1
|
Ng TT, Lau CC, Tan MP, Wong LL, Sung YY, Sifzizul Tengku Muhammad T, Van de Peer Y, LiYing S, Danish-Daniel M. Cutaneous transcriptomic profiling and candidate pigment genes in the wild discus ( Symphysodon spp.). NEW ZEALAND JOURNAL OF ZOOLOGY 2023. [DOI: 10.1080/03014223.2023.2180763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Tian Tsyh Ng
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Aquacity Tropical Fish Sdn. Bhd., Kuala Lumpur, Malaysia
| | - Cher Chien Lau
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Min Pau Tan
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Li Lian Wong
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | | | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, and Centre for Plant Systems Biology, Ghent, Belgium
| | - Sui LiYing
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Muhd Danish-Daniel
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| |
Collapse
|
2
|
Xu R, Dai F, Wu H, Jiao R, He F, Ma J. Shaping the scaling characteristics of gap gene expression patterns in Drosophila. Heliyon 2023; 9:e13623. [PMID: 36879745 PMCID: PMC9984453 DOI: 10.1016/j.heliyon.2023.e13623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
How patterns are formed to scale with tissue size remains an unresolved problem. Here we investigate embryonic patterns of gap gene expression along the anterior-posterior (AP) axis in Drosophila. We use embryos that greatly differ in length and, importantly, possess distinct length-scaling characteristics of the Bicoid (Bcd) gradient. We systematically analyze the dynamic movements of gap gene expression boundaries in relation to both embryo length and Bcd input as a function of time. We document the process through which such dynamic movements drive both an emergence of a global scaling landscape and evolution of boundary-specific scaling characteristics. We show that, despite initial differences in pattern scaling characteristics that mimic those of Bcd in the anterior, such characteristics of final patterns converge. Our study thus partitions the contributions of Bcd input and regulatory dynamics inherent to the AP patterning network in shaping embryonic pattern's scaling characteristics.
Collapse
Affiliation(s)
- Ruoqing Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Fei Dai
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Honggang Wu
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510182, China
- Key Laboratory of Interdisciplinary Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Renjie Jiao
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510182, China
- Key Laboratory of Interdisciplinary Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng He
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Corresponding author. Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Jun Ma
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China
- Corresponding author. Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
3
|
Alamos S, Reimer A, Niyogi KK, Garcia HG. Quantitative imaging of RNA polymerase II activity in plants reveals the single-cell basis of tissue-wide transcriptional dynamics. NATURE PLANTS 2021; 7:1037-1049. [PMID: 34373604 PMCID: PMC8616715 DOI: 10.1038/s41477-021-00976-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/22/2021] [Indexed: 05/18/2023]
Abstract
The responses of plants to their environment are often dependent on the spatiotemporal dynamics of transcriptional regulation. While live-imaging tools have been used extensively to quantitatively capture rapid transcriptional dynamics in living animal cells, the lack of implementation of these technologies in plants has limited concomitant quantitative studies in this kingdom. Here, we applied the PP7 and MS2 RNA-labelling technologies for the quantitative imaging of RNA polymerase II activity dynamics in single cells of living plants as they respond to experimental treatments. Using this technology, we counted nascent RNA transcripts in real time in Nicotiana benthamiana (tobacco) and Arabidopsis thaliana. Examination of heat shock reporters revealed that plant tissues respond to external signals by modulating the proportion of cells that switch from an undetectable basal state to a high-transcription state, instead of modulating the rate of transcription across all cells in a graded fashion. This switch-like behaviour, combined with cell-to-cell variability in transcription rate, results in mRNA production variability spanning three orders of magnitude. We determined that cellular heterogeneity stems mainly from stochasticity intrinsic to individual alleles instead of variability in cellular composition. Together, our results demonstrate that it is now possible to quantitatively study the dynamics of transcriptional programs in single cells of living plants.
Collapse
Affiliation(s)
- Simon Alamos
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Armando Reimer
- Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Hernan G Garcia
- Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
- Department of Physics, University of California Berkeley, Berkeley, CA, USA.
- Institute for Quantitative Biosciences-QB3, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Zhu H, Cui Y, Luo C, Liu F. Quantifying Temperature Compensation of Bicoid Gradients with a Fast T-Tunable Microfluidic Device. Biophys J 2020; 119:1193-1203. [PMID: 32853562 PMCID: PMC7499060 DOI: 10.1016/j.bpj.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022] Open
Abstract
As a reaction-diffusion system strongly affected by temperature, early fly embryos surprisingly show highly reproducible and accurate developmental patterns during embryogenesis under temperature perturbations. To reveal the underlying temperature compensation mechanism, it is important to overcome the challenge in quantitative imaging on fly embryos under temperature perturbations. Inspired by microfluidics generating temperature steps on fly embryos, here we design a microfluidic device capable of ensuring the normal development of multiple fly embryos as well as achieving real-time temperature control and fast temperature switches for quantitative live imaging with a home-built two-photon microscope. We apply this system to quantify the temperature compensation of the morphogen Bicoid (Bcd) gradient in fly embryos. The length constant of the exponential Bcd gradient reaches the maximum at 25°C within the measured temperatures of 18-29°C and gradually adapts to the corresponding value at new temperatures upon a fast temperature switch. The relaxation time of such an adaptation becomes longer if the temperature is switched in a later developmental stage. This age-dependent temperature compensation could be explained if the traditional synthesis-diffusion-degradation model is extended to incorporate the dynamic change of the parameters controlling the formation of Bcd gradients.
Collapse
Affiliation(s)
- Hongcun Zhu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China
| | - Yeping Cui
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China
| | - Chunxiong Luo
- Center for Quantitative Biology, Peking University, Beijing, China; The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Feng Liu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China; Center for Quantitative Biology, Peking University, Beijing, China.
| |
Collapse
|
5
|
Abstract
Spatially distributed signaling molecules, known as morphogens, provide spatial information during development. A host of different morphogens have now been identified, from subcellular gradients through to morphogens that act across a whole embryo. These gradients form over a wide-range of timescales, from seconds to hours, and their time windows for interpretation are also highly variable; the processes of morphogen gradient formation and interpretation are highly dynamic. The morphogen Bicoid (Bcd), present in the early Drosophila embryo, is essential for setting up the future Drosophila body segments. Due to its accessibility for both genetic perturbations and imaging, this system has provided key insights into how precise patterning can occur within a highly dynamic system. Here, we review the temporal scales of Bcd gradient formation and interpretation. In particular, we discuss the quantitative evidence for different models of Bcd gradient formation, outline the time windows for Bcd interpretation, and describe how Bcd temporally adapts its own ability to be interpreted. The utilization of temporal information in morphogen readout may provide crucial inputs to ensure precise spatial patterning, particularly in rapidly developing systems.
Collapse
|
6
|
He F, Wu H, Cheung D, Ma J. Detection and Quantification of the Bicoid Concentration Gradient in Drosophila Embryos. Methods Mol Biol 2019; 1863:19-27. [PMID: 30324590 DOI: 10.1007/978-1-4939-8772-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
We describe methods for detecting and quantifying the concentration gradient of the morphogenetic protein Bicoid through fluorescent immunostaining in fixed Drosophila embryos. We introduce image-processing steps using MATLAB functions, and discuss how the measured signal intensities can be analyzed to extract quantitative information. The described procedures permit robust detection of the endogenous Bicoid concentration gradient at a cellular resolution.
Collapse
Affiliation(s)
- Feng He
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honggang Wu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - David Cheung
- Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Jun Ma
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
- Laboratory of Systems Developmental Biology, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Baumgartner S. Seeing is believing: the Bicoid protein reveals its path. Hereditas 2018; 155:28. [PMID: 30220899 PMCID: PMC6134762 DOI: 10.1186/s41065-018-0067-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/04/2018] [Indexed: 11/30/2022] Open
Abstract
In this commentary, I will review the latest findings on the Bicoid (Bcd) morphogen in Drosophila, a paradigm for gradient formation taught to biology students for more than two decades. “Seeing is believing” also summarizes the erroneous steps that were needed to elucidate the mechanisms of gradient formation and the path of movement of Bcd. Initially proclaimed as a dogma in 1988 and later incorporated into the SDD model where the broad diffusion of Bcd throughout the embryo was the predominant step leading to gradient formation, the SDD model was irrefutable for more than two decades until first doubts were raised in 2007 regarding the diffusion properties of Bcd associated with the SDD model. This led to re-thinking of the issue and the definition of a new model, termed the ARTS model which could explain most of the physical constraints that were inherently associated with the SDD model. In the ARTS model, gradient formation is mediated by the mRNA which is redistributed along cortical microtubules to form a mRNA gradient which is translated to form the protein gradient. Contrary to the SDD model, there is no Bcd diffusion from the tip. The ARTS model is also compatible with the observed cortical movement of Bcd. I will critically compare the SDD and the ARTS models as well as other models, analyze the major differences, and highlight the path where Bcd is localized during early nuclear cycles.
Collapse
Affiliation(s)
- Stefan Baumgartner
- Department of Experimental Medical Sciences, Lund University, BMC D10, S-22184 Lund, Sweden
| |
Collapse
|
8
|
Durrieu L, Kirrmaier D, Schneidt T, Kats I, Raghavan S, Hufnagel L, Saunders TE, Knop M. Bicoid gradient formation mechanism and dynamics revealed by protein lifetime analysis. Mol Syst Biol 2018; 14:e8355. [PMID: 30181144 PMCID: PMC6121778 DOI: 10.15252/msb.20188355] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 01/21/2023] Open
Abstract
Embryogenesis relies on instructions provided by spatially organized signaling molecules known as morphogens. Understanding the principles behind morphogen distribution and how cells interpret locally this information remains a major challenge in developmental biology. Here, we introduce morphogen-age measurements as a novel approach to test models of morphogen gradient formation. Using a tandem fluorescent timer as a protein age sensor, we find a gradient of increasing age of Bicoid along the anterior-posterior axis in the early Drosophila embryo. Quantitative analysis of the protein age distribution across the embryo reveals that the synthesis-diffusion-degradation model is the most likely model underlying Bicoid gradient formation, and rules out other hypotheses for gradient formation. Moreover, we show that the timer can detect transitions in the dynamics associated with syncytial cellularization. Our results provide new insight into Bicoid gradient formation and demonstrate how morphogen-age information can complement knowledge about movement, abundance, and distribution, which should be widely applicable to other systems.
Collapse
Affiliation(s)
- Lucia Durrieu
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, University of Heidelberg, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Daniel Kirrmaier
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, University of Heidelberg, Heidelberg, Germany
- Deutsches Krebsforschungszentrum (DKFZ) DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Tatjana Schneidt
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Ilia Kats
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, University of Heidelberg, Heidelberg, Germany
| | - Sarada Raghavan
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, University of Heidelberg, Heidelberg, Germany
| | - Lars Hufnagel
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Timothy E Saunders
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore
- Institute of Molecular and Cell Biology, A*Star, Biopolis, Singapore
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, University of Heidelberg, Heidelberg, Germany
- Deutsches Krebsforschungszentrum (DKFZ) DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
9
|
|
10
|
Lee TT, Skafidas E, Dottori M, Zantomio D, Pantelis C, Everall I, Chana G. No preliminary evidence of differences in astrocyte density within the white matter of the dorsolateral prefrontal cortex in autism. Mol Autism 2017; 8:64. [PMID: 29234492 PMCID: PMC5721546 DOI: 10.1186/s13229-017-0181-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/28/2017] [Indexed: 12/27/2022] Open
Abstract
Background While evidence for white matter and astrocytic abnormalities exist in autism, a detailed investigation of astrocytes has not been conducted. Such an investigation is further warranted by an increasing role for neuroinflammation in autism pathogenesis, with astrocytes being key players in this process. We present the first study of astrocyte density and morphology within the white matter of the dorsolateral prefrontal cortex (DLPFC) in individuals with autism. Methods DLPFC formalin-fixed sections containing white matter from individuals with autism (n = 8, age = 4-51 years) and age-matched controls (n = 7, age = 4-46 years) were immunostained for glial fibrillary acidic protein (GFAP). Density of astrocytes and other glia were estimated via the optical fractionator, astrocyte somal size estimated via the nucleator, and astrocyte process length via the spaceballs probe. Results We found no evidence for alteration in astrocyte density within DLPFC white matter of individuals with autism versus controls, together with no differences in astrocyte somal size and process length. Conclusion Our results suggest that astrocyte abnormalities within the white matter in the DLPFC in autism may be less pronounced than previously thought. However, astrocytic dysregulation may still exist in autism, even in the absence of gross morphological changes. Our lack of evidence for astrocyte abnormalities could have been confounded to an extent by having a small sample size and wide age range, with pathological features potentially restricted to early stages of autism. Nonetheless, future investigations would benefit from assessing functional markers of astrocytes in light of the underlying pathophysiology of autism.
Collapse
Affiliation(s)
- Ting Ting Lee
- Department of Psychiatry, The University of Melbourne, Parkville, Australia.,Centre for Neural Engineering, The University of Melbourne, Parkville, Australia
| | - Efstratios Skafidas
- Department of Psychiatry, The University of Melbourne, Parkville, Australia.,Centre for Neural Engineering, The University of Melbourne, Parkville, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Mirella Dottori
- Centre for Neural Engineering, The University of Melbourne, Parkville, Australia.,Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Daniela Zantomio
- Department of Clinical Haematology, Austin Hospital, Heidelberg, Australia
| | - Christos Pantelis
- Department of Psychiatry, The University of Melbourne, Parkville, Australia.,Centre for Neural Engineering, The University of Melbourne, Parkville, Australia.,Melbourne Neuropsychiatry Centre, The University of Melbourne & Melbourne Health, Parkville, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Ian Everall
- Department of Psychiatry, The University of Melbourne, Parkville, Australia.,Centre for Neural Engineering, The University of Melbourne, Parkville, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.,The Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gursharan Chana
- Department of Psychiatry, The University of Melbourne, Parkville, Australia.,Centre for Neural Engineering, The University of Melbourne, Parkville, Australia.,Department of Medicine, The University of Melbourne, Parkville, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| |
Collapse
|
11
|
Lian YN, Lu Q, Chang JL, Zhang Y. The role of glutamate and its receptors in central nervous system in stress-induced hyperalgesia. Int J Neurosci 2017; 128:283-290. [DOI: 10.1080/00207454.2017.1387112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yan-Na Lian
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Qi Lu
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Jin-Long Chang
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Ying Zhang
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
12
|
Hamashima S, Homma T, Kobayashi S, Ishii N, Kurahashi T, Watanabe R, Kimura N, Sato H, Fujii J. Decreased reproductive performance in xCT-knockout male mice. Free Radic Res 2017; 51:851-860. [DOI: 10.1080/10715762.2017.1388504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shinji Hamashima
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Naoki Ishii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Toshihiro Kurahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Ren Watanabe
- Laboratory of Animal Reproduction, Graduate School of Agricultural Sciences, Yamagata University, Tsuruoka, Japan
| | - Naoko Kimura
- Laboratory of Animal Reproduction, Graduate School of Agricultural Sciences, Yamagata University, Tsuruoka, Japan
| | - Hideyo Sato
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
13
|
Krystal JH, Abdallah CG, Averill LA, Kelmendi B, Harpaz-Rotem I, Sanacora G, Southwick SM, Duman RS. Synaptic Loss and the Pathophysiology of PTSD: Implications for Ketamine as a Prototype Novel Therapeutic. Curr Psychiatry Rep 2017; 19:74. [PMID: 28844076 PMCID: PMC5904792 DOI: 10.1007/s11920-017-0829-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Studies of the neurobiology and treatment of PTSD have highlighted many aspects of the pathophysiology of this disorder that might be relevant to treatment. The purpose of this review is to highlight the potential clinical importance of an often-neglected consequence of stress models in animals that may be relevant to PTSD: the stress-related loss of synaptic connectivity. RECENT FINDINGS Here, we will briefly review evidence that PTSD might be a "synaptic disconnection syndrome" and highlight the importance of this perspective for the emerging therapeutic application of ketamine as a potential rapid-acting treatment for this disorder that may work, in part, by restoring synaptic connectivity. Synaptic disconnection may contribute to the profile of PTSD symptoms that may be targeted by novel pharmacotherapeutics.
Collapse
Affiliation(s)
- John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Psychiatry Services, Yale-New Haven Hospital, New Haven, CT, USA
| | - Chadi G. Abdallah
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Lynette A. Averill
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Benjamin Kelmendi
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Steven M. Southwick
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Ronald S. Duman
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite #901, New Haven, CT 06511, USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| |
Collapse
|
14
|
Shi QX, Yang LK, Shi WL, Wang L, Zhou SM, Guan SY, Zhao MG, Yang Q. The novel cannabinoid receptor GPR55 mediates anxiolytic-like effects in the medial orbital cortex of mice with acute stress. Mol Brain 2017; 10:38. [PMID: 28800762 PMCID: PMC5553743 DOI: 10.1186/s13041-017-0318-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/30/2017] [Indexed: 01/30/2023] Open
Abstract
The G protein-coupled receptor 55 (GPR55) is a novel cannabinoid receptor, whose exact role in anxiety remains unknown. The present study was conducted to explore the possible mechanisms by which GPR55 regulates anxiety and to evaluate the effectiveness of O-1602 in the treatment of anxiety-like symptoms. Mice were exposed to two types of acute stressors: restraint and forced swimming. Anxiety behavior was evaluated using the elevated plus maze and the open field test. We found that O-1602 alleviated anxiety-like behavior in acutely stressed mice. We used lentiviral shRNA to selective ly knockdown GPR55 in the medial orbital cortex and found that knockdown of GPR55 abolished the anxiolytic effect of O-1602. We also used Y-27632, a specific inhibitor of ROCK, and U73122, an inhibitor of PLC, and found that both inhibitors attenuated the effectiveness of O-1602. Western blot analysis revealed that O-1602 downregulated the expression of GluA1 and GluN2A in mice. Taken together, these results suggest that GPR55 plays an important role in anxiety and O-1602 may have therapeutic potential in treating anxiety-like symptoms.
Collapse
Affiliation(s)
- Qi-xin Shi
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Liu-kun Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Wen-long Shi
- Department of Pharmacy, The 155th Central Hospital of PLA, Kaifeng, China
| | - Lu Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Shi-meng Zhou
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Shao-yu Guan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Ming-gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Qi Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, China
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
15
|
Bai Q, Song D, Gu L, Verkhratsky A, Peng L. Bi-phasic regulation of glycogen content in astrocytes via Cav-1/PTEN/PI3K/AKT/GSK-3β pathway by fluoxetine. Psychopharmacology (Berl) 2017; 234:1069-1077. [PMID: 28233032 DOI: 10.1007/s00213-017-4547-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/18/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Here, we present the data indicating that chronic treatment with fluoxetine regulates Cav-1/PTEN/PI3K/AKT/GSK-3β signalling pathway and glycogen content in primary cultures of astrocytes with bi-phasic concentration dependence. RESULTS At lower concentrations, fluoxetine downregulates gene expression of Cav-1, decreases membrane content of PTEN, increases activity of PI3K/AKT, and elevates GSK-3β phosphorylation thus suppressing its activity. At higher concentrations, fluoxetine acts in an inverse fashion. As expected, fluoxetine at lower concentrations increased while at higher concentrations decreased glycogen content in astrocytes. CONCLUSIONS Our findings indicate that bi-phasic regulation of glycogen content via Cav-1/PTEN/PI3K/AKT/GSK-3β pathway by fluoxetine may be responsible for both therapeutic and side effects of the drug.
Collapse
Affiliation(s)
- Qiufang Bai
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 77, Puhe Road, Shenbei District, Shenyang, People's Republic of China
| | - Dan Song
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 77, Puhe Road, Shenbei District, Shenyang, People's Republic of China
| | - Li Gu
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 77, Puhe Road, Shenbei District, Shenyang, People's Republic of China
| | - Alexei Verkhratsky
- Faculty of Life Science, The University of Manchester, Manchester, UK.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 77, Puhe Road, Shenbei District, Shenyang, People's Republic of China.
| |
Collapse
|
16
|
Lener MS, Kadriu B, Zarate CA. Ketamine and Beyond: Investigations into the Potential of Glutamatergic Agents to Treat Depression. Drugs 2017; 77:381-401. [PMID: 28194724 PMCID: PMC5342919 DOI: 10.1007/s40265-017-0702-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clinical and preclinical studies suggest that dysfunction of the glutamatergic system is implicated in mood disorders such as major depressive disorder and bipolar depression. In clinical studies of individuals with major depressive disorder and bipolar depression, rapid reductions in depressive symptoms have been observed in response to subanesthetic-dose ketamine, an agent whose mechanism of action involves the modulation of glutamatergic signaling. The findings from these studies have prompted the repurposing and/or development of other glutamatergic modulators for antidepressant efficacy, both as monotherapy or as an adjunct to conventional monoaminergic antidepressants. This review highlights the evidence supporting the antidepressant effects of subanesthetic-dose ketamine as well as other glutamatergic modulators, such as D-cycloserine, riluzole, CP-101,606, CERC-301 (previously known as MK-0657), basimglurant, JNJ-40411813, dextromethorphan, nitrous oxide, GLYX-13, and esketamine.
Collapse
Affiliation(s)
- Marc S Lener
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Building 10/CRC, Room 7-5545, Bethesda, MD, USA.
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Building 10/CRC, Room 7-5545, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Building 10/CRC, Room 7-5545, Bethesda, MD, USA
| |
Collapse
|
17
|
Ipiña EP, Dawson SP. The effect of reactions on the formation and readout of the gradient of Bicoid. Phys Biol 2017; 14:016002. [DOI: 10.1088/1478-3975/aa56d9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Ardura-Fabregat A, Boddeke EWGM, Boza-Serrano A, Brioschi S, Castro-Gomez S, Ceyzériat K, Dansokho C, Dierkes T, Gelders G, Heneka MT, Hoeijmakers L, Hoffmann A, Iaccarino L, Jahnert S, Kuhbandner K, Landreth G, Lonnemann N, Löschmann PA, McManus RM, Paulus A, Reemst K, Sanchez-Caro JM, Tiberi A, Van der Perren A, Vautheny A, Venegas C, Webers A, Weydt P, Wijasa TS, Xiang X, Yang Y. Targeting Neuroinflammation to Treat Alzheimer's Disease. CNS Drugs 2017; 31:1057-1082. [PMID: 29260466 PMCID: PMC5747579 DOI: 10.1007/s40263-017-0483-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the past few decades, research on Alzheimer's disease (AD) has focused on pathomechanisms linked to two of the major pathological hallmarks of extracellular deposition of beta-amyloid peptides and intra-neuronal formation of neurofibrils. Recently, a third disease component, the neuroinflammatory reaction mediated by cerebral innate immune cells, has entered the spotlight, prompted by findings from genetic, pre-clinical, and clinical studies. Various proteins that arise during neurodegeneration, including beta-amyloid, tau, heat shock proteins, and chromogranin, among others, act as danger-associated molecular patterns, that-upon engagement of pattern recognition receptors-induce inflammatory signaling pathways and ultimately lead to the production and release of immune mediators. These may have beneficial effects but ultimately compromise neuronal function and cause cell death. The current review, assembled by participants of the Chiclana Summer School on Neuroinflammation 2016, provides an overview of our current understanding of AD-related immune processes. We describe the principal cellular and molecular players in inflammation as they pertain to AD, examine modifying factors, and discuss potential future therapeutic targets.
Collapse
Affiliation(s)
- A. Ardura-Fabregat
- grid.5963.9Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - E. W. G. M. Boddeke
- 0000 0004 0407 1981grid.4830.fDepartment of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A. Boza-Serrano
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| | - S. Brioschi
- grid.5963.9Department of Psychiatry and Psychotherapy, Medical Center University of Freiburg, Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - S. Castro-Gomez
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - K. Ceyzériat
- grid.457334.2Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de biologie François Jacob, MIRCen, 92260 Fontenay-aux-Roses, France ,0000 0001 2171 2558grid.5842.bNeurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, UMR 9199, F-92260 Fontenay-aux-Roses, France
| | - C. Dansokho
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - T. Dierkes
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany ,0000 0000 8786 803Xgrid.15090.3dBiomedical Centre, Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - G. Gelders
- 0000 0001 0668 7884grid.5596.fDepartment of Neurosciences, Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Michael T. Heneka
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany ,0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - L. Hoeijmakers
- 0000000084992262grid.7177.6Center for Neuroscience (SILS-CNS), Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - A. Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - L. Iaccarino
- grid.15496.3fVita-Salute San Raffaele University, Milan, Italy ,0000000417581884grid.18887.3eIn Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S. Jahnert
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - K. Kuhbandner
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - G. Landreth
- 0000 0001 2287 3919grid.257413.6Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - N. Lonnemann
- 0000 0001 1090 0254grid.6738.aDepartment of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - R. M. McManus
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - A. Paulus
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| | - K. Reemst
- 0000000084992262grid.7177.6Center for Neuroscience (SILS-CNS), Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - J. M. Sanchez-Caro
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - A. Tiberi
- grid.6093.cBio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - A. Van der Perren
- 0000 0001 0668 7884grid.5596.fDepartment of Neurosciences, Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - A. Vautheny
- grid.457334.2Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de biologie François Jacob, MIRCen, 92260 Fontenay-aux-Roses, France ,0000 0001 2171 2558grid.5842.bNeurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, UMR 9199, F-92260 Fontenay-aux-Roses, France
| | - C. Venegas
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - A. Webers
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - P. Weydt
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - T. S. Wijasa
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - X. Xiang
- 0000 0004 1936 973Xgrid.5252.0Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-University Munich, 81377 Munich, Germany ,0000 0004 1936 973Xgrid.5252.0Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, 82152 Munich, Germany
| | - Y. Yang
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| |
Collapse
|
19
|
Ma J, He F, Xie G, Deng WM. Maternal AP determinants in the Drosophila oocyte and embryo. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:562-81. [PMID: 27253156 DOI: 10.1002/wdev.235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/24/2016] [Accepted: 03/13/2016] [Indexed: 12/12/2022]
Abstract
An animal embryo cannot initiate its journey of forming a new life on its own. It must rely on maternally provided resources and inputs to kick-start its developmental process. In Drosophila, the initial polarities of the embryo along both the anterior-posterior (AP) and dorsal-ventral (DV) axes are also specified by maternal determinants. Over the past several decades, genetic and molecular studies have identified and characterized such determinants, as well as the zygotic genetic regulatory networks that control patterning in the early embryo. Extensive studies of oogenesis have also led to a detailed knowledge of the cellular and molecular interactions that control the formation of a mature egg. Despite these efforts, oogenesis and embryogenesis have been studied largely as separate problems, except for qualitative aspects with regard to maternal regulation of the asymmetric localization of maternal determinants. Can oogenesis and embryogenesis be viewed from a unified perspective at a quantitative level, and can that improve our understanding of how robust embryonic patterning is achieved? Here, we discuss the basic knowledge of the regulatory mechanisms controlling oogenesis and embryonic patterning along the AP axis. We explore properties of the maternal Bicoid gradient in relation to embryo size in search for a unified framework for robust AP patterning. WIREs Dev Biol 2016, 5:562-581. doi: 10.1002/wdev.235 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jun Ma
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.,Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Feng He
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
20
|
Xie J, Hu GH. Hydrodynamic modeling of Bicoid morphogen gradient formation in Drosophila embryo. Biomech Model Mechanobiol 2016; 15:1765-1773. [DOI: 10.1007/s10237-016-0796-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 05/04/2016] [Indexed: 12/13/2022]
|
21
|
Liu WX, Wang J, Xie ZM, Xu N, Zhang GF, Jia M, Zhou ZQ, Hashimoto K, Yang JJ. Regulation of glutamate transporter 1 via BDNF-TrkB signaling plays a role in the anti-apoptotic and antidepressant effects of ketamine in chronic unpredictable stress model of depression. Psychopharmacology (Berl) 2016; 233:405-15. [PMID: 26514555 DOI: 10.1007/s00213-015-4128-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/12/2015] [Indexed: 01/28/2023]
Abstract
RATIONALE Growing evidence suggests that downregulated clearance of glutamate and signaling pathways involving brain-derived neurotrophic factor (BDNF) and its receptor TrkB play a role in morphological changes in the hippocampus of depressed patients. The N-methyl-D-aspartate (NMDA) receptor antagonist ketamine is the most attractive antidepressant, although precise mechanisms are unknown. OBJECTIVE In this study, we examined whether hippocampal BDNF-TrkB signaling underlies the antidepressant effects of ketamine via upregulating glutamate transporter 1 (GLT-1) in rats, subjected to the chronic unpredictable stress (CUS) for 42 days. The rats received a single injection of ketamine (10 mg/kg, i.p.) and/or a TrkB inhibitor, K252a (1 μl, 2 mM, intracerebroventicular (i.c.v.)) on day 43. Behavioral tests and brain sample collection were evaluated 24 h later. RESULTS The CUS-exposed rats exhibited depression- and anxiety-like behaviors; decreased number of glial fibrillary acidic protein (GFAP)-positive (but not NeuN-positive) cells in the dentate gyrus (DG), CA1, and CA3 areas; increased number of cleaved caspase-3-positive astrocytes; reduced spine density; lower ratio of Bcl2 to Bax; and decreased levels of BDNF, phosphorylated cAMP response element binging protein (CREB), GLT-1, and postsynaptic density 95 (PSD95) proteins in the hippocampus. Ketamine alleviated the CUS-induced abnormalities. The effects of ketamine were antagonized by pretreatment with K252a. CONCLUSIONS Our findings suggest that regulation of GLT-1 on astrocytes, responsible for 90 % of glutamate reuptake from the synapse, through BDNF-TrkB signaling is involved in mediation of the therapeutic effects of ketamine on behavioral abnormalities and morphological changes in the hippocampus of the CUS-exposed rats.
Collapse
Affiliation(s)
- Wen-Xue Liu
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jing Wang
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ze-Min Xie
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China
| | - Ning Xu
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China
| | - Guang-Fen Zhang
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Min Jia
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhi-Qiang Zhou
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| | - Jian-Jun Yang
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China.
| |
Collapse
|
22
|
Kula J, Blasiak A, Czerw A, Tylko G, Sowa J, Hess G. Short-term repeated corticosterone administration enhances glutamatergic but not GABAergic transmission in the rat motor cortex. Pflugers Arch 2015; 468:679-91. [PMID: 26696244 PMCID: PMC4792354 DOI: 10.1007/s00424-015-1773-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/22/2015] [Accepted: 12/13/2015] [Indexed: 01/26/2023]
Abstract
It has been demonstrated that stress impairs performance of skilled reaching and walking tasks in rats due to the action of glucocorticoids involved in the stress response. Skilled reaching and walking are controlled by the primary motor cortex (M1); however, it is not known whether stress-related impairments in skilled motor tasks are related to functional and/or structural alterations within the M1. We studied the effects of single and repeated injections of corticosterone (twice daily for 7 days) on spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) recorded from layer II/III pyramidal neurons in ex vivo slices of the M1, prepared 2 days after the last administration of the hormone. We also measured the density of dendritic spines on pyramidal cells and the protein levels of selected subunits of AMPA, NMDA, and GABAA receptors after repeated corticosterone administration. Repeatedly administered corticosterone induced an increase in the frequency but not in the amplitude of sEPSCs, while a single administration had no effect on the recorded excitatory currents. The frequency and amplitude of sIPSCs as well as the excitability of pyramidal cells were changed neither after single nor after repeated corticosterone administration. Treatment with corticosterone for 7 days did not modify the density of dendritic spines on pyramidal neurons. Corticosterone influenced neither the protein levels of GluA1, GluA2, GluN1, GluN2A, and GluN2B subunits of glutamate receptors nor those of α1, β2, and γ2 subunits of the GABAA receptor. The increase in sEPSCs frequency induced by repeated corticosterone administration faded out within 7 days. These data indicate that prolonged administration of exogenous corticosterone selectively and reversibly enhances glutamatergic, but not GABAergic transmission in the rat motor cortex. Our results suggest that corticosterone treatment results in an enhancement of spontaneous glutamate release from presynaptic terminals in the M1 and thereby uncovers a potential mechanism underlying stress-induced motor functions impairment.
Collapse
Affiliation(s)
- Joanna Kula
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Anna Blasiak
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Anna Czerw
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Grzegorz Tylko
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Joanna Sowa
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland
| | - Grzegorz Hess
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland. .,Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland.
| |
Collapse
|
23
|
Temporal and spatial dynamics of scaling-specific features of a gene regulatory network in Drosophila. Nat Commun 2015; 6:10031. [PMID: 26644070 PMCID: PMC4686680 DOI: 10.1038/ncomms10031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/28/2015] [Indexed: 01/19/2023] Open
Abstract
A widely appreciated aspect of developmental robustness is pattern formation in proportion to size. But how such scaling features emerge dynamically remains poorly understood. Here we generate a data set of the expression profiles of six gap genes in Drosophila melanogaster embryos that differ significantly in size. Expression patterns exhibit size-dependent dynamics both spatially and temporally. We uncover a dynamic emergence of under-scaling in the posterior, accompanied by reduced expression levels of gap genes near the middle of large embryos. Simulation results show that a size-dependent Bicoid gradient input can lead to reduced Krüppel expression that can have long-range and dynamic effects on gap gene expression in the posterior. Thus, for emergence of scaled patterns, the entire embryo may be viewed as a single unified dynamic system where maternally derived size-dependent information interpreted locally can be propagated in space and time as governed by the dynamics of a gene regulatory network. How pattern formation is regulated relative to the size of an organism is unclear. Here, Wu et al. take data from gap gene expression in flies of different sizes together with simulations, identifying how scaling emerges dynamically and that local patterning influences global gene regulatory networks.
Collapse
|
24
|
Liu J, Ma J. Modulation of temporal dynamics of gene transcription by activator potency in the Drosophila embryo. Development 2015; 142:3781-90. [PMID: 26395487 DOI: 10.1242/dev.126946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/07/2015] [Indexed: 12/24/2022]
Abstract
The Drosophila embryo at the mid-blastula transition (MBT) concurrently experiences a receding first wave of zygotic transcription and the surge of a massive second wave. It is not well understood how genes in the first wave become turned off transcriptionally and how their precise timing may impact embryonic development. Here we perturb the timing of the shutdown of Bicoid (Bcd)-dependent hunchback (hb) transcription in the embryo through the use of a Bcd mutant that has heightened activating potency. A delayed shutdown specifically increases Bcd-activated hb levels, and this alters spatial characteristics of the patterning outcome and causes developmental defects. Our study thus documents a specific participation of maternal activator input strength in the timing of molecular events in precise accordance with MBT morphological progression.
Collapse
Affiliation(s)
- Junbo Liu
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Jun Ma
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA Division of Developmental Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
25
|
Probing the impact of temperature on molecular events in a developmental system. Sci Rep 2015; 5:13124. [PMID: 26286011 PMCID: PMC4541335 DOI: 10.1038/srep13124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/16/2015] [Indexed: 01/19/2023] Open
Abstract
A well-appreciated general feature of development is the ability to achieve a normal outcome despite the inevitable variability at molecular, genetic, or environmental levels. But it is not well understood how changes in a global factor such as temperature bring about specific challenges to a developmental system in molecular terms. Here we address this question using early Drosophila embryos where the maternal gradient Bicoid (Bcd) instructs anterior-patterning (AP) patterning. We show that temperature can impact the amplitude of the Bcd gradient in the embryo. To evaluate how molecular decisions are made at different temperatures, we quantify Bcd concentrations and the expression of its target gene hunchback (hb) in individual embryos. Our results suggest a relatively robust Bcd concentration threshold in inducing hb transcription within a temperature range. Our results also reveal a complex nature of the effects of temperature on the progressions of developmental and molecular events of the embryo. Our study thus advances the concept of developmental robustness by quantitatively elaborating specific features and challenges—imposed by changes in temperature—that an embryo must resolve.
Collapse
|
26
|
Jia N, Li Q, Sun H, Song Q, Tang G, Sun Q, Wang W, Chen R, Li H, Zhu Z. Alterations of Group I mGluRs and BDNF Associated with Behavioral Abnormity in Prenatally Stressed Offspring Rats. Neurochem Res 2015; 40:1074-82. [DOI: 10.1007/s11064-015-1565-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/20/2015] [Accepted: 03/30/2015] [Indexed: 12/26/2022]
|
27
|
Fundamental origins and limits for scaling a maternal morphogen gradient. Nat Commun 2015; 6:6679. [PMID: 25809405 PMCID: PMC4375784 DOI: 10.1038/ncomms7679] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/18/2015] [Indexed: 01/04/2023] Open
Abstract
Tissue expansion and patterning are integral to development, but it is unknown quantitatively how a mother accumulates molecular resources to invest in the future of instructing robust embryonic patterning. Here we develop a model, Tissue Expansion-Modulated Maternal Morphogen Scaling (TEM3S), to study scaled anterior-posterior patterning in Drosophila embryos. Using both ovaries and embryos, we measure a core quantity of the model, the scaling power of the Bicoid (Bcd) morphogen gradient’s amplitude nA. We also evaluate directly model-derived predictions about Bcd gradient and patterning properties. Our results show that scaling of the Bcd gradient in the embryo originates from, and is constrained fundamentally by, a dynamic relationship between maternal tissue expansion and bcd gene copy number expansion in the ovary. This delicate connection between the two transitioning stages of a life cycle, stemming from a finite value of nA ~ 3, underscores a key feature of developmental systems depicted by TEM3S.
Collapse
|
28
|
Dilão R. Bicoid mRNA diffusion as a mechanism of morphogenesis in Drosophila early development. C R Biol 2014; 337:679-82. [PMID: 25433559 DOI: 10.1016/j.crvi.2014.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 11/28/2022]
Abstract
We show that mRNA diffusion is the main morphogenesis mechanism that consistently explains the establishment of Bicoid protein gradients in the embryo of Drosophila, contradicting the current view of protein diffusion. Moreover, we show that if diffusion for both bicoid mRNA and Bicoid protein were assumed, a steady distribution of Bicoid protein with a constant concentration along the embryo would result, contradicting observations.
Collapse
Affiliation(s)
- Rui Dilão
- Non-Linear Dynamics Group, IST, Department of Physics, avenue Rovisco Pais, 1049-001 Lisbon, Portugal; Institut des hautes études scientifiques, 35, route de Chartres, 91440 Bures-sur-Yvette, France.
| |
Collapse
|
29
|
Sigaut L, Pearson JE, Colman-Lerner A, Ponce Dawson S. Messages do diffuse faster than messengers: reconciling disparate estimates of the morphogen bicoid diffusion coefficient. PLoS Comput Biol 2014; 10:e1003629. [PMID: 24901638 PMCID: PMC4046929 DOI: 10.1371/journal.pcbi.1003629] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 04/02/2014] [Indexed: 11/20/2022] Open
Abstract
The gradient of Bicoid (Bcd) is key for the establishment of the anterior-posterior axis in Drosophila embryos. The gradient properties are compatible with the SDD model in which Bcd is synthesized at the anterior pole and then diffuses into the embryo and is degraded with a characteristic time. Within this model, the Bcd diffusion coefficient is critical to set the timescale of gradient formation. This coefficient has been measured using two optical techniques, Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence Correlation Spectroscopy (FCS), obtaining estimates in which the FCS value is an order of magnitude larger than the FRAP one. This discrepancy raises the following questions: which estimate is "correct''; what is the reason for the disparity; and can the SDD model explain Bcd gradient formation within the experimentally observed times? In this paper, we use a simple biophysical model in which Bcd diffuses and interacts with binding sites to show that both the FRAP and the FCS estimates may be correct and compatible with the observed timescale of gradient formation. The discrepancy arises from the fact that FCS and FRAP report on different effective (concentration dependent) diffusion coefficients, one of which describes the spreading rate of the individual Bcd molecules (the messengers) and the other one that of their concentration (the message). The latter is the one that is more relevant for the gradient establishment and is compatible with its formation within the experimentally observed times. Understanding the mechanisms by which equivalent cells develop into different body parts is a fundamental question in biology. One well-studied example is the patterning along the anterior-posterior axis of Drosophila melanogaster embryos for which the spatial gradient of the protein Bicoid is determinant. The localized production of Bicoid is implicated in its inhomogeneous distribution. Diffusion then determines the time and spatial scales of the gradient as it is formed. Estimates of Bicoid diffusion coefficients made with the optical techniques, FRAP and FCS resulted in largely different values, one of which was too slow to account for the observed time of gradient formation. In this paper, we present a model in which Bicoid diffuses and interacts with binding sites so that its transport is described by a "single molecule'' and a "collective'' diffusion coefficient. The latter can be arbitrarily larger than the former coefficient and sets the rate for bulk processes such as the formation of the gradient. In this way we obtain a self-consistent picture in which the FRAP and FCS estimates are accurate and where the gradient can be established within the experimentally observed times.
Collapse
Affiliation(s)
- Lorena Sigaut
- Departamento de Física and IFIBA, FCEN-UBA - CONICET, Buenos Aires, Argentina
| | - John E. Pearson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alejandro Colman-Lerner
- Departamento de Fisiología, Biología Molecular y Celular and IFIBYNE, CONICET, FCEN-UBA, Buenos Aires, Argentina
| | - Silvina Ponce Dawson
- Departamento de Física and IFIBA, FCEN-UBA - CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
30
|
Santarsieri M, Niyonkuru C, McCullough EH, Dobos JA, Dixon CE, Berga SL, Wagner AK. Cerebrospinal fluid cortisol and progesterone profiles and outcomes prognostication after severe traumatic brain injury. J Neurotrauma 2014; 31:699-712. [PMID: 24354775 PMCID: PMC3967414 DOI: 10.1089/neu.2013.3177] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite significant advances in the management of head trauma, there remains a lack of pharmacological treatment options for traumatic brain injury (TBI). While progesterone clinical trials have shown promise, corticosteroid trials have failed. The purpose of this study was to (1) characterize endogenous cerebrospinal fluid (CSF) progesterone and cortisol levels after TBI, (2) determine relationships between CSF and serum profiles, and (3) assess the utility of these hormones as predictors of long-term outcomes. We evaluated 130 adults with severe TBI. Serum samples (n=538) and CSF samples (n=746) were collected for 6 days post-injury, analyzed for cortisol and progesterone, and compared with healthy controls (n=13). Hormone data were linked with clinical data, including Glasgow Outcome Scale (GOS) scores at 6 and 12 months. Group based trajectory (TRAJ) analysis was used to develop temporal hormone profiles delineating distinct subpopulations. Compared with controls, CSF cortisol levels were significantly and persistently elevated during the first week after TBI, and high CSF cortisol levels were associated with poor outcome. As a precursor to cortisol, progesterone mediated these effects. Serum and CSF levels for both cortisol and progesterone were strongly correlated after TBI relative to controls, possibly because of blood-brain barrier disruption. Also, differentially impaired hormone transport and metabolism mechanisms after TBI, potential de novo synthesis of steroids within the brain, and the complex interplay of cortisol and pro-inflammatory cytokines may explain these acute hormone profiles and, when taken together, may help shed light on why corticosteroid trials have previously failed and why progesterone treatment after TBI may be beneficial.
Collapse
Affiliation(s)
- Martina Santarsieri
- University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christian Niyonkuru
- University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Emily H. McCullough
- University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Julie A. Dobos
- University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - C. Edward Dixon
- University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, Universitry of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sarah L. Berga
- Department of Obstetrics/Gynecology, Wake Forest University, Winston-Salem, North Carolina
| | - Amy K. Wagner
- University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, Universitry of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Oh DH, Oh D, Son H, Webster MJ, Weickert CS, Kim SH. An association between the reduced levels of SLC1A2 and GAD1 in the dorsolateral prefrontal cortex in major depressive disorder: possible involvement of an attenuated RAF/MEK/ERK signaling pathway. J Neural Transm (Vienna) 2014; 121:783-92. [PMID: 24652383 DOI: 10.1007/s00702-014-1189-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/27/2014] [Indexed: 02/06/2023]
Abstract
Previous human postmortem studies have shown that expression of glutamate transporters (SLC1A2 and SLC1A3) and gamma-aminobutyric acid-synthesizing enzyme [glutamic acid decarboxylase 1 (GAD1)] are reduced in the dorsolateral prefrontal cortex (dlPFC) in subjects with major depressive disorder (MDD). However, no studies have explored the association between these two molecules and its related biological processes in MDD because of limited postmortem sample availability. Data sharing using the Stanley neuropathology consortium integrative database (SNCID), a web-based tool that integrates datasets from the same postmortem brain samples, allowed us to reanalyze existing postmortem data efficiently. We found two datasets where the mRNA levels of GAD1 and SLC1A2 in subregions of the dlPFC were significantly and marginally lower in subjects with MDD (n = 15) than in controls (n = 15) (p = 0.045 and 0.057, respectively). In addition, there was a positive correlation between these two molecules (n = 30, p < 0.05). Spearman's rank correlation analysis using all available datasets revealed that the expression levels of both GAD1 and SLC1A2 mRNAs were commonly correlated with the expression levels of several neuropathological markers in the dlPFC in all of the SNCID subjects (n = 60, p < 0.001). Most of these markers are known to be involved in the RAF/MEK/ERK signal transduction pathway. This exploratory study provides an initial step for future studies to investigate an association between the reductions in SLC1A2 and GAD1 mRNA expression and their relation to the attenuation of the RAF/MEK/ERK signaling pathway in the dlPFC in MDD. The integration of the existing archival data may shed light on one important aspect of the pathophysiology of MDD.
Collapse
Affiliation(s)
- Dong Hoon Oh
- Department of Psychiatry, College of Medicine and Institute of Mental Health, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | | | | | | | | | | |
Collapse
|
32
|
Lucassen PJ, Pruessner J, Sousa N, Almeida OFX, Van Dam AM, Rajkowska G, Swaab DF, Czéh B. Neuropathology of stress. Acta Neuropathol 2014; 127:109-35. [PMID: 24318124 PMCID: PMC3889685 DOI: 10.1007/s00401-013-1223-5] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/26/2013] [Indexed: 02/06/2023]
Abstract
Environmental challenges are part of daily life for any individual. In fact, stress appears to be increasingly present in our modern, and demanding, industrialized society. Virtually every aspect of our body and brain can be influenced by stress and although its effects are partly mediated by powerful corticosteroid hormones that target the nervous system, relatively little is known about when, and how, the effects of stress shift from being beneficial and protective to becoming deleterious. Decades of stress research have provided valuable insights into whether stress can directly induce dysfunction and/or pathological alterations, which elements of stress exposure are responsible, and which structural substrates are involved. Using a broad definition of pathology, we here review the "neuropathology of stress" and focus on structural consequences of stress exposure for different regions of the rodent, primate and human brain. We discuss cytoarchitectural, neuropathological and structural plasticity measures as well as more recent neuroimaging techniques that allow direct monitoring of the spatiotemporal effects of stress and the role of different CNS structures in the regulation of the hypothalamic-pituitary-adrenal axis in human brain. We focus on the hypothalamus, hippocampus, amygdala, nucleus accumbens, prefrontal and orbitofrontal cortex, key brain regions that not only modulate emotions and cognition but also the response to stress itself, and discuss disorders like depression, post-traumatic stress disorder, Cushing syndrome and dementia.
Collapse
Affiliation(s)
- Paul J. Lucassen
- SILS-Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jens Pruessner
- Department of Psychiatry, Douglas Institute, McGill University, Montreal, QC Canada
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | | | - Anne Marie Van Dam
- Department of Anatomy and Neurosciences, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS USA
| | - Dick F. Swaab
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Boldizsár Czéh
- Department of Laboratory Medicine, Faculty of Medicine, University of Pécs, Pécs, Hungary
- Szentágothai János Research Center, Neuroendocrinology Research Group, University of Pécs, Pécs, Hungary
| |
Collapse
|
33
|
Cheung D, Miles C, Kreitman M, Ma J. Adaptation of the length scale and amplitude of the Bicoid gradient profile to achieve robust patterning in abnormally large Drosophila melanogaster embryos. Development 2013; 141:124-35. [PMID: 24284208 DOI: 10.1242/dev.098640] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The formation of patterns that are proportional to the size of the embryo is an intriguing but poorly understood feature of development. Molecular mechanisms controlling such proportionality, or scaling, can be probed through quantitative interrogations of the properties of morphogen gradients that instruct patterning. Recent studies of the Drosophila morphogen gradient Bicoid (Bcd), which is required for anterior-posterior (AP) patterning in the early embryo, have uncovered two distinct ways of scaling. Whereas between-species scaling is achieved by adjusting the exponential shape characteristic of the Bcd gradient profile, namely, its length scale or length constant (λ), within-species scaling is achieved through adjusting the profile's amplitude, namely, the Bcd concentration at the anterior (B0). Here, we report a case in which Drosophila melanogaster embryos exhibit Bcd gradient properties uncharacteristic of their size. The embryos under investigation were from a pair of inbred lines that had been artificially selected for egg size extremes. We show that B0 in the large embryos is uncharacteristically low but λ is abnormally extended. Although the large embryos have more total bcd mRNA than their smaller counterparts, as expected, its distribution is unusually broad. We show that the large and small embryos develop gene expression patterns exhibiting boundaries that are proportional to their respective lengths. Our results suggest that the large-egg inbred line has acquired compensating properties that counteract the extreme length of the embryos to maintain Bcd gradient properties necessary for robust patterning. Our study documents, for the first time to our knowledge, a case of within-species Bcd scaling achieved through adjusting the gradient profile's exponential shape characteristic, illustrating at a molecular level how a developmental system can follow distinct operational paths towards the goal of robust and scaled patterning.
Collapse
Affiliation(s)
- David Cheung
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Numerous studies have established a link between autophagy and aging; however, the relationship has not been clearly defined. Aging is a very complex process caused by the accumulation of various factors due to the gradual failure of cellular maintenance. Recent studies have shown that autophagy reduces the stress responses induced by starvation, reactive oxygen species, and the accumulation of intracellular proteins and organelles through cytoprotection, clearance of damaged mitochondria, and lysosomal degradation. Here, we summarize our current understanding of the relationship between autophagy and the aging process.
Collapse
Affiliation(s)
- Jong-Ok Pyo
- Bio-MAX Institute, Seoul National University School of Biological Sciences, Seoul, Korea
| | - Seung-Min Yoo
- Bio-MAX Institute, Seoul National University School of Biological Sciences, Seoul, Korea
| | - Yong-Keun Jung
- Bio-MAX Institute, Seoul National University School of Biological Sciences, Seoul, Korea
| |
Collapse
|
35
|
Liu J, Ma J. Uncovering a dynamic feature of the transcriptional regulatory network for anterior-posterior patterning in the Drosophila embryo. PLoS One 2013; 8:e62641. [PMID: 23646132 PMCID: PMC3639989 DOI: 10.1371/journal.pone.0062641] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/25/2013] [Indexed: 01/21/2023] Open
Abstract
Anterior-posterior (AP) patterning in the Drosophila embryo is dependent on the Bicoid (Bcd) morphogen gradient. However, most target genes of Bcd also require additional inputs to establish their expression domains, reflective of the operation of a cross-regulatory network and contributions of other maternal signals. This is in contrast to hunchback (hb), which has an anterior expression domain driven by an enhancer that appears to respond primarily to the Bcd input. To gain a better understanding of the regulatory logic of the AP patterning network, we perform quantitative studies that specifically investigate the dynamics of hb transcription during development. We show that Bcd-dependent hb transcription, monitored by the intron-containing nascent transcripts near the P2 promoter, is turned off quickly–on the order of a few minutes–upon entering the interphase of nuclear cycle 14A. This shutdown contrasts with earlier cycles during which active hb transcription can persist until the moment when the nucleus enters mitosis. The shutdown takes place at a time when the nuclear Bcd gradient profile in the embryo remains largely intact, suggesting that this is a process likely subject to control of a currently unknown regulatory mechanism. We suggest that this dynamic feature offers a window of opportunity for hb to faithfully interpret, and directly benefit from, Bcd gradient properties, including its scaling properties, to help craft a robust AP patterning outcome.
Collapse
Affiliation(s)
- Junbo Liu
- Division of Biomedical Informatics, Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
| | - Jun Ma
- Division of Biomedical Informatics, Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
36
|
Augmentation therapy with alpha-lipoic acid and desvenlafaxine: A future target for treatment of depression? Naunyn Schmiedebergs Arch Pharmacol 2013; 386:685-95. [DOI: 10.1007/s00210-013-0867-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/02/2013] [Indexed: 10/27/2022]
|
37
|
Dui W, Wei B, He F, Lu W, Li C, Liang X, Ma J, Jiao R. The Drosophila F-box protein dSkp2 regulates cell proliferation by targeting Dacapo for degradation. Mol Biol Cell 2013; 24:1676-87, S1-7. [PMID: 23552694 PMCID: PMC3667721 DOI: 10.1091/mbc.e12-10-0772] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
dSkp2 regulates cell cycle progression by antagonizing Dap in Drosophila, which resolves the question of whether dSkp2 has a role in regulating Dap stability and suggests the possibility of using Drosophila as a model system in which to study Skp2-mediated tumorigenesis. Cell cycle progression is controlled by a complex regulatory network consisting of interacting positive and negative factors. In humans, the positive regulator Skp2, an F-box protein, has been a subject of intense investigation in part because of its oncogenic activity. By contrast, the molecular and developmental functions of its Drosophila homologue, dSkp2, are poorly understood. Here we investigate the role of dSkp2 by focusing on its functional relationship with Dacapo (Dap), the Drosophila homologue of the cyclin-dependent kinase inhibitors p21cip1/p27kip1/p57kip2. We show that dSkp2 interacts physically with Dap and has a role in targeting Dap for ubiquitination and proteasome-mediated degradation. We present evidence that dSkp2 regulates cell cycle progression by antagonizing Dap in vivo. dSkp2 knockdown reduces cell density in the wing by prolonging the cell doubling time. In addition, the wing phenotype caused by dSkp2 knockdown resembles that caused by dap overexpression and can be partially suppressed by reducing the gene dose of dap. Our study thus documents a conserved functional relationship between dSkp2 and Dap in their control of cell cycle progression, suggesting the possibility of using Drosophila as a model system to study Skp2-mediated tumorigenesis.
Collapse
Affiliation(s)
- Wen Dui
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu J, Ma J. Dampened regulates the activating potency of Bicoid and the embryonic patterning outcome in Drosophila. Nat Commun 2013; 4:2968. [PMID: 24336107 PMCID: PMC3902774 DOI: 10.1038/ncomms3968] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/18/2013] [Indexed: 01/26/2023] Open
Abstract
The Drosophila morphogen gradient of Bicoid (Bcd) initiates anterior-posterior (AP) patterning; however, it is poorly understood how its ability to activate a target gene may have an impact on this process. Here we report an F-box protein, Dampened (Dmpd) as a nuclear cofactor of Bcd that can enhance its activating potency. We establish a quantitative platform to specifically investigate two parameters of a Bcd target gene response, expression amplitude and boundary position. We show that embryos lacking Dmpd have a reduced amplitude of Bcd-activated hunchback (hb) expression at a critical time of development. This is because of a reduced Bcd-dependent transcribing probability. This defect is faithfully propagated further downstream of the AP-patterning network to alter the spatial characteristics of even-skipped (eve) stripes. Thus, unlike another Bcd-interacting F-box protein Fate-shifted (Fsd), which controls AP patterning through regulating the Bcd gradient profile, Dmpd achieves its patterning role through regulating the activating potency of Bcd.
Collapse
Affiliation(s)
- Junbo Liu
- Division of Biomedical Informatics Cincinnati Children's Research Foundation 3333 Burnet Avenue Cincinnati, Ohio United States of America
| | - Jun Ma
- Division of Biomedical Informatics Cincinnati Children's Research Foundation 3333 Burnet Avenue Cincinnati, Ohio United States of America
- Division of Developmental Biology Cincinnati Children's Research Foundation 3333 Burnet Avenue Cincinnati, Ohio United States of America
| |
Collapse
|
39
|
Neckameyer WS, Argue KJ. Comparative approaches to the study of physiology: Drosophila as a physiological tool. Am J Physiol Regul Integr Comp Physiol 2012; 304:R177-88. [PMID: 23220476 DOI: 10.1152/ajpregu.00084.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Numerous studies have detailed the extensive conservation of developmental signaling pathways between the model system, Drosophila melanogaster, and mammalian models, but researchers have also profited from the unique and highly tractable genetic tools available in this system to address critical questions in physiology. In this review, we have described contributions that Drosophila researchers have made to mathematical dynamics of pattern formation, cardiac pathologies, the way in which pain circuits are integrated to elicit responses from sensation, as well as the ways in which gene expression can modulate diverse behaviors and shed light on human cognitive disorders. The broad and diverse array of contributions from Drosophila underscore its translational relevance to modeling human disease.
Collapse
Affiliation(s)
- Wendi S Neckameyer
- Dept. of Pharmacological and Physiological Science, St. Louis Univ. School of Medicine, St. Louis, MO 63104, USA.
| | | |
Collapse
|
40
|
Jaeger J, Manu, Reinitz J. Drosophila blastoderm patterning. Curr Opin Genet Dev 2012; 22:533-41. [DOI: 10.1016/j.gde.2012.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/16/2012] [Accepted: 10/24/2012] [Indexed: 12/29/2022]
|
41
|
Araya-Callís C, Hiemke C, Abumaria N, Flugge G. Chronic psychosocial stress and citalopram modulate the expression of the glial proteins GFAP and NDRG2 in the hippocampus. Psychopharmacology (Berl) 2012; 224:209-22. [PMID: 22610521 PMCID: PMC3465647 DOI: 10.1007/s00213-012-2741-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/03/2012] [Indexed: 11/06/2022]
Abstract
RATIONALE It has been suggested that there are causal relationships between alterations in brain glia and major depression. OBJECTIVES To investigate whether a depressive-like state induces changes in brain astrocytes, we used chronic social stress in male rats, an established preclinical model of depression. Expression of two astrocytic proteins, the intermediate filament component glial fibrillary acidic protein (GFAP) and the cytoplasmic protein N-myc downregulated gene 2 (NDRG2), was analyzed in the hippocampus. For comparison, expression of the neuronal protein syntaxin-1A was also determined. METHODS Adult male rats were subjected to daily social defeat for 5 weeks and were concomitantly treated with citalopram (30 mg/kg/day, via the drinking water) for 4 weeks. RESULTS Western blot analysis showed that the chronic stress downregulated GFAP but upregulated NDRG2 protein. Citalopram did not prevent these stress effects, but the antidepressant per se downregulated GFAP and upregulated NDRG2 in nonstressed rats. In contrast, citalopram prevented the stress-induced upregulation of the neuronal protein syntaxin-1A. CONCLUSIONS These data suggest that chronic stress and citalopram differentially affect expression of astrocytic genes while the antidepressant drug does not prevent the stress effects. The inverse regulation of the cytoskeletal protein GFAP and the cytoplasmic protein NDRG2 indicates that the cells undergo profound metabolic changes during stress and citalopram treatment. Furthermore, the present findings indicate that a 4-week treatment with citalopram does not restore normal glial function in the hippocampus, although the behavior of the animals was normalized within this treatment period, as reported previously.
Collapse
Affiliation(s)
- Carolina Araya-Callís
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Gottingen, Germany
- DFG Research Center for Molecular Physiology of the Brain, Gottingen, Germany
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| | - Nashat Abumaria
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Gabriele Flugge
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Gottingen, Germany
- DFG Research Center for Molecular Physiology of the Brain, Gottingen, Germany
| |
Collapse
|
42
|
Lasko P. mRNA localization and translational control in Drosophila oogenesis. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a012294. [PMID: 22865893 DOI: 10.1101/cshperspect.a012294] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Localization of an mRNA species to a particular subcellular region can complement translational control mechanisms to produce a restricted spatial distribution of the protein it encodes. mRNA localization has been studied most in asymmetric cells such as budding yeast, early embryos, and neurons, but the process is likely to be more widespread. This article reviews the current state of knowledge about the mechanisms of mRNA localization and its functions in early embryonic development, focusing on Drosophila where the relevant knowledge is most advanced. Links between mRNA localization and translational control mechanisms also are examined.
Collapse
Affiliation(s)
- Paul Lasko
- Department of Biology, Bellini Life Sciences Building, McGill University, Montréal, Québec H3G 0B1, Canada.
| |
Collapse
|
43
|
Drocco JA, Wieschaus EF, Tank DW. The synthesis-diffusion-degradation model explains Bicoid gradient formation in unfertilized eggs. Phys Biol 2012; 9:055004. [PMID: 23011646 DOI: 10.1088/1478-3975/9/5/055004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Precise formation of morphogen gradients is essential to the establishment of reproducible pattern in development. Mechanisms proposed for obtaining the requisite precision range from simple models with few parameters to more complex models involving many regulated quantities. The synthesis-diffusion-degradation (SDD) model is a relatively simple model explaining the formation of the Bicoid gradient in Drosophila melanogaster, in which the steady-state characteristic length of the gradient is determined solely by the rates of diffusion and degradation of the morphogen. In this work, we test the SDD model in unfertilized D. melanogaster eggs, which contain a single female pronucleus and lack the nuclear division cycles and other zygotic regulatory processes seen in fertilized eggs. Using two-photon live imaging as well as a novel method for quantitative imaging based on decorrelation of photoswitching waveforms, we find that the Bicoid gradient is longer and shallower in unfertilized eggs as compared to the gradient at the same time points in fertilized eggs. Using a means of measuring the Bicoid lifetime by conjugation to a photoconvertible fluorophore, we find that the lifetime is correspondingly longer in unfertilized eggs, providing qualitative and quantitative agreement with the predictions of the SDD model.
Collapse
Affiliation(s)
- J A Drocco
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
44
|
A Systematic Phenotypic Screen of F-box Genes Through a Tissue-specific RNAi-based Approach in Drosophila. J Genet Genomics 2012; 39:397-413. [DOI: 10.1016/j.jgg.2012.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/25/2012] [Accepted: 05/30/2012] [Indexed: 02/03/2023]
|
45
|
Liu J, Ma J. Drosophila Bicoid is a substrate of sumoylation and its activator function is subject to inhibition by this post-translational modification. FEBS Lett 2012; 586:1719-23. [PMID: 22584054 DOI: 10.1016/j.febslet.2012.04.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/24/2012] [Accepted: 04/28/2012] [Indexed: 11/26/2022]
Abstract
Bicoid (Bcd) is a Drosophila morphogenetic protein and a transcriptional activator. Genetic studies have suggested a role of sumoylation in Bcd function, but it is unknown how Bcd activity is affected specifically by its own sumoylation status. Here we show that Bcd is sumoylated in Drosophila cells. We identify a lysine residue of Bcd as the primary sumoylation site. Using a Bcd mutant defective in being sumoylated, we show that sumoylation of Bcd is inhibitory to its ability to activate transcription. We provide evidence suggesting that the SUMO moiety has an intrinsic inhibitory activity for the activator function of Bcd.
Collapse
Affiliation(s)
- Junbo Liu
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, United States
| | | |
Collapse
|
46
|
Howard M. How to build a robust intracellular concentration gradient. Trends Cell Biol 2012; 22:311-7. [PMID: 22503534 DOI: 10.1016/j.tcb.2012.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 11/18/2022]
Abstract
Concentration gradients of morphogens are critical regulators of patterning in developmental biology. Increasingly, intracellular concentration gradients have also been found to orchestrate spatial organization, but inside single cells, where they regulate processes such as cell division, polarity and mitotic spindle dynamics. Here, we discuss recent progress in understanding how such intracellular gradients can be built robustly. We focus particularly on the Pom1p gradient in fission yeast, elucidating how various buffering mechanisms operate to ensure precise gradient formation. In this case, a systems-level understanding of the entire mechanism of precise gradient construction is now within reach, with important implications for gradients in both intracellular and developmental contexts.
Collapse
Affiliation(s)
- Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
47
|
He F, Ren J, Wang W, Ma J. Evaluating the Drosophila Bicoid morphogen gradient system through dissecting the noise in transcriptional bursts. ACTA ACUST UNITED AC 2012; 28:970-5. [PMID: 22302571 DOI: 10.1093/bioinformatics/bts068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MOTIVATION We describe a statistical model to dissect the noise in transcriptional bursts in a developmental system. RESULTS We assume that, at any given moment of time, each copy of a native gene inside a cell can exist in either a bursting (active) or non-bursting (inactive) state. The experimentally measured total noise in the transcriptional states of a gene in a population of cells can be mathematically dissected into two contributing components: internal and external. While internal noise quantifies the stochastic nature of transcriptional bursts, external noise is caused by cell-to-cell differences including fluctuations in activator concentration. We use our developed methods to analyze the Drosophila Bicoid (Bcd) morphogen gradient system. For its target gene hunchback (hb), the noise properties can be recapitulated by a simplified gene regulatory model in which Bcd acts as the only input, suggesting that the external noise in hb transcription is primarily derived from fluctuations in the Bcd activator input. However, such a simplified gene regulatory model is insufficient to predict the noise properties of another Bcd target gene, orthodenticle (otd), suggesting that otd transcription is sensitive to additional external fluctuations beyond those in Bcd. Our results show that analysis of the relationship between input and output noise can reveal important insights into how a morphogen gradient system works. Our study also advances the knowledge about transcription at a fundamental level. CONTACT jun.ma@cchmc.org SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Feng He
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
48
|
Transcriptional activators and activation mechanisms. Protein Cell 2011; 2:879-88. [PMID: 22180087 DOI: 10.1007/s13238-011-1101-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/22/2011] [Indexed: 10/14/2022] Open
Abstract
Transcriptional activators are required to turn on the expression of genes in a eukaryotic cell. Activators bound to the enhancer can facilitate either the recruitment of RNA polymerase II to the promoter or its elongation. This article examines a few selected issues in understanding activator functions and activation mechanisms.
Collapse
|
49
|
Roth S. Mathematics and biology: a Kantian view on the history of pattern formation theory. Dev Genes Evol 2011; 221:255-79. [PMID: 22086125 PMCID: PMC3234355 DOI: 10.1007/s00427-011-0378-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 10/19/2011] [Indexed: 12/20/2022]
Abstract
Driesch's statement, made around 1900, that the physics and chemistry of his day were unable to explain self-regulation during embryogenesis was correct and could be extended until the year 1972. The emergence of theories of self-organisation required progress in several areas including chemistry, physics, computing and cybernetics. Two parallel lines of development can be distinguished which both culminated in the early 1970s. Firstly, physicochemical theories of self-organisation arose from theoretical (Lotka 1910-1920) and experimental work (Bray 1920; Belousov 1951) on chemical oscillations. However, this research area gained broader acceptance only after thermodynamics was extended to systems far from equilibrium (1922-1967) and the mechanism of the prime example for a chemical oscillator, the Belousov-Zhabotinski reaction, was deciphered in the early 1970s. Secondly, biological theories of self-organisation were rooted in the intellectual environment of artificial intelligence and cybernetics. Turing wrote his The chemical basis of morphogenesis (1952) after working on the construction of one of the first electronic computers. Likewise, Gierer and Meinhardt's theory of local activation and lateral inhibition (1972) was influenced by ideas from cybernetics. The Gierer-Meinhardt theory provided an explanation for the first time of both spontaneous formation of spatial order and of self-regulation that proved to be extremely successful in elucidating a wide range of patterning processes. With the advent of developmental genetics in the 1980s, detailed molecular and functional data became available for complex developmental processes, allowing a new generation of data-driven theoretical approaches. Three examples of such approaches will be discussed. The successes and limitations of mathematical pattern formation theory throughout its history suggest a picture of the organism, which has structural similarity to views of the organic world held by the philosopher Immanuel Kant at the end of the eighteenth century.
Collapse
Affiliation(s)
- Siegfried Roth
- Institute of Developmental Biology, University of Cologne, Biowissenschaftliches Zentrum, Zülpicher Strasse 47b, 50674 Cologne, Germany.
| |
Collapse
|
50
|
Abstract
Morphogens are long-range signaling molecules that pattern developing tissues in a concentration-dependent manner. The graded activity of morphogens within tissues exposes cells to different signal levels and leads to region-specific transcriptional responses and cell fates. In its simplest incarnation, a morphogen signal forms a gradient by diffusion from a local source and clearance in surrounding tissues. Responding cells often transduce morphogen levels in a linear fashion, which results in the graded activation of transcriptional effectors. The concentration-dependent expression of morphogen target genes is achieved by their different binding affinities for transcriptional effectors as well as inputs from other transcriptional regulators. Morphogen distribution and interpretation are the result of complex interactions between the morphogen and responding tissues. The response to a morphogen is dependent not simply on morphogen concentration but also on the duration of morphogen exposure and the state of the target cells. In this review, we describe the morphogen concept and discuss the mechanisms that underlie the generation, modulation, and interpretation of morphogen gradients.
Collapse
Affiliation(s)
- Katherine W Rogers
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|