1
|
Bai D, Yang J, Xue X, Gao Y, Wang Y, Cui M, He B, Zeng H, Xiang H, Guo Z, Zhu L, Gao J, Zhu C, Tang F, Yi C. Single-cell 5-hydroxymethylcytosine landscapes of mouse early embryos at single-base resolution. Cell Rep 2025; 44:115520. [PMID: 40186870 DOI: 10.1016/j.celrep.2025.115520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/30/2024] [Accepted: 03/14/2025] [Indexed: 04/07/2025] Open
Abstract
DNA methylation and hydroxymethylation are extensively reprogrammed during mammalian early embryogenesis, and studying their regulatory functions requires comprehensive DNA hydroxymethylation maps at base resolution. Here, we develop single-cell 5-hydroxymethylcytosine (5hmC) chemical-assisted C-to-T conversion-enabled sequencing (schmC-CATCH), a method leveraging selective 5hmC labeling for a quantitative, base-resolution, genome-wide landscape of the DNA hydroxymethylome in mouse gametes and preimplantation embryos spanning from the zygote to blastocyst stage. We revealed that, in addition to late zygotic stages, onset of ten-eleven translocation (TET)-mediated DNA hydroxymethylation initiates immediately after fertilization and is characterized by the distinct 5hmC patterns on the parental genomes shaped by TET3 demethylase. We identified persistent clusters of 5hmC hotspots throughout early embryonic stages, which are highly associated with young retroelements. 5hmC is also associated with different regulatory elements, indicating a potential regulatory function during early embryogenesis. Collectively, our work elucidates the dynamics of active DNA demethylation during mouse preimplantation development and provides a valuable resource for functional studies of epigenetic reprogramming in early embryos.
Collapse
Affiliation(s)
- Dongsheng Bai
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing 100871, PRC
| | - Jinmin Yang
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing 100871, PRC
| | - Xiaohui Xue
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, PRC; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PRC
| | - Yun Gao
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, PRC
| | - Yan Wang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, PRC; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PRC
| | - Mengge Cui
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing 100871, PRC
| | - Bo He
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing 100871, PRC; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, PRC
| | - Hu Zeng
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing 100871, PRC
| | - Huifen Xiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PRC; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230022, PRC
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PRC
| | - Lan Zhu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, The State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PRC; The State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100730, PRC
| | - Juan Gao
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Chenxu Zhu
- New York Genome Center, New York, NY 10013, USA; Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, PRC; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, PRC.
| | - Chengqi Yi
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing 100871, PRC; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, PRC; Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PRC; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing 100871, PRC.
| |
Collapse
|
2
|
Townsend J, Gross N, Peng Z, Peñagaricano F, Yang Z, Ahsan N, Khatib H. The embryonic DPPA3 gene stimulates the expression of pregnancy-related genes in bovine endometrial cells. J Dairy Sci 2025:S0022-0302(25)00230-9. [PMID: 40222672 DOI: 10.3168/jds.2024-25872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/12/2025] [Indexed: 04/15/2025]
Abstract
Extracellular vesicles (EVs) released by cells contain mRNAs, miRNAs, lncRNAs, lipids, and proteins, playing crucial roles in cell-cell communication. While full-length mRNA transcripts have been documented in EVs secreted by cancer cells, there are no reports on full transcripts secreted by embryos. Our study aimed to identify EV mRNAs in the culture media of bovine embryos and investigate their roles in embryo-maternal communication. Following the isolation of EVs from in vitro fertilization media samples and RNA sequencing, we identified a full mRNA transcript of DPPA3, known to play an essential role in embryo development. To examine the role of DPPA3 in embryo-maternal communication, an in vitro transcribed mRNA of DPPA3 was transfected into bovine endometrial epithelial cells. Transfected and control cells were subsequently analyzed with RNA sequencing and proteomics to assess the effects of DPPA3 on gene expression. A total of 24 genes were found to be upregulated, and one gene was downregulated (FDR <0.01) following DPPA3 transfection, many with known functions in pregnancy recognition. Proteomic analysis revealed 28 differentially expressed proteins, with 19 upregulated and 15 downregulated. Two proteins, ISG15 and MX1, overlapped with the differentially expressed mRNAs. To mimic the natural transfer of EVs from embryos to endometrial cells, we performed coculture with day-8 blastocysts or supplemented the cells with embryo-conditioned culture media. DPPA3 presence was detected in endometrial cells exposed to embryo-conditioned media after just 30 min. Overall, our study highlights the significant role of EVs in cell-cell communication through mRNA signaling from the embryo to the mother.
Collapse
Affiliation(s)
- Jessica Townsend
- The Department of Animal and Dairy Sciences, The University of Wisconsin, Madison, Wisconsin, USA
| | - Nicole Gross
- The Department of Animal and Dairy Sciences, The University of Wisconsin, Madison, Wisconsin, USA
| | - Zongkai Peng
- The Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma, USA
| | - Francisco Peñagaricano
- The Department of Animal and Dairy Sciences, The University of Wisconsin, Madison, Wisconsin, USA
| | - Zhibo Yang
- The Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma, USA
| | - Nagib Ahsan
- The Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma, USA; Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, Oklahoma, USA
| | - Hasan Khatib
- The Department of Animal and Dairy Sciences, The University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
3
|
Fischer LA, Meyer B, Reyes M, Zemke JE, Harrison JK, Park KM, Wang T, Jüppner H, Dietmann S, Theunissen TW. Tracking and mitigating imprint erasure during induction of naive human pluripotency at single-cell resolution. Stem Cell Reports 2025; 20:102419. [PMID: 39952244 PMCID: PMC11960550 DOI: 10.1016/j.stemcr.2025.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/17/2025] Open
Abstract
Naive human pluripotent stem cells (hPSCs) model the pre-implantation epiblast. However, parent-specific epigenetic marks (imprints) are eroded in naive hPSCs, which represents an important deviation from the epiblast in vivo. To track the dynamics of imprint erasure during naive resetting in real time, we established a dual-colored fluorescent reporter at both alleles of the imprinted SNRPN locus. During primed-to-naive resetting, SNRPN expression becomes biallelic in most naive cells, and biallelic SNRPN expression is irreversible upon re-priming. We utilized this live-cell reporter to evaluate chemical and genetic strategies to minimize imprint erasure. Decreasing the level of MEK/ERK inhibition or overexpressing the KRAB zinc-finger protein ZFP57 protected a subset of imprints during naive resetting. Combining these two strategies protected imprint levels to a further extent than either strategy alone. This study offers an experimental tool to track and enhance imprint stability during transitions between human pluripotent states in vitro.
Collapse
Affiliation(s)
- Laura A Fischer
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brittany Meyer
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Monica Reyes
- Endocrine Unit, Department of Medicine and Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph E Zemke
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessica K Harrison
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyoung-Mi Park
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine and Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sabine Dietmann
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA; Institute for Informatics (I(2)), Washington University School of Medicine, St. Louis, MO, USA
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Bai W, Xu J, Gu W, Wang D, Cui Y, Rong W, Du X, Li X, Xia C, Gan Q, He G, Guo H, Deng J, Wu Y, Yen RWC, Yegnasubramanian S, Rothbart SB, Luo C, Wu L, Liu J, Baylin SB, Kong X. Defining ortholog-specific UHRF1 inhibition by STELLA for cancer therapy. Nat Commun 2025; 16:474. [PMID: 39774694 PMCID: PMC11707192 DOI: 10.1038/s41467-024-55481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
UHRF1 maintains DNA methylation by recruiting DNA methyltransferases to chromatin. In mouse, these dynamics are potently antagonized by a natural UHRF1 inhibitory protein STELLA, while the comparable effects of its human ortholog are insufficiently characterized, especially in cancer cells. Herein, we demonstrate that human STELLA (hSTELLA) is inadequate, while mouse STELLA (mSTELLA) is fully proficient in inhibiting the abnormal DNA methylation and oncogenic functions of UHRF1 in human cancer cells. Structural studies reveal a region of low sequence homology between these STELLA orthologs that allows mSTELLA but not hSTELLA to bind tightly and cooperatively to the essential histone-binding, linked tandem Tudor domain and plant homeodomain (TTD-PHD) of UHRF1, thus mediating ortholog-specific UHRF1 inhibition. For translating these findings to cancer therapy, we use a lipid nanoparticle (LNP)-mediated mRNA delivery approach in which the short mSTELLA, but not hSTELLA regions are required to reverse cancer-specific DNA hypermethylation and impair colorectal cancer tumorigenicity.
Collapse
Affiliation(s)
- Wenjing Bai
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wenbin Gu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Danyang Wang
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ying Cui
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Weidong Rong
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoan Du
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxia Li
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cuicui Xia
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qingqing Gan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Guantao He
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huahui Guo
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfeng Deng
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuqiong Wu
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ray-Whay Chiu Yen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Srinivasan Yegnasubramanian
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Linping Wu
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Stephen B Baylin
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA.
| | - Xiangqian Kong
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
5
|
Maggs LR, McVey M. REV7: a small but mighty regulator of genome maintenance and cancer development. Front Oncol 2025; 14:1516165. [PMID: 39839778 PMCID: PMC11747621 DOI: 10.3389/fonc.2024.1516165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
REV7, also known as MAD2B, MAD2L2, and FANCV, is a HORMA-domain family protein crucial to multiple genome stability pathways. REV7's canonical role is as a member of polymerase ζ, a specialized translesion synthesis polymerase essential for DNA damage tolerance. REV7 also ensures accurate cell cycle progression and prevents premature mitotic progression by sequestering an anaphase-promoting complex/cyclosome activator. Additionally, REV7 supports genome integrity by directing double-strand break repair pathway choice as part of the recently characterized mammalian shieldin complex. Given that genome instability is a hallmark of cancer, it is unsurprising that REV7, with its numerous genome maintenance roles, is implicated in multiple malignancies, including ovarian cancer, glioma, breast cancer, malignant melanoma, and small-cell lung cancer. Moreover, high REV7 expression is associated with poor prognoses and treatment resistance in these and other cancers. Promisingly, early studies indicate that REV7 suppression enhances sensitivity to chemotherapeutics, including cisplatin. This review aims to provide a comprehensive overview of REV7's myriad roles in genome maintenance and other functions as well as offer an updated summary of its connections to cancer and treatment resistance.
Collapse
Affiliation(s)
- Lara R. Maggs
- Department of Biology, Tufts University, Medford, MA, United States
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA, United States
| |
Collapse
|
6
|
Liu Y, Hao W, Huang C, Feng P, Liu H, Guo Z. Interaction of PGC7 and HP1BP3 Maintains Meg3-DMR Methylation by Regulating Chromatin Configuration. J Cell Biochem 2025; 126:e30667. [PMID: 39422314 DOI: 10.1002/jcb.30667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Genomic imprinting is essential for mammalian development. PGC7, an important maternal factor, binds to dimethylated histone H3K9 (H3K9me2), maintaining DNA methylation in zygotes and stem cells. However, the underlying molecular mechanisms of PGC7-maintained genomic imprinting in stem cells are not clear. Our previous study has identified that PGC7 interacts with HP1BP3, a novel member of the histone H1 family. In this study, we found that PGC7 interacts with the central globular domain of HP1BP3 through its C-terminal tail and that HP1BP3 is responsible for the recruitment of PGC7 at the Meg3 differentially methylated region (DMR) in the Dlk1-Dio3 imprinted domain. HP1BP3 or PGC7 depletion decreases enrichment in the Meg3-DMR, leading to DNA hypermethylation in this region. Moreover, the cooperative binding of PGC7 and HP1BP3 can antagonize the enrichment of DNMT3A in the Meg3-DMR, and the depletion of HP1BP3 or PGC7 separately induces chromosome decondensation in this region. In summary, this is the first study demonstrating that PGC7 and HP1BP3 synergistically maintain the methylation status of the Meg3-DMR by enabling a chromatin configuration that interferes with the binding of the de novo DNA methyltransferase DNMT3A.
Collapse
Affiliation(s)
- Yingxiang Liu
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Weijie Hao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Chenyang Huang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Peiwen Feng
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Zekun Guo
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, P.R. China
| |
Collapse
|
7
|
Liu Y, Feng P, Wei X, Xu H, Yu M, Zhang L, Hao W, Guo Z. PGC7 regulates maternal mRNA translation via AKT1-YBX1 interactions in mouse oocytes. Cell Commun Signal 2024; 22:604. [PMID: 39696520 DOI: 10.1186/s12964-024-01976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024] Open
Abstract
Timely and accurate translation of maternal mRNA is essential for oocyte maturation and early embryonic development. Previous studies have highlighted the importance of Primordial Germ cell 7 (PGC7) as a maternal factor in maintaining DNA methylation of maternally imprinted loci in zygotes. However, it is still unknown whether PGC7 is involved in the regulation of Maternal mRNA Translation. In this study, we have identified that PGC7-AKT1-YBX1 axis is involved in promoting the translation of maternal mRNAs. PGC7 not only sustains AKT1 activity by counteracting PP2A dephosphorylation and facilitating PDK1-AKT1 binding but also assists AKT1 in phosphorylating the translation inhibitor YBX1. In the absence of PGC7, despite increased PIK3CA expression and AKT1 phosphorylation, AKT1 is unable to phosphorylate YBX1. PGC7 facilitates the interaction between AKT1 and YBX1, enhancing YBX1-Serine 100 phosphorylation, which leads to YBX1 dissociation from eIF4E, thereby activating the translation of maternal Cyclin B1 and YAP1. The findings demonstrate the indispensability of PGC7 for translation activation in mammalian oocytes and provide a potential network regulated by PGC7 in early oogenesis.
Collapse
Affiliation(s)
- Yingxiang Liu
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Peiwen Feng
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Xing Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Hongyu Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Mengying Yu
- Xi'an Center for Disease Control and Prevention, Xi'an, Shaanxi, 710049, P.R. China
| | - Lei Zhang
- Reproductive Medicine Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan, Zhengzhou, P.R. China
| | - Weijie Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Zekun Guo
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
| |
Collapse
|
8
|
Montgomery T, Uh K, Lee K. TET enzyme driven epigenetic reprogramming in early embryos and its implication on long-term health. Front Cell Dev Biol 2024; 12:1358649. [PMID: 39149518 PMCID: PMC11324557 DOI: 10.3389/fcell.2024.1358649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Mammalian embryo development is initiated by the union of paternal and maternal gametes. Upon fertilization, their epigenome landscape is transformed through a series of finely orchestrated mechanisms that are crucial for survival and successful embryogenesis. Specifically, maternal or oocyte-specific reprogramming factors modulate germ cell specific epigenetic marks into their embryonic states. Rapid and dynamic changes in epigenetic marks such as DNA methylation and histone modifications are observed during early embryo development. These changes govern the structure of embryonic genome prior to zygotic genome activation. Differential changes in epigenetic marks are observed between paternal and maternal genomes because the structure of the parental genomes allows interaction with specific oocyte reprogramming factors. For instance, the paternal genome is targeted by the TET family of enzymes which oxidize the 5-methylcytosine (5mC) epigenetic mark into 5-hydroxymethylcytosine (5hmC) to lower the level of DNA methylation. The maternal genome is mainly protected from TET3-mediated oxidation by the maternal factor, STELLA. The TET3-mediated DNA demethylation occurs at the global level and is clearly observed in many mammalian species. Other epigenetic modulating enzymes, such as DNA methyltransferases, provide fine tuning of the DNA methylation level by initiating de novo methylation. The mechanisms which initiate the epigenetic reprogramming of gametes are critical for proper activation of embryonic genome and subsequent establishment of pluripotency and normal development. Clinical cases or diseases linked to mutations in reprogramming modulators exist, emphasizing the need to understand mechanistic actions of these modulators. In addition, embryos generated via in vitro embryo production system often present epigenetic abnormalities. Understanding mechanistic actions of the epigenetic modulators will potentially improve the well-being of individuals suffering from these epigenetic disorders and correct epigenetic abnormalities in embryos produced in vitro. This review will summarize the current understanding of epigenetic reprogramming by TET enzymes during early embryogenesis and highlight its clinical relevance and potential implication for assisted reproductive technologies.
Collapse
Affiliation(s)
- Ty Montgomery
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Kyungjun Uh
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Republic of Korea
| | - Kiho Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
9
|
Qi J, Xia C, Zhang Y, Ding R, Zhang Y, Cao W, Duan C, Yao Z, Qin H, Ye Y, Qu P, Li Y, Liu E. Impact of high-fat diet on ovarian epigenetics: Insights from altered intestinal butyric acid levels. Heliyon 2024; 10:e33170. [PMID: 39021996 PMCID: PMC11252756 DOI: 10.1016/j.heliyon.2024.e33170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Objective To investigate the effects of a high-fat diet (HFD) on the gut bacterium Roseburia intestinalis and butyric acid levels, and to assess their impact on ovarian function and epigenetic markers in mice. Methods A total of 20 female ICR mice aged 4 weeks were randomly assigned to two groups and fed either a control diet (CD) or an HFD for 36 weeks. Post-intervention, ileal contents were analyzed for the quantification of butyric acid using ELISA, while feces were obtained for Roseburia intestinalis expression assessment via qPCR. Histological evaluations of intestinal and ovarian tissues included H&E and Alcian Blue-Periodic Acid Schiff (AB-PAS) staining, alongside immunohistochemical analysis for F4/80, and immunofluorescent detection of Occludin, ZO-1, 5 mC, and H3K36me3. Ovarian health was assessed through follicle counts and morphological evaluations. Statistical analyses were performed using GraphPad Prism 8.0, with P < 0.05 considered significant. Results After 36 weeks, the HFD group showed significantly higher body weight compared to the CD group (P < 0.01). The HFD led to a decrease in Roseburia intestinalis and butyric acid levels, a reduction in intestinal goblet cells, and an increase in intestinal inflammation. Histological analyses revealed impaired ovarian follicular development and enhanced inflammation in the HFD mice, with immunofluorescent staining showing downregulation of the ovarian epigenetic markers 5 mC and H3K36me3. Conclusion Our study demonstrates that long-term HFD negatively impacts ovarian function and epigenetic regulation. We found decreased levels of the gut bacterium Roseburia intestinalis and its metabolite, butyric acid, which contribute to these adverse effects. Additionally, the associated intestinal inflammation and compromised mucosal barrier may contribute to these adverse outcomes on female reproductive health.
Collapse
Affiliation(s)
- Jia Qi
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Congcong Xia
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Yulin Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Ruike Ding
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Yanru Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Wenbin Cao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Chenjing Duan
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Zijing Yao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Hongyu Qin
- Central Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yun Ye
- Central Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Yandong Li
- Xi'an International Medical Center Hospital, Xi'an, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| |
Collapse
|
10
|
Rother F, Depping R, Popova E, Huegel S, Heiler A, Hartmann E, Bader M. Karyopherin α2 is a maternal effect gene required for early embryonic development and female fertility in mice. FASEB J 2024; 38:e23623. [PMID: 38656660 DOI: 10.1096/fj.202301572rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
The nuclear transport of proteins plays an important role in mediating the transition from egg to embryo and distinct karyopherins have been implicated in this process. Here, we studied the impact of KPNA2 deficiency on preimplantation embryo development in mice. Loss of KPNA2 results in complete arrest at the 2cell stage and embryos exhibit the inability to activate their embryonic genome as well as a severely disturbed nuclear translocation of Nucleoplasmin 2. Our findings define KPNA2 as a new maternal effect gene.
Collapse
Affiliation(s)
- Franziska Rother
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | | | - Elena Popova
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Stefanie Huegel
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Ariane Heiler
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Enno Hartmann
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
11
|
Toriyama K, Au Yeung WK, Inoue A, Kurimoto K, Yabuta Y, Saitou M, Nakamura T, Nakano T, Sasaki H. DPPA3 facilitates genome-wide DNA demethylation in mouse primordial germ cells. BMC Genomics 2024; 25:344. [PMID: 38580899 PMCID: PMC10996186 DOI: 10.1186/s12864-024-10192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Genome-wide DNA demethylation occurs in mammalian primordial germ cells (PGCs) as part of the epigenetic reprogramming important for gametogenesis and resetting the epigenetic information for totipotency. Dppa3 (also known as Stella or Pgc7) is highly expressed in mouse PGCs and oocytes and encodes a factor essential for female fertility. It prevents excessive DNA methylation in oocytes and ensures proper gene expression in preimplantation embryos: however, its role in PGCs is largely unexplored. In the present study, we investigated whether or not DPPA3 has an impact on CG methylation/demethylation in mouse PGCs. RESULTS We show that DPPA3 plays a role in genome-wide demethylation in PGCs even before sex differentiation. Dppa3 knockout female PGCs show aberrant hypermethylation, most predominantly at H3K9me3-marked retrotransposons, which persists up to the fully-grown oocyte stage. DPPA3 works downstream of PRDM14, a master regulator of epigenetic reprogramming in embryonic stem cells and PGCs, and independently of TET1, an enzyme that hydroxylates 5-methylcytosine. CONCLUSIONS The results suggest that DPPA3 facilitates DNA demethylation through a replication-coupled passive mechanism in PGCs. Our study identifies DPPA3 as a novel epigenetic reprogramming factor in mouse PGCs.
Collapse
Affiliation(s)
- Keisuke Toriyama
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Wan Kin Au Yeung
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Azusa Inoue
- Laboratory for Epigenome Inheritance, Riken Center for Integrative Medical Sciences, Kanagawa, 230-0045, Japan
- Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Kazuki Kurimoto
- Department of Embryology, School of Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe- cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe- cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshinobu Nakamura
- Laboratory for Epigenetic Regulation, Department of Animal Bio-Science, Nagahama Institute of Bio-Science and Technology, Shiga, 526-0829, Japan
| | - Toru Nakano
- Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
12
|
Kordowitzki P, Graczyk S, Haghani A, Klutstein M. Oocyte Aging: A Multifactorial Phenomenon in A Unique Cell. Aging Dis 2024; 15:5-21. [PMID: 37307833 PMCID: PMC10796106 DOI: 10.14336/ad.2023.0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
The oocyte is considered to be the largest cell in mammalian species. Women hoping to become pregnant face a ticking biological clock. This is becoming increasingly challenging as an increase in life expectancy is accompanied by the tendency to conceive at older ages. With advancing maternal age, the fertilized egg will exhibit lower quality and developmental competence, which contributes to increased chances of miscarriage due to several causes such as aneuploidy, oxidative stress, epigenetics, or metabolic disorders. In particular, heterochromatin in oocytes and with it, the DNA methylation landscape undergoes changes. Further, obesity is a well-known and ever-increasing global problem as it is associated with several metabolic disorders. More importantly, both obesity and aging negatively affect female reproduction. However, among women, there is immense variability in age-related decline of oocytes' quantity, developmental competence, or quality. Herein, the relevance of obesity and DNA-methylation will be discussed as these aspects have a tremendous effect on female fertility, and it is a topic of continuous and widespread interest that has yet to be fully addressed for the mammalian oocyte.
Collapse
Affiliation(s)
- Pawel Kordowitzki
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.
| | - Szymon Graczyk
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland.
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Altos Labs, San Diego, CA, USA.
| | - Michael Klutstein
- Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
13
|
Lu X. Regulation of endogenous retroviruses in murine embryonic stem cells and early embryos. J Mol Cell Biol 2024; 15:mjad052. [PMID: 37604781 PMCID: PMC10794949 DOI: 10.1093/jmcb/mjad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/24/2022] [Accepted: 08/19/2023] [Indexed: 08/23/2023] Open
Abstract
Endogenous retroviruses (ERVs) are important components of transposable elements that constitute ∼40% of the mouse genome. ERVs exhibit dynamic expression patterns during early embryonic development and are engaged in numerous biological processes. Therefore, ERV expression must be closely monitored in cells. Most studies have focused on the regulation of ERV expression in mouse embryonic stem cells (ESCs) and during early embryonic development. This review touches on the classification, expression, and functions of ERVs in mouse ESCs and early embryos and mainly discusses ERV modulation strategies from the perspectives of transcription, epigenetic modification, nucleosome/chromatin assembly, and post-transcriptional control.
Collapse
Affiliation(s)
- Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| |
Collapse
|
14
|
Aizawa E, Ozonov EA, Kawamura YK, Dumeau C, Nagaoka S, Kitajima TS, Saitou M, Peters AHFM, Wutz A. Epigenetic regulation limits competence of pluripotent stem cell-derived oocytes. EMBO J 2023; 42:e113955. [PMID: 37850882 PMCID: PMC10690455 DOI: 10.15252/embj.2023113955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Recent studies have reported the differentiation of pluripotent cells into oocytes in vitro. However, the developmental competence of in vitro-generated oocytes remains low. Here, we perform a comprehensive comparison of mouse germ cell development in vitro over all culture steps versus in vivo with the goal to understand mechanisms underlying poor oocyte quality. We show that the in vitro differentiation of primordial germ cells to growing oocytes and subsequent follicle growth is critical for competence for preimplantation development. Systematic transcriptome analysis of single oocytes that were subjected to different culture steps identifies genes that are normally upregulated during oocyte growth to be susceptible for misregulation during in vitro oogenesis. Many misregulated genes are Polycomb targets. Deregulation of Polycomb repression is therefore a key cause and the earliest defect known in in vitro oocyte differentiation. Conversely, structurally normal in vitro-derived oocytes fail at zygotic genome activation and show abnormal acquisition of 5-hydroxymethylcytosine on maternal chromosomes. Our data identify epigenetic regulation at an early stage of oogenesis limiting developmental competence and suggest opportunities for future improvements.
Collapse
Affiliation(s)
- Eishi Aizawa
- Institute of Molecular Health Sciences, Swiss Federal Institute of TechnologyETH ZurichZurichSwitzerland
- RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Yumiko K Kawamura
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Charles‐Etienne Dumeau
- Institute of Molecular Health Sciences, Swiss Federal Institute of TechnologyETH ZurichZurichSwitzerland
| | - So Nagaoka
- Department of EmbryologyNara Medical UniversityNaraJapan
| | | | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| | - Antoine HFM Peters
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of SciencesUniversity of BaselBaselSwitzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of TechnologyETH ZurichZurichSwitzerland
| |
Collapse
|
15
|
Tompkins JD. Transgenerational Epigenetic DNA Methylation Editing and Human Disease. Biomolecules 2023; 13:1684. [PMID: 38136557 PMCID: PMC10742326 DOI: 10.3390/biom13121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
During gestation, maternal (F0), embryonic (F1), and migrating primordial germ cell (F2) genomes can be simultaneously exposed to environmental influences. Accumulating evidence suggests that operating epi- or above the genetic DNA sequence, covalent DNA methylation (DNAme) can be recorded onto DNA in response to environmental insults, some sites which escape normal germline erasure. These appear to intrinsically regulate future disease propensity, even transgenerationally. Thus, an organism's genome can undergo epigenetic adjustment based on environmental influences experienced by prior generations. During the earliest stages of mammalian development, the three-dimensional presentation of the genome is dramatically changed, and DNAme is removed genome wide. Why, then, do some pathological DNAme patterns appear to be heritable? Are these correctable? In the following sections, I review concepts of transgenerational epigenetics and recent work towards programming transgenerational DNAme. A framework for editing heritable DNAme and challenges are discussed, and ethics in human research is introduced.
Collapse
Affiliation(s)
- Joshua D Tompkins
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
16
|
Cuesta-Borràs E, Salvans C, Arqués O, Chicote I, Ramírez L, Cabellos L, Martínez-Quintanilla J, Mur-Espinosa A, García-Álvarez A, Hernando J, Tejedor JR, Mirallas O, Élez E, Fraga MF, Tabernero J, Nuciforo P, Capdevila J, Palmer HG, Puig I. DPPA3-HIF1α axis controls colorectal cancer chemoresistance by imposing a slow cell-cycle phenotype. Cell Rep 2023; 42:112927. [PMID: 37537841 DOI: 10.1016/j.celrep.2023.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
Tumor relapse is linked to rapid chemoresistance and represents a bottleneck for cancer therapy success. Engagement of a reduced proliferation state is a non-mutational mechanism exploited by cancer cells to bypass therapy-induced cell death. Through combining functional pulse-chase experiments in engineered cells and transcriptomic analyses, we identify DPPA3 as a master regulator of slow-cycling and chemoresistant phenotype in colorectal cancer (CRC). We find a vicious DPPA3-HIF1α feedback loop that downregulates FOXM1 expression via DNA methylation, thereby delaying cell-cycle progression. Moreover, downregulation of HIF1α partially restores a chemosensitive proliferative phenotype in DPPA3-overexpressing cancer cells. In cohorts of CRC patient samples, DPPA3 overexpression acts as a predictive biomarker of chemotherapeutic resistance that subsequently requires reduction in its expression to allow metastatic outgrowth. Our work demonstrates that slow-cycling cancer cells exploit a DPPA3/HIF1α axis to support tumor persistence under therapeutic stress and provides insights on the molecular regulation of disease progression.
Collapse
Affiliation(s)
- Estefania Cuesta-Borràs
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Cándida Salvans
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Oriol Arqués
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Irene Chicote
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; CIBERONC, 08029 Madrid, Spain
| | - Lorena Ramírez
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Laia Cabellos
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | | | - Alex Mur-Espinosa
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Alejandro García-Álvarez
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Jorge Hernando
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Juan Ramón Tejedor
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), Health Research Institute of the Principality of Asturias (ISPA), Spanish Biomedical Research Network in Rare Diseases (CIBERER), Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Asturias, Spain
| | - Oriol Mirallas
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Elena Élez
- CIBERONC, 08029 Madrid, Spain; Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), Health Research Institute of the Principality of Asturias (ISPA), Spanish Biomedical Research Network in Rare Diseases (CIBERER), Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Asturias, Spain
| | - Josep Tabernero
- CIBERONC, 08029 Madrid, Spain; Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; UVic-UCC, IOB-Quiron, 08023 Barcelona, Spain
| | - Paolo Nuciforo
- CIBERONC, 08029 Madrid, Spain; Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jaume Capdevila
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; IOB-Teknon, 08023 Barcelona, Spain
| | - Héctor G Palmer
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; CIBERONC, 08029 Madrid, Spain.
| | - Isabel Puig
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; CIBERONC, 08029 Madrid, Spain.
| |
Collapse
|
17
|
Chen Y, Wang L, Guo F, Dai X, Zhang X. Epigenetic reprogramming during the maternal-to-zygotic transition. MedComm (Beijing) 2023; 4:e331. [PMID: 37547174 PMCID: PMC10397483 DOI: 10.1002/mco2.331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023] Open
Abstract
After fertilization, sperm and oocyte fused and gave rise to a zygote which is the beginning of a new life. Then the embryonic development is monitored and regulated precisely from the transition of oocyte to the embryo at the early stage of embryogenesis, and this process is termed maternal-to-zygotic transition (MZT). MZT involves two major events that are maternal components degradation and zygotic genome activation. The epigenetic reprogramming plays crucial roles in regulating the process of MZT and supervising the normal development of early development of embryos. In recent years, benefited from the rapid development of low-input epigenome profiling technologies, new epigenetic modifications are found to be reprogrammed dramatically and may play different roles during MZT whose dysregulation will cause an abnormal development of embryos even abortion at various stages. In this review, we summarized and discussed the important novel findings on epigenetic reprogramming and the underlying molecular mechanisms regulating MZT in mammalian embryos. Our work provided comprehensive and detailed references for the in deep understanding of epigenetic regulatory network in this key biological process and also shed light on the critical roles for epigenetic reprogramming on embryonic failure during artificial reproductive technology and nature fertilization.
Collapse
Affiliation(s)
- Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| |
Collapse
|
18
|
Liu S, Zhao S, Zhang C, Tian C, Wang D, Yu H, Li Z, Liu L, Liu N. Dppa3 Improves the Germline Competence of Pluripotent Stem Cells. Stem Cell Rev Rep 2023:10.1007/s12015-023-10552-y. [PMID: 37171679 DOI: 10.1007/s12015-023-10552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Chimera formation and germline competence are critical features of mouse pluripotent stem cells (PSCs). However, the factors that contribute to germline competence in the chimeras remain to be understood. METHODS To determine the role of Dppa3 in PSCs, we first constructed Dppa3 knockout (Dppa3 KO) and Dppa3 overexpression (Dppa3 OE) PSCs, respectively. Using Dppa3 KO and Dppa3 OE PSCs, we then investigated the role of Dppa3 in PSCs by evaluating the chimera generation, DNA methylation, and pluripotent state conversion. RESULTS We show that Dppa3 plays an important role in chimera formation and germline competence of mouse PSCs. PSC lines with high expression of Dppa3 show high germline competence. In contrast, Dppa3 deficiency reduces chimera formation and abrogates the germline transmission capacity of PSCs. Molecularly, Dppa3 facilitates establishing global DNA hypomethylation in PSCs. High levels of Dppa3 in PSCs reduce the expression of Dnmt3a/b and impede Uhrf1-Dnmt1 complex binding to DNA replication forks, maintaining DNA hypomethylation. Additionally, Dppa3 facilitates two-cell-stage (2C) genes expression and promotes conversion to a 2C-like state. CONCLUSION These data show that Dppa3 is involved in maintaining DNA hypomethylation homeostasis and is required for high chimera formation and germline competence of PSCs.
Collapse
Affiliation(s)
- Siying Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, 300071, China
| | - Shuang Zhao
- School of Medicine, Nankai University, Tianjin, 300071, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chuanyu Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chenglei Tian
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dan Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huaxin Yu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lin Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, 300071, China.
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, 300071, China.
| |
Collapse
|
19
|
Gawriyski L, Jouhilahti EM, Yoshihara M, Fei L, Weltner J, Airenne TT, Trokovic R, Bhagat S, Tervaniemi MH, Murakawa Y, Salokas K, Liu X, Miettinen S, Bürglin TR, Sahu B, Otonkoski T, Johnson MS, Katayama S, Varjosalo M, Kere J. Comprehensive characterization of the embryonic factor LEUTX. iScience 2023; 26:106172. [PMID: 36876139 PMCID: PMC9978639 DOI: 10.1016/j.isci.2023.106172] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/01/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The paired-like homeobox transcription factor LEUTX is expressed in human preimplantation embryos between the 4- and 8-cell stages, and then silenced in somatic tissues. To characterize the function of LEUTX, we performed a multiomic characterization of LEUTX using two proteomics methods and three genome-wide sequencing approaches. Our results show that LEUTX stably interacts with the EP300 and CBP histone acetyltransferases through its 9 amino acid transactivation domain (9aaTAD), as mutation of this domain abolishes the interactions. LEUTX targets genomic cis-regulatory sequences that overlap with repetitive elements, and through these elements it is suggested to regulate the expression of its downstream genes. We find LEUTX to be a transcriptional activator, upregulating several genes linked to preimplantation development as well as 8-cell-like markers, such as DPPA3 and ZNF280A. Our results support a role for LEUTX in preimplantation development as an enhancer binding protein and as a potent transcriptional activator.
Collapse
Affiliation(s)
- Lisa Gawriyski
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Eeva-Mari Jouhilahti
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Liangru Fei
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Jere Weltner
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14186 Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, 14186 Stockholm, Sweden
| | - Tomi T. Airenne
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Ras Trokovic
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
| | - Shruti Bhagat
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mari H. Tervaniemi
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- IFOM-ETS, Milan, Italy
| | - Kari Salokas
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Sini Miettinen
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | | | - Biswajyoti Sahu
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, 0349 Oslo, Norway
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Shintaro Katayama
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Juha Kere
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| |
Collapse
|
20
|
PGC7 Regulates Genome-Wide DNA Methylation by Regulating ERK-Mediated Subcellular Localization of DNMT1. Int J Mol Sci 2023; 24:ijms24043093. [PMID: 36834503 PMCID: PMC9958980 DOI: 10.3390/ijms24043093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 02/08/2023] Open
Abstract
DNA methylation is an epigenetic modification that plays a vital role in a variety of biological processes, including the regulation of gene expression, cell differentiation, early embryonic development, genomic imprinting, and X chromosome inactivation. PGC7 is a maternal factor that maintains DNA methylation during early embryonic development. One mechanism of action has been identified by analyzing the interactions between PGC7 and UHRF1, H3K9 me2, or TET2/TET3, which reveals how PGC7 regulates DNA methylation in oocytes or fertilized embryos. However, the mechanism by which PGC7 regulates the post-translational modification of methylation-related enzymes remains to be elucidated. This study focused on F9 cells (embryonic cancer cells), which display high levels of PGC7 expression. We found that both knockdown of Pgc7 and inhibition of ERK activity resulted in increased genome-wide DNA methylation levels. Mechanistic experiments confirmed that inhibition of ERK activity led to the accumulation of DNMT1 in the nucleus, ERK phosphorylated DNMT1 at ser717, and DNMT1 Ser717-Ala mutation promoted the nuclear localization of DNMT1. Moreover, knockdown of Pgc7 also caused downregulation of ERK phosphorylation and promoted the accumulation of DNMT1 in the nucleus. In conclusion, we reveal a new mechanism by which PGC7 regulates genome-wide DNA methylation via phosphorylation of DNMT1 at ser717 by ERK. These findings may provide new insights into treatments for DNA methylation-related diseases.
Collapse
|
21
|
Genome-wide assessment of DNA methylation alterations induced by superovulation, sexual immaturity and in vitro follicle growth in mouse blastocysts. Clin Epigenetics 2023; 15:9. [PMID: 36647174 PMCID: PMC9843966 DOI: 10.1186/s13148-023-01421-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND In their attempt to fulfill the wish of having children, women who suffer from fertility issues often undergo assisted reproductive technologies such as ovarian stimulation, which has been associated with adverse health outcomes and imprinting disorders in children. However, given the crucial role of exogenous hormone stimulation in improving human infertility treatments, a more comprehensive analysis of the potential impacts on DNA methylation in embryos following ovarian stimulation is needed. Here, we provide genome-wide DNA methylation profiles of blastocysts generated after superovulation of prepubertal or adult mice, compared with blastocysts derived from non-stimulated adult mice. Additionally, we assessed the impact of the in vitro growth and maturation of oocytes on methylation in blastocysts. RESULTS Neither hormone stimulation nor sexual maturity had an impact on the low global methylation levels characteristic of the blastocyst stage or was associated with extensive DNA methylation alterations. However, we found hormone- and age-associated changes at specific positions but dispersed throughout the genome. In particular, we detected anomalous methylation at a limited number of CpG islands. Additionally, superovulation in adult mice was associated with alterations at the Sgce and Zfp777 imprinted genes. On the other hand, in vitro culture of follicles from the early pre-antral stage was associated with globally reduced methylation and increased variability at imprinted loci in blastocysts. CONCLUSIONS Our results indicate a minimal effect of ovarian stimulation of adult and prepubertal mice on the DNA methylation landscape attained at the blastocyst stage, but potentially greater impacts of in vitro growth and maturation of oocytes. These findings have potential significance for the improvement of assisted reproductive techniques, in particular for those related to treatments in prepubertal females, which could be crucial for improving human fertility preservation strategies.
Collapse
|
22
|
Chen H, Zhang L, Yue F, Cui C, Li Y, Zhang Q, Liang L, Meng L, Zhang C. Effects of assisted reproductive technology on gene expression in heart and spleen tissues of adult offspring mouse. Front Endocrinol (Lausanne) 2023; 14:1035161. [PMID: 37065763 PMCID: PMC10098333 DOI: 10.3389/fendo.2023.1035161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/10/2023] [Indexed: 04/18/2023] Open
Abstract
OBJECTIVES Assisted reproductive technology (ART) is an important part of reproductive medicine, whose possible effects on offspring's health have drawn widespread attention in recent years. However, relevant studies are limited to postnatal short-term follow-up and lack of diverse sample sources analysis other than blood. METHODS In this study, a mouse model was used to explore the effects of ART on fetal development and gene expression in the organs of offspring in the adulthood using next-generation sequencing. The sequencing results were then analyzed. RESULTS The results showed that it caused abnormal expression in 1060 genes and 179 genes in the heart and spleen, respectively. Differentially expressed genes (DEGs) in the heart are mainly enriched in RNA synthesis and processing, and the cardiovascular system development also shows enrichment. STRING analysis identified Ccl2, Ptgs2, Rock1, Mapk14, Agt, and Wnt5a as the core interacting factors. DEGs in the spleen are significantly enriched in anti-infection and immune responses, which include the core factors Fos, Jun and Il1r2. Further exploration revealed the abnormal expression of 42 and 5 epigenetic modifiers in the heart and spleen, respectively. The expression of the imprinted genes Dhcr7, Igf2, Mest and Smoc1 decreased in the hearts of ART offspring, and the DNA methylation levels of Igf2- and Mest-imprinting control regions (ICRs) increased abnormally. CONCLUSION In the mouse model, ART can interfere with the gene expression pattern in the heart and spleen of the adult offspring and that these changes are related to the aberrant expression of epigenetic regulators.
Collapse
Affiliation(s)
- Huanhuan Chen
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Lei Zhang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Feng Yue
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Chenchen Cui
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Yan Li
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Qingwen Zhang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Linlin Liang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Li Meng
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
- *Correspondence: Li Meng, ; Cuilian Zhang,
| | - Cuilian Zhang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
- *Correspondence: Li Meng, ; Cuilian Zhang,
| |
Collapse
|
23
|
Mu J, Zhou Z, Sang Q, Wang L. The physiological and pathological mechanisms of early embryonic development. FUNDAMENTAL RESEARCH 2022; 2:859-872. [PMID: 38933386 PMCID: PMC11197659 DOI: 10.1016/j.fmre.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022] Open
Abstract
Early embryonic development is a complex process. The zygote undergoes several rounds of division to form a blastocyst, and during this process, the zygote undergoes the maternal-to-zygotic transition to gain control of embryonic development and makes two cell fate decisions to differentiate into an embryonic and two extra-embryonic lineages. With the use of new molecular biotechnologies and animal models, we can now further study the molecular mechanisms of early embryonic development and the pathological causes of early embryonic arrest. Here, we first summarize the known molecular regulatory mechanisms of early embryonic development in mice. Then we discuss the pathological factors leading to the early embryonic arrest. We hope that this review will give researchers a relatively complete view of the physiology and pathology of early embryonic development.
Collapse
Affiliation(s)
- Jian Mu
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhou Zhou
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Qing Sang
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Wang
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
24
|
Juan AM, Foong YH, Thorvaldsen JL, Lan Y, Leu NA, Rurik JG, Li L, Krapp C, Rosier CL, Epstein JA, Bartolomei MS. Tissue-specific Grb10/Ddc insulator drives allelic architecture for cardiac development. Mol Cell 2022; 82:3613-3631.e7. [PMID: 36108632 PMCID: PMC9547965 DOI: 10.1016/j.molcel.2022.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Allele-specific expression of imprinted gene clusters is governed by gametic DNA methylation at master regulators called imprinting control regions (ICRs). Non-gametic or secondary differentially methylated regions (DMRs) at promoters and exonic regions reinforce monoallelic expression but do not control an entire cluster. Here, we unveil an unconventional secondary DMR that is indispensable for tissue-specific imprinting of two previously unlinked genes, Grb10 and Ddc. Using polymorphic mice, we mapped an intronic secondary DMR at Grb10 with paternal-specific CTCF binding (CBR2.3) that forms contacts with Ddc. Deletion of paternal CBR2.3 removed a critical insulator, resulting in substantial shifting of chromatin looping and ectopic enhancer-promoter contacts. Destabilized gene architecture precipitated abnormal Grb10-Ddc expression with developmental consequences in the heart and muscle. Thus, we redefine the Grb10-Ddc imprinting domain by uncovering an unconventional intronic secondary DMR that functions as an insulator to instruct the tissue-specific, monoallelic expression of multiple genes-a feature previously ICR exclusive.
Collapse
Affiliation(s)
- Aimee M Juan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yee Hoon Foong
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joanne L Thorvaldsen
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicolae A Leu
- Department of Biomedical Sciences, Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Joel G Rurik
- Penn Cardiovascular Institute, Department of Medicine, Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Li
- Penn Cardiovascular Institute, Department of Medicine, Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Krapp
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Casey L Rosier
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A Epstein
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, Department of Medicine, Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Chen F, Ma B, Lin Y, Luo X, Xu T, Zhang Y, Chen F, Li Y, Zhang Y, Luo B, Zhang Q, Xie X. Comparative maternal protein profiling of mouse biparental and uniparental embryos. Gigascience 2022; 11:giac084. [PMID: 36056732 PMCID: PMC9440387 DOI: 10.1093/gigascience/giac084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Maternal proteins have important roles during early embryonic development. However, our understanding of maternal proteins is still very limited. The integrated analysis of mouse uniparental (parthenogenetic) and biparental (fertilized) embryos at the protein level creates a protein expression landscape that can be used to explore preimplantation mouse development. RESULTS Using label-free quantitative mass spectrometry (MS) analysis, we report on the maternal proteome of mouse parthenogenetic embryos at pronucleus, 2-cell, 4-cell, 8-cell, morula, and blastocyst stages and highlight dynamic changes in protein expression. In addition, comparison of proteomic profiles of parthenogenotes and fertilized embryos highlights the different fates of maternal proteins. Enrichment analysis uncovered a set of maternal proteins that are strongly correlated with the subcortical maternal complex, and we report that in parthenogenotes, some of these maternal proteins escape the fate of protein degradation. Moreover, we identified a new maternal factor-Fbxw24, and highlight its importance in early embryonic development. We report that Fbxw24 interacts with Ddb1-Cul4b and may regulate maternal protein degradation in mouse. CONCLUSIONS Our study provides an invaluable resource for mechanistic analysis of maternal proteins and highlights the role of the novel maternal factor Fbw24 in regulating maternal protein degradation during preimplantation embryo development.
Collapse
Affiliation(s)
- Fumei Chen
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Buguo Ma
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Yongda Lin
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Xin Luo
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Tao Xu
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Yuan Zhang
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Fang Chen
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Yanfei Li
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Yaoyao Zhang
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Bin Luo
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Qingmei Zhang
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| |
Collapse
|
26
|
Daigneault BW. Insights to maternal regulation of the paternal genome in mammalian livestock embryos: A mini-review. Front Genet 2022; 13:909804. [PMID: 36061209 PMCID: PMC9437210 DOI: 10.3389/fgene.2022.909804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
This mini-review focuses on current knowledge regarding maternal regulation of the paternal genome in early embryos of mammalian livestock species. Emphasis has been placed on regulatory events described for maternally imprinted genes and further highlights transcriptional regulation of the post-fertilization paternal genome by maternal factors. Specifically, the included content aims to summarize genomic and epigenomic contributions of paternally expressed genes, their regulation by the maternal embryo environment, and chromatin structure that are indispensable for early embryo development. The accumulation of current knowledge will summarize conserved allelic function among species to include molecular and genomic studies across large domestic animals and humans with reference to founding experimental animal models.
Collapse
|
27
|
Svoboda LK, Perera BPU, Morgan RK, Polemi KM, Pan J, Dolinoy DC. Toxicoepigenetics and Environmental Health: Challenges and Opportunities. Chem Res Toxicol 2022; 35:1293-1311. [PMID: 35876266 PMCID: PMC9812000 DOI: 10.1021/acs.chemrestox.1c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rapidly growing field of toxicoepigenetics seeks to understand how toxicant exposures interact with the epigenome to influence disease risk. Toxicoepigenetics is a promising field of environmental health research, as integrating epigenetics into the field of toxicology will enable a more thorough evaluation of toxicant-induced disease mechanisms as well as the elucidation of the role of the epigenome as a biomarker of exposure and disease and possible mediator of exposure effects. Likewise, toxicoepigenetics will enhance our knowledge of how environmental exposures, lifestyle factors, and diet interact to influence health. Ultimately, an understanding of how the environment impacts the epigenome to cause disease may inform risk assessment, permit noninvasive biomonitoring, and provide potential opportunities for therapeutic intervention. However, the translation of research from this exciting field into benefits for human and animal health presents several challenges and opportunities. Here, we describe four significant areas in which we see opportunity to transform the field and improve human health by reducing the disease burden caused by environmental exposures. These include (1) research into the mechanistic role for epigenetic change in environment-induced disease, (2) understanding key factors influencing vulnerability to the adverse effects of environmental exposures, (3) identifying appropriate biomarkers of environmental exposures and their associated diseases, and (4) determining whether the adverse effects of environment on the epigenome and human health are reversible through pharmacologic, dietary, or behavioral interventions. We then highlight several initiatives currently underway to address these challenges.
Collapse
Affiliation(s)
- Laurie K Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bambarendage P U Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel K Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katelyn M Polemi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Junru Pan
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
28
|
Early Expression of Tet1 and Tet2 in Mouse Zygotes Altered DNA Methylation Status and Affected Embryonic Development. Int J Mol Sci 2022; 23:ijms23158495. [PMID: 35955629 PMCID: PMC9369288 DOI: 10.3390/ijms23158495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Ten-eleven translocation (Tet) dioxygenases can induce DNA demethylation by catalyzing 5-methylcytosine(5mC) to 5-hydroxymethylcytosine(5hmC), and play important roles during mammalian development. In mouse, Tet1 and Tet2 are not expressed in pronucleus-staged embryos and are not involved in the genomic demethylation of early zygotes. Here, we investigated the influence of Tet1 and Tet2 on methylation of parental genomes by ectopically expressing Tet1 and Tet2 in zygotes. Immunofluorescence staining showed a marked 5hmC increase in the maternal pronucleus after injection of Tet1 or Tet2 mRNA into zygotes. Whole-genome bisulfite sequencing further revealed that Tet2 greatly enhanced the global demethylation of both parental genomes, while Tet1 only promoted the paternal demethylation. Tet1 and Tet2 overexpression altered the DNA methylation across genomes, including various genic elements and germline-specific differently methylated regions. Tet2 exhibited overall stronger demethylation activity than Tet1. Either Tet1 or Tet2 overexpression impaired preimplantation embryonic development. These results demonstrated that early expression of Tet1 and Tet2 could substantially alter the zygotic methylation landscape and damage embryonic development. These findings provide new insights into understanding the function of Tet dioxygenases and the mechanism of DNA methylation in relation to embryogenesis.
Collapse
|
29
|
Guo Y, Cai L, Liu X, Ma L, Zhang H, Wang B, Qi Y, Liu J, Diao F, Sha J, Guo X. Single-cell quantitative proteomic analysis of human oocyte maturation revealed high heterogeneity in in vitro matured oocytes. Mol Cell Proteomics 2022; 21:100267. [PMID: 35809850 PMCID: PMC9396076 DOI: 10.1016/j.mcpro.2022.100267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/02/2022] Open
Abstract
Oocyte maturation is pertinent to the success of in vitro maturation (IVM), which is used to overcome female infertility, and produced over 5000 live births worldwide. However, the quality of human IVM oocytes has not been investigated at single-cell proteome level. Here, we quantified 2094 proteins in human oocytes during in vitro and in vivo maturation (IVO) by single-cell proteomic analysis and identified 176 differential proteins between IVO and germinal vesicle oocytes and 45 between IVM and IVO oocytes including maternal effect proteins, with potential contribution to the clinically observed decreased fertilization, implantation, and birth rates using human IVM oocytes. IVM and IVO oocytes showed separate clusters in principal component analysis, with higher inter-cell variability among IVM oocytes, and have little correlation between mRNA and protein changes during maturation. The patients with the most aberrantly expressed proteins in IVM oocytes had the lowest level of estradiol per mature follicle on trigger day. Our data provide a rich resource to evaluate effect of IVM on oocyte quality and study mechanism of oocyte maturation. Single-cell proteomic profiling of human oocytes matured in vitro and in vivo. Low correlation between protein and mRNA levels during human oocyte maturation. In vitro matured (IVM) oocytes exhibit higher heterogeneity at the proteome level. 45 differentially expressed proteins between IVM and in vivo matured (IVO) oocytes.
Collapse
Affiliation(s)
- Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Lingbo Cai
- State Key Laboratory of Reproductive Medicine, Clinical Center for Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaofei Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Long Ma
- State Key Laboratory of Reproductive Medicine, Clinical Center for Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Bing Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center for Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Feiyang Diao
- State Key Laboratory of Reproductive Medicine, Clinical Center for Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
30
|
Haraguchi D, Nakamura T. Pramef12 enhances reprogramming into naïve iPS cells. Biochem Biophys Rep 2022; 30:101267. [PMID: 35592616 PMCID: PMC9111934 DOI: 10.1016/j.bbrep.2022.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 11/22/2022] Open
Abstract
Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by forced expression of the transcription factors Oct3/4, Klf4, Sox2, and c-Myc (OKSM). Somatic cell nuclear transfer can also be utilized to reprogram somatic cells into totipotent embryos, suggesting that factors present in oocytes potentially enhance the efficiency of iPS cell generation. Here, we showed that preferentially expressed antigen of melanoma family member 12 (Pramef12), which is highly expressed in oocytes, enhances the generation of iPS cells from mouse fibroblasts. Overexpression of Pramef12 during the early phase of OKSM-induced reprogramming enhanced the efficiency of iPS cell derivation. In addition, overexpression of Pramef12 also enhanced expression of naïve pluripotency-associated genes, Gtl2 located within the Dlk1–Dio3 imprinted region essential for full pluripotency, glycolysis-associated genes, and oxidative phosphorylation-associated genes, and it promoted mesenchymal-to-epithelial transition during iPS cell generation. Furthermore, Pramef12 greatly activated β-catenin during iPS cell generation. These observations suggested that Pramef12 enhances OKSM-induced reprogramming via activation of the Wnt/β-catenin pathway. Pramef12 enhances OKSM-induced reprogramming into naïve iPS cells. Pramef12 enhances expression of naïve pluripotency-associated genes, essential genes for full pluripotency, glycolysis-associated genes, and oxidative phosphorylation-associated genes. Pramef12 promotes mesenchymal-to-epithelial transition during iPS cell generation. Pramef12 enhances OKSM-induced reprogramming via activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
| | - Toshinobu Nakamura
- Gaduate School of Bio-Science, Japan
- Department of Bio-Science, Japan
- Genome Editing Research Institute, Ngahama Institute of Bio-Science and Technology, Shiga, 526-0829, Japan
- Corresponding author. Laboratory for epigenetic regulation, Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Japan.
| |
Collapse
|
31
|
Zhang C, Wen H, Liu S, Fu E, Yu L, Chen S, Han Q, Li Z, Liu N. Maternal Factor Dppa3 Activates 2C-Like Genes and Depresses DNA Methylation in Mouse Embryonic Stem Cells. Front Cell Dev Biol 2022; 10:882671. [PMID: 35721479 PMCID: PMC9203971 DOI: 10.3389/fcell.2022.882671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) contain a rare cell population of “two-cell embryonic like” cells (2CLCs) that display similar features to those found in the two-cell (2C) embryo and thus represent an in vitro model for studying the progress of zygotic genome activation (ZGA). However, the positive regulator determinants of the 2CLCs’ conversion and ZGA have not been completely elucidated. Here, we identify a new regulator promoting 2CLCs and ZGA transcripts. Through a combination of overexpression (OE), knockdown (KD), together with transcriptional analysis and methylome analysis, we find that Dppa3 regulates the 2CLC-associated transcripts, DNA methylation, and 2CLC population in ESCs. The differentially methylated regions (DMRs) analysis identified 6,920 (98.2%) hypomethylated, whilst only 129 (1.8%) hypermethylated, regions in Dppa3 OE ESCs, suggesting that Dppa3 facilitates 2CLCs reprogramming. The conversion to 2CLCs by overexpression of Dppa3 is also associated with DNA damage response. Dppa3 knockdown manifest impairs transition into the 2C-like state. Global DNA methylome and chromatin state analysis of Dppa3 OE ESCs reveal that Dppa3 facilitates the chromatin configuration to 2CLCs reversion. Our finding for the first time elucidates a novel role of Dppa3 in mediating the 2CLC conversion, and suggests that Dppa3 is a new regulator for ZGA progress.
Collapse
Affiliation(s)
- Chuanyu Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Hang Wen
- School of Medicine, Nankai University, Tianjin, China
| | - Siying Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Enze Fu
- School of Medicine, Nankai University, Tianjin, China
| | - Lu Yu
- School of Medicine, Nankai University, Tianjin, China
| | - Shang Chen
- School of Medicine, Nankai University, Tianjin, China
| | - Qingsheng Han
- School of Medicine, Nankai University, Tianjin, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, China
- *Correspondence: Zongjin Li, ; Na Liu,
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, China
- *Correspondence: Zongjin Li, ; Na Liu,
| |
Collapse
|
32
|
Zhao S, Zhang C, Xu J, Liu S, Yu L, Chen S, Wen H, Li Z, Liu N. Dppa3 facilitates self-renewal of embryonic stem cells by stabilization of pluripotent factors. Stem Cell Res Ther 2022; 13:169. [PMID: 35477484 PMCID: PMC9044575 DOI: 10.1186/s13287-022-02846-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Developmental pluripotency-associated 3 (Dppa3, also called Stella or PGC7) is a principal maternal protein specially expressed in pre-implantation embryos, embryonic stem cells (ES cells) and primordial germ cells (PGCs). It plays critical role in the regulating of DNA methylation in zygotes and oocytes. However, the effect of Dppa3 in ES cells on the stability of proteins is still unclear. METHODS In this study, we first identified the potential interacting proteins with Dppa3 using immunoprecipitation-mass spectrometry (IP-MS). After GO analysis, we further constructed Dppa3-silenced ES cells and ES cell lines overexpressing with different lengths of Dppa3 to explore the mechanisms of Dppa3 on protein stability. RESULTS IP-MS results showed that Dppa3 interacted with quite a few subunits of 26S proteasome. Full length of Dppa3 stabilized Uhrf1 and Nanog by inhibiting its degradation. Silencing Dppa3 promoted degradation of Nanog protein. CONCLUSIONS Our results indicated that Dppa3 safeguard the stability of Uhrf1 and Nanog by inhibiting proteasome-associated degradation in ES cells. These findings shed light on new function of Dppa3 in maintaining stability of proteins and provides a valuable resource for understanding the roles of Dppa3 in embryonic stem cells.
Collapse
Affiliation(s)
- Shuang Zhao
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China.,Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chuanyu Zhang
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Jia Xu
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Siying Liu
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Lu Yu
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Shang Chen
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Hang Wen
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Zongjin Li
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China.,Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Na Liu
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China. .,Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
33
|
Hubert JN, Demars J. Genomic Imprinting in the New Omics Era: A Model for Systems-Level Approaches. Front Genet 2022; 13:838534. [PMID: 35368671 PMCID: PMC8965095 DOI: 10.3389/fgene.2022.838534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting represents a noteworthy inheritance mechanism leading to allele-specific regulations dependent of the parental origin. Imprinted loci are especially involved in essential mammalian functions related to growth, development and behavior. In this mini-review, we first offer a summary of current representations associated with genomic imprinting through key results of the three last decades. We then outline new perspectives allowed by the spread of new omics technologies tackling various interacting levels of imprinting regulations, including genomics, transcriptomics and epigenomics. We finally discuss the expected contribution of new omics data to unresolved big questions in the field.
Collapse
|
34
|
Borsuk E, Michalkiewicz J, Kubiak JZ, Kloc M. Histone Modifications in Mouse Pronuclei and Consequences for Embryo Development. Results Probl Cell Differ 2022; 70:397-415. [PMID: 36348116 DOI: 10.1007/978-3-031-06573-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Epigenetic marks, such as DNA methylation and posttranslational modifications of core histones, are the key regulators of gene expression. In the mouse, many of these marks are erased during gamete formation and must be introduced de novo after fertilization. Some of them appear synchronously, but the others are deposited asynchronously and/or remain differently distributed on maternal and paternal chromatin. Although the mechanisms regulating these processes are not entirely understandable, it is commonly accepted that epigenetic reprogramming occurring during the first cell cycle of a mouse embryo is crucial for its further development. This chapter focuses on selected epigenetic modifications, such as DNA methylation, the introduction of histone variants, histones acetylation, phosphorylation, and methylation. Properly depositing these marks on maternal and paternal chromatin is crucial for normal embryonic development.
Collapse
Affiliation(s)
- Ewa Borsuk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Julia Michalkiewicz
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jacek Z Kubiak
- Dynamics and Mechanics of Epithelia Group, Institute of Genetics and Development of Rennes, UMR 6290, CNRS, Faculty of Medicine, University of Rennes, Rennes, France
- Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
- Department of Genetics, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| |
Collapse
|
35
|
Dean W. Pathways of DNA Demethylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:211-238. [DOI: 10.1007/978-3-031-11454-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Genetic Studies on Mammalian DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:111-136. [PMID: 36350508 PMCID: PMC9815518 DOI: 10.1007/978-3-031-11454-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytosine methylation at the C5-position-generating 5-methylcytosine (5mC)-is a DNA modification found in many eukaryotic organisms, including fungi, plants, invertebrates, and vertebrates, albeit its levels vary greatly in different organisms. In mammals, cytosine methylation occurs predominantly in the context of CpG dinucleotides, with the majority (60-80%) of CpG sites in their genomes being methylated. DNA methylation plays crucial roles in the regulation of chromatin structure and gene expression and is essential for mammalian development. Aberrant changes in DNA methylation and genetic alterations in enzymes and regulators involved in DNA methylation are associated with various human diseases, including cancer and developmental disorders. In mammals, DNA methylation is mediated by two families of DNA methyltransferases (Dnmts), namely Dnmt1 and Dnmt3 proteins. Over the last three decades, genetic manipulations of these enzymes, as well as their regulators, in mice have greatly contributed to our understanding of the biological functions of DNA methylation in mammals. In this chapter, we discuss genetic studies on mammalian Dnmts, focusing on their roles in embryogenesis, cellular differentiation, genomic imprinting, and human diseases.
Collapse
|
37
|
Structure and Function of TET Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:239-267. [DOI: 10.1007/978-3-031-11454-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells. Nat Commun 2021; 12:6718. [PMID: 34795250 PMCID: PMC8602306 DOI: 10.1038/s41467-021-26949-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
In mammals, imprinted genes are regulated by differentially methylated regions (DMRs) that are inherited from germ cells, leading to monoallelic expression in accordance with parent-of-origin. Yet, it is largely unknown how imprinted DMRs are maintained in human embryos despite global DNA demethylation following fertilization. Here, we explored the mechanisms involved in imprinting regulation by employing human parthenogenetic embryonic stem cells (hpESCs), which lack paternal alleles. We show that although global loss of DNA methylation in hpESCs affects most imprinted DMRs, many paternally-expressed genes (PEGs) remain repressed. To search for factors regulating PEGs, we performed a genome-wide CRISPR/Cas9 screen in haploid hpESCs. This revealed ATF7IP as an essential repressor of a set of PEGs, which we further show is also required for silencing sperm-specific genes. Our study reinforces an important role for histone modifications in regulating imprinted genes and suggests a link between parental imprinting and germ cell identity. Genetic imprinting ensures monoallelic gene expression critical for normal embryonic development. Here the authors take advantage of human haploid parthenogenic embryonic stem cells lacking paternal alleles to identify, by genome-wide screening, factors involved in the regulation of imprinted genes.
Collapse
|
39
|
Hamdi M, Cañon-Beltrán K, Mazzarella R, Cajas YN, Leal CLV, Gutierrez-Adan A, González EM, Da Silveira JC, Rizos D. Characterization and profiling analysis of bovine oviduct and uterine extracellular vesicles and their miRNA cargo through the estrous cycle. FASEB J 2021; 35:e22000. [PMID: 34731497 DOI: 10.1096/fj.202101023r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/19/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022]
Abstract
Extracellular vesicles (EVs) found in various biological fluids and particularly in reproductive fluids, have gained considerable attention for their possible role in cell- to- cell communication. Among, the different bioactive molecules cargos of EVs, MicroRNAs (miRNAs) are emerging as promising diagnostic biomarkers with high clinical potential. Aiming to understand the roles of EVs in bovine reproductive tract, we intended to characterize and profile the EVs of oviduct and uterine fluids (OF-EVs, UF-EVs) and their miRNA across the estrous cycle. Nanoparticle tracking analysis and transmission electron microscopy confirmed the existence of small EV population in OF and UF at all stages, (size between 30 and 200 nm; concentration: 3.4 × 1010 EVs/ml and 6.0 × 1010 EVs/ml for OF and UF, respectively, regardless of stage). The identification of EV markers (CD9, HSP70, and ALIX proteins) was confirmed by western blot. The miRNA analysis revealed the abundance of 310 and 351 miRNAs in OF-EVs and UF-EVs, respectively. Nine miRNAs were differentially abundant in OF-EVs between stages of the cycle, eight of them displayed a progressive increase from S1 to S4 (p < .05). In UF-EVs, a total of 14 miRNAs were differentially abundant between stages. Greater differences were observed between stage 1 (S1) and stage 3 (S3), with 11 miRNAs enriched in S3 compared to S1. Functional enrichment analysis revealed the involvement of these miRNAs in relevant pathways such as cell signaling, intercellular junctions, and reproductive functions that may be implicated in oviduct and uterus modulation across the cycle, but also in their preparation for embryo/conceptus presence and development.
Collapse
Affiliation(s)
- Meriem Hamdi
- Department of Animal Reproduction, INIA-CSIC, Madrid, Spain.,Genetics and Functional Genomics, Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Karina Cañon-Beltrán
- Department of Animal Reproduction, INIA-CSIC, Madrid, Spain.,Facultad de Ciencias Agrarias y Ambientales, Programa de Medicina Veterinaria, Fundación Universitaria Juan de Castellanos, Tunja, Colombia
| | - Rosane Mazzarella
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Yulia N Cajas
- Department of Animal Reproduction, INIA-CSIC, Madrid, Spain.,Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca (UC), Cuenca, Ecuador
| | - Claudia L V Leal
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | | - Encina M González
- Department of Anatomy and Embryology, Veterinary Faculty, Complutense University of Madrid (UCM), Madrid, Spain
| | - Juliano C Da Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | |
Collapse
|
40
|
Bend family proteins mark chromatin boundaries and synergistically promote early germ cell differentiation. Protein Cell 2021; 13:721-741. [PMID: 34731408 PMCID: PMC9233729 DOI: 10.1007/s13238-021-00884-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/19/2021] [Indexed: 12/30/2022] Open
Abstract
Understanding the regulatory networks for germ cell fate specification is necessary to developing strategies for improving the efficiency of germ cell production in vitro. In this study, we developed a coupled screening strategy that took advantage of an arrayed bi-molecular fluorescence complementation (BiFC) platform for protein-protein interaction screens and epiblast-like cell (EpiLC)-induction assays using reporter mouse embryonic stem cells (mESCs). Investigation of candidate interaction partners of core human pluripotent factors OCT4, NANOG, KLF4 and SOX2 in EpiLC differentiation assays identified novel primordial germ cell (PGC)-inducing factors including BEN-domain (BEND/Bend) family members. Through RNA-seq, ChIP-seq, and ATAC-seq analyses, we showed that Bend5 worked together with Bend4 and helped mark chromatin boundaries to promote EpiLC induction in vitro. Our findings suggest that BEND/Bend proteins represent a new family of transcriptional modulators and chromatin boundary factors that participate in gene expression regulation during early germline development.
Collapse
|
41
|
Transposable Element Dynamics and Regulation during Zygotic Genome Activation in Mammalian Embryos and Embryonic Stem Cell Model Systems. Stem Cells Int 2021; 2021:1624669. [PMID: 34691189 PMCID: PMC8536462 DOI: 10.1155/2021/1624669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic sequences capable of duplicating and reintegrating at new regions within the genome. A growing body of evidence has demonstrated that these elements play important roles in host genome evolution, despite being traditionally viewed as parasitic elements. To prevent ectopic activation of TE transposition and transcription, they are epigenetically silenced in most somatic tissues. Intriguingly, a specific class of TEs-retrotransposons-is transiently expressed at discrete phases during mammalian development and has been linked to the establishment of totipotency during zygotic genome activation (ZGA). While mechanisms controlling TE regulation in somatic tissues have been extensively studied, the significance underlying the unique transcriptional reactivation of retrotransposons during ZGA is only beginning to be uncovered. In this review, we summarize the expression dynamics of key retrotransposons during ZGA, focusing on findings from in vivo totipotent embryos and in vitro totipotent-like embryonic stem cells (ESCs). We then dissect the functions of retrotransposons and discuss how their transcriptional activities are finetuned during early stages of mammalian development.
Collapse
|
42
|
Bergman Y, Simon I, Cedar H. Asynchronous Replication Timing: A Mechanism for Monoallelic Choice During Development. Front Cell Dev Biol 2021; 9:737681. [PMID: 34660595 PMCID: PMC8517340 DOI: 10.3389/fcell.2021.737681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Developmental programming is carried out by a sequence of molecular choices that epigenetically mark the genome to generate the stable cell types which make up the total organism. A number of important processes, such as genomic imprinting, selection of immune or olfactory receptors, and X-chromosome inactivation in females are dependent on the ability to stably choose one single allele in each cell. In this perspective, we propose that asynchronous replication timing (ASRT) serves as the basis for a sophisticated universal mechanism for mediating and maintaining these decisions.
Collapse
Affiliation(s)
- Yehudit Bergman
- Department of Developmental Biology and Cancer Research, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, Hebrew University Hadassah Medical School, The Institute for Medical Research Israel-Canada (IMRIC), Jerusalem, Israel
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
43
|
Importins: Diverse roles in male fertility. Semin Cell Dev Biol 2021; 121:82-98. [PMID: 34426066 DOI: 10.1016/j.semcdb.2021.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
Regulated nucleocytoplasmic transport is central to the changes in gene expression that underpin cellular development and homeostasis, including in the testis, and proteins in the importin family are the predominant facilitators of cargo transport through the nuclear envelope. Reports documenting cell-specific profiles of importin transcripts and proteins during spermatogenesis led us to hypothesize that importins facilitate developmental switches in the testis. More recently, importins have been shown to serve additional functions, both inside and outside the nucleus; these include acting as subcellular scaffolding, mediating cellular stress responses, and controlling transcription. This paper seeks to provide an overview and update on the functions of importin proteins, with a focus on testis development and spermatogenesis. We present an extended survey of importins by combining published single cell RNAseq data with immunohistochemistry on developing and adult mouse testes. This approach reinforces and broadens knowledge of importins in biological processes, including in spermatogenesis and during testis development, revealing additional avenues for impactful investigations.
Collapse
|
44
|
Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells 2021; 10:cells10082049. [PMID: 34440818 PMCID: PMC8391114 DOI: 10.3390/cells10082049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single totipotent cell, which has the capability to develop into a complete, fully functional organism. Then, as development proceeds, a series of programmed cell divisions occur whereby the arising cells progressively acquire their own cellular and molecular identity, and totipotency narrows until when pluripotency is achieved. The path towards pluripotency involves transcriptome modulation, remodeling of the chromatin epigenetic landscape to which external modulators contribute. Both human and mouse embryos are a source of different types of pluripotent stem cells whose characteristics can be captured and maintained in vitro. The main aim of this review is to address the cellular properties and the molecular signature of the emerging cells during mouse and human early development, highlighting similarities and differences between the two species and between the embryos and their cognate stem cells.
Collapse
|
45
|
Nishiyama A, Nakanishi M. Navigating the DNA methylation landscape of cancer. Trends Genet 2021; 37:1012-1027. [PMID: 34120771 DOI: 10.1016/j.tig.2021.05.002] [Citation(s) in RCA: 453] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA methylation control mechanisms causes a variety of diseases, including cancer. Cancer cells are characterized by aberrant DNA methylation (i.e., genome-wide hypomethylation and site-specific hypermethylation), mainly targeting CpG islands in gene expression regulatory elements. In particular, the early findings that a variety of tumor suppressor genes (TSGs) are targets of DNA hypermethylation in cancer led to the proposal of a model in which aberrant DNA methylation promotes cellular oncogenesis through TSGs silencing. However, recent genome-wide analyses have revealed that this classical model needs to be reconsidered. In this review, we will discuss the molecular mechanisms of DNA methylation abnormalities in cancer as well as their therapeutic potential.
Collapse
Affiliation(s)
- Atsuya Nishiyama
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
46
|
Garner TB, Hester JM, Carothers A, Diaz FJ. Role of zinc in female reproduction. Biol Reprod 2021; 104:976-994. [PMID: 33598687 PMCID: PMC8599883 DOI: 10.1093/biolre/ioab023] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/09/2021] [Accepted: 02/15/2021] [Indexed: 11/14/2022] Open
Abstract
Zinc is a critical component in a number of conserved processes that regulate female germ cell growth, fertility, and pregnancy. During follicle development, a sufficient intracellular concentration of zinc in the oocyte maintains meiotic arrest at prophase I until the germ cell is ready to undergo maturation. An adequate supply of zinc is necessary for the oocyte to form a fertilization-competent egg as dietary zinc deficiency or chelation of zinc disrupts maturation and reduces the oocyte quality. Following sperm fusion to the egg to initiate the acrosomal reaction, a quick release of zinc, known as the zinc spark, induces egg activation in addition to facilitating zona pellucida hardening and reducing sperm motility to prevent polyspermy. Symmetric division, proliferation, and differentiation of the preimplantation embryo rely on zinc availability, both during the oocyte development and post-fertilization. Further, the fetal contribution to the placenta, fetal limb growth, and neural tube development are hindered in females challenged with zinc deficiency during pregnancy. In this review, we discuss the role of zinc in germ cell development, fertilization, and pregnancy with a focus on recent studies in mammalian females. We further detail the fundamental zinc-mediated reproductive processes that have only been explored in non-mammalian species and speculate on the role of zinc in similar mechanisms of female mammals. The evidence collected over the last decade highlights the necessity of zinc for normal fertility and healthy pregnancy outcomes, which suggests zinc supplementation should be considered for reproductive age women at risk of zinc deficiency.
Collapse
Affiliation(s)
- Tyler Bruce Garner
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - James Malcolm Hester
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - Allison Carothers
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - Francisco J Diaz
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
47
|
Soygur B, Jaszczak RG, Fries A, Nguyen DH, Malki S, Hu G, Demir N, Arora R, Laird DJ. Intercellular bridges coordinate the transition from pluripotency to meiosis in mouse fetal oocytes. SCIENCE ADVANCES 2021; 7:7/15/eabc6747. [PMID: 33827806 PMCID: PMC8026130 DOI: 10.1126/sciadv.abc6747] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/18/2021] [Indexed: 05/14/2023]
Abstract
Meiosis is critical to generating oocytes and ensuring female fertility; however, the mechanisms regulating the switch from mitotic primordial germ cells to meiotic germ cells are poorly understood. Here, we implicate intercellular bridges (ICBs) in this state transition. We used three-dimensional in toto imaging to map meiotic initiation in the mouse fetal ovary and revealed a radial geometry of this transition that precedes the established anterior-posterior wave. Our studies reveal that appropriate timing of meiotic entry across the ovary and coordination of mitotic-meiotic transition within a cyst depend on the ICB component Tex14, which we show is required for functional cytoplasmic sharing. We find that Tex14 mutants more rapidly attenuate the pluripotency transcript Dppa3 upon meiotic initiation, and Dppa3 mutants undergo premature meiosis similar to Tex14 Together, these results lead to a model that ICBs coordinate and buffer the transition from pluripotency to meiosis through dilution of regulatory factors.
Collapse
Affiliation(s)
- B Soygur
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - R G Jaszczak
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - A Fries
- Biological Imaging Development Center, University of California, San Francisco, San Francisco, CA, USA
| | - D H Nguyen
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - S Malki
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - G Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - N Demir
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - R Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, The Institute for Quantitative Health Science and Engineering, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - D J Laird
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
48
|
Cheng H, Sun X, Chen F, Pan LZ, Wang GL, Yuan HJ, Chang ZL, Tan JH. Meiotic arrest with roscovitine and sexual maturity improve competence of mouse oocytes by regulating expression of competence-related genes. J Reprod Dev 2021; 67:115-122. [PMID: 33597332 PMCID: PMC8075721 DOI: 10.1262/jrd.2020-142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the mechanisms by which meiotic arrest maintenance (MAM) with roscovitine, female sexual maturity, and the surrounded nucleoli (SN) chromatin
configuration improve the competence of mouse oocytes by observing the expression of oocyte competence-related genes in non-surrounded nucleoli (NSN) and SN
oocytes from prepubertal and adult mice following maturation with or without MAM. The results demonstrated that MAM with roscovitine significantly improved the
developmental potential of adult SN and prepubertal NSN oocytes, but had no effect on that of prepubertal SN oocytes. Without MAM, while 40% of the 2-cell
embryos derived from prepubertal SN oocytes developed into 4-cell embryos, none of the 2-cell embryos derived from prepubertal NSN oocytes did, and while 42% of
the 4-cell embryos derived from adult SN oocytes developed into blastocysts, only 1% of the 4-cell embryos derived from prepubertal SN oocytes developed into
blastocysts. Furthermore, MAM with roscovitine, SN configuration, and female sexual maturity significantly increased the mRNA levels of competence-beneficial
genes and decreased those of competence-detrimental genes. In conclusion, our results suggest that MAM with roscovitine, SN chromatin configuration, and female
sexual maturity improve oocyte competence by regulating the expression of competence-related genes, suggesting that Oct4,
Stella, Mater, Zar1, Mapk8, and Bcl2 are oocyte competence-beneficial
genes, whereas Foxj2, Ship1, and Bax are competence-detrimental genes.
Collapse
Affiliation(s)
- Hao Cheng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Xue Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Fei Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Liu-Zhu Pan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Guo-Liang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Hong-Jie Yuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Zhong-Le Chang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Jing-He Tan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| |
Collapse
|
49
|
Abstract
In the past several decades, the establishment of in vitro models of pluripotency has ushered in a golden era for developmental and stem cell biology. Research in this arena has led to profound insights into the regulatory features that shape early embryonic development. Nevertheless, an integrative theory of the epigenetic principles that govern the pluripotent nucleus remains elusive. Here, we summarize the epigenetic characteristics that define the pluripotent state. We cover what is currently known about the epigenome of pluripotent stem cells and reflect on the use of embryonic stem cells as an experimental system. In addition, we highlight insights from super-resolution microscopy, which have advanced our understanding of the form and function of chromatin, particularly its role in establishing the characteristically "open chromatin" of pluripotent nuclei. Further, we discuss the rapid improvements in 3C-based methods, which have given us a means to investigate the 3D spatial organization of the pluripotent genome. This has aided the adaptation of prior notions of a "pluripotent molecular circuitry" into a more holistic model, where hotspots of co-interacting domains correspond with the accumulation of pluripotency-associated factors. Finally, we relate these earlier hypotheses to an emerging model of phase separation, which posits that a biophysical mechanism may presuppose the formation of a pluripotent-state-defining transcriptional program.
Collapse
Affiliation(s)
| | - Eran Meshorer
- Department of Genetics, the Institute of Life Sciences
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel 9190400
| |
Collapse
|
50
|
PGC7 promotes tumor oncogenic dedifferentiation through remodeling DNA methylation pattern for key developmental transcription factors. Cell Death Differ 2021; 28:1955-1970. [PMID: 33500560 PMCID: PMC8185079 DOI: 10.1038/s41418-020-00726-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022] Open
Abstract
Poorly differentiated tumors usually exhibit phenotypes similar to that of their developmental precursor cells. Tumor cells that acquire the lineage progenitor cells feature usually exploit developmental signaling to potentiate cancer progression. However, the underlying molecular events remain elusive. In this study, based on analysis of an in vitro hepatocyte differentiation model, the maternal factor PGC7 (also known as DPPA3, STELLA) was found closely associated with liver development and tumor differentiation in hepatocellular carcinoma (HCC). Expression of PGC7 decreased during hepatocyte maturation and increased progressively from well-differentiated HCCs to poorly differentiated HCCs. Whole-genome methylation sequencing found that PGC7 could induce promoter demethylation of genes related to development. Pathway-based network analysis indicated that downstream targets of PGC7 might form networks associated with developmental transcription factor activation. Overexpression of PGC7 conferred progenitor-like features of HCC cells both in vitro and in vivo. Mechanism studies revealed that PGC7 could impede nuclear translocation of UHRF1, and thus facilitate promoter demethylation of GLI1 and MYCN, both of which are important regulators of HCC self-renewal and differentiation. Depletion or inhibition of GLI1 effectively downregulated MYCN, abolished the effect of PGC7, and sensitized HCC cells to sorafenib treatment. In addition, we found a significant correlation of PGC7 with GLI1/MYCN and lineage differentiation markers in clinical HCC patients. PGC7 expression might drive HCC toward a “dedifferentiated” progenitor lineage through facilitating promoter demethylation of key developmental transcription factors; further inhibition of PGC7/GLI1/MYCN might reverse poorly differentiated HCCs and provide novel therapeutic strategies.
Collapse
|