1
|
Kundu S, Kumar Das B, Das Gupta S. Hormonal symphony: The dynamic duo of IGF and EGF in gonadotropin-induced fish ovarian development and egg maturation. Anim Reprod Sci 2024; 273:107663. [PMID: 39674119 DOI: 10.1016/j.anireprosci.2024.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Fish oocyte maturation (FOM) is a critical biological process that occurs before ovulation and is influenced by gonadotropins, particularly luteinizing hormone (LH). The release of LH stimulates the ovarian follicle to produce a maturation-inducing hormone (MIH), specifically 17α, 20β-dihydroxy-4-pregnen-3-one (17α, 20β-DP), which initiates the formation of maturation-promoting factor (MPF) through the activation of cyclin B and cdc2 kinase. Insulin-like growth factor I (IGF-I) significantly regulates ovarian functions, including steroidogenesis, by activating its membrane receptors and the tyrosine kinase pathway. IGF-I influences oocyte maturation directly via the PI3 kinase pathway, independent of steroid hormones. Additionally, epidermal growth factor (EGF) promotes cell growth and differentiation by binding to its receptor (EGFR). It is implicated in mediating human chorionic gonadotropin (hCG)-induced DNA synthesis in ovarian follicles while suppressing apoptosis. The presence of EGF in follicle cells and oocytes, along with its higher expression in oocytes, suggests it may act as a paracrine signal regulating somatic cell activity. Recent studies indicate that the activin system in follicle cells could be a target for EGF activity. The EGFR signaling pathway enhances gonadotropin-induced steroidogenesis and governs the transition of oocyte maturation stages, essential for successful fertilization. This review synthesizes current research on the roles of gonadotropins, IGFs, and EGFs in fish oocyte maturation and ovarian steroid production.
Collapse
Affiliation(s)
- Sourav Kundu
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700 120, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700 120, India.
| | - Subhadeep Das Gupta
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700 120, India
| |
Collapse
|
2
|
Yang M, Xiang H, Luo G. Targeting Protein Kinase, Membrane-Associated Tyrosine/Threonine 1 (PKMYT1) for Precision Cancer Therapy: From Discovery to Clinical Trial. J Med Chem 2024; 67:17997-18016. [PMID: 39383322 DOI: 10.1021/acs.jmedchem.4c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
\Protein kinase membrane-associated tyrosine/threonine 1 (PKMYT1), an overlooked member of the WEE family responsible for regulating cell cycle transition, has recently emerged as a compelling therapeutic target for precision cancer therapy due to its established synthetic lethal relationship with CCNE1 (cyclin E1) amplification. Since the first-in-class selective PKMYT1 inhibitor, RP-6306, entered clinical trials in 2021, the field has experienced renewed interest underscored by the growing number of inhibitor patents and the exploration of additional gene alterations, such as KRAS/p53 mutations, FBXW7 mutation, and PPP2R1A mutation, as novel synthetic lethal partners. This perspective summarizes, for the first time, the PKMYT1 structure, function, and inhibitors in both the literature and patent applications reported to date. Compounds are described focusing on their design and optimization process, structural features, and biological activity with the aim to promoting further drug discovery efforts targeting PKMYT1 as a potential precision therapy.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
3
|
Rivas V, González-Muñoz T, Albitre Á, Lafarga V, Delgado-Arévalo C, Mayor F, Penela P. GRK2-mediated AKT activation controls cell cycle progression and G2 checkpoint in a p53-dependent manner. Cell Death Discov 2024; 10:385. [PMID: 39198399 PMCID: PMC11358448 DOI: 10.1038/s41420-024-02143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Cell cycle checkpoints, activated by stressful events, halt the cell cycle progression, and prevent the transmission of damaged DNA. These checkpoints prompt cell repair but also trigger cell death if damage persists. Decision-making between these responses is multifactorial and context-dependent, with the tumor suppressor p53 playing a central role. In many tumor cells, p53 alterations lead to G1/S checkpoint loss and the weakening of the G2 checkpoint, rendering cell viability dependent on the strength of the latter through mechanisms not fully characterized. Cells with a strong pro-survival drive can evade cell death despite substantial DNA lesions. Deciphering the integration of survival pathways with p53-dependent and -independent mechanisms governing the G2/M transition is crucial for understanding G2 arrest functionality and predicting tumor cell response to chemotherapy. The serine/threonine kinase GRK2 emerges as a signaling node in cell cycle modulation. In cycling cells, but not in G2 checkpoint-arrested cells, GRK2 protein levels decline during G2/M transition through a process triggered by CDK2-dependent phosphorylation of GRK2 at the S670 residue and Mdm2 ubiquitination. We report now that this downmodulation in G2 prevents the unscheduled activation of the PI3K/AKT pathway, allowing cells to progress into mitosis. Conversely, higher GRK2 levels lead to tyrosine phosphorylation by the kinase c-Abl, promoting the direct association of GRK2 with the p85 regulatory subunit of PI3K and AKT activation in a GRK2 catalytic-independent manner. Hyperactivation of AKT is conditioned by p53's scaffolding function, triggering FOXO3a phosphorylation, impaired Cyclin B1 accumulation, and CDK1 activation, causing a G2/M transition delay. Upon G2 checkpoint activation, GRK2 potentiates early arrest independently of p53 through AKT activation. However, its ability to overcome the G2 checkpoint in viable conditions depends on p53. Our results suggest that integrating the GRK2/PI3K/AKT axis with non-canonical functions of p53 might confer a survival advantage to tumor cells.
Collapse
Affiliation(s)
- Verónica Rivas
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Teresa González-Muñoz
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Ángela Albitre
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Vanesa Lafarga
- Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Delgado-Arévalo
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain
| | - Petronila Penela
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain.
| |
Collapse
|
4
|
Giaccari C, Antonouli S, Anifandis G, Cecconi S, Di Nisio V. An Update on Physiopathological Roles of Akt in the ReprodAKTive Mammalian Ovary. Life (Basel) 2024; 14:722. [PMID: 38929705 PMCID: PMC11204812 DOI: 10.3390/life14060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt pathway is a key signaling cascade responsible for the regulation of cell survival, proliferation, and metabolism in the ovarian microenvironment. The optimal finetuning of this pathway is essential for physiological processes concerning oogenesis, folliculogenesis, oocyte maturation, and embryo development. The dysregulation of PI3K/Akt can impair molecular and structural mechanisms that will lead to follicle atresia, or the inability of embryos to reach later stages of development. Due to its pivotal role in the control of cell proliferation, apoptosis, and survival mechanisms, the dysregulation of this molecular pathway can trigger the onset of pathological conditions. Among these, we will focus on diseases that can harm female fertility, such as polycystic ovary syndrome and premature ovarian failure, or women's general health, such as ovarian cancer. In this review, we report the functions of the PI3K/Akt pathway in both its physiological and pathological roles, and we address the existing application of inhibitors and activators for the balancing of the molecular cascade in ovarian pathological environments.
Collapse
Affiliation(s)
- Carlo Giaccari
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Sevastiani Antonouli
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (S.A.); (G.A.)
| | - George Anifandis
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (S.A.); (G.A.)
| | - Sandra Cecconi
- Department of Life, Health, and Environmental Sciences, Università dell’Aquila, 67100 L’Aquila, Italy
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, SE-14186 Stockholm, Sweden;
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186 Stockholm, Sweden
| |
Collapse
|
5
|
Tomović Pavlović K, Kocić G, Šmelcerović A. Myt1 kinase inhibitors - Insight into structural features, offering potential frameworks. Chem Biol Interact 2024; 391:110901. [PMID: 38331334 DOI: 10.1016/j.cbi.2024.110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
The cell cycle includes two checkpoint arrests allowing to repair of damaged DNA. Many cancer cell lines exhibit weak G1 checkpoint mechanisms relying significantly more on the G2 checkpoint than do healthy cells. Inhibition of Myt1 kinase (PKMYT1), a forgotten member of the Wee family, cyclin-dependent kinase 1 (Cdk1) inhibitory kinase, target for G2 checkpoint abrogation, whose inhibition forces cells into premature unchecked mitosis resulting in cell death, is a promising concept for anticancer therapy. There are not many inhibitors of this emerging, potentially clinically important kinase. Herein, the valuable insight into structural features and binding mechanisms of diaminopyrimidines, aminoquinolines, quinazolines, pyrido[2,3-d]pyrimidines, pyrazolo[3,4-d]pyrimidines, and pyrrolo[2,3-b]quinoxalines, as well as finally made a general scheme of fragmented structures of Myt1 inhibitors with the enzyme, offer potential frameworks useful for future directions, for further chemical optimizations, in the discovery and the design of novel effective structures, potential therapeutics.
Collapse
Affiliation(s)
- Katarina Tomović Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Đinđića 81, 18000, Niš, Serbia.
| | - Gordana Kocić
- Department of Biochemistry, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Đinđića 81, 18000, Niš, Serbia
| | - Andrija Šmelcerović
- Department of Chemistry, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Đinđića 81, 18000, Niš, Serbia.
| |
Collapse
|
6
|
Ornelas IM, Silva TM, Pereira MR, França GR, Ventura ALM. Cell cycle regulation by ADP and IGF-1 in cultured late developing glia progenitors of the avian retina. Purinergic Signal 2023:10.1007/s11302-023-09982-7. [PMID: 38151691 DOI: 10.1007/s11302-023-09982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023] Open
Abstract
In the avian retina, ADP induces the proliferation of late developing glia progenitors. Here, we show that in serum-containing retinal cell cultures, ADP-induced increase in [3H]-thymidine incorporation can be prevented by the IGF-1 receptor antagonists AG1024 and I-OMe-Tyrphostin AG 538, suggesting the participation of IGF-1 in ADP-mediated progenitor proliferation. In contrast, no increase in [3H]-thymidine incorporation is observed in retinal cultures treated only with IGF-1. Under serum starvation, while no increase in cell proliferation is detected in cultures treated only with ADP or IGF-1, a significant increase in [3H]-thymidine incorporation and number of PCNA expressing cells is observed in cultures treated concomitantly with ADP plus IGF-1, suggesting that both molecules are required to induce proliferation of retinal progenitors. In serum-starved cultures, although an increase in cell viability is detected by MTT assays in IGF-1-treated cultures, no significant increase in viability of [3H]-thymidine labeled progenitors is observed, suggesting that IGF-1 may contribute to survival of postmitotic cells in culture. While only ADP increases intracellular calcium, only IGF-1 induces the phosphorylation of Akt in the retinal cultures. IGF-1 through the PI3K/Akt pathway induces a significant increase in the transcription and expression of CDK1 with a decrease in phospho-histone H3 expression that is concomitant with an increase in the expression of cyclins D1 and E and CDK2. These findings suggest that IGF-1 stimulates CDK-1 mRNA and protein expression that enable progenitors to progress through the cell cycle. However, signaling of ADP in the presence IGF-I seems to be required for DNA synthesis.
Collapse
Affiliation(s)
- Isis Moraes Ornelas
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, 29047-105, Brazil
| | - Thayane Martins Silva
- Department of Neurobiology, Neuroscience Program, Federal Fluminense University, Rua Prof. M.W. de Freitas Reis, bloco M, sala 409, São Domingos, Niterói, Rio de Janeiro, CEP 24210-201, Brazil
| | - Mariana Rodrigues Pereira
- Department of Neurobiology, Neuroscience Program, Federal Fluminense University, Rua Prof. M.W. de Freitas Reis, bloco M, sala 409, São Domingos, Niterói, Rio de Janeiro, CEP 24210-201, Brazil
| | - Guilherme Rapozeiro França
- Department of Physiological Sciences, Federal University of the State of Rio de Janeiro, Rua Frei Caneca 94, Centro, Rio de Janeiro, RJ, CEP 20211-040, Brazil
| | - Ana Lucia Marques Ventura
- Department of Neurobiology, Neuroscience Program, Federal Fluminense University, Rua Prof. M.W. de Freitas Reis, bloco M, sala 409, São Domingos, Niterói, Rio de Janeiro, CEP 24210-201, Brazil.
| |
Collapse
|
7
|
Kalous J, Aleshkina D, Anger M. A Role of PI3K/Akt Signaling in Oocyte Maturation and Early Embryo Development. Cells 2023; 12:1830. [PMID: 37508495 PMCID: PMC10378481 DOI: 10.3390/cells12141830] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
A serine/threonine-specific protein kinase B (PKB), also known as Akt, is a key factor in the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway that regulates cell survival, metabolism and proliferation. Akt phosphorylates many downstream specific substrates, which subsequently control the nuclear envelope breakdown (NEBD), centrosome maturation, spindle assembly, chromosome segregation, and cytokinesis. In vertebrates, Akt is also an important player during oogenesis and preimplantation development. In the signaling pathways regulating mRNA translation, Akt is involved in the control of mammalian target of rapamycin complex 1 (mTORC1) and thereby regulates the activity of a translational repressor, the eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1). In this review, we summarize the functions of Akt in mitosis, meiosis and early embryonic development. Additionally, the role of Akt in the regulation of mRNA translation is addressed with respect to the significance of this process during early development.
Collapse
Affiliation(s)
- Jaroslav Kalous
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
| | - Daria Aleshkina
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 00 Praha, Czech Republic
| | - Martin Anger
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
| |
Collapse
|
8
|
Zhang Q, Lin X, Jiang K, Deng J, Ke L, Wu Z, Xia P, Li Q, Yu L, Ni P, Lv W, Hu J. PD0166285 sensitizes esophageal squamous cell carcinoma to radiotherapy by dual inhibition of WEE1 and PKMYT1. Front Oncol 2022. [DOI: 10.3389/fonc.2022.1061988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BackgroundEsophageal squamous cell carcinoma (ESCC) is an aggressive tumor with a 5-year survival rate of only 20%. More than 80% of ESCC patients possess TP53 mutation, which abolishes the G1/S checkpoint and accelerates the cell cycle. Thus, WEE1 and PKMYT1, regulators of G2/M phase in cell cycle, play essential roles in TP53-mutated cancer cells. PD0166285(PD) is a pyridopyrimidine compound that can inhibit WEE1 and PKMYT1 simultaneously, however, the effects of PD on ESCC, either as monotherapy or in combination therapy with radiotherapy, remain unclear.MethodsTo measure the anti-tumor efficacy of PD in ESCC cells, cell viability, cell cycle and cell apoptosis assays were examined in KYSE150 and TE1 cells with PD treatment. The combination therapy of PD and irradiation was also performed in ESCC cells to find whether PD can sensitize ESCC cells to irradiation. Vivo assays were also performed to investigate the efficacy of PD.ResultsWe found that the IC50 values of PD among ESCC cells ranged from 234 to 694 nM, PD can regulate cell cycle and induce cell apoptosis in ESCC cells in a dose-dependent manner. When combined with irradiation, PD sensitized ESCC cells to irradiation by abolishing G2/M phase arrest, inducing a high ratio of mitosis catastrophe, eventually leading to cell death. We also demonstrated that PD can attenuate DNA damage repair by inhibiting Rad51, further research also found the interaction of WEE1 and Rad51. In vivo assays, PD inhibited the tumor growth in mice, combination therapy showed better therapeutic efficacy.ConclusionPD0166285 can exert antitumor effect by inhibiting the function of WEE1 and PKMYT1 in ESCC cells, and also sensitize ESCC cells to irradiation not only by abolishing G2/M arrest but also attenuating DNA repair directly. We believe PD0166285 can be a potent treatment option for ESCC in the future.
Collapse
|
9
|
Del Llano E, Iyyappan R, Aleshkina D, Masek T, Dvoran M, Jiang Z, Pospisek M, Kubelka M, Susor A. SGK1 is essential for meiotic resumption in mammalian oocytes. Eur J Cell Biol 2022; 101:151210. [PMID: 35240557 PMCID: PMC11008056 DOI: 10.1016/j.ejcb.2022.151210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
In mammalian females, oocytes are stored in the ovary and meiosis is arrested at the diplotene stage of prophase I. When females reach puberty oocytes are selectively recruited in cycles to grow, overcome the meiotic arrest, complete the first meiotic division and become mature (ready for fertilization). At a molecular level, the master regulator of prophase I arrest and meiotic resumption is the maturation-promoting factor (MPF) complex, formed by the active form of cyclin dependent kinase 1 (CDK1) and Cyclin B1. However, we still do not have complete information regarding the factors implicated in MPF activation. In this study we document that out of three mammalian serum-glucocorticoid kinase proteins (SGK1, SGK2, SGK3), mouse oocytes express only SGK1 with a phosphorylated (active) form dominantly localized in the nucleoplasm. Further, suppression of SGK1 activity in oocytes results in decreased CDK1 activation via the phosphatase cell division cycle 25B (CDC25B), consequently delaying or inhibiting nuclear envelope breakdown. Expression of exogenous constitutively active CDK1 can rescue the phenotype induced by SGK1 inhibition. These findings bring new insights into the molecular pathways acting upstream of MPF and a better understanding of meiotic resumption control by presenting a new key player SGK1 in mammalian oocytes.
Collapse
Affiliation(s)
- Edgar Del Llano
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic.
| | - Rajan Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
| | - Daria Aleshkina
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
| | - Tomas Masek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, Prague 128 44, Czech Republic
| | - Michal Dvoran
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
| | - Zongliang Jiang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Martin Pospisek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, Prague 128 44, Czech Republic
| | - Michal Kubelka
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic.
| |
Collapse
|
10
|
Bukhari AB, Chan GK, Gamper AM. Targeting the DNA Damage Response for Cancer Therapy by Inhibiting the Kinase Wee1. Front Oncol 2022; 12:828684. [PMID: 35251998 PMCID: PMC8891215 DOI: 10.3389/fonc.2022.828684] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer cells typically heavily rely on the G2/M checkpoint to survive endogenous and exogenous DNA damage, such as genotoxic stress due to genome instability or radiation and chemotherapy. The key regulator of the G2/M checkpoint, the cyclin-dependent kinase 1 (CDK1), is tightly controlled, including by its phosphorylation state. This posttranslational modification, which is determined by the opposing activities of the phosphatase cdc25 and the kinase Wee1, allows for a more rapid response to cellular stress than via the synthesis or degradation of modulatory interacting proteins, such as p21 or cyclin B. Reducing Wee1 activity results in ectopic activation of CDK1 activity and drives premature entry into mitosis with unrepaired or under-replicated DNA and causing mitotic catastrophe. Here, we review efforts to use small molecule inhibitors of Wee1 for therapeutic purposes, including strategies to combine Wee1 inhibition with genotoxic agents, such as radiation therapy or drugs inducing replication stress, or inhibitors of pathways that show synthetic lethality with Wee1. Furthermore, it become increasingly clear that Wee1 inhibition can also modulate therapeutic immune responses. We will discuss the mechanisms underlying combination treatments identifying both cell intrinsic and systemic anti-tumor activities.
Collapse
|
11
|
Swartz SZ, Nguyen HT, McEwan BC, Adamo ME, Cheeseman IM, Kettenbach AN. Selective dephosphorylation by PP2A-B55 directs the meiosis I-meiosis II transition in oocytes. eLife 2021; 10:70588. [PMID: 34342579 PMCID: PMC8370769 DOI: 10.7554/elife.70588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Meiosis is a specialized cell cycle that requires sequential changes to the cell division machinery to facilitate changing functions. To define the mechanisms that enable the oocyte-to-embryo transition, we performed time-course proteomics in synchronized sea star oocytes from prophase I through the first embryonic cleavage. Although we found that protein levels were broadly stable, our analysis reveals that dynamic waves of phosphorylation underlie each meiotic stage. We found that the phosphatase PP2A-B55 is reactivated at the meiosis I/meiosis II (MI/MII) transition, resulting in the preferential dephosphorylation of threonine residues. Selective dephosphorylation is critical for directing the MI/MII transition as altering PP2A-B55 substrate preferences disrupts key cell cycle events after MI. In addition, threonine to serine substitution of a conserved phosphorylation site in the substrate INCENP prevents its relocalization at anaphase I. Thus, through its inherent phospho-threonine preference, PP2A-B55 imposes specific phosphoregulated behaviors that distinguish the two meiotic divisions.
Collapse
Affiliation(s)
- S Zachary Swartz
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Hieu T Nguyen
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Brennan C McEwan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Mark E Adamo
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, United States
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, United States
| |
Collapse
|
12
|
Abstract
Oocyte maturation is a process that occurs in the ovaries, where an immature oocyte resumes meiosis to attain competence for normal fertilization after ovulation/spawning. In starfish, the hormone 1-methyladenine binds to an unidentified receptor on the plasma membrane of oocytes, inducing a conformational change in the heterotrimeric GTP-binding protein α-subunit (Gα), so that the α-subunit binds GTP in exchange of GDP on the plasma membrane. The GTP-binding protein βγ-subunit (Gβγ) is released from Gα, and the released Gβγ activates phosphatidylinositol-3 kinase (PI3K), followed by the target of rapamycin kinase complex2 (TORC2) and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-dependent phosphorylation of serum- and glucocorticoid-regulated kinase (SGK) of ovarian oocytes. Thereafter, SGK activates Na+/H+ exchanger (NHE) to increase the intracellular pH (pHi) from ~6.7 to ~6.9. Moreover, SGK phosphorylates Cdc25 and Myt1, thereby inducing the de-phosphorylation and activation of cyclin B–Cdk1, causing germinal vesicle breakdown (GVBD). Both pHi increase and GVBD are required for spindle assembly at metaphase I, followed by MI arrest at pHi 6.9 until spawning. Due to MI arrest or SGK-dependent pHi control, spawned oocytes can be fertilized normally
Collapse
Affiliation(s)
- Kazuyoshi Chiba
- Department of Biological Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| |
Collapse
|
13
|
Yılmazer M, Kartal B, Tarhan Ç, Özarabacı I, Akçaalan S, Özkan E, Karaer Uzuner S, Arıcan E, Palabıyık B. A Genome-Wide Screen for Wortmannin-Resistant Mutants in Schizosaccharomyces pombe: The Phosphorylation-Impaired Mutants Are Resistant to Signaling Defect. DNA Cell Biol 2019; 38:1427-1436. [PMID: 31657618 DOI: 10.1089/dna.2019.5003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Complex human diseases such as metabolic disorders, cancer, neurodegenerative diseases, and mitochondrial dysfunctions arise from the biochemical or genetic defects in various cellular processes. Therefore, it is important to understand which metabolic processes are affected by which cellular impairment. Because genome-wide screening of mutant collections (haploid/diploid deletion library) provides important clues for the understanding of conserved biological processes and for finding potential target genes, we screened the haploid mutant collection of Schizosaccharomyces pombe with wortmannin that inhibits phosphatidylinositol-3-kinase signaling. Using genome-wide screening, we determined that 52 mutants were resistant to this chemical. When 52 genes that are deleted in these mutants were grouped in 41 different biological processes, we found that 37 of them have human orthologues and 4 genes were associated with human metabolic disorders. In addition, when we examined the pathways in which these 52 genes function, we determined that 9 genes were related to phosphorylation process. These results might provide new insights for better understanding of certain human diseases.
Collapse
Affiliation(s)
- Merve Yılmazer
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Burcu Kartal
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Çağatay Tarhan
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Ilayda Özarabacı
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Sedef Akçaalan
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Egemen Özkan
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| | - Semian Karaer Uzuner
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Ercan Arıcan
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Bedia Palabıyık
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
14
|
Lewis CW, Bukhari AB, Xiao EJ, Choi WS, Smith JD, Homola E, Mackey JR, Campbell SD, Gamper AM, Chan GK. Upregulation of Myt1 Promotes Acquired Resistance of Cancer Cells to Wee1 Inhibition. Cancer Res 2019; 79:5971-5985. [PMID: 31594837 DOI: 10.1158/0008-5472.can-19-1961] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/04/2019] [Accepted: 10/04/2019] [Indexed: 11/16/2022]
Abstract
Adavosertib (also known as AZD1775 or MK1775) is a small-molecule inhibitor of the protein kinase Wee1, with single-agent activity in multiple solid tumors, including sarcoma, glioblastoma, and head and neck cancer. Adavosertib also shows promising results in combination with genotoxic agents such as ionizing radiation or chemotherapy. Previous studies have investigated molecular mechanisms of primary resistance to Wee1 inhibition. Here, we investigated mechanisms of acquired resistance to Wee1 inhibition, focusing on the role of the Wee1-related kinase Myt1. Myt1 and Wee1 kinases were both capable of phosphorylating and inhibiting Cdk1/cyclin B, the key enzymatic complex required for mitosis, demonstrating their functional redundancy. Ectopic activation of Cdk1 induced aberrant mitosis and cell death by mitotic catastrophe. Cancer cells with intrinsic adavosertib resistance had higher levels of Myt1 compared with sensitive cells. Furthermore, cancer cells that acquired resistance following short-term adavosertib treatment had higher levels of Myt1 compared with mock-treated cells. Downregulating Myt1 enhanced ectopic Cdk1 activity and restored sensitivity to adavosertib. These data demonstrate that upregulating Myt1 is a mechanism by which cancer cells acquire resistance to adavosertib. SIGNIFICANCE: Myt1 is a candidate predictive biomarker of acquired resistance to the Wee1 kinase inhibitor adavosertib.
Collapse
Affiliation(s)
- Cody W Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - Amirali B Bukhari
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - Edric J Xiao
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - Won-Shik Choi
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - Joanne D Smith
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - Ellen Homola
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - John R Mackey
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Medical Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Shelagh D Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Armin M Gamper
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - Gordon K Chan
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada. .,Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Hiraoka D, Hosoda E, Chiba K, Kishimoto T. SGK phosphorylates Cdc25 and Myt1 to trigger cyclin B-Cdk1 activation at the meiotic G2/M transition. J Cell Biol 2019; 218:3597-3611. [PMID: 31537708 PMCID: PMC6829662 DOI: 10.1083/jcb.201812122] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/03/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
The kinase cyclin B-Cdk1 complex is a master regulator of M-phase in both mitosis and meiosis. At the G2/M transition, cyclin B-Cdk1 activation is initiated by a trigger that reverses the balance of activities between Cdc25 and Wee1/Myt1 and is further accelerated by autoregulatory loops. In somatic cell mitosis, this trigger was recently proposed to be the cyclin A-Cdk1/Plk1 axis. However, in the oocyte meiotic G2/M transition, in which hormonal stimuli induce cyclin B-Cdk1 activation, cyclin A-Cdk1 is nonessential and hence the trigger remains elusive. Here, we show that SGK directly phosphorylates Cdc25 and Myt1 to trigger cyclin B-Cdk1 activation in starfish oocytes. Upon hormonal stimulation of the meiotic G2/M transition, SGK is activated by cooperation between the Gβγ-PI3K pathway and an unidentified pathway downstream of Gβγ, called the atypical Gβγ pathway. These findings identify the trigger in oocyte meiosis and provide insights into the role and activation of SGK.
Collapse
Affiliation(s)
- Daisaku Hiraoka
- Science and Education Center, Ochanomizu University, Tokyo, Japan
| | - Enako Hosoda
- Department of Biological Sciences, Ochanomizu University, Tokyo, Japan
| | - Kazuyoshi Chiba
- Department of Biological Sciences, Ochanomizu University, Tokyo, Japan
| | - Takeo Kishimoto
- Science and Education Center, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
16
|
Hosoda E, Hiraoka D, Hirohashi N, Omi S, Kishimoto T, Chiba K. SGK regulates pH increase and cyclin B-Cdk1 activation to resume meiosis in starfish ovarian oocytes. J Cell Biol 2019; 218:3612-3629. [PMID: 31537709 PMCID: PMC6829648 DOI: 10.1083/jcb.201812133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/19/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
Tight regulation of intracellular pH (pHi) is essential for biological processes. Fully grown oocytes, having a large nucleus called the germinal vesicle, arrest at meiotic prophase I. Upon hormonal stimulus, oocytes resume meiosis to become fertilizable. At this time, the pHi increases via Na+/H+ exchanger activity, although the regulation and function of this change remain obscure. Here, we show that in starfish oocytes, serum- and glucocorticoid-regulated kinase (SGK) is activated via PI3K/TORC2/PDK1 signaling after hormonal stimulus and that SGK is required for this pHi increase and cyclin B-Cdk1 activation. When we clamped the pHi at 6.7, corresponding to the pHi of unstimulated ovarian oocytes, hormonal stimulation induced cyclin B-Cdk1 activation; thereafter, oocytes failed in actin-dependent chromosome transport and spindle assembly after germinal vesicle breakdown. Thus, this SGK-dependent pHi increase is likely a prerequisite for these events in ovarian oocytes. We propose a model that SGK drives meiotic resumption via concomitant regulation of the pHi and cell cycle machinery.
Collapse
Affiliation(s)
- Enako Hosoda
- Department of Biological Sciences, Ochanomizu University, Tokyo, Japan
| | - Daisaku Hiraoka
- Science and Education Center, Ochanomizu University, Tokyo, Japan
| | | | - Saki Omi
- Department of Biological Sciences, Ochanomizu University, Tokyo, Japan
| | - Takeo Kishimoto
- Science and Education Center, Ochanomizu University, Tokyo, Japan
| | - Kazuyoshi Chiba
- Department of Biological Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
17
|
Li H, Long J, Xie F, Kang K, Shi Y, Xu W, Wu X, Lin J, Xu H, Du S, Xu Y, Zhao H, Zheng Y, Gu J. Transcriptomic analysis and identification of prognostic biomarkers in cholangiocarcinoma. Oncol Rep 2019; 42:1833-1842. [PMID: 31545466 PMCID: PMC6787946 DOI: 10.3892/or.2019.7318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/20/2019] [Indexed: 12/27/2022] Open
Abstract
Cholangiocarcinoma (CCA) is acknowledged as the second most commonly diagnosed primary liver tumor and is associated with a poor patient prognosis. The present study aimed to explore the biological functions, signaling pathways and potential prognostic biomarkers involved in CCA through transcriptomic analysis. Based on the transcriptomic dataset of CCA from The Cancer Genome Atlas (TCGA), differentially expressed protein-coding genes (DEGs) were identified. Biological function enrichment analysis, including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, was applied. Through protein-protein interaction (PPI) network analysis, hub genes were identified and further verified using open-access datasets and qRT-PCR. Finally, a survival analysis was conducted. A total of 1,463 DEGs were distinguished, including 267 upregulated genes and 1,196 downregulated genes. For the GO analysis, the upregulated DEGs were enriched in ‘cadherin binding in cell-cell adhesion’, ‘extracellular matrix (ECM) organization’ and ‘cell-cell adherens junctions’. Correspondingly, the downregulated DEGs were enriched in the ‘oxidation-reduction process’, ‘extracellular exosomes’ and ‘blood microparticles’. In regards to the KEGG pathway analysis, the upregulated DEGs were enriched in ‘ECM-receptor interactions’, ‘focal adhesions’ and ‘small cell lung cancer’. The downregulated DEGs were enriched in ‘metabolic pathways’, ‘complement and coagulation cascades’ and ‘biosynthesis of antibiotics’. The PPI network suggested that CDK1 and another 20 genes were hub genes. Furthermore, survival analysis suggested that CDK1, MKI67, TOP2A and PRC1 were significantly associated with patient prognosis. These results enhance the current understanding of CCA development and provide new insight into distinguishing candidate biomarkers for predicting the prognosis of CCA.
Collapse
Affiliation(s)
- Hanyu Li
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Fucun Xie
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Kai Kang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yue Shi
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Weiyu Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xiaoqian Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Jianzhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Haifeng Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yiyao Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Jin Gu
- MOE Key Laboratory of Bioinformatics, BNIRST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
18
|
Yoshitome S, Aiba Y, Yuge M, Furuno N, Watanabe M, Nakajo N. Involvement of Myt1 kinase in the G2 phase of the first cell cycle in Xenopus laevis. Biochem Biophys Res Commun 2019; 515:139-144. [PMID: 31128913 DOI: 10.1016/j.bbrc.2019.05.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
Abstract
During cleavage of Xenopus laevis, the first mitotic cell cycle immediately following fertilization is approximately 90 min and consists of S, G2, and M phases. In contrast, the subsequent eleven cell cycles are approximately 30 min and consist mostly of S and M phases. The balance between Cdc25 and Wee1A/Myt1 is thought to be crucial for Xenopus first cell cycle progression; however, the role of Myt1 in this period has not been fully investigated. In this study, we examined the roles of Myt1, Wee1A, and Cdc25A in the first cell cycle of Xenopus laevis. Inhibition of Cdc25A with antisense morpholino oligonucleotides lengthened the duration of the first cell cycle to some extent, whereas it was slightly shortened by ectopic Cdc25A expression, suggesting that the low concentration of Cdc25A during the first cell cycle does not fully account for the long duration of this cycle. Using the Wee1A antisense morpholino oligonucleotide and neutralizing antibody against Myt1, we found that Myt1 phosphorylates and inhibits Cdk1 much more effectively than Wee1A during the first cell cycle in Xenopus. Taken together, these results suggest that the activity of Myt1 is predominantly responsible for the duration of the long G2 phase in the first mitotic cell cycle in Xenopus.
Collapse
Affiliation(s)
- Satoshi Yoshitome
- Department of Biology, Graduate School of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan; Department of Enviromental Science, International College of Arts and Sciences, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-Ku, Fukuoka, 813-8529, Japan.
| | - Yukito Aiba
- Department of Biology, Graduate School of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masahiro Yuge
- Department of Enviromental Science, International College of Arts and Sciences, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-Ku, Fukuoka, 813-8529, Japan
| | - Nobuaki Furuno
- Amphibian Research Center, Hiroshima University, Kagamiyama 1-3-1, Higashihiroshima, 739-8526, Japan
| | - Minoru Watanabe
- Institute of Liberal Arts and Sciences, Tokushima University, Minamijosanjima-cho 1-1, Tokushima, 770-8502, Japan
| | - Nobushige Nakajo
- Department of Biology, Graduate School of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
19
|
Wu S, Wang S, Gao F, Li L, Zheng S, Yung WKA, Koul D. Activation of WEE1 confers resistance to PI3K inhibition in glioblastoma. Neuro Oncol 2019; 20:78-91. [PMID: 29016926 DOI: 10.1093/neuonc/nox128] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Oncogenic activation of phosphatidylinositol-3 kinase (PI3K) signaling plays a pivotal role in the development of glioblastoma (GBM). However, pharmacological inhibition of PI3K has so far not been therapeutically successful due to adaptive resistance through a rapid rewiring of cancer cell signaling. Here we identified that WEE1 is activated after transient exposure to PI3K inhibition and confers resistance to PI3K inhibition in GBM. Methods Patient-derived glioma-initiating cells and established GBM cells were treated with PI3K inhibitor or WEE1 inhibitor alone or in combination, and cell proliferation was evaluated by CellTiter-Blue assay. Cell apoptosis was analyzed by TUNEL, annexin V staining, and blotting of cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase. Both subcutaneous xenograft and orthotropic xenograft studies were conducted to evaluate the effects of the combination on tumorigenesis; the tumor growth was monitored by bioluminescence imaging, and tumor tissue was analyzed by immunohistochemistry to validate signaling changes. Results PI3K inhibition activates WEE1 kinase, which in turn phosphorylates cell division control protein 2 homolog (Cdc2) at Tyr15 and inhibits Cdc2 activity, leading to G2/M arrest in a p53-independent manner. WEE1 inhibition abrogated the G2/M arrest and propelled cells to prematurely enter into mitosis and consequent cell death through mitotic catastrophe and apoptosis. Additionally, combination treatment significantly suppressed tumor growth in a subcutaneous model but not in an intracranial model due to limited blood-brain barrier penetration. Conclusions Our findings highlight WEE1 as an adaptive resistant gene activated after PI3K inhibition, and inhibition of WEE1 potentiated the effectiveness of PI3K targeted inhibition, suggesting that a combinational inhibition of WEE1 and PI3K might allow successful targeted therapy in GBM.
Collapse
Affiliation(s)
- Shaofang Wu
- Brain Tumor Center, Departments of Neuro-Oncology
| | - Shuzhen Wang
- Brain Tumor Center, Departments of Neuro-Oncology
| | - Feng Gao
- Brain Tumor Center, Departments of Neuro-Oncology
| | - Luyuan Li
- Brain Tumor Center, Departments of Neuro-Oncology
| | - Siyuan Zheng
- Brain Tumor Center, Departments of Neuro-Oncology.,Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Dimpy Koul
- Brain Tumor Center, Departments of Neuro-Oncology
| |
Collapse
|
20
|
Hu M, Xiong S, Chen Q, Zhu S, Zhou X. Novel role of microRNA-126 in digestive system cancers: From bench to bedside. Oncol Lett 2018; 17:31-41. [PMID: 30655735 PMCID: PMC6313097 DOI: 10.3892/ol.2018.9639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are ubiquitously expressed, small, non-coding RNAs that regulate the expression of approximately 30% of the human genes at the post-transcriptional level. miRNAs have emerged as crucial modulators in the initiation and progression of various diseases, including numerous cancer types. The high incidence rate of cancer and the large number of cancer-associated cases of mortality are mostly due to a lack of effective treatments and biomarkers for early diagnosis. Therefore there is an urgent requirement to further understand the underlying mechanisms of tumorigenesis. MicroRNA-126 (miR-126) is significantly downregulated in a number of tumor types and is commonly identified as a tumor suppressor in digestive system cancers (DSCs). miR-126 downregulates various oncogenes, including disintegrin and metalloproteinase domain-containing protein 9, v-crk sarcoma virus CT10 oncogene homolog and phosphoinositide-3-kinase regulatory subunit 2. These genes are involved in a number of tumor-associated signaling pathways, including angiogenesis, epithelial-mensenchymal transition and metastasis pathways. The aim of the current review was to summarize the role of miR-126 in DSCs, in terms of its dysregulation, target genes and associated signaling pathways. In addition, the current review has discussed the potential clinical application of miR-126 as a biomarker and therapeutic target for DSCs.
Collapse
Affiliation(s)
- Mingli Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Shengwei Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Qiaofeng Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Shixuan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xiaodong Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
21
|
Proteasome mediated degradation of CDC25C and Cyclin B1 in Demethoxycurcumin treated human glioma U87 MG cells to trigger G2/M cell cycle arrest. Toxicol Appl Pharmacol 2018; 356:76-89. [DOI: 10.1016/j.taap.2018.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 11/17/2022]
|
22
|
Li P, Guo P, Lin C, He M, Zhu X, Liu C, Tang J, Wang W, Liang W. The synergistic effect of propofol and ulinastatin suppressed the viability of the human lung adenocarcinoma epithelial A549 cell line. Oncol Lett 2018; 16:5191-5199. [PMID: 30250587 PMCID: PMC6144888 DOI: 10.3892/ol.2018.9283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Ulinastatin and propofol (PPF) are recognized for their anticancer properties. The aim of the present study was to evaluate the synergistic antitumor effect of PPF followed by ulinastatin against A549 cells. In MTT assays, PPF (10, 20 and 30 µM) followed by 200 U/ml ulinastatin was more effective at inhibiting A549 cell viability compared with PPF (10, 20 and 30 µM) or 200 U/ml ulinastatin. PPF (10, 20 and 30 µM) followed by 200 U/ml ulinastatin treatments synergistically increased the number of S cells and synergistically reduced the number of G2/M cells associated with PPF stimulation in a dose-dependent manner. Western blot analysis demonstrated that the antitumor effect of PPF followed by 200 U/ml ulinastatin treatments were associated with the downregulated expression of extracellular signal-regulated kinase 1 and 2 phosphorylation (p-ERK1/2) and matrix metalloproteinases 2 (MMP-2). In conclusion, these data demonstrated that PPF (20 and 30 µM) followed by 200 U/ml ulinastatin treatments synergistically stimulated a significant proportion of A549 cells in S phase. Furthermore, the combination synergistically reduced a significant proportion of A549 cells in G2/M phase and synergistically suppressed the viability of A549 cells, which was possibly related regulation of the expression of p-ERK1/2 and MMP-2 in A549 cells.
Collapse
Affiliation(s)
- Ping Li
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Peipei Guo
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chunshui Lin
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Murong He
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaoqing Zhu
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chuan Liu
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jing Tang
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wei Wang
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weidong Liang
- Department of Anesthesia, First Affiliated Hospital, Gannan Medical College, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
23
|
Ashry M, Rajput SK, Folger JK, Knott JG, Hemeida NA, Kandil OM, Ragab RS, Smith GW. Functional role of AKT signaling in bovine early embryonic development: potential link to embryotrophic actions of follistatin. Reprod Biol Endocrinol 2018; 16:1. [PMID: 29310676 PMCID: PMC5759257 DOI: 10.1186/s12958-017-0318-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/25/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND TGF-β signaling pathways regulate several crucial processes in female reproduction. AKT is a non-SMAD signaling pathway regulated by TGF-β ligands essential for oocyte maturation and early embryonic development in the mouse, but its regulatory role in bovine early embryonic development is not well established. Previously, we demonstrated a stimulatory role for follistatin (a binding protein for specific members of TGF-β superfamily) in early bovine embryonic development. The objectives of the present studies were to determine the functional role of AKT signaling in bovine early embryonic development and embryotrophic actions of follistatin. METHODS We used AKT inhibitors III and IV as pharmacological inhibitors of AKT signaling pathway during the first 72 h of in vitro embryo culture. Effects of AKT inhibition on early embryonic development and AKT phosphorylation were investigated in the presence or absence of exogenous follistatin. RESULTS Pharmacological inhibition of AKT signaling resulted in a significant reduction in early embryo cleavage, and development to the 8- to 16-cell and blastocyst stages (d7). Treatment with exogenous follistatin increased AKT phosphorylation and rescued the inhibitory effect of AKT inhibitors III and IV on AKT phosphorylation and early embryonic development. CONCLUSIONS Collectively, results suggest a potential requirement of AKT for bovine early embryonic development, and suggest a potential role for follistatin in regulation of AKT signaling in early bovine embryos.
Collapse
Affiliation(s)
- Mohamed Ashry
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, MI 48824 USA
- Department of Animal Science, Michigan State University, East Lansing, MI 48824 USA
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sandeep K. Rajput
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, MI 48824 USA
- Department of Animal Science, Michigan State University, East Lansing, MI 48824 USA
| | - Joseph K. Folger
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, MI 48824 USA
- Department of Animal Science, Michigan State University, East Lansing, MI 48824 USA
| | - Jason G. Knott
- Developmental Epigenetics Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Animal Science, Michigan State University, East Lansing, MI 48824 USA
| | - Nabil A. Hemeida
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Omaima M. Kandil
- Department of Animal Reproduction and Artificial Insemination, Veterinary Research Division, National Research Center, Giza, Egypt
| | - Refaat S. Ragab
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - George W. Smith
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, MI 48824 USA
- Department of Animal Science, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
24
|
Relative importance of phosphatidylinositol-3 kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK3/1) signaling during maturational steroid-induced meiotic G2-M1 transition in zebrafish oocytes. ZYGOTE 2017; 26:62-75. [PMID: 29229010 DOI: 10.1017/s0967199417000545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Participation and relative importance of phosphatidylinositol-3 kinase (PI3K) and mitogen-activated protein kinase (MAPK) signalling, either alone or in combination, have been investigated during 17α,20β-dihydroxy-4-pregnen-3-one (DHP)-induced meiotic G2-M1 transition in denuded zebrafish oocyte. Results demonstrate that concomitant with rapid phosphorylation (activation) of Akt (Ser473) and MAPK (ERK1/2) at as early as 15 min of incubation, DHP stimulation promotes enhanced an GVBD response and histone H1 kinase activation between 1 and 5 h in full-grown oocytes in vitro. While p-Akt reaches its peak at 60 to 90 min and undergoes downregulation to the basal level by 240 min, ERK1/2 phosphorylation (activation) increases gradually until 120 min and remains high thereafter. Although, priming with MEK1/2 inhibitor U0126 is without effect, PI3K inhibitors, wortmannin or LY294002, delay the GVBD response significantly (P < 0.001) until 3 h but not at 5 h of incubation. Interestingly, blocking PI3K and MEK function together could abrogate steroid-induced oocyte maturation at all time points tested. While DHP stimulation promotes phospho-PKA catalytic (p-PKAc) dephosphorylation (inactivation) between 30-120 min of incubation, simultaneous inhibition of PI3K and MEK1/2 kinases abrogates DHP action. Conversely, elevated intra-oocyte cAMP, through priming with either adenylyl cyclase (AC) activator forskolin (FK) or dibutyryl cAMP (db-cAMP), abrogates steroid-induced Akt and ERK1/2 phosphorylation. Taken together, these results suggest that DHP-induced Akt and ERK activation precedes the onset of meiosis (GVBD response) in a cAMP-sensitive manner and PI3K/Akt and MEK/MAPK pathways together have a pivotal influence in the downregulation of PKA and resumption of meiotic maturation in zebrafish oocytes in vitro.
Collapse
|
25
|
Kumar S, Kumar M, Dholpuria S, Sarwalia P, Batra V, De S, Kumar R, Datta TK. Transient Arrest of Germinal Vesicle Breakdown Improved In Vitro Development Potential of Buffalo (Bubalus Bubalis) Oocytes. J Cell Biochem 2017; 119:278-289. [PMID: 28543358 DOI: 10.1002/jcb.26171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 05/24/2017] [Indexed: 11/09/2022]
Abstract
Germinal vesicle breakdown (GVBD) is the first milestone that an oocyte needs to achieve toward completing the maturation and gaining potential to fertilize. Significantly lower in vitro embryo production rate in buffaloes can be attributed to heterogeneity of GVBD occurrence among oocytes obtained from abattoir derived ovaries. Evidence from our earlier work had suggested that different qualities of buffalo oocytes differ significantly in their timing of GVBD. Besides, these oocytes also differ in terms of volume of Akt phosphorylation, which initiates the process of GVBD. With objective of synchronizing the oocytes for GVBD, immature buffalo oocytes were subjected to a two-step culture protocol, initially in the presence of GVBD inhibitors and subsequently, in vitro maturation (IVM) with added SC79 (activates Akt). Expression of developmentally important genes was assessed along with embryo development rate and blastocyst health to interpret the consequences. Oocytes subjected to a short GVBD inhibition period of 6 h followed by IVM with SC79 resulted in improved cleavage and blastocyst rates. Resultant blastocysts also possessed higher ICM: TE ratio. Further, GVBD inhibited oocytes displayed a sustained cytoplasmic maturation status in terms of reorganization of cortical granules (CGs), mitochondrial membrane potential, and glutathione levels during the period of inhibition. We conclude that a temporary GVBD arrest of buffalo oocytes and modulation of Akt improves the in vitro embryo development rate as well as quality of resultant embryos. Besides, our meiotic arrest protocol does not affect the cytoplasmic maturation. J. Cell. Biochem. 119: 278-289, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sandeep Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Manish Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sunny Dholpuria
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Parul Sarwalia
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Vipul Batra
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sachinandan De
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Rakesh Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
26
|
López-Cardona AP, Pérez-Cerezales S, Fernández-González R, Laguna-Barraza R, Pericuesta E, Agirregoitia N, Gutiérrez-Adán A, Agirregoitia E. CB 1 cannabinoid receptor drives oocyte maturation and embryo development via PI3K/Akt and MAPK pathways. FASEB J 2017; 31:3372-3382. [PMID: 28428264 DOI: 10.1096/fj.201601382rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/05/2017] [Indexed: 11/11/2022]
Abstract
Endocannabinoids have been recognized as mediators of practically all reproductive events in mammals. However, little is known about the role of this system in oocyte maturation. In a mouse model, we observed that activation of cannabinoid receptor 1 (CB1) during in vitro oocyte maturation modulated the phosphorylation status of Akt and ERK1/2 and enhanced the subsequent embryo production. In the absence of CB1, in vivo oocyte maturation was impaired and embryo development delayed. Cannabinoid receptor 2 (CB2) was unable to rescue these effects. Finally, we confirmed abnormal oocyte maturation rather than impaired embryonic transport through the oviduct in CB1 knockouts. Our data suggest that cannabinoid agonists may be useful in vitro maturation supplements. For in vitro fertilization patients intolerant to gonadotropins, this could be a promising and only option.-López-Cardona, A. P., Pérez-Cerezales, S., Fernández-González, R., Laguna-Barraza, R., Pericuesta, E., Agirregoitia, N., Gutiérrez-Adán, A., Agirregoitia, E. CB1 cannabinoid receptor drives oocyte maturation and embryo development via PI3K/Akt and MAPK pathways.
Collapse
Affiliation(s)
- Angela Patricia López-Cardona
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.,Groupo de Investigación (G.I.)-Biogénesis, Universidad de Antioquia, Medellín, Colombia
| | - Serafín Pérez-Cerezales
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Raúl Fernández-González
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ricardo Laguna-Barraza
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Eva Pericuesta
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Naiara Agirregoitia
- Department of Physiology, Faculty of Medicine and Nursing University of the Basque Country (UPV/EHU), Leioa, Bizkaia
| | - Alfonso Gutiérrez-Adán
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and Nursing University of the Basque Country (UPV/EHU), Leioa, Bizkaia
| |
Collapse
|
27
|
Mita M. Inhibitory mechanism of l
-glutamic acid on spawning of the starfish Patiria
(Asterina
) pectinifera. Mol Reprod Dev 2017; 84:246-256. [DOI: 10.1002/mrd.22769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/17/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Masatoshi Mita
- Department of Biology; Faculty of Education; Tokyo Gakugei University; Koganei Tokyo Japan
| |
Collapse
|
28
|
López-Cardona AP, Sánchez-Calabuig MJ, Beltran-Breña P, Agirregoitia N, Rizos D, Agirregoitia E, Gutierrez-Adán A. Exocannabinoids effect on in vitro bovine oocyte maturation via activation of AKT and ERK1/2. Reproduction 2016; 152:603-612. [PMID: 27798282 DOI: 10.1530/rep-16-0199] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 09/01/2016] [Indexed: 01/05/2025]
Abstract
Endocannabinoids are known to mediate practically all reproductive events in mammals; however, little is known about their role in oocyte maturation. Through RT-PCR and immunocytochemistry, this study confirms the presence of CB1 and CB2 cannabinoid receptors in bovine oocytes and shows how exposure to the exogenous cannabinoids HU-210 and THC during their in vitro maturation (IVM) activates the phosphorylation of AKT and ERK1/2 proteins associated with the resumption of meiosis. Although supplementation with HU-210 or THC during IVM did not increase blastocyst yields, the expression of interferon tau (IFNτ) and gap junction alpha-1 protein (GJA1) was enhanced at the blastocyst stage. Our data suggest that cannabinoid agonists may be useful IVM supplements as their presence during oocyte maturation upregulates the expression in blastocysts of key genes for embryo quality.
Collapse
Affiliation(s)
- A P López-Cardona
- Departamento de Reproducción AnimalINIA, Madrid, Spain
- G.I. BiogénesisUniversidad de Antioquia, Medellín, Colombia
| | | | | | - N Agirregoitia
- Department of PhysiologyFaculty of Medicine and Dentistry UPV/EHU, Leioa, Bizkaia, Spain
| | - D Rizos
- Departamento de Reproducción AnimalINIA, Madrid, Spain
| | - E Agirregoitia
- Department of PhysiologyFaculty of Medicine and Dentistry UPV/EHU, Leioa, Bizkaia, Spain
| | | |
Collapse
|
29
|
Choi HE, Shin JS, Leem DG, Kim SD, Cho WJ, Lee KT. 6-(3,4-Dihydro-1H-isoquinoline-2-yl)-N-(6-methoxypyridine-2-yl) nicotinamide-26 (DIMN-26) decreases cell proliferation by induction of apoptosis and downregulation of androgen receptor signaling in human prostate cancer cells. Chem Biol Interact 2016; 260:196-207. [DOI: 10.1016/j.cbi.2016.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 08/23/2016] [Accepted: 10/04/2016] [Indexed: 01/11/2023]
|
30
|
Hiraoka D, Aono R, Hanada SI, Okumura E, Kishimoto T. Two new competing pathways establish the threshold for cyclin-B-Cdk1 activation at the meiotic G2/M transition. J Cell Sci 2016; 129:3153-66. [PMID: 27390173 PMCID: PMC5004895 DOI: 10.1242/jcs.182170] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 07/01/2016] [Indexed: 01/14/2023] Open
Abstract
Extracellular ligands control biological phenomena. Cells distinguish physiological stimuli from weak noise stimuli by establishing a ligand-concentration threshold. Hormonal control of the meiotic G2/M transition in oocytes is essential for reproduction. However, the mechanism for threshold establishment is unclear. In starfish oocytes, maturation-inducing hormones activate the PI3K–Akt pathway through the Gβγ complex of heterotrimeric G-proteins. Akt directly phosphorylates both Cdc25 phosphatase and Myt1 kinase, resulting in activation of cyclin-B–Cdk1, which then induces meiotic G2/M transition. Here, we show that cyclin-B–Cdk1 is partially activated after subthreshold hormonal stimuli, but this triggers negative feedback, resulting in dephosphorylation of Akt sites on Cdc25 and Myt1, thereby canceling the signal. We also identified phosphatase activity towards Akt substrates that exists independent of stimuli. In contrast to these negative regulatory activities, an atypical Gβγ-dependent pathway enhances PI3K–Akt-dependent phosphorylation. Based on these findings, we propose a model for threshold establishment in which hormonal dose-dependent competition between these new pathways establishes a threshold; the atypical Gβγ-pathway becomes predominant over Cdk-dependent negative feedback when the stimulus exceeds this threshold. Our findings provide a regulatory connection between cell cycle and signal transduction machineries. Summary: Ligand–dose thresholds control ligand-dependent responses. To establish the hormonal threshold for driving meiosis, a stimulus-dependent positive regulatory pathway competes against negative feedback from cell cycle machinery.
Collapse
Affiliation(s)
- Daisaku Hiraoka
- Science and Education Center, Ochanomizu University, Tokyo 112-8610, Japan
| | - Ryota Aono
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shin-Ichiro Hanada
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Eiichi Okumura
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takeo Kishimoto
- Science and Education Center, Ochanomizu University, Tokyo 112-8610, Japan Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
31
|
Ochi H, Chiba K. Hormonal stimulation of starfish oocytes induces partial degradation of the 3' termini of cyclin B mRNAs with oligo(U) tails, followed by poly(A) elongation. RNA (NEW YORK, N.Y.) 2016; 22:822-829. [PMID: 27048146 PMCID: PMC4878609 DOI: 10.1261/rna.054882.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/07/2016] [Indexed: 05/30/2023]
Abstract
In yeast, plant, and mammalian somatic cells, short poly(A) tails on mRNAs are subject to uridylation, which mediates mRNA decay. Although mRNA uridylation has never been reported in animal oocytes, maternal mRNAs with short poly(A) tails are believed to be translationally repressed. In this study, we found that 96% of cyclin B mRNAs with short poly(A) tails were uridylated in starfish oocytes. Hormonal stimulation induced poly(A) elongation of cyclin B mRNA, and 62% of long adenine repeats did not contain uridine residues. To determine whether uridylated short poly(A) tails destabilize cyclin B mRNA, we developed a method for producing RNAs with the strict 3' terminal sequences of cyclin B, with or without oligo(U) tails. When we injected these synthetic RNAs into starfish oocytes prior to hormonal stimulation, we found that uridylated RNAs were as stable as nonuridylated RNAs. Following hormonal stimulation, the 3' termini of short poly(A) tails of synthesized RNAs containing oligo(U) tails were trimmed, and their poly(A) tails were subsequently elongated. These results indicate that uridylation of short poly(A) tails in cyclin B mRNA of starfish oocytes does not mediate mRNA decay; instead, hormonal stimulation induces partial degradation of uridylated short poly(A) tails in the 3'-5' direction, followed by poly(A) elongation. Oligo(U) tails may be involved in translational inactivation of mRNAs.
Collapse
Affiliation(s)
- Hiroe Ochi
- Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Kazuyoshi Chiba
- Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
32
|
Bromfield JJ, Santos JEP, Block J, Williams RS, Sheldon IM. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Uterine infection: linking infection and innate immunity with infertility in the high-producing dairy cow. J Anim Sci 2016; 93:2021-33. [PMID: 26020298 DOI: 10.2527/jas.2014-8496] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Uterine contamination with bacteria is ubiquitous in the postpartum dairy cow. Nearly one-half of all postpartum dairy cows develop clinical disease resulting in metritis and endometritis, which cause depressed milk production and infertility. The causative links between uterine infection and infertility include a hostile uterine environment, disrupted endocrine signaling, and perturbations in ovarian function and oocyte development. In this review we consider the various mechanisms linking uterine infection with infertility in the dairy cow, specifically 1) innate immune signaling in the endometrium, 2) alteration in endocrine signaling in response to infectious agents, and 3) impacts of infection on ovarian function, oocyte development, and follicular development. Normal ovarian follicular and oocyte development requires a series of temporally and spatially orchestrated events; however, several of the cellular pathways required for ovarian function are also used during the innate immune response to bacterial pathogens. We propose that activation of cellular pathways during this immune response has a negative impact on ovarian physiology, which is manifest as infertility detected after the clearance of the bacteria. This review highlights how new insights into infection and immunity in cattle are linked to infertility.
Collapse
|
33
|
Toledo CM, Ding Y, Hoellerbauer P, Davis RJ, Basom R, Girard EJ, Lee E, Corrin P, Hart T, Bolouri H, Davison J, Zhang Q, Hardcastle J, Aronow BJ, Plaisier CL, Baliga NS, Moffat J, Lin Q, Li XN, Nam DH, Lee J, Pollard SM, Zhu J, Delrow JJ, Clurman BE, Olson JM, Paddison PJ. Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells. Cell Rep 2015; 13:2425-2439. [PMID: 26673326 PMCID: PMC4691575 DOI: 10.1016/j.celrep.2015.11.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/12/2015] [Accepted: 11/03/2015] [Indexed: 12/31/2022] Open
Abstract
To identify therapeutic targets for glioblastoma (GBM), we performed genome-wide CRISPR-Cas9 knockout (KO) screens in patient-derived GBM stem-like cells (GSCs) and human neural stem/progenitors (NSCs), non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g., oncogenic drivers). In vitro and in vivo validation of GSC-specific targets revealed several strong hits, including the wee1-like kinase, PKMYT1/Myt1. Mechanistic studies demonstrated that PKMYT1 acts redundantly with WEE1 to inhibit cyclin B-CDK1 activity via CDK1-Y15 phosphorylation and to promote timely completion of mitosis in NSCs. However, in GSCs, this redundancy is lost, most likely as a result of oncogenic signaling, causing GBM-specific lethality.
Collapse
Affiliation(s)
- Chad M Toledo
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Yu Ding
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Pia Hoellerbauer
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Ryan J Davis
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Emily J Girard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Eunjee Lee
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philip Corrin
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Traver Hart
- Department of Molecular Genetics, University of Toronto and Donnelly Centre, Toronto, ON M5S3E1, Canada; Canadian Institute for Advanced Research, Toronto, ON M5G1Z8, Canada
| | - Hamid Bolouri
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jerry Davison
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Qing Zhang
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Justin Hardcastle
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bruce J Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | - Jason Moffat
- Department of Molecular Genetics, University of Toronto and Donnelly Centre, Toronto, ON M5S3E1, Canada; Canadian Institute for Advanced Research, Toronto, ON M5G1Z8, Canada
| | - Qi Lin
- Brain Tumor Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiao-Nan Li
- Brain Tumor Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 135-710, Korea
| | - Jeongwu Lee
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44192, USA
| | - Steven M Pollard
- Edinburgh CRUK Cancer Research Centre and MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeffery J Delrow
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bruce E Clurman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
34
|
Kishimoto T. Entry into mitosis: a solution to the decades-long enigma of MPF. Chromosoma 2015; 124:417-28. [PMID: 25712366 PMCID: PMC4666901 DOI: 10.1007/s00412-015-0508-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/21/2023]
Abstract
Maturation or M phase-promoting factor (MPF) is the universal inducer of M phase common to eukaryotic cells. MPF was originally defined as a transferable activity that can induce the G2/M phase transition in recipient cells. Today, however, MPF is assumed to describe an activity that exhibits its effect in donor cells, and furthermore, MPF is consistently equated with the kinase cyclin B-Cdk1. In some conditions, however, MPF, as originally defined, is undetectable even though cyclin B-Cdk1 is fully active. For over three decades, this inconsistency has remained a long-standing puzzle. The enigma is now resolved through the elucidation that MPF, defined as an activity that exhibits its effect in recipient cells, consists of at least two separate kinases, cyclin B-Cdk1 and Greatwall (Gwl). Involvement of Gwl in MPF can be explained by its contribution to the autoregulatory activation of cyclin B-Cdk1 and by its stabilization of phosphorylations on cyclin B-Cdk1 substrates, both of which are essential when MPF induces the G2/M phase transition in recipient cells. To accomplish these tasks, Gwl helps cyclin B-Cdk1 by suppressing protein phosphatase 2A (PP2A)-B55 that counteracts cyclin B-Cdk1. MPF, as originally defined, is thus not synonymous with cyclin B-Cdk1, but is instead a system consisting of both cyclin B-Cdk1 that directs mitotic entry and Gwl that suppresses the anti-cyclin B-Cdk1 phosphatase. The current view that MPF is a synonym for cyclin B-Cdk1 in donor cells is thus imprecise; instead, MPF is best regarded as the entire pathway involved in the autoregulatory activation of cyclin B-Cdk1, with specifics depending on the experimental system.
Collapse
Affiliation(s)
- Takeo Kishimoto
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
- Science and Education Center, Ochanomizu University, Ootsuka 2-1-1, Bunkyo-ku, Tokyo, 112-8610, Japan.
| |
Collapse
|
35
|
Singh SS, Yap WN, Arfuso F, Kar S, Wang C, Cai W, Dharmarajan AM, Sethi G, Kumar AP. Targeting the PI3K/Akt signaling pathway in gastric carcinoma: A reality for personalized medicine? World J Gastroenterol 2015; 21:12261-12273. [PMID: 26604635 PMCID: PMC4649111 DOI: 10.3748/wjg.v21.i43.12261] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/11/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023] Open
Abstract
Frequent activation of phosphatidylinositol-3 kinases (PI3K)/Akt/mTOR signaling pathway in gastric cancer (GC) is gaining immense popularity with identification of mutations and/or amplifications of PIK3CA gene or loss of function of PTEN, a tumor suppressor protein, to name a few; both playing a crucial role in regulating this pathway. These aberrations result in dysregulation of this pathway eventually leading to gastric oncogenesis, hence, there is a need for targeted therapy for more effective anticancer treatment. Several inhibitors are currently in either preclinical or clinical stages for treatment of solid tumors like GC. With so many inhibitors under development, further studies on predictive biomarkers are needed to measure the specificity of any therapeutic intervention. Herein, we review the common dysregulation of PI3K/Akt/mTOR pathway in GC and the various types of single or dual pathway inhibitors under development that might have a superior role in GC treatment. We also summarize the recent developments in identification of predictive biomarkers and propose use of predictive biomarkers to facilitate more personalized cancer therapy with effective PI3K/Akt/mTOR pathway inhibition.
Collapse
|
36
|
Das D, Pal S, Maitra S. Releasing prophase arrest in zebrafish oocyte: synergism between maturational steroid and Igf1. Reproduction 2015; 151:59-72. [PMID: 26500283 DOI: 10.1530/rep-15-0389] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/22/2015] [Indexed: 01/09/2023]
Abstract
Binding of 17β-estradiol (E2) to novel G-protein coupled receptor, Gper1, promotes intra-oocyte adenylyl cyclase activity and transactivates epidermal growth factor receptor to ensure prophase-I arrest. Although involvement of either membrane progestin receptor (mPR) or Igf system has been implicated in regulation of meiosis resumption, possibility of concurrent activation and potential synergism between 17α,20β-dihydroxy-4-pregnen-3-one (DHP)- and Igf-mediated signalling cascades in alleviating E2 inhibition of oocyte maturation (OM) has not been investigated. Here using zebrafish (Danio rerio) defolliculated oocytes, we examined the effect of DHP and Igf1, either alone or in combination, in presence or absence of E2, on OM in vitro. While priming of denuded oocytes with E2 blocked spontaneous maturation, co-treatment with DHP (3 nM) and Igf1 (10 nM), but not alone, reversed E2 inhibition and promoted a robust increase in germinal vesicle breakdown (GVBD). Although stimulation with either Igf1 or DHP promoted Akt phosphorylation, pharmacological inhibition of PI3K/Akt signalling prevented Igf1-induced GVBD but delayed DHP action till 4-5 h of incubation. Moreover, high intra-oocyte cAMP attenuates both DHP and Igf1-mediated OM and co-stimulation with DHP and Igf1 could effectively reverse E2 action on PKA phosphorylation. Interestingly, data from in vivo studies reveal that heightened expression of igf1, igf3 transcripts in intact follicles corresponded well with elevated phosphorylation of Igf1r and Akt, mPRa immunoreactivity, PKA inhibition and accelerated GVBD response just prior to ovulation. This indicates potential synergism between maturational steroid and Igf1 which might have physiological relevance in overcoming E2 inhibition of meiosis resumption in zebrafish oocytes.
Collapse
Affiliation(s)
- Debabrata Das
- Department of ZoologyVisva-Bharati University, Santiniketan 731235, India
| | - Soumojit Pal
- Department of ZoologyVisva-Bharati University, Santiniketan 731235, India
| | - Sudipta Maitra
- Department of ZoologyVisva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
37
|
Andrews JL, Fernandez-Enright F. A decade from discovery to therapy: Lingo-1, the dark horse in neurological and psychiatric disorders. Neurosci Biobehav Rev 2015; 56:97-114. [PMID: 26143511 DOI: 10.1016/j.neubiorev.2015.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/15/2015] [Accepted: 06/02/2015] [Indexed: 01/19/2023]
Abstract
Leucine-rich repeat and immunoglobulin domain-containing protein (Lingo-1) is a potent negative regulator of neuron and oligodendrocyte survival, neurite extension, axon regeneration, oligodendrocyte differentiation, axonal myelination and functional recovery; all processes highly implicated in numerous brain-related functions. Although playing a major role in developmental brain functions, the potential application of Lingo-1 as a therapeutic target for the treatment of neurological disorders has so far been under-estimated. A number of preclinical studies have shown that various methods of antagonizing Lingo-1 results in neuronal and oligodendroglial survival, axonal growth and remyelination; however to date literature has only detailed applications of Lingo-1 targeted therapeutics with a focus primarily on myelination disorders such as multiple sclerosis and spinal cord injury; omitting important information regarding Lingo-1 signaling co-factors. Here, we provide for the first time a complete and thorough review of the implications of Lingo-1 signaling in a wide range of neurological and psychiatric disorders, and critically examine its potential as a novel therapeutic target for these disorders.
Collapse
Affiliation(s)
- Jessica L Andrews
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong 2522, NSW, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, NSW, Australia; Schizophrenia Research Institute, 405 Liverpool St, Darlinghurst 2010, NSW, Australia.
| | - Francesca Fernandez-Enright
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong 2522, NSW, Australia; Faculty of Social Sciences, University of Wollongong, Wollongong 2522, NSW, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, NSW, Australia; Schizophrenia Research Institute, 405 Liverpool St, Darlinghurst 2010, NSW, Australia.
| |
Collapse
|
38
|
Gimenez M, Marie SKN, Oba-Shinjo S, Uno M, Izumi C, Oliveira JB, Rosa JC. Quantitative proteomic analysis shows differentially expressed HSPB1 in glioblastoma as a discriminating short from long survival factor and NOVA1 as a differentiation factor between low-grade astrocytoma and oligodendroglioma. BMC Cancer 2015; 15:481. [PMID: 26108672 PMCID: PMC4502388 DOI: 10.1186/s12885-015-1473-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/26/2015] [Indexed: 12/13/2022] Open
Abstract
Background Gliomas account for more than 60 % of all primary central nervous system neoplasms. Low-grade gliomas display a tendency to progress to more malignant phenotypes and the most frequent and malignant gliomas are glioblastomas (GBM). Another type of glioma, oligodendroglioma originates from oligodendrocytes and glial precursor cells and represents 2–5 % of gliomas. The discrimination between these two types of glioma is actually controversial, thus, a molecular distinction is necessary for better diagnosis. Methods iTRAQ-based quantitative proteomic analysis was performed on non-neoplastic brain tissue, on astrocytoma grade II, glioblastoma with short and long survival and oligodendrogliomas. Results We found that expression of nucleophosmin (NPM1), glucose regulated protein 78 kDa (GRP78), nucleolin (NCL) and heat shock protein 90 kDa (HSP90B1) were increased, Raf kinase inhibitor protein (RKIP/PEBP1) was decreased in glioblastoma and they were associated with a network related to tumor progression. Expression level of heat shock protein 27 (HSPB1/HSP27) discriminated glioblastoma presenting short (6 ± 4 months, n = 4) and long survival (43 ± 15 months, n = 4) (p = 0.00045). Expression level of RNA binding protein nova 1 (NOVA1) differentiated low-grade oligodendroglioma and astrocytoma grade II (p = 0.0082). Validation were done by Western blot, qRT-PCR and immunohistochemistry in a larger casuistry. Conclusion Taken together, our quantitative proteomic analysis detected the molecular triad, NPM1, GRP78 and RKIP participating together with NCL and HSP27/HSPB1 in a network related to tumor progression. Additionally, two new important targets were uncovered: NOVA1 useful for diagnostic refinement differentiating astrocytoma from oligodendroglioma, and HSPB1/HSP27, as a predictive factor of poor prognosis for GBM. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1473-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcela Gimenez
- Department Molecular and Cell Biology and Protein Chemistry Center, CTC-Center for Cell Therapy-CEPID-FAPESP-Hemocentro de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Suely Kazue Nagahashi Marie
- Department of Neurology, São Paulo Medical School, University of Sao Paulo, Av. Bandeirantes, 3900-14049-900, Ribeirão Preto, São Paulo, Brazil.,Center for Studies of Cellular and Molecular Therapy (NETCEM) University of Sao Paulo, São Paulo, Brazil
| | - Sueli Oba-Shinjo
- Department of Neurology, São Paulo Medical School, University of Sao Paulo, Av. Bandeirantes, 3900-14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Miyuki Uno
- Department of Neurology, São Paulo Medical School, University of Sao Paulo, Av. Bandeirantes, 3900-14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Clarice Izumi
- Department Molecular and Cell Biology and Protein Chemistry Center, CTC-Center for Cell Therapy-CEPID-FAPESP-Hemocentro de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - João Bosco Oliveira
- Instituto de Medicina Integral Prof. Fernando Figueira-IMIP, Pernambuco, Brazil
| | - Jose Cesar Rosa
- Department Molecular and Cell Biology and Protein Chemistry Center, CTC-Center for Cell Therapy-CEPID-FAPESP-Hemocentro de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
39
|
Kannen V, Garcia SB, Silva WA, Gasser M, Mönch R, Alho EJL, Heinsen H, Scholz CJ, Friedrich M, Heinze KG, Waaga-Gasser AM, Stopper H. Oncostatic effects of fluoxetine in experimental colon cancer models. Cell Signal 2015; 27:1781-8. [PMID: 26004136 DOI: 10.1016/j.cellsig.2015.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/11/2015] [Indexed: 01/23/2023]
Abstract
Colon cancer is one of the most common tumors in the human population. Recent studies have shown a reduced risk for colon cancer in patients given the antidepressant fluoxetine (FLX). The exact mechanism by which FLX might protect from colon cancer remains however controversial. Here, FLX reduced the development of different colon tumor xenografts, as well as proliferation in hypoxic tumor areas within them. FLX treatment also decreased microvessel numbers in tumors. Although FLX did not increase serum and tumor glucose levels as much as the colon chemotherapy gold standard Fluorouracil did, lactate levels were significantly augmented within tumors by FLX treatment. The gene expression of the MCT4 lactate transporter was significantly downregulated. Total protein amounts from the third and fifth mitochondrial complexes were significantly decreased by FLX in tumors. Cell culture experiments revealed that FLX reduced the mitochondrial membrane potential significantly and disabled the reactive oxygen species production of the third mitochondrial complex. Furthermore, FLX arrested hypoxic colon tumor cells in the G0/G1 phase of the cell-cycle. The expression of key cell-cycle-related checkpoint proteins was enhanced in cell culture and in vivo experiments. Therefore, we suggest FLX impairs energy generation, cell cycle progression and proliferation in tumor cells, especially under condition of hypoxia. This then leads to reduced microvessel formation and tumor shrinkage in xenograft models.
Collapse
Affiliation(s)
| | - Sergio Britto Garcia
- Department of Pathology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Wilson A Silva
- Center for Cell-Based Therapy, CEPID/FAPESP, Department of Genetics, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Martin Gasser
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Germany
| | - Romana Mönch
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Germany
| | | | - Helmut Heinsen
- Clinic and Policlinic for Psychiatry and Psychotherapy, University of Wuerzburg, Germany
| | - Claus-Jürgen Scholz
- Interdisciplinary Center for Clinical Research, Laboratory for Microarray Applications, University of Wuerzburg, Germany
| | - Mike Friedrich
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Germany
| | - Katrin Gertrud Heinze
- Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Germany
| | - Ana Maria Waaga-Gasser
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Germany
| | - Helga Stopper
- Department of Toxicology, University of Wuerzburg, Germany
| |
Collapse
|
40
|
Lin ZL, Kim NH. Role of ataxia-telangiectasia mutated (ATM) in porcine oocyte in vitro maturation. Cell Biol Int 2015; 39:710-20. [PMID: 25598069 DOI: 10.1002/cbin.10439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 01/10/2015] [Indexed: 11/07/2022]
Abstract
Ataxia-telangiectasia mutated (ATM) is critical for the DNA damage response, cell cycle checkpoints, and apoptosis. Significant effort has focused on elucidating the relationship between ATM and other nuclear signal transducers; however, little is known about the connection between ATM and oocyte meiotic maturation. We investigated the function of ATM in porcine oocytes. ATM was expressed at all stages of oocyte maturation and localized predominantly in the nucleus. Furthermore, the ATM-specific inhibitor KU-55933 blocked porcine oocyte maturation, reducing the percentages of oocytes that underwent germinal vesicle breakdown (GVBD) and first polar body extrusion. KU-55933 also decreased the expression of DNA damage-related genes (breast cancer 1, budding uninhibited by benzimidazoles 1, and P53) and reduced the mRNA and protein levels of AKT and other cell cycle-regulated genes that are predominantly expressed during G2/M phase, including bone morphogenetic protein 15, growth differentiation factor 9, cell division cycle protein 2, cyclinB1, and AKT. KU-55933 treatment decreased the developmental potential of blastocysts following parthenogenetic activation and increased the level of apoptosis. Together, these data suggested that ATM influenced the meiotic and cytoplasmic maturation of porcine oocytes, potentially by decreasing their sensitivity to DNA strand breaks, stimulating the AKT pathway, and/or altering the expression of other maternal genes.
Collapse
Affiliation(s)
- Zi-Li Lin
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
41
|
Okumura E, Morita A, Wakai M, Mochida S, Hara M, Kishimoto T. Cyclin B-Cdk1 inhibits protein phosphatase PP2A-B55 via a Greatwall kinase-independent mechanism. ACTA ACUST UNITED AC 2014; 204:881-9. [PMID: 24616226 PMCID: PMC3998810 DOI: 10.1083/jcb.201307160] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of Greatwall kinase in autoregulatory activation of cyclin B–Cdk1 at M phase onset can be bypassed by cyclin B–Cdk1–mediated direct phosphorylation of Arpp19, leading to PP2A-B55 inhibition. Entry into M phase is governed by cyclin B–Cdk1, which undergoes both an initial activation and subsequent autoregulatory activation. A key part of the autoregulatory activation is the cyclin B–Cdk1–dependent inhibition of the protein phosphatase 2A (PP2A)–B55, which antagonizes cyclin B–Cdk1. Greatwall kinase (Gwl) is believed to be essential for the autoregulatory activation because Gwl is activated downstream of cyclin B–Cdk1 to phosphorylate and activate α-endosulfine (Ensa)/Arpp19, an inhibitor of PP2A-B55. However, cyclin B–Cdk1 becomes fully activated in some conditions lacking Gwl, yet how this is accomplished remains unclear. We show here that cyclin B–Cdk1 can directly phosphorylate Arpp19 on a different conserved site, resulting in inhibition of PP2A-B55. Importantly, this novel bypass is sufficient for cyclin B–Cdk1 autoregulatory activation. Gwl-dependent phosphorylation of Arpp19 is nonetheless necessary for downstream mitotic progression because chromosomes fail to segregate properly in the absence of Gwl. Such a biphasic regulation of Arpp19 results in different levels of PP2A-B55 inhibition and hence might govern its different cellular roles.
Collapse
Affiliation(s)
- Eiichi Okumura
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Zhang X, Lv H, Zhou Q, Elkholi R, Chipuk JE, Reddy MVR, Reddy EP, Gallo JM. Preclinical pharmacological evaluation of a novel multiple kinase inhibitor, ON123300, in brain tumor models. Mol Cancer Ther 2014; 13:1105-16. [PMID: 24568969 DOI: 10.1158/1535-7163.mct-13-0847] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ON123300 is a low molecular weight multikinase inhibitor identified through a series of screens that supported further analyses for brain tumor chemotherapy. Biochemical assays indicated that ON123300 was a strong inhibitor of Ark5 and CDK4, as well as growth factor receptor tyrosine kinases such as β-type platelet-derived growth factor receptor (PDGFRβ). ON123300 inhibited U87 glioma cell proliferation with an IC(50) 3.4 ± 0.1 μmol/L and reduced phosphorylation of Akt, yet it also unexpectedly induced Erk activation, both in a dose- and time-dependent manner that subsequently was attributed to relieving Akt-mediated C-Raf S259 inactivation and activating a p70S6K-initiated PI3K-negative feedback loop. Cotreatment with the EGFR inhibitor gefitinib produced synergistic cytotoxic effects. Pursuant to the in vitro studies, in vivo pharmacokinetic and pharmacodynamic studies of ON123300 were completed in mice bearing intracerebral U87 tumors following intravenous doses of 5 and 25 mg/kg alone, and also at the higher dose concurrently with gefitinib. ON123300 showed high brain and brain tumor accumulation based on brain partition coefficient values of at least 2.5. Consistent with the in vitro studies, single agent ON123300 caused a dose-dependent suppression of phosphorylation of Akt as well as activation of Erk in brain tumors, whereas addition of gefitinib to the ON123300 regimen significantly enhanced p-Akt inhibition and prevented Erk activation. In summary, ON123300 demonstrated favorable pharmacokinetic characteristics, and future development for brain tumor therapy would require use of combinations, such as gefitinib, that mitigate its Erk activation and enhance its activity.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Authors' Affiliations: Departments of Pharmacology and Systems Therapeutics and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and Department of Pharmaceutical Science, University of South Florida, Tampa, Florida
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Okumura E, Hara M, Kishimoto T. Antibody inhibition of protein activity in starfish oocytes. Methods Mol Biol 2014; 1128:311-30. [PMID: 24567224 DOI: 10.1007/978-1-62703-974-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antibodies are widely utilized in cell and molecule biology for immunoblots, immunostaining, immunoprecipitation, immunoaffinity purification, and immunoassay. Some antibodies can be used for in vivo inhibition experiments. These antibodies bind to their target molecules and neutralize their functions, providing functional information in the study of their biological role. Here, we describe our methods for obtaining inhibitory antibodies against desired proteins. We then describe in the starfish oocyte system how to inhibit a target protein, even in the nucleus, by injection of antibody into the cytoplasm, and how to evaluate antibody inhibition of cell cycle regulators in small numbers of oocytes.
Collapse
Affiliation(s)
- Eiichi Okumura
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama, Japan
| | | | | |
Collapse
|
44
|
Liu YL, Zhang GQ, Yang Y, Zhang CY, Fu RX, Yang YM. Genistein induces G2/M arrest in gastric cancer cells by increasing the tumor suppressor PTEN expression. Nutr Cancer 2013; 65:1034-41. [PMID: 24053672 DOI: 10.1080/01635581.2013.810290] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genistein, a major isoflavone found in soybeans, exhibits anticarcinogenic properties. The inhibitory effect of genistein on cell proliferation is associated with G2/M cell cycle arrest and inhibition of cdc2 activities. Here we assessed the role of PTEN in regulation of genistein-mediated G2/M cell cycle arrest in the gastric cancer cell lines (SGC-7901 and BGC-823). After 24 h following treatment, genistein induced a concentration-dependent accumulation of cells in the G2/M phase of the cell cycle. The sustained G2/M arrest by genistein in SGC-7901 and BGC-823 cells is associated with increased phospho-cdc2 (Tyr15) and decreased cdc2 protein. Genistein treatment increased Wee1 levels and decreased phospho-Wee1 (Ser 642). Moreover, genistein substantially decreased the Ser473 and Thr308 phosphorylation of Akt and upregulated PTEN expression. Downregulation of PTEN by siRNA in genistein-treated cells increased phospho-Wee1 (Ser642), whereas decreased phospho-Cdc2 (Tyr15), resulting in decreased the G2/M cell cycle arrest. Therefore, induction of G2/M cell cycle arrest by genistein involved upregulation of PTEN.
Collapse
Affiliation(s)
- Yan-Long Liu
- a Department of Colorectal Surgery , the Third Affiliated Hospital of Harbin Medical University , Harbin , China
| | | | | | | | | | | |
Collapse
|
45
|
Das D, Khan PP, Maitra S. Participation of PI3-kinase/Akt signalling in insulin stimulation of p34cdc2 activation in zebrafish oocyte: phosphodiesterase 3 as a potential downstream target. Mol Cell Endocrinol 2013; 374:46-55. [PMID: 23623869 DOI: 10.1016/j.mce.2013.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/03/2013] [Accepted: 04/16/2013] [Indexed: 12/15/2022]
Abstract
Exposure of fully grown oocytes to growth factors (insulin/IGFs) initiates various signalling cascades that culminate to final stages of oocyte maturation. Regulation of signalling pathways during growth factor-induced meiosis resumption in fish is not well characterized. Here we studied the participation of PI3K/Akt signalling pathway during recombinant human insulin (rh-insulin)-induced meiotic maturation in zebrafish (Danio rerio) oocytes. Priming of defolliculated oocytes in vitro with rh-insulin promotes germinal vesicle breakdown (GVBD) in a dose- and time-dependent manner, an effect sensitive to translation but not transcription inhibition. More than 80% of the oocytes underwent GVBD due to 0.8IU/ml rh-insulin within 10h of incubation and the kinetics of p34cdc2 kinase activation corresponded well with GVBD data. PI3K inhibitors, wortmannin and LY294002 blocked insulin, but not 17α, 20β-DHP-induced GVBD. Immunoblot analyses of oocyte extract revealed that phospho-PI3K (p85α) was up regulated within 30-60 min of insulin stimulation followed by phospho-Akt (Ser473) at 60-120 min. Though PI3K/Akt phosphorylation was largely unaffected, pre-incubation with phosphodiesterase (PDE) inhibitors, IBMX and cilostamide, but not rolipram completely blocked rh-insulin-induced p34cdc2 activation and GVBD. These results suggest that PDE3 may be one potential downstream target to PI3K/Akt signalling necessary for rh-insulin-induced GVBD in zebrafish.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Zoology, Visva-Bharati, Santiniketan 731 235, India
| | | | | |
Collapse
|
46
|
Mita M. Release of Relaxin-Like Gonad-Stimulating Substance from Starfish Radial Nerves by lonomycin. Zoolog Sci 2013; 30:602-6. [DOI: 10.2108/zsj.30.602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Abstract
The cell-cycle regulators that control meiotic divisions also regulate the events that accompany the oocyte-to-zygote transition. Thus, the meiotic machinery functions as an internal pacemaker that propels the oocyte toward embryogenesis. The preimplantation embryo expresses a number of receptors that are important for initial activity of the phosphatidylinositol 3-kinase-protein kinase B (PI3K-Akt/PKB) pathway. The complete PI3K-Akt/PKB-CDK1 cascade is implicated as a key regulator of a number of cellular functions. Selective inhibition of protein kinase B (Akt/PKB) with inhibitor SH6 and cyclin-dependent kinase 1 (CDK1) with inhibitor roscovitine arrest development of the 1-cell preimplantation mouse embryo before entry into the first mitosis. The pronuclei of these inhibited embryos migrate to one another, but do not progress to pronuclei envelope breakdown and pronuclear fusion running immediately before the onset of mitosis. SH6-treated 1-cell mouse embryos showed a high occurrence of apoptosis features (nuclear fragmentation, positive terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL), active caspase-3 in both cytoplasm and nucleoplasm). In the Akt/PKB-inhibited embryos, the active phosphorylated form Ser473Akt/PKB was not detected in pronuclear areas when compared with inhibitor-free controls. Although CDK1-inhibited 1-cell embryos also failed to enter into the first mitosis, the presence of apoptotic cell death features was not observed. In the roscovitine-treated embryos, Ser473Akt/PKB was detected in the pronuclei independently of CDK1 activity. We conclude that Akt/PKB plays an important role during entry of the 1-cell mouse embryo into the first mitosis, and probably functions as a relay in the cell-cycle stage. We assume that Akt/PKB is the primary target responsible for mediating anti-apoptotic signals in the 1-cell mouse embryo.
Collapse
|
48
|
Kalachev AV. A brief summary of neuroendocrine regulation of reproduction in sea stars. Gen Comp Endocrinol 2013; 183:79-82. [PMID: 23313074 DOI: 10.1016/j.ygcen.2012.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/23/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
Abstract
Over than fifty years starfishes have been widely used as model for studying the mechanisms of cell cycle regulation, oocyte maturation and fertilization. Besides, significant work has been done to investigate the role of nervous system in the control of reproduction and spawning in these animals. Nowadays, sea stars represent one of the most thoroughly studied model for hormonal regulation of reproduction among invertebrates. However, while the general picture of neuroendocrine control of asteroid reproduction can be drawn easily, our knowledge concerning the details of this process still has some gaps. Filling these gaps is essential for studying the diversity of hormonal mechanisms involved in regulation of animal reproduction. The present paper aims to briefly summarize current data on hormonal regulation of reproduction in sea stars and to highlight existing gaps in our knowledge on the details of this process.
Collapse
Affiliation(s)
- Alexander V Kalachev
- A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevskogo str., Vladivostok, Russia.
| |
Collapse
|
49
|
Jia L, Jin H, Zhou J, Chen L, Lu Y, Ming Y, Yu Y. A potential anti-tumor herbal medicine, Corilagin, inhibits ovarian cancer cell growth through blocking the TGF-β signaling pathways. Altern Ther Health Med 2013; 13:33. [PMID: 23410205 PMCID: PMC3598193 DOI: 10.1186/1472-6882-13-33] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 02/11/2013] [Indexed: 11/21/2022]
Abstract
Background Phyllanthus niruri L. is a well-known hepatoprotective and antiviral medicinal herb. Recently, we identified Corilagin as a major active component with anti-tumor activity in this herbal medicine. Corilagin is a member of the tannin family that has been discovered in many medicinal plants and has been used as an anti-inflammatory agent. However, there have been few reports of the anti-tumor effects of Corilagin, and its anti-tumor mechanism has not been investigated clearly. The aim of the present study is to investigate the anticancer properties of Corilagin in ovarian cancer cells. Methods The ovarian cancer cell lines SKOv3ip, Hey and HO-8910PM were treated with Corilagin and analyzed by Sulforhodamine B (SRB) cell proliferation assay, flow cytometry, and reverse phase protein array (RPPA). Corilagin was delivered intraperitoneally to mice bearing SKOv3ip xenografts. Results Corilagin inhibited the growth of the ovarian cancer cell lines SKOv3ip and Hey, with IC50 values of less than 30 μM, while displaying low toxicity against normal ovarian surface epithelium cells, with IC50 values of approximately 160 μM. Corilagin induced cell cycle arrest at the G2/M stage and enhanced apoptosis in ovarian cancer cells. Immunoblotting assays demonstrated that Cyclin B1, Myt1, Phospho-cdc2 and Phospho-Weel were down-regulated after Corilagin treatment. Xenograft tumor growth was significantly lower in the Corilagin-treated group compared with the untreated control group (P <0.05). More interestingly, Corilagin inhibited TGF-β secretion into the culture supernatant of all tested ovarian cancer cell lines and blocked the TGF-β-induced stabilization of Snail. In contrast, a reduction of TGF-β secretion was not observed in cancer cells treated with the cytotoxic drug Paclitaxel, suggesting that Corilagin specifically targets TGF-β secretion. Corilagin blocked the activation of both the canonical Smad and non-canonical ERK/AKT pathways. Conclusions Corilagin extracted from Phyllanthus niruri L. acts as a natural, effective therapeutic agent against the growth of ovarian cancer cells via targeted action against the TGF-β/AKT/ERK/Smad signaling pathways.
Collapse
|
50
|
Hara M, Abe Y, Tanaka T, Yamamoto T, Okumura E, Kishimoto T. Greatwall kinase and cyclin B-Cdk1 are both critical constituents of M-phase-promoting factor. Nat Commun 2013; 3:1059. [PMID: 22968705 PMCID: PMC3658099 DOI: 10.1038/ncomms2062] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/14/2012] [Indexed: 11/09/2022] Open
Abstract
Maturation/M-phase-promoting factor is the universal inducer of M-phase in eukaryotic cells. It is currently accepted that M-phase-promoting factor is identical to the kinase cyclin B–Cdk1. Here we show that cyclin B–Cdk1 and M-phase-promoting factor are not in fact synonymous. Instead, M-phase-promoting factor contains at least two essential components: cyclin B–Cdk1 and another kinase, Greatwall kinase. In the absence of Greatwall kinase, the M-phase-promoting factor is undetectable in oocyte cytoplasm even though cyclin B–Cdk1 is fully active, whereas M-phase-promoting factor activity is restored when Greatwall kinase is added back. Although the excess amount of cyclin B–Cdk1 alone, but not Greatwall kinase alone, can induce nuclear envelope breakdown, spindle assembly is abortive. Addition of Greatwall kinase greatly reduces the amount of cyclin B–Cdk1 required for nuclear envelope breakdown, resulting in formation of the spindle with aligned chromosomes. M-phase-promoting factor is thus a system consisting of one kinase (cyclin B–Cdk1) that directs mitotic entry and a second kinase (Greatwall kinase) that suppresses the protein phosphatase 2A-B55 which opposes cyclin B–Cdk1. Cyclin B–Cdk1 is thought to be synonymous with the promoting factor that drives entry into M-phase of the cell cycle. Here, Greatwall kinase is shown to be required for the breakdown of the nuclear envelope and the assembly of the spindle on entry into M-phase, suggesting that it too is a part of the M-phase-promoting factor.
Collapse
Affiliation(s)
- Masatoshi Hara
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|