mutated CENP-B box combined with a multiple fusion protein tethering system. The combination of mutated and wild-type CENP-B box alphoid repeats significantly enhanced HAC formation. Both CENP-A and HP1α were enriched in the wild-type alphoid DNA, whereas H3K27me3 was enriched on the mutant alphoid array. The presence or absence of CENP-B binding resulted in differences in the assembly of CENP-A chromatin on alphoid arrays and the formation of H3K9me3 or H3K27me3 heterochromatin.
Collapse
Affiliation(s)
- Koei Okazaki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan; (M.N.); (J.-i.O.); (K.O.); (K.K.)
- Public Relations and Research Promotion Group, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
- Correspondence: (K.O.); (H.M.); Tel.: +81-438-52-3930 (K.O.); +81-438-52-3952 (H.M.)
| | - Megumi Nakano
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan; (M.N.); (J.-i.O.); (K.O.); (K.K.)
| | - Jun-ichirou Ohzeki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan; (M.N.); (J.-i.O.); (K.O.); (K.K.)
| | - Koichiro Otake
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan; (M.N.); (J.-i.O.); (K.O.); (K.K.)
| | - Kazuto Kugou
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan; (M.N.); (J.-i.O.); (K.O.); (K.K.)
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA;
| | | | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan; (M.N.); (J.-i.O.); (K.O.); (K.K.)
- Correspondence: (K.O.); (H.M.); Tel.: +81-438-52-3930 (K.O.); +81-438-52-3952 (H.M.)
| |
Collapse
|
48
|
Lin X, Wang F, Chen J, Liu J, Lin YB, Li L, Chen CB, Xu Q. N 6-methyladenosine modification of CENPK mRNA by ZC3H13 promotes cervical cancer stemness and chemoresistance. Mil Med Res 2022; 9:19. [PMID: 35418160 PMCID: PMC9008995 DOI: 10.1186/s40779-022-00378-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/01/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Stemness and chemoresistance contribute to cervical cancer recurrence and metastasis. In the current study, we determined the relevant players and role of N6-methyladenine (m6A) RNA methylation in cervical cancer progression. METHODS The roles of m6A RNA methylation and centromere protein K (CENPK) in cervical cancer were analyzed using bioinformatics analysis. Methylated RNA immunoprecipitation was adopted to detect m6A modification of CENPK mRNA. Human cervical cancer clinical samples, cell lines, and xenografts were used for analyzing gene expression and function. Immunofluorescence staining and the tumorsphere formation, clonogenic, MTT, and EdU assays were performed to determine cell stemness, chemoresistance, migration, invasion, and proliferation in HeLa and SiHa cells, respectively. Western blot analysis, co-immunoprecipitation, chromatin immunoprecipitation, and luciferase reporter, cycloheximide chase, and cell fractionation assays were performed to elucidate the underlying mechanism. RESULTS Bioinformatics analysis of public cancer datasets revealed firm links between m6A modification patterns and cervical cancer prognosis, especially through ZC3H13-mediated m6A modification of CENPK mRNA. CENPK expression was elevated in cervical cancer, associated with cancer recurrence, and independently predicts poor patient prognosis [hazard ratio = 1.413, 95% confidence interval = 1.078 - 1.853, P = 0.012]. Silencing of CENPK prolonged the overall survival time of cervical cancer-bearing mice and improved the response of cervical cancer tumors to chemotherapy in vivo (P < 0.001). We also showed that CENPK was directly bound to SOX6 and disrupted the interactions of CENPK with β-catenin, which promoted β-catenin expression and nuclear translocation, facilitated p53 ubiquitination, and led to activation of Wnt/β-catenin signaling, but suppression of the p53 pathway. This dysregulation ultimately enhanced the tumorigenic pathways required for cell stemness, DNA damage repair pathways necessary for cisplatin/carboplatin resistance, epithelial-mesenchymal transition involved in metastasis, and DNA replication that drove tumor cell proliferation. CONCLUSIONS CENPK was shown to have an oncogenic role in cervical cancer and can thus serve as a prognostic indicator and novel target for cervical cancer treatment.
Collapse
Affiliation(s)
- Xian Lin
- Departments of Gynecology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014, China.,Department of Radiation Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014, China.,Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong, China
| | - Feng Wang
- Outpatient Department, Fujian Hospital of People's Armed Police, Fujian Medical University, Fuzhou, 350014, China
| | - Jian Chen
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong, China
| | - Jing Liu
- Departments of Gynecology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014, China
| | - Yi-Bin Lin
- Departments of Gynecology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014, China
| | - Li Li
- Departments of Gynecology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014, China
| | - Chuan-Ben Chen
- Department of Radiation Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014, China.
| | - Qin Xu
- Departments of Gynecology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014, China.
| |
Collapse
|
49
|
Takenoshita Y, Hara M, Fukagawa T. Recruitment of two Ndc80 complexes via the CENP-T pathway is sufficient for kinetochore functions. Nat Commun 2022; 13:851. [PMID: 35165266 PMCID: PMC8844409 DOI: 10.1038/s41467-022-28403-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/18/2022] [Indexed: 12/27/2022] Open
Abstract
To form functional kinetochores, CENP-C and CENP-T independently recruit the KMN (Knl1C, Mis12C, and Ndc80C) network onto the kinetochores. To clarify the functions of the KMN network on CENP-T, we evaluated its roles in chicken DT40 cell lines lacking the CENP-C-KMN network interaction. By analyzing mutants lacking both CENP-T-Mis12C and CENP-C-Mis12C interactions, we demonstrated that Knl1C and Mis12C (KM) play critical roles in the cohesion of sister chromatids or the recruitment of spindle checkpoint proteins onto kinetochores. Two copies of Ndc80C (N-N) exist on CENP-T via Mis12C or direct binding. Analyses of cells specifically lacking the Mis12C-Ndc80C interaction revealed that N-N is needed for proper kinetochore-microtubule interactions. However, using artificial engineering to directly bind the two copies of Ndc80C to CENP-T, we demonstrated that N-N functions without direct Mis12C binding to Ndc80C in native kinetochores. This study demonstrated the mechanisms by which complicated networks play roles in native kinetochores. The kinetochores contain multiple protein interaction networks. Takenoshita et al. analyzed the complicated networks using the genetic method and revealed that two copies of Ndc80 complexes on CENP-T are sufficient for kinetochore functions.
Collapse
|
50
|
Solovieva T, Lu HC, Moverley A, Plachta N, Stern CD. The embryonic node behaves as an instructive stem cell niche for axial elongation. Proc Natl Acad Sci U S A 2022. [PMID: 35101917 DOI: 10.1101/2020.11.10.376913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
In warm-blooded vertebrate embryos (mammals and birds), the axial tissues of the body form from a growth zone at the tail end, Hensen's node, which generates neural, mesodermal, and endodermal structures along the midline. While most cells only pass through this region, the node has been suggested to contain a small population of resident stem cells. However, it is unknown whether the rest of the node constitutes an instructive niche that specifies this self-renewal behavior. Here, we use heterotopic transplantation of groups and single cells and show that cells not destined to enter the node can become resident and self-renew. Long-term resident cells are restricted to the posterior part of the node and single-cell RNA-sequencing reveals that the majority of these resident cells preferentially express G2/M phase cell-cycle-related genes. These results provide strong evidence that the node functions as a niche to maintain self-renewal of axial progenitors.
Collapse
Affiliation(s)
- Tatiana Solovieva
- Department of Cell and Developmental Biology, University College London, WC1E 6BT London, United Kingdom
| | - Hui-Chun Lu
- Department of Cell and Developmental Biology, University College London, WC1E 6BT London, United Kingdom
| | - Adam Moverley
- Department of Cell and Developmental Biology, University College London, WC1E 6BT London, United Kingdom
- Institute of Molecular Cell Biology, A*STAR, 138673 Proteos, Singapore
| | - Nicolas Plachta
- Institute of Molecular Cell Biology, A*STAR, 138673 Proteos, Singapore
| | - Claudio D Stern
- Department of Cell and Developmental Biology, University College London, WC1E 6BT London, United Kingdom;
| |
Collapse
|