1
|
Martins-Costa C, Wilson V, Binagui-Casas A. Neuromesodermal specification during head-to-tail body axis formation. Curr Top Dev Biol 2024; 159:232-271. [PMID: 38729677 DOI: 10.1016/bs.ctdb.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The anterior-to-posterior (head-to-tail) body axis is extraordinarily diverse among vertebrates but conserved within species. Body axis development requires a population of axial progenitors that resides at the posterior of the embryo to sustain elongation and is then eliminated once axis extension is complete. These progenitors occupy distinct domains in the posterior (tail-end) of the embryo and contribute to various lineages along the body axis. The subset of axial progenitors with neuromesodermal competency will generate both the neural tube (the precursor of the spinal cord), and the trunk and tail somites (producing the musculoskeleton) during embryo development. These axial progenitors are called Neuromesodermal Competent cells (NMCs) and Neuromesodermal Progenitors (NMPs). NMCs/NMPs have recently attracted interest beyond the field of developmental biology due to their clinical potential. In the mouse, the maintenance of neuromesodermal competency relies on a fine balance between a trio of known signals: Wnt/β-catenin, FGF signalling activity and suppression of retinoic acid signalling. These signals regulate the relative expression levels of the mesodermal transcription factor Brachyury and the neural transcription factor Sox2, permitting the maintenance of progenitor identity when co-expressed, and either mesoderm or neural lineage commitment when the balance is tilted towards either Brachyury or Sox2, respectively. Despite important advances in understanding key genes and cellular behaviours involved in these fate decisions, how the balance between mesodermal and neural fates is achieved remains largely unknown. In this chapter, we provide an overview of signalling and gene regulatory networks in NMCs/NMPs. We discuss mutant phenotypes associated with axial defects, hinting at the potential significant role of lesser studied proteins in the maintenance and differentiation of the progenitors that fuel axial elongation.
Collapse
Affiliation(s)
- C Martins-Costa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - V Wilson
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | - A Binagui-Casas
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
2
|
Mansuri A, Kansara K, Raiyani D, Mazmudar D, Kumar A. New insight into long-term effects of phthalates microplastics in developing zebrafish: Evidence from genomic alteration and organ development. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104087. [PMID: 36841272 DOI: 10.1016/j.etap.2023.104087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The plasticizer leaches from the microplastics are one of the significant concerns related to plastic pollution. These plasticizers are known to be endocrine disrupters; however, little is known about their long-term effect on the development of aquatic vertebrates. Hence, the present study has been conducted to provide a holistic understanding of the effect of the three most common plasticizers, dibutyl phthalate (DBP), diethyl phthalate (DEP), and di-ethylhexyl phthalate (DEHP) leaching out from the microplastics in zebrafish development. Zebrafish larvae were exposed to different phthalates at different concentrations. The phthalates have shown significantly higher mortality and morphological changes in the larva upon exposure compared to the control. A significant change in the genes related to cardiovascular development (krit1, fbn2b), dorsoventral axis development (chrd, smad5), tail formation (pkd2, wnt3a, wnt8a), and floorplate development (foxa2) were also observed under the effects of the phthalates in comparison to control.
Collapse
Affiliation(s)
- Abdulkhalik Mansuri
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Krupa Kansara
- Biological and Engineering Discipline, Indian Institute of Technology - Gandhinagar (IITGN), Palaj 382355, Gujarat, India.
| | - Dixit Raiyani
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Dhairya Mazmudar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
3
|
Bota C, Martins GG, Lopes SS. Dand5 is involved in zebrafish tailbud cell movement. Front Cell Dev Biol 2023; 10:989615. [PMID: 36699016 PMCID: PMC9869157 DOI: 10.3389/fcell.2022.989615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
During vertebrate development, symmetry breaking occurs in the left-right organizer (LRO). The transfer of asymmetric molecular information to the lateral plate mesoderm is essential for the precise patterning of asymmetric internal organs, such as the heart. However, at the same developmental time, it is crucial to maintain symmetry at the somite level for correct musculature and vertebrae specification. We demonstrate how left-right signals affect the behavior of zebrafish somite cell precursors by using live imaging and fate mapping studies in dand5 homozygous mutants compared to wildtype embryos. We describe a population of cells in the vicinity of the LRO, named Non-KV Sox17:GFP+ Tailbud Cells (NKSTCs), which migrate anteriorly and contribute to future somites. We show that NKSTCs originate in a cluster of cells aligned with the midline, posterior to the LRO, and leave that cluster in a left-right alternating manner, primarily from the left side. Fate mapping revealed that more NKSTCs integrated somites on the left side of the embryo. We then abolished the asymmetric cues from the LRO using dand5-/- mutant embryos and verified that NKSTCs no longer displayed asymmetric patterns. Cell exit from the posterior cluster became bilaterally synchronous in dand5-/- mutants. Our study revealed a new link between somite specification and Dand5 function. The gene dand5 is well known as the first asymmetric gene involved in vertebrate LR development. This study revealed a new link for Dand5 as a player in cell exit from the maturation zone into the presomitic mesoderm, affecting the expression patterns of myogenic factors and tail size.
Collapse
Affiliation(s)
- Catarina Bota
- iNOVA4Health, NOVA Medical School Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Gabriel G. Martins
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Susana S. Lopes
- iNOVA4Health, NOVA Medical School Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- *Correspondence: Susana S. Lopes,
| |
Collapse
|
4
|
Fulton T, Verd B, Steventon B. The unappreciated generative role of cell movements in pattern formation. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211293. [PMID: 35601454 PMCID: PMC9043703 DOI: 10.1098/rsos.211293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
The mechanisms underpinning the formation of patterned cellular landscapes has been the subject of extensive study as a fundamental problem of developmental biology. In most cases, attention has been given to situations in which cell movements are negligible, allowing researchers to focus on the cell-extrinsic signalling mechanisms, and intrinsic gene regulatory interactions that lead to pattern emergence at the tissue level. However, in many scenarios during development, cells rapidly change their neighbour relationships in order to drive tissue morphogenesis, while also undergoing patterning. To draw attention to the ubiquity of this problem and propose methodologies that will accommodate morphogenesis into the study of pattern formation, we review the current approaches to studying pattern formation in both static and motile cellular environments. We then consider how the cell movements themselves may contribute to the generation of pattern, rather than hinder it, with both a species specific and evolutionary viewpoint.
Collapse
Affiliation(s)
- Timothy Fulton
- Department of Genetics, University of Cambridge, Cambridge, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Berta Verd
- Department of Genetics, University of Cambridge, Cambridge, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
5
|
Stutt N, Song M, Wilson MD, Scott IC. Cardiac specification during gastrulation - The Yellow Brick Road leading to Tinman. Semin Cell Dev Biol 2021; 127:46-58. [PMID: 34865988 DOI: 10.1016/j.semcdb.2021.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
The question of how the heart develops, and the genetic networks governing this process have become intense areas of research over the past several decades. This research is propelled by classical developmental studies and potential clinical applications to understand and treat congenital conditions in which cardiac development is disrupted. Discovery of the tinman gene in Drosophila, and examination of its vertebrate homolog Nkx2.5, along with other core cardiac transcription factors has revealed how cardiac progenitor differentiation and maturation drives heart development. Careful observation of cardiac morphogenesis along with lineage tracing approaches indicated that cardiac progenitors can be divided into two broad classes of cells, namely the first and second heart fields, that contribute to the heart in two distinct waves of differentiation. Ample evidence suggests that the fate of individual cardiac progenitors is restricted to distinct cardiac structures quite early in development, well before the expression of canonical cardiac progenitor markers like Nkx2.5. Here we review the initial specification of cardiac progenitors, discuss evidence for the early patterning of cardiac progenitors during gastrulation, and consider how early gene expression programs and epigenetic patterns can direct their development. A complete understanding of when and how the developmental potential of cardiac progenitors is determined, and their potential plasticity, is of great interest developmentally and also has important implications for both the study of congenital heart disease and therapeutic approaches based on cardiac stem cell programming.
Collapse
Affiliation(s)
- Nathan Stutt
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Mengyi Song
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Michael D Wilson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Ian C Scott
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada.
| |
Collapse
|
6
|
Yuikawa T, Ikeda M, Tsuda S, Saito S, Yamasu K. Involvement of Oct4-type transcription factor Pou5f3 in posterior spinal cord formation in zebrafish embryos. Dev Growth Differ 2021; 63:306-322. [PMID: 34331767 DOI: 10.1111/dgd.12742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022]
Abstract
In vertebrate embryogenesis, elongation of the posterior body is driven by de novo production of the axial and paraxial mesoderm as well as the neural tube at the posterior end. This process is presumed to depend on the stem cell-like population in the tail bud region, but the details of the gene regulatory network involved are unknown. Previous studies suggested the involvement of pou5f3, an Oct4-type POU gene in zebrafish, in axial elongation. In the present study, we first found that pou5f3 is expressed mainly in the dorsal region of the tail bud immediately after gastrulation, and that this expression is restricted to the posterior-most region of the elongating neural tube during somitogenesis. This pou5f3 expression was complementary to the broad expression of sox3 in the neural tube, and formed a sharp boundary with specific expression of tbxta (orthologue of mammalian T/Brachyury) in the tail bud, implicating pou5f3 in the specification of tail bud-derived cells toward neural differentiation in the spinal cord. When pou5f3 was functionally impaired after gastrulation by induction of a dominant-interfering pou5f3 mutant gene (en-pou5f3), trunk and tail elongation were markedly disturbed at distinct positions along the axis depending on the stage. This finding showed involvement of pou5f3 in de novo generation of the body from the tail bud. Conditional functional abrogation also showed that pou5f3 downregulates mesoderm-forming genes but promotes neural development by activating neurogenesis genes around the tail bud. These results suggest that pou5f3 is involved in formation of the posterior spinal cord.
Collapse
Affiliation(s)
- Tatsuya Yuikawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Masaaki Ikeda
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Sachiko Tsuda
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Shinji Saito
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Kyo Yamasu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| |
Collapse
|
7
|
Fricke T, Smalakyte D, Lapinski M, Pateria A, Weige C, Pastor M, Kolano A, Winata C, Siksnys V, Tamulaitis G, Bochtler M. Targeted RNA Knockdown by a Type III CRISPR-Cas Complex in Zebrafish. CRISPR J 2020; 3:299-313. [PMID: 32833532 PMCID: PMC7469701 DOI: 10.1089/crispr.2020.0032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RNA interference is a powerful experimental tool for RNA knockdown, but not all organisms are amenable. Here, we provide a proof of principle demonstration that a type III Csm effector complex can be used for programmable mRNA transcript degradation in eukaryotes. In zebrafish, Streptococcus thermophilus Csm complex (StCsm) proved effective for knockdown of maternally expressed EGFP in germ cells of Tg(ddx4:ddx4-EGFP) fish. It also led to significant, albeit less drastic, fluorescence reduction at one day postfertilization in Tg(myl7:GFP) and Tg(fli1:EGFP) fish that express EGFP zygotically. StCsm targeted against the endogenous tdgf1 elicited the characteristic one-eyed phenotype with greater than 50% penetrance, and hence with similar efficiency to morpholino-mediated knockdown. We conclude that Csm-mediated knockdown is very efficient for maternal transcripts and can also be used for mixed maternal/early zygotic and early zygotic transcripts, in some cases reaching comparable efficiency to morpholino-based knockdown without significant off-target effects.
Collapse
Affiliation(s)
- Thomas Fricke
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Dalia Smalakyte
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Maciej Lapinski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Abhishek Pateria
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Charles Weige
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Michal Pastor
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Agnieszka Kolano
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Cecilia Winata
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | | | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| |
Collapse
|
8
|
Osborn DPS, Li K, Cutty SJ, Nelson AC, Wardle FC, Hinits Y, Hughes SM. Fgf-driven Tbx protein activities directly induce myf5 and myod to initiate zebrafish myogenesis. Development 2020; 147:147/8/dev184689. [PMID: 32345657 PMCID: PMC7197714 DOI: 10.1242/dev.184689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/14/2020] [Indexed: 01/02/2023]
Abstract
Skeletal muscle derives from dorsal mesoderm formed during vertebrate gastrulation. Fibroblast growth factor (Fgf) signalling cooperates with Tbx transcription factors to promote dorsal mesoderm formation, but their role in myogenesis has been unclear. Using zebrafish, we show that dorsally derived Fgf signals act through Tbx16 and Tbxta to induce slow and fast trunk muscle precursors at distinct dorsoventral positions. Tbx16 binds to and directly activates the myf5 and myod genes, which are required for commitment to myogenesis. Tbx16 activity depends on Fgf signalling from the organiser. In contrast, Tbxta is not required for myf5 expression, but binds a specific site upstream of myod that is not bound by Tbx16 and drives (dependent on Fgf signals) myod expression in adaxial slow precursors, thereby initiating trunk myogenesis. After gastrulation, when similar muscle cell populations in the post-anal tail are generated from tailbud, declining Fgf signalling is less effective at initiating adaxial myogenesis, which is instead initiated by Hedgehog signalling from the notochord. Our findings suggest a hypothesis for ancestral vertebrate trunk myogenic patterning and how it was co-opted during tail evolution to generate similar muscle by new mechanisms. This article has an associated ‘The people behind the papers’ interview. Highlighted Article: Tbx16 and Tbxta activate myf5 and myod directly during the earliest myogenesis in zebrafish, and Fgf signalling acts through Tbx16 to drive myogenesis in trunk but not tail.
Collapse
Affiliation(s)
- Daniel P S Osborn
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Kuoyu Li
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Stephen J Cutty
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Andrew C Nelson
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Fiona C Wardle
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Yaniv Hinits
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| |
Collapse
|
9
|
Chapman DL. Impaired intermediate formation in mouse embryos expressing reduced levels of Tbx6. Genesis 2019; 57:e23270. [PMID: 30548789 DOI: 10.1002/dvg.23270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022]
Abstract
Intermediate mesoderm (IM) is the strip of tissue lying between the paraxial mesoderm (PAM) and the lateral plate mesoderm that gives rise to the kidneys and gonads. Chick fate mapping studies suggest that IM is specified shortly after cells leave the primitive streak and that these cells do not require external signals to express IM-specific genes. Surgical manipulations of the chick embryo, however, revealed that PAM-specific signals are required for IM differentiation into pronephros-the first kidney. Here, we use a genetic approach in mice to examine the dependency of IM on proper PAM formation. In Tbx6 null mutant embryos, which form 7-9 improperly patterned anterior somites, IM formation is severely compromised, while in Tbx6 hypomorphic embryos, where somites form but are improperly patterned along the axis, the impact to IM formation is lessened. These results suggest that IM and its derivatives, the kidneys and the gonads, are directly or indirectly dependent on proper PAM formation. This has implications for humans harboring Tbx6 mutations which are known to have somite-derived defects including congenital scoliosis.
Collapse
Affiliation(s)
- Deborah L Chapman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Morrow ZT, Maxwell AM, Hoshijima K, Talbot JC, Grunwald DJ, Amacher SL. tbx6l and tbx16 are redundantly required for posterior paraxial mesoderm formation during zebrafish embryogenesis. Dev Dyn 2017; 246:759-769. [PMID: 28691257 DOI: 10.1002/dvdy.24547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/19/2017] [Accepted: 07/04/2017] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND T-box genes encode a large transcription factor family implicated in many aspects of development. We are focusing on two related zebrafish T-box genes, tbx6l and tbx16, that are expressed in highly overlapping patterns in embryonic paraxial mesoderm. tbx16 mutants are deficient in trunk, but not tail, somites; we explored whether presence of tail somites in tbx16 mutants was due to compensatory function provided by the tbx6l gene. RESULTS We generated two zebrafish tbx6l mutant alleles. Loss of tbx6l has no apparent effect on embryonic development, nor does tbx6l loss enhance the phenotype of two other T-box gene mutants, ta and tbx6, or of the mesp family gene mutant msgn1. In contrast, loss of tbx6l function dramatically enhances the paraxial mesoderm deficiency of tbx16 mutants. CONCLUSIONS These data demonstrate that tbx6l and tbx16 genes function redundantly to direct tail somite development. tbx6l single mutants develop normally because tbx16 fully compensates for loss of tbx6l function. However, tbx6l only partially compensates for loss of tbx16 function. These results resolve the question of why loss of function of tbx16 gene, which is expressed throughout the ventral and paraxial mesoderm, profoundly affects somite development in the trunk but not the tail. Developmental Dynamics 246:759-769, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zachary T Morrow
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| | - Adrienne M Maxwell
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jared C Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio.,Department of Biological Chemistry and Pharmacology, The Ohio State University School of Medicine, Columbus, Ohio.,Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, Ohio
| | - David J Grunwald
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Sharon L Amacher
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio.,Department of Biological Chemistry and Pharmacology, The Ohio State University School of Medicine, Columbus, Ohio.,Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, Ohio.,Center for RNA Biology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
11
|
Yabe T, Hoshijima K, Yamamoto T, Takada S. Quadruple zebrafish mutant reveals different roles of Mesp genes in somite segmentation between mouse and zebrafish. Development 2016; 143:2842-52. [PMID: 27385009 DOI: 10.1242/dev.133173] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/17/2016] [Indexed: 01/02/2023]
Abstract
The segmental pattern of somites is generated by sequential conversion of the temporal periodicity provided by the molecular clock. Whereas the basic structure of this clock is conserved among different species, diversity also exists, especially in terms of the molecular network. The temporal periodicity is subsequently converted into the spatial pattern of somites, and Mesp2 plays crucial roles in this conversion in the mouse. However, it remains unclear whether Mesp genes play similar roles in other vertebrates. In this study, we generated zebrafish mutants lacking all four zebrafish Mesp genes by using TALEN-mediated genome editing. Contrary to the situation in the mouse Mesp2 mutant, in the zebrafish Mesp quadruple mutant embryos the positions of somite boundaries were clearly determined and morphological boundaries were formed, although their formation was not completely normal. However, each somite was caudalized in a similar manner to the mouse Mesp2 mutant, and the superficial horizontal myoseptum and lateral line primordia were not properly formed in the quadruple mutants. These results clarify the conserved and species-specific roles of Mesp in the link between the molecular clock and somite morphogenesis.
Collapse
Affiliation(s)
- Taijiro Yabe
- Division of Molecular and Developmental Biology, Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan Department for Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Shinji Takada
- Division of Molecular and Developmental Biology, Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan Department for Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
12
|
Tbx16 regulates hox gene activation in mesodermal progenitor cells. Nat Chem Biol 2016; 12:694-701. [PMID: 27376691 PMCID: PMC4990471 DOI: 10.1038/nchembio.2124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/12/2016] [Indexed: 12/14/2022]
Abstract
The transcription factor T-box 16 (Tbx16/Spadetail) is an essential regulator of paraxial mesoderm development in zebrafish (Danio rerio). Mesodermal progenitor cells (MPCs) fail to differentiate into trunk somites in tbx16 mutants and instead accumulate within the tailbud in an immature state. The mechanisms by which Tbx16 controls mesoderm patterning have remained enigmatic, and we describe here the application of photoactivatable morpholino oligonucleotides to determine the Tbx16 transcriptome in MPCs. We identify 124 Tbx16-regulated genes that are expressed in zebrafish gastrulae, including several developmental signaling proteins and regulators of gastrulation, myogenesis, and somitogenesis. Unexpectedly, we observe that loss of Tbx16 function precociously activates posterior hox genes in MPCs, and overexpression of a single posterior hox gene is sufficient to disrupt MPC migration. Our studies support a model in which Tbx16 regulates the timing of collinear hox gene activation to coordinate the anterior-posterior fates and positions of paraxial MPCs.
Collapse
|
13
|
Kimelman D. Tales of Tails (and Trunks): Forming the Posterior Body in Vertebrate Embryos. Curr Top Dev Biol 2016; 116:517-36. [PMID: 26970638 DOI: 10.1016/bs.ctdb.2015.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A major question in developmental biology is how the early embryonic axes are established. Recent studies using different model organisms and mammalian in vitro systems have revealed the surprising result that most of the early posterior embryonic body forms from a Wnt-regulated bipotential neuromesodermal progenitor population that escapes early germ layer patterning. Part of the regulatory network that drives the maintenance and differentiation of these progenitors has recently been determined, but much remains to be discovered. This review discusses some of the common features present in all vertebrates, as well as unique aspects that different species utilize to establish their anterior-posterior (A-P) axis.
Collapse
Affiliation(s)
- David Kimelman
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
14
|
Martin BL. Factors that coordinate mesoderm specification from neuromesodermal progenitors with segmentation during vertebrate axial extension. Semin Cell Dev Biol 2016; 49:59-67. [DOI: 10.1016/j.semcdb.2015.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022]
|
15
|
Manning AJ, Kimelman D. Tbx16 and Msgn1 are required to establish directional cell migration of zebrafish mesodermal progenitors. Dev Biol 2015; 406:172-85. [PMID: 26368502 DOI: 10.1016/j.ydbio.2015.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 01/08/2023]
Abstract
The epithelial to mesenchymal transition (EMT) is an essential process that occurs repeatedly during embryogenesis whereby stably adherent cells convert to an actively migrating state. While much is known about the factors and events that initiate the EMT, the steps that cells undergo to become directionally migratory are far less well understood. Zebrafish embryos lacking the transcription factors Tbx16/Spadetail and Mesogenin1 (Msgn1) are a valuable system for investigating the EMT. Mesodermal cells in these embryos are unable to perform the EMT necessary to leave the most posterior end of the body (the tailbud) and join the pre-somitic mesoderm, a process that is conserved in all vertebrates. It has previously been very difficult to study this EMT in vertebrates because of the multiple cell types in the tailbud and the morphogenetic changes the whole embryo undergoes. Here, we describe a novel tissue explant system for imaging the mesodermal cell EMT in vivo that allows us to investigate the requirements for cells to acquire migratory properties during the EMT with high spatio-temporal resolution. This method revealed that, despite the inability of tbx16;msgn1-deficient cells to leave the tailbud, actin-based protrusions form surprisingly normally in these cells and they become highly motile. However, tbx16;msgn1-deficient cells have specific cell-autonomous defects in the persistence and anterior direction of migration because the lamellipodia they form are not productive in driving anteriorward migration. Additionally, we show that mesoderm morphogenesis and differentiation are separable and that there is a migratory cue that directs mesodermal cell migration that is independent of Tbx16 and Msgn1. This work defines changes that cells undergo as they complete the EMT and provides new insight into the mechanisms required in vivo for cells to become mesenchymal.
Collapse
Affiliation(s)
- Alyssa J Manning
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
16
|
Cooper TK, Spitsbergen JM. Valvular and Mural Endocardiosis in Aging Zebrafish (Danio rerio). Vet Pathol 2015; 53:504-9. [DOI: 10.1177/0300985815594853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Endocardiosis or myxomatous degeneration of the cardiac valves is a well-described age-related change in humans and dogs. Lesions consist of polypoid nodular proliferations of loose extracellular matrix and valvular interstitial cells, most commonly affecting the mitral valve. This entity has not been previously described in fish. Herein we report the appearance, location, and occurrence of valvular and mural endocardiosis in a retrospective survey of aging laboratory zebrafish. Endocardiosis was present in 59 of 777 fish (7.59%), most commonly affecting the sinoatrial (34 fish; 57.6%) and atrioventricular (33 fish; 55.9%) valves. Lesions were more common in fish raised in recirculating water systems and fed commercial diets (52/230 fish; 22.6%) versus flow-through systems with fish fed semi-purified diets (4/234; 1.71%). Lesions were overrepresented in fish heterozygous for a mutant smoothened allele (34/61 fish, 55.7% vs 17/168, 10.1% wild type). There was no association between endocardiosis and intestinal carcinoids. Valvular endocardiosis is a significant age- and husbandry-related background finding in zebrafish and should be considered in the design and interpretation of research studies.
Collapse
Affiliation(s)
- T. K. Cooper
- Penn State Hershey Medical Center, Departments of Comparative Medicine and Pathology, Hershey, PA, USA
| | | |
Collapse
|
17
|
Abstract
STUDY DESIGN A hypothesis-driven study was conducted in a familial cohort to determine the potential association between variants within the TBX6 gene and Familial Idiopathic Scoliosis (FIS). OBJECTIVE To determine if variants within exons of the TBX6 gene segregate with the FIS phenotype within a sample of families with FIS. SUMMARY OF BACKGROUND DATA Idiopathic Scoliosis (IS) is a structural curvature of the spine whose underlying genetic etiology has not been established. IS has been reported to occur at a higher rate than expected in family members of individuals with congenital scoliosis (CS), suggesting that the two diseases might have a shared etiology. The TBX6 gene on chromosome 16p, essential to somite development, has been associated with CS in a Chinese population. Previous studies have identified linkage to this locus in families with FIS, and specifically with rs8060511, located in an intron of the TBX6 gene. METHODS Parent-offspring trios from 11 families (13 trios, 42 individuals) with FIS were selected for Sanger sequencing of the TBX6 gene. Trios were selected from a large population of families with FIS in which a genome-wide scan had resulted in linkage to 16p. RESULTS Sequencing analyses of the subset of families resulted in the identification of five coding variants. Three of the five variants were novel; the remaining two variants were previously characterized and account for 90% of the observed variants in these trios. In all cases, there was no correlation between transmission of the TBX6 variant allele and FIS phenotype. However, an analysis of regulatory markers in osteoblasts showed that rs8060511 is in a putative enhancer element. CONCLUSIONS Although this study did not identify any TBX6 coding variants that segregate with FIS, we identified a variant that is located in a potential TBX6 enhancer element. Therefore, further investigation of the region is needed.
Collapse
|
18
|
Bouldin CM, Manning AJ, Peng YH, Farr GH, Hung KL, Dong A, Kimelman D. Wnt signaling and tbx16 form a bistable switch to commit bipotential progenitors to mesoderm. Development 2015; 142:2499-507. [PMID: 26062939 DOI: 10.1242/dev.124024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/03/2015] [Indexed: 01/16/2023]
Abstract
Anterior to posterior growth of the vertebrate body is fueled by a posteriorly located population of bipotential neuro-mesodermal progenitor cells. These progenitors have a limited rate of proliferation and their maintenance is crucial for completion of the anterior-posterior axis. How they leave the progenitor state and commit to differentiation is largely unknown, in part because widespread modulation of factors essential for this process causes organism-wide effects. Using a novel assay, we show that zebrafish Tbx16 (Spadetail) is capable of advancing mesodermal differentiation cell-autonomously. Tbx16 locks cells into the mesodermal state by not only activating downstream mesodermal genes, but also by repressing bipotential progenitor genes, in part through a direct repression of sox2. We demonstrate that tbx16 is activated as cells move from an intermediate Wnt environment to a high Wnt environment, and show that Wnt signaling activates the tbx16 promoter. Importantly, high-level Wnt signaling is able to accelerate mesodermal differentiation cell-autonomously, just as we observe with Tbx16. Finally, because our assay for mesodermal commitment is quantitative we are able to show that the acceleration of mesodermal differentiation is surprisingly incomplete, implicating a potential separation of cell movement and differentiation during this process. Together, our data suggest a model in which high levels of Wnt signaling induce a transition to mesoderm by directly activating tbx16, which in turn acts to irreversibly flip a bistable switch, leading to maintenance of the mesodermal fate and repression of the bipotential progenitor state, even as cells leave the initial high-Wnt environment.
Collapse
Affiliation(s)
- Cortney M Bouldin
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alyssa J Manning
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Yu-Hsuan Peng
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Gist H Farr
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - King L Hung
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alice Dong
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
19
|
Nicenboim J, Malkinson G, Lupo T, Asaf L, Sela Y, Mayseless O, Gibbs-Bar L, Senderovich N, Hashimshony T, Shin M, Jerafi-Vider A, Avraham-Davidi I, Krupalnik V, Hofi R, Almog G, Astin JW, Golani O, Ben-Dor S, Crosier PS, Herzog W, Lawson ND, Hanna JH, Yanai I, Yaniv K. Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature 2015; 522:56-61. [DOI: 10.1038/nature14425] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/26/2015] [Indexed: 01/02/2023]
|
20
|
Li J, Yue Y, Dong X, Jia W, Li K, Liang D, Dong Z, Wang X, Nan X, Zhang Q, Zhao Q. Zebrafish foxc1a plays a crucial role in early somitogenesis by restricting the expression of aldh1a2 directly. J Biol Chem 2015; 290:10216-28. [PMID: 25724646 DOI: 10.1074/jbc.m114.612572] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Indexed: 11/06/2022] Open
Abstract
Foxc1a is a member of the forkhead transcription factors. It plays an essential role in zebrafish somitogenesis. However, little is known about the molecular mechanisms underlying its controlling somitogenesis. To uncover how foxc1a regulates zebrafish somitogenesis, we generated foxc1a knock-out zebrafish using TALEN (transcription activator-like effector nuclease) technology. The foxc1a null embryos exhibited defective somites at early development. Analyses on the expressions of the key genes that control processes of somitogenesis revealed that foxc1a controlled early somitogenesis by regulating the expression of myod1. In the somites of foxc1a knock-out embryos, expressions of fgf8a and deltaC were abolished, whereas the expression of aldh1a2 (responsible for providing retinoic acid signaling) was significantly increased. Once the increased retinoic acid level in the foxc1a null embryos was reduced by knocking down aldh1a2, the reduced expression of myod1 was partially rescued by resuming expressions of fgf8a and deltaC in the somites of the mutant embryos. Moreover, a chromatin immunoprecipitation assay on zebrafish embryos revealed that Foxc1a bound aldh1a2 promoter directly. On the other hand, neither knocking down fgf8a nor inhibiting Notch signaling affected the expression of aldh1a2, although knocking down fgf8a reduced expression of deltaC in the somites of zebrafish embryos at early somitogenesis and vice versa. Taken together, our results demonstrate that foxc1a plays an essential role in early somitogenesis by controlling Fgf and Notch signaling through restricting the expression of aldh1a2 in paraxial mesoderm directly.
Collapse
Affiliation(s)
- Jingyun Li
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and the Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Care Hospital Affiliated with Nanjing Medical University, Nanjing 210004, China
| | - Yunyun Yue
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Xiaohua Dong
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Wenshuang Jia
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Kui Li
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Dong Liang
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Zhangji Dong
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Xiaoxiao Wang
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Xiaoxi Nan
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Qinxin Zhang
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| | - Qingshun Zhao
- From the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, China and
| |
Collapse
|
21
|
Du R, Wu S, Lv X, Fang H, Wu S, Kang J. Overexpression of brachyury contributes to tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:105. [PMID: 25499255 PMCID: PMC4279691 DOI: 10.1186/s13046-014-0105-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/24/2014] [Indexed: 01/27/2023]
Abstract
Aims Brachyury overexpression has been reported in various human malignant neoplasms, but its expression and function in hepatocellular carcinoma progression and metastasis remains unknown. The present study aimed to evaluate the critical role of Brachyury in HCC metastasis. Methods The expression of Brachyury in human HCC (SMMC7721, HepG2, FHCC98, and Hep3B) and control cell lines was analyzed using quantitative reverse-transcriptase polymerase chain reaction and immunoflourence methods. Cancerous tissues collected from patients with HCC (n = 112) were analyzed using immunohistochemical method; a microarray analysis of HCC tissues was performed to explore the clinicopathological variables of HCC. The migratory and invasive capacities of Brachyury-SMMC7721 and Brachyury-HepG2 transfected cells were evaluated using in vitro scratch wound healing and Matrigel invasion assays, respectively. Further, six-week-old male BALB/c nude mice (n = 10) model was used in vivo assay. Results Elevated expression of Brachyury was detected in HCCs (62.5%) compared with that in adjacent nontumorous tissues. Clinicopathological analysis revealed a close correlation of Brachyury expression with distant metastasis and poor prognosis of HCC. Overexpression of Brachyury promoted epithelial-mesenchymal transition (EMT) and metastasis of HCC cells in vitro and in vivo. Brachyury overexpression enhanced Akt activation by inhibiting phosphatase and tensin homolog (PTEN), which led to subsequent stabilization of Snail, a critical EMT mediator. Conclusion The study findings suggest that elevated Brachyury facilitates HCC metastasis by promoting EMT via PTEN/Akt/Snail-dependent pathway. Brachyury plays a pivotal role in HCC metastasis and may serve as a novel prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Rui Du
- Department of Radiation Oncology and Integrative Oncology, Navy General Hospital, 6# Fu Cheng Road, Beijing, 100037, People's Republic of China.
| | - Shanshan Wu
- Department of Radiation Oncology and Integrative Oncology, Navy General Hospital, 6# Fu Cheng Road, Beijing, 100037, People's Republic of China.
| | - Xiaoning Lv
- Department of Aviation and Diving, Navy General Hospital, Beijing, People's Republic of China.
| | - Henghu Fang
- Department of Radiation Oncology and Integrative Oncology, Navy General Hospital, 6# Fu Cheng Road, Beijing, 100037, People's Republic of China.
| | - Sudong Wu
- Department of Radiation Oncology and Integrative Oncology, Navy General Hospital, 6# Fu Cheng Road, Beijing, 100037, People's Republic of China.
| | - Jingbo Kang
- Department of Radiation Oncology and Integrative Oncology, Navy General Hospital, 6# Fu Cheng Road, Beijing, 100037, People's Republic of China.
| |
Collapse
|
22
|
Block the function of nonmuscle myosin II by blebbistatin induces zebrafish embryo cardia bifida. In Vitro Cell Dev Biol Anim 2014; 51:211-7. [PMID: 25403653 DOI: 10.1007/s11626-014-9836-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
Abstract
Nonmuscle myosin II (NM II) is the name given to the multi-subunit protein product of three genes encoding different nonmuscle myosin heavy chains including NM II-A, NM II-B, and NM II-C. Blebbistatin is a small molecule that has been shown to be a relatively specific inhibitor of NM II. Blocking the function of NM II by blebbistatin induces zebrafish embryo cardia bifida at a dose-dependent manner. In situ hybridization analysis with ventricular marker ventricular myosin heavy chain (vmhc) and atrial marker atrial myosin heavy chain (amhc) showed each of the heart contained both distinct atria and ventricle. However, the cardia bifida embryos had highly variable distance between two separate ventricles. We also provided evidence that time window from 12 to 20 h post fertilization (hpf) is necessary and sufficient for cardia bifida formation caused by blebbistatin treatment. Expression of spinster homolog 2 (spns2) was decreased in blebbistatin-treated embryos, suggesting the cardia bifida phenotype caused by NM II inhibition was relevant to precardiac mesoderm migration defects. Through in situ hybridization analysis, we showed that foxa1 was expressed in endoderm of blebbistatin-treated embryos at 24-hpf stage, suggesting the endoderm formation is normal in cardia bifida embryos caused by blebbistatin treatment. In addition, we demonstrated that blebbistatin treatment resulted in morphology alteration of zebrafish cardiomyocytes in vivo and neonatal mouse cardiomyocytes in vitro.
Collapse
|
23
|
Bouldin CM, Kimelman D. Cdc25 and the importance of G2 control: insights from developmental biology. Cell Cycle 2014; 13:2165-71. [PMID: 24914680 DOI: 10.4161/cc.29537] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
While cell proliferation is an essential part of embryonic development, cells within an embryo cannot proliferate freely. Instead, they must balance proliferation and other cellular events such as differentiation and morphogenesis throughout embryonic growth. Although the G1 phase has been a major focus of study in cell cycle control, it is becoming increasingly clear that G2 regulation also plays an essential role during embryonic development. Here we discuss the role of Cdc25, a key regulator of mitotic entry, with a focus on several recent examples that show how the precise control of Cdc25 activity and the G2/M transition are critical for different aspects of embryogenesis. We finish by discussing a promising technology that allows easy visualization of embryonic and adult cells potentially regulated at mitotic entry, permitting the rapid identification of other instances where the exit from G2 plays an essential role in development and tissue homeostasis.
Collapse
Affiliation(s)
- Cortney M Bouldin
- Department of Biochemistry; University of Washington; Seattle, WA USA
| | - David Kimelman
- Department of Biochemistry; University of Washington; Seattle, WA USA
| |
Collapse
|
24
|
Araya C, Tawk M, Girdler GC, Costa M, Carmona-Fontaine C, Clarke JD. Mesoderm is required for coordinated cell movements within zebrafish neural plate in vivo. Neural Dev 2014; 9:9. [PMID: 24755297 PMCID: PMC4022452 DOI: 10.1186/1749-8104-9-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 04/01/2014] [Indexed: 01/24/2023] Open
Abstract
Background Morphogenesis of the zebrafish neural tube requires the coordinated movement of many cells in both time and space. A good example of this is the movement of the cells in the zebrafish neural plate as they converge towards the dorsal midline before internalizing to form a neural keel. How these cells are regulated to ensure that they move together as a coherent tissue is unknown. Previous work in other systems has suggested that the underlying mesoderm may play a role in this process but this has not been shown directly in vivo. Results Here we analyze the roles of subjacent mesoderm in the coordination of neural cell movements during convergence of the zebrafish neural plate and neural keel formation. Live imaging demonstrates that the normal highly coordinated movements of neural plate cells are lost in the absence of underlying mesoderm and the movements of internalization and neural tube formation are severely disrupted. Despite this, neuroepithelial polarity develops in the abnormal neural primordium but the resulting tissue architecture is very disorganized. Conclusions We show that the movements of cells in the zebrafish neural plate are highly coordinated during the convergence and internalization movements of neurulation. Our results demonstrate that the underlying mesoderm is required for these coordinated cell movements in the zebrafish neural plate in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Jonathan Dw Clarke
- Medical Research Council (MRC) Centre for Developmental Neurobiology, King's College London, New Hunt's House, 4th Floor, Guy's Hospital Campus, London SE1 1UL, UK.
| |
Collapse
|
25
|
Bouldin CM, Snelson CD, Farr GH, Kimelman D. Restricted expression of cdc25a in the tailbud is essential for formation of the zebrafish posterior body. Genes Dev 2014; 28:384-95. [PMID: 24478331 PMCID: PMC3937516 DOI: 10.1101/gad.233577.113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The vertebrate body forms from a multipotent stem cell-like progenitor population that contributes newly differentiated cells to the posterior end of the embryo. Here, in vivo analyses show that proliferation is compartmentalized at the posterior end of the zebrafish embryo via regulated expression of mitotic factor Cdc25a. Furthermore, compartmentalization of proliferation during embryogenesis is critical to both body extension and muscle cell fate. This study reveals an unexpected link between precise regulation of the cell cycle and differentiation from multipotency in the vertebrate embryo. The vertebrate body forms from a multipotent stem cell-like progenitor population that progressively contributes newly differentiated cells to the most posterior end of the embryo. How the progenitor population balances proliferation and other cellular functions is unknown due to the difficulty of analyzing cell division in vivo. Here, we show that proliferation is compartmentalized at the posterior end of the embryo during early zebrafish development by the regulated expression of cdc25a, a key controller of mitotic entry. Through the use of a transgenic line that misexpresses cdc25a, we show that this compartmentalization is critical for the formation of the posterior body. Upon misexpression of cdc25a, several essential T-box transcription factors are abnormally expressed, including Spadetail/Tbx16, which specifically prevents the normal onset of myoD transcription, leading to aberrant muscle formation. Our results demonstrate that compartmentalization of proliferation during early embryogenesis is critical for both extension of the vertebrate body and differentiation of the multipotent posterior progenitor cells to the muscle cell fate.
Collapse
Affiliation(s)
- Cortney M Bouldin
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
26
|
Warga RM, Mueller RL, Ho RK, Kane DA. Zebrafish Tbx16 regulates intermediate mesoderm cell fate by attenuating Fgf activity. Dev Biol 2013; 383:75-89. [PMID: 24008197 DOI: 10.1016/j.ydbio.2013.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/04/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Progenitors of the zebrafish pronephros, red blood and trunk endothelium all originate from the ventral mesoderm and often share lineage with one another, suggesting that their initial patterning is linked. Previous studies have shown that spadetail (spt) mutant embryos, defective in tbx16 gene function, fail to produce red blood cells, but retain the normal number of endothelial and pronephric cells. We report here that spt mutants are deficient in all the types of early blood, have fewer endothelial cells as well as far more pronephric cells compared to wildtype. In vivo cell tracing experiments reveal that blood and endothelium originate in spt mutants almost exclusive from the dorsal mesoderm whereas, pronephros and tail originate from both dorsal and ventral mesoderm. Together these findings suggest possible defects in posterior patterning. In accord with this, gene expression analysis shows that mesodermal derivatives within the trunk and tail of spt mutants have acquired more posterior identity. Secreted signaling molecules belonging to the Fgf, Wnt and Bmp families have been implicated as patterning factors of the posterior mesoderm. Further investigation demonstrates that Fgf and Wnt signaling are elevated throughout the nonaxial region of the spt gastrula. By manipulating Fgf signaling we show that Fgfs both promote pronephric fate and repress blood and endothelial fate. We conclude that Tbx16 plays an important role in regulating the balance of intermediate mesoderm fates by attenuating Fgf activity.
Collapse
Affiliation(s)
- Rachel M Warga
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA; Department of Organismal Biology and Anatomy, University of Chicago, 1027 East, 57th Street, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
27
|
Sequential effects of spadetail, one-eyed pinhead and no tail on midline convergence of nephric primordia during zebrafish embryogenesis. Dev Biol 2013; 384:290-300. [PMID: 23860396 DOI: 10.1016/j.ydbio.2013.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/12/2013] [Accepted: 07/05/2013] [Indexed: 12/16/2022]
Abstract
Midline convergence of organ primordia is an important mechanism that shapes the vertebrate body plan. Here, we focus on the morphogenetic movements of pronephric glomerular primordia (PGP) occurring during zebrafish embryonic kidney development. To characterize the process of PGP midline convergence, we used Wilms' tumour 1a (wt1a) as a marker to label kidney primordia, and performed quantitative analyses of the migration of the bilateral PGP. The PGP initially are approximately 350 μm apart in a wild type embryo at 10h post fertilization (hpf). The inter-PGP distance decreases exponentially between 10 and 48 hpf, while the anterior-posterior (A-P) dimension of each PGP increases linearly between 10 and 12 hpf, then decreases substantially between 12 and 24 hpf. Using mutants in the Nodal receptor cofactor one-eyed pinhead (oep) and the T-box transcription factors spadetail (spt) and no tail (ntl), we were able to define distinctive regulation underlying these sequential phases of PGP midline migration. Zygotic oep mutants (Zoep(-/-)) exhibited defects in midline convergence after 16 hpf. Spt is necessary for PGP convergence from 10 hpf, whereas ntl's effect on convergence does not begin until 24 hpf. Notably, we observed normal cardiac convergence in spt(-/-) and ntl(-/-) embryos implying that these novel roles of spt and ntl in PGP migration cannot be explained simply by generalised effects on midline convergence. These findings demonstrate that quantitative approaches to developmental migration allow the parsing of early patterning events, and in this instance suggest that the zebrafish may offer insights into midline urogenital migration anomalies in humans.
Collapse
|
28
|
Jin JZ, Ding J. Cripto is required for mesoderm and endoderm cell allocation during mouse gastrulation. Dev Biol 2013; 381:170-8. [PMID: 23747598 DOI: 10.1016/j.ydbio.2013.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
During mouse gastrulation, cells in the primitive streak undergo epithelial-mesenchymal transformation and the resulting mesenchymal cells migrate out laterally to form mesoderm and definitive endoderm across the entire embryonic cylinder. The mechanisms underlying mesoderm and endoderm specification, migration, and allocation are poorly understood. In this study, we focused on the function of mouse Cripto, a member of the EGF-CFC gene family that is highly expressed in the primitive streak and migrating mesoderm cells on embryonic day 6.5. Conditional inactivation of Cripto during gastrulation leads to varied defects in mesoderm and endoderm development. Mutant embryos display accumulation of mesenchymal cells around the shortened primitive streak indicating a functional requirement of Cripto during the formation of mesoderm layer in gastrulation. In addition, some mutant embryos showed poor formation and abnormal allocation of definitive endoderm cells on embryonic day 7.5. Consistently, many mutant embryos that survived to embryonic day 8.5 displayed defects in ventral closure of the gut endoderm causing cardia bifida. Detailed analyses revealed that both the Fgf8-Fgfr1 pathway and p38 MAP kinase activation are partially affected by the loss of Cripto function. These results demonstrate a critical role for Cripto during mouse gastrulation, especially in mesoderm and endoderm formation and allocation.
Collapse
Affiliation(s)
- Jiu-Zhen Jin
- Department of Molecular, Cellular & Craniofacial Biology, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | | |
Collapse
|
29
|
O'Neill K, Thorpe C. BMP signaling and spadetail regulate exit of muscle precursors from the zebrafish tailbud. Dev Biol 2013; 375:117-27. [PMID: 23246591 DOI: 10.1016/j.ydbio.2012.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 11/26/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022]
Abstract
The tailbud is a population of stem cells in the posterior embryonic tail. During zebrafish development, these stem cells give rise to the main structures of the embryo's posterior body, including the tail somites. Progenitor cells reside in the tailbud for variable amounts of time before they exit and begin to differentiate. There must be a careful balance between cells that leave the tailbud and cells that are held back in order to give rise to later somites. However, this meticulous process is not well understood. A gene that has shed some light on this area is the t-box transcription factor spadetail (spt). When spt is mutated, embryos develop an enlarged tailbud and are only able to form roughly half of their somites. This phenotype is due to the fact that some of the somitic precursors are not able to leave the tailbud or differentiate. Another factor involved in tail morphogenesis is the Bone Morphogenetic Protein (BMP) pathway. BMPs are important for many processes during early development, including cell migration. Chordino (chd) is a secreted protein that inhibits BMP signaling. BMPs are upregulated in chd mutants, however, these mutants are able to form organized somites. In embryos where chd and spt are mutated, somites are completely absent. These double mutants also develop a large tailbud due to the accumulation of progenitor cells that are never able to leave or differentiate. To study the dynamics of cells in the tailbud and their role in somite formation, we have analyzed the genetic factors and pathway interactions involved, conducted transplant experiments to look at behavior of mutant cells in different genetic backgrounds, and used time lapse microscopy to characterize cell movements and behavior in wild type and mutant tailbuds. These data suggest that spt expression and BMP inhibition are both required for somitic precursors to exit the tailbud. They also elucidate that chd;spt tailbud mesodermal progenitor cells (MPC) behave autonomously and their dynamics within the tailbud are drastically different than WT MPCs.
Collapse
Affiliation(s)
- Katelyn O'Neill
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| | | |
Collapse
|
30
|
Lawton AK, Nandi A, Stulberg MJ, Dray N, Sneddon MW, Pontius W, Emonet T, Holley SA. Regulated tissue fluidity steers zebrafish body elongation. Development 2013; 140:573-82. [PMID: 23293289 DOI: 10.1242/dev.090381] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tailbud is the posterior leading edge of the growing vertebrate embryo and consists of motile progenitors of the axial skeleton, musculature and spinal cord. We measure the 3D cell flow field of the zebrafish tailbud and identify changes in tissue fluidity revealed by reductions in the coherence of cell motion without alteration of cell velocities. We find a directed posterior flow wherein the polarization between individual cell motion is high, reflecting ordered collective migration. At the posterior tip of the tailbud, this flow makes sharp bilateral turns facilitated by extensive cell mixing due to increased directional variability of individual cell motions. Inhibition of Wnt or Fgf signaling or cadherin 2 function reduces the coherence of the flow but has different consequences for trunk and tail extension. Modeling and additional data analyses suggest that the balance between the coherence and rate of cell flow determines whether body elongation is linear or whether congestion forms within the flow and the body axis becomes contorted.
Collapse
Affiliation(s)
- Andrew K Lawton
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Fior R, Maxwell AA, Ma TP, Vezzaro A, Moens CB, Amacher SL, Lewis J, Saúde L. The differentiation and movement of presomitic mesoderm progenitor cells are controlled by Mesogenin 1. Development 2013; 139:4656-65. [PMID: 23172917 DOI: 10.1242/dev.078923] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Somites are formed from the presomitic mesoderm (PSM) and give rise to the axial skeleton and skeletal muscles. The PSM is dynamic; somites are generated at the anterior end, while the posterior end is continually renewed with new cells entering from the tailbud progenitor region. Which genes control the conversion of tailbud progenitors into PSM and how is this process coordinated with cell movement? Using loss- and gain-of-function experiments and heat-shock transgenics we show in zebrafish that the transcription factor Mesogenin 1 (Msgn1), acting with Spadetail (Spt), has a central role. Msgn1 allows progression of the PSM differentiation program by switching off the progenitor maintenance genes ntl, wnt3a, wnt8 and fgf8 in the future PSM cells as they exit from the tailbud, and subsequently induces expression of PSM markers such as tbx24. msgn1 is itself positively regulated by Ntl/Wnt/Fgf, creating a negative-feedback loop that might be crucial to regulate homeostasis of the progenitor population until somitogenesis ends. Msgn1 drives not only the changes in gene expression in the nascent PSM cells but also the movements by which they stream out of the tailbud into the PSM. Loss of Msgn1 reduces the flux of cells out of the tailbud, producing smaller somites and an enlarged tailbud, and, by delaying exhaustion of the progenitor population, results in supernumerary tail somites. Through its combined effects on gene expression and cell movement, Msgn1 (with Spt) plays a key role both in genesis of the paraxial mesoderm and in maintenance of the progenitor population from which it derives.
Collapse
Affiliation(s)
- Rita Fior
- Instituto de Medicina Molecular e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Stulberg MJ, Lin A, Zhao H, Holley SA. Crosstalk between Fgf and Wnt signaling in the zebrafish tailbud. Dev Biol 2012; 369:298-307. [PMID: 22796649 PMCID: PMC3423502 DOI: 10.1016/j.ydbio.2012.07.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/26/2012] [Accepted: 07/02/2012] [Indexed: 01/09/2023]
Abstract
Fibroblast growth factor (Fgf) and Wnt signaling are necessary for the intertwined processes of tail elongation, mesodermal development and somitogenesis. Here, we use pharmacological modifiers and time-resolved quantitative analysis of both nascent transcription and protein phosphorylation in the tailbud, to distinguish early effects of signal perturbation from later consequences related to cell fate changes. We demonstrate that Fgf activity elevates Wnt signaling by inhibiting transcription of the Wnt antagonists dkk1 and notum1a. PI3 kinase signaling also increases Wnt signaling via phosphorylation of Gsk3β. Conversely, Wnt can increase signaling within the Mapk branch of the Fgf pathway as Gsk3β phosphorylation elevates phosphorylation levels of Erk. Despite the reciprocal positive regulation between Fgf and Wnt, the two pathways generally have opposing effects on the transcription of co-regulated genes. This opposing regulation of target genes may represent a rudimentary relationship that manifests as out-of-phase oscillation of Fgf and Wnt target genes in the mouse and chick tailbud. In summary, these data suggest that Fgf and Wnt signaling are tightly integrated to maintain proportional levels of activity in the zebrafish tailbud, and this balance is important for axis elongation, cell fate specification and somitogenesis.
Collapse
Affiliation(s)
- Michael J. Stulberg
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Aiping Lin
- Keck Biostatistics Resource, Yale University, New Haven, CT 06511, USA
| | - Hongyu Zhao
- Keck Biostatistics Resource, Yale University, New Haven, CT 06511, USA
- Department of Epidemiology and Public Health, Yale University, New Haven, CT 06511, USA
| | - Scott A. Holley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
33
|
Yabe T, Takada S. Mesogenin causes embryonic mesoderm progenitors to differentiate during development of zebrafish tail somites. Dev Biol 2012; 370:213-22. [PMID: 22890044 DOI: 10.1016/j.ydbio.2012.07.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/29/2012] [Accepted: 07/30/2012] [Indexed: 11/16/2022]
Abstract
The molecular mechanism underlying somite development differs along the embryonic antero-posterior axis. In zebrafish, cell lineage tracing and genetic analysis have revealed a difference in somite development between the trunk and tail. For instance, spadetail/tbx16 (spt) mutant embryos lack trunk somites but not tail ones. Trunk and tail somites are developed from mesodermal progenitor cells (MPCs) located in the tailbud. While the undifferentiated state of MPCs is maintained by mutual activation between Wnt and Brachyury/Ntl, the mechanism by which the MPCs differentiate into presomitic mesoderm (PSM) cells remains largely unclear. Especially, the molecules that promote PSM differentiation during tail development should be clarified. Here, we show that zebrafish embryos defective in mesogenin1 (msgn1) and spt failed to differentiate into PSM cells in tail development and show increased expression of wnt8 and ntl. Msgn1 acted in a cell-autonomous manner and as a transcriptional activator in PSM differentiation. The expression of msgn1 initially overlapped with that of ntl in the ventral tailbud, as previously reported; and its mis-expression caused ectopic expression of tbx24, a PSM marker gene, only in the tailbud and posterior notochord, both of which expressed ntl in zebrafish embryos. Furthermore, the PSM-inducing activity of misexpressed msgn1 was enhanced by co-expression with ntl. Thus, Msgn1 exercised its PSM-inducing activity in cells expressing ntl. Based on these results, we speculate that msgn1 expression in association with that of ntl may allow the differentiation of progenitor cells to proceed during development of somites in the tail.
Collapse
Affiliation(s)
- Taijiro Yabe
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | | |
Collapse
|
34
|
Farina A, D'Aniello C, Severino V, Hochstrasser DF, Parente A, Minchiotti G, Chambery A. Temporal proteomic profiling of embryonic stem cell secretome during cardiac and neural differentiation. Proteomics 2011; 11:3972-82. [DOI: 10.1002/pmic.201100063] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/10/2011] [Accepted: 06/08/2011] [Indexed: 11/08/2022]
|
35
|
Row RH, Maître JL, Martin BL, Stockinger P, Heisenberg CP, Kimelman D. Completion of the epithelial to mesenchymal transition in zebrafish mesoderm requires Spadetail. Dev Biol 2011; 354:102-10. [PMID: 21463614 PMCID: PMC3090540 DOI: 10.1016/j.ydbio.2011.03.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 12/18/2022]
Abstract
The process of gastrulation is highly conserved across vertebrates on both the genetic and morphological levels, despite great variety in embryonic shape and speed of development. This mechanism spatially separates the germ layers and establishes the organizational foundation for future development. Mesodermal identity is specified in a superficial layer of cells, the epiblast, where cells maintain an epithelioid morphology. These cells involute to join the deeper hypoblast layer where they adopt a migratory, mesenchymal morphology. Expression of a cascade of related transcription factors orchestrates the parallel genetic transition from primitive to mature mesoderm. Although the early and late stages of this process are increasingly well understood, the transition between them has remained largely mysterious. We present here the first high resolution in vivo observations of the blebby transitional morphology of involuting mesodermal cells in a vertebrate embryo. We further demonstrate that the zebrafish spadetail mutation creates a reversible block in the maturation program, stalling cells in the transition state. This mutation creates an ideal system for dissecting the specific properties of cells undergoing the morphological transition of maturing mesoderm, as we demonstrate with a direct measurement of cell-cell adhesion.
Collapse
Affiliation(s)
- Richard H Row
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
36
|
Martin BL, Kimelman D. Brachyury establishes the embryonic mesodermal progenitor niche. Genes Dev 2011; 24:2778-83. [PMID: 21159819 DOI: 10.1101/gad.1962910] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Formation of the early vertebrate embryo depends on a Brachyury/Wnt autoregulatory loop within the posterior mesodermal progenitors. We show that exogenous retinoic acid (RA), which dramatically truncates the embryo, represses expression of the zebrafish brachyury ortholog no tail (ntl), causing a failure to sustain the loop. We found that Ntl functions normally to protect the autoregulatory loop from endogenous RA by directly activating cyp26a1 expression. Thus, the embryonic mesodermal progenitors uniquely establish their own niche--with Brachyury being essential for creating a domain of high Wnt and low RA signaling--rather than having a niche created by separate support cells.
Collapse
Affiliation(s)
- Benjamin L Martin
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
37
|
Affiliation(s)
- Michela Noseda
- From the British Heart Foundation Centre of Research Excellence (M.N., M.D.S.), National Heart and Lung Institute, Imperial College London; and the Weatherall Institute of Molecular Medicine (T.P., F.C.S., R.P.), University of Oxford, United Kingdom
| | - Tessa Peterkin
- From the British Heart Foundation Centre of Research Excellence (M.N., M.D.S.), National Heart and Lung Institute, Imperial College London; and the Weatherall Institute of Molecular Medicine (T.P., F.C.S., R.P.), University of Oxford, United Kingdom
| | - Filipa C. Simões
- From the British Heart Foundation Centre of Research Excellence (M.N., M.D.S.), National Heart and Lung Institute, Imperial College London; and the Weatherall Institute of Molecular Medicine (T.P., F.C.S., R.P.), University of Oxford, United Kingdom
| | - Roger Patient
- From the British Heart Foundation Centre of Research Excellence (M.N., M.D.S.), National Heart and Lung Institute, Imperial College London; and the Weatherall Institute of Molecular Medicine (T.P., F.C.S., R.P.), University of Oxford, United Kingdom
| | - Michael D. Schneider
- From the British Heart Foundation Centre of Research Excellence (M.N., M.D.S.), National Heart and Lung Institute, Imperial College London; and the Weatherall Institute of Molecular Medicine (T.P., F.C.S., R.P.), University of Oxford, United Kingdom
| |
Collapse
|
38
|
Row RH, Kimelman D. Bmp inhibition is necessary for post-gastrulation patterning and morphogenesis of the zebrafish tailbud. Dev Biol 2009; 329:55-63. [PMID: 19236859 DOI: 10.1016/j.ydbio.2009.02.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 02/08/2009] [Accepted: 02/11/2009] [Indexed: 01/20/2023]
Abstract
Intricate interactions between the Wnt and Bmp signaling pathways pattern the gastrulating vertebrate embryo using a network of secreted protein ligands and inhibitors. While many of these proteins are expressed post-gastrula, their later roles have typically remained unclear, obscured by the effects of early perturbation. We find that Bmp signaling continues during somitogenesis in zebrafish embryos, with high activity in a small region of the mesodermal progenitor zone at the posterior end of the embryo. To test the hypothesis that Bmp inhibitors expressed just anterior to the tailbud are important to restrain Bmp signaling we produced a new zebrafish transgenic line, allowing temporal cell-autonomous activation of Bmp signaling and thereby bypassing the effects of the Bmp inhibitors. Ectopic activation of Bmp signaling during somitogenesis results in severe defects in the tailbud, including altered morphogenesis and gene expression. We show that these defects are due to non-autonomous effects on the tailbud, and present evidence that the tailbud defects are caused by alterations in Wnt signaling. We present a model in which the posteriorly expressed Bmp inhibitors function during somitogenesis to constrain Bmp signaling in the tailbud in order to allow normal expression of Wnt inhibitors in the presomitic mesoderm, which in turn constrain the levels of canonical and non-canonical Wnt signaling in the tailbud.
Collapse
Affiliation(s)
- Richard H Row
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | | |
Collapse
|
39
|
Wardle FC, Papaioannou VE. Teasing out T-box targets in early mesoderm. Curr Opin Genet Dev 2008; 18:418-25. [PMID: 18778771 PMCID: PMC2700021 DOI: 10.1016/j.gde.2008.07.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 07/31/2008] [Indexed: 11/21/2022]
Abstract
T-box transcription factor genes are widely conserved in metazoan development and widely involved in developmental processes. With the phase of T-box gene discovery winding down, the phase of transcriptional target discovery for T-box transcription factors is finally taking off and yielding rich rewards. Mutant phenotypes in mouse and zebrafish as well as morpholino studies in zebrafish have helped to link the T-box genes to a variety of signaling pathways through diverse target genes and feedback loops. Particularly in early mesoderm development, it is emerging that a network of T-box genes interacts with Wnt/beta-catenin and Notch/Delta signaling pathways, among others, to control the important processes of mesoderm specification, somite segmentation, and left/right body axis determination.
Collapse
Affiliation(s)
- Fiona C. Wardle
- Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3DY, UK,
| | - Virginia E. Papaioannou
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, 701 W 168 St., New York, NY 10032, USA,
| |
Collapse
|
40
|
Martin BL, Kimelman D. Regulation of canonical Wnt signaling by Brachyury is essential for posterior mesoderm formation. Dev Cell 2008; 15:121-33. [PMID: 18606146 PMCID: PMC2601683 DOI: 10.1016/j.devcel.2008.04.013] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/29/2008] [Accepted: 04/25/2008] [Indexed: 01/26/2023]
Abstract
The T box transcription factor Brachyury is essential for the formation of the posterior body in all vertebrates, although its critical transcriptional targets have remained elusive. Loss-of-function studies of mouse Brachyury and the zebrafish Brachyury ortholog Ntl indicated that Brachyury plays a more significant role in higher vertebrates than lower vertebrates. We have identified a second zebrafish Brachyury ortholog (Bra), and show that a combined loss of Ntl and Bra recapitulates the mouse phenotype, demonstrating an ancient role for Brachyury in patterning all but the most anterior somites. Using cell transplantation, we show that the only essential role for Brachyury during somite formation is non-cell autonomous, and demonstrate that Ntl and Bra are required for and can induce expression of the canonical Wnts wnt8 and wnt3a. We propose that a positive autoregulatory loop between Ntl/Bra and canonical Wnt signaling maintains the mesodermal progenitors to facilitate posterior somite development in chordates.
Collapse
Affiliation(s)
- Benjamin L Martin
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | | |
Collapse
|
41
|
Rohr S, Otten C, Abdelilah-Seyfried S. Asymmetric involution of the myocardial field drives heart tube formation in zebrafish. Circ Res 2008; 102:e12-9. [PMID: 18202314 DOI: 10.1161/circresaha.107.165241] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many vertebrate organs are derived from monolayered epithelia that undergo morphogenesis to acquire their shape. Whereas asymmetric left/right gene expression within the zebrafish heart field has been well documented, little is known about the tissue movements and cellular changes underlying early cardiac morphogenesis. Here, we demonstrate that asymmetric involution of the myocardium of the right-posterior heart field generates the ventral floor, whereas the noninvoluting left heart field gives rise to the dorsal roof of the primary heart tube. During heart tube formation, asymmetric left/right gene expression within the myocardium correlates with asymmetric tissue morphogenesis. Disruption of left/right gene expression causes randomized myocardial tissue involution. Time-lapse analysis combined with genetic analyses reveals that motility of the myocardial epithelium is a tissue migration process. Our results demonstrate that asymmetric morphogenetic movements of the 2 bilateral myocardial cell populations generate different dorsoventral regions of the zebrafish heart tube. Failure to generate a heart tube does not affect the acquisition of atrial versus ventricular cardiac cell shapes. Therefore, establishment of basic cardiac cell shapes precedes cardiac function. Together, these results provide the framework for the integration of single cell behaviors during the formation of the vertebrate primary heart tube.
Collapse
Affiliation(s)
- Stefan Rohr
- Max Delbrück Center for Molecular Medicine, University of Freiburg, Germany
| | | | | |
Collapse
|
42
|
D'Amico L, Scott IC, Jungblut B, Stainier DYR. A mutation in zebrafish hmgcr1b reveals a role for isoprenoids in vertebrate heart-tube formation. Curr Biol 2007; 17:252-9. [PMID: 17276918 DOI: 10.1016/j.cub.2006.12.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 11/01/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
In vertebrates, the morphogenetic assembly of the primitive heart tube requires the medial migration and midline fusion of the bilateral myocardial epithelia. Several mutations that result in abnormal heart-tube formation have been studied; however, an understanding of the underlying molecular and cellular mechanisms of the migration and fusion of these epithelial sheets is far from complete. In a forward genetic screen to identify genes regulating early zebrafish heart development, we identified a mutation in the 3-hydroxy-3-methylglutaryl-Coenzyme A reductase 1b (hmgcr1b) gene that affects myocardial migration to the midline and subsequent heart-tube morphogenesis. The mutant phenotype can be rescued with injections of mevalonate, the direct product of HMGCR activity. Furthermore, treatment of embryos with pharmacological inhibitors of isoprenoid synthesis, which occurs downstream of mevalonate production, resulted in defective heart-tube formation. Interestingly, in hmgcr1b mutant embryos and embryos treated with HMGCR inhibitors, both RasCT20-eGFP and RhoaCT32-eGFP fusion proteins were mislocalized away from the plasma membrane in embryonic myocardial cells. We conclude that protein prenylation, acting downstream of Hmgcr1b and possibly through Ras and, or, Rho signaling, is required for the morphogenesis of the myocardial sheets for formation of the primitive heart tube.
Collapse
Affiliation(s)
- Leonard D'Amico
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, 1550 Fourth Street, San Francisco, California 94158, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Somites are the most obvious metameric structures in the vertebrate embryo. They are mesodermal segments that form in bilateral pairs flanking the notochord and are created sequentially in an anterior to posterior sequence concomitant with the posterior growth of the trunk and tail. Zebrafish somitogenesis is regulated by a clock that causes cells in the presomitic mesoderm (PSM) to undergo cyclical activation and repression of several notch pathway genes. Coordinated oscillation among neighboring cells manifests as stripes of gene expression that pass through the cells of the PSM in a posterior to anterior direction. As axial growth continually adds new cells to the posterior tail bud, cells of the PSM become relatively less posterior. This gradual assumption of a more anterior position occurs over developmental time and constitutes part of a maturation process that governs morphological segmentation in conjunction with the clock. Segment morphogenesis involves a mesenchymal to epithelial transition as prospective border cells at the anterior end of the mesenchymal PSM adopt a polarized, columnar morphology and surround a mesenchymal core of cells. The segmental pattern influences the development of the somite derivatives such as the myotome, and the myotome reciprocates to affect the formation of segment boundaries. While somites appear to be serially homologous, there may be variation in the segmentation mechanism along the body axis. Moreover, whereas the genetic architecture of the zebrafish, mouse, and chick segmentation clocks shares many common elements, there is evidence that the gene networks have undergone independent modification during evolution.
Collapse
Affiliation(s)
- Scott A Holley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.
| |
Collapse
|
44
|
Mara A, Schroeder J, Chalouni C, Holley SA. Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC. Nat Cell Biol 2007; 9:523-30. [PMID: 17417625 DOI: 10.1038/ncb1578] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 03/22/2007] [Indexed: 02/06/2023]
Abstract
Zebrafish somitogenesis is governed by a segmentation clock that generates oscillations in expression of several Notch pathway genes, including her1, her7 and deltaC. Using a combination of pharmacological inhibition and Mendelian genetics, we show that DeltaD and DeltaC, two Notch ligands, represent functionally distinct signals within the segmentation clock. Using high-resolution fluorescent in situ hybridization, the oscillations were divided into phases based on eight distinct subcellular patterns of mRNA localization for 140,000 cells. her1, her7 and deltaC expression was examined in wild-type, deltaD(-/-) and deltaC(-/-) embryos. We identified areas within the tailbud where the clock is set up in the progenitor cells (priming), where the clock starts running (initiation), and where the clocks of neighbouring cells are entrained (synchronization). We find that the clocks of motile cells are primed by deltaD in a progenitor zone in the posterior tailbud and that deltaD is required for cells to initiate oscillations on exiting this zone. Oscillations of adjacent cells are synchronized and amplified by deltaC in the posterior presomitic mesoderm as cell movement subsides and cells maintain stable neighbour relationships.
Collapse
Affiliation(s)
- Andrew Mara
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
45
|
Shankaran SS, Sieger D, Schröter C, Czepe C, Pauly MC, Laplante MA, Becker TS, Oates AC, Gajewski M. Completing the set of h/E(spl) cyclic genes in zebrafish: her12 and her15 reveal novel modes of expression and contribute to the segmentation clock. Dev Biol 2007; 304:615-32. [PMID: 17274976 DOI: 10.1016/j.ydbio.2007.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 12/19/2006] [Accepted: 01/04/2007] [Indexed: 11/30/2022]
Abstract
Somitogenesis is the key developmental process that lays down the framework for a metameric body in vertebrates. Somites are generated from the un-segmented presomitic mesoderm (PSM) by a pre-patterning process driven by a molecular oscillator termed the segmentation clock. The Delta-Notch intercellular signaling pathway and genes belonging to the hairy (h) and Enhancer of split (E(spl))-related (h/E(spl)) family of transcriptional repressors are conserved components of this oscillator. A subset of these genes, called cyclic genes, is characterized by oscillating mRNA expression that sweeps anteriorly like a wave through the embryonic PSM. Periodic transcriptional repression by H/E(spl) proteins is thought to provide a critical part of a negative feedback loop in the oscillatory process, but it is an open question how many cyclic h/E(spl) genes are involved in the somitogenesis clock in any species, and what distinct roles they might play. From a genome-wide search for h/E(spl) genes in the zebrafish, we previously estimated a total of five cyclic members. Here we report that one of these, the mHes5 homologue her15 actually exists as a very recently duplicated gene pair. We investigate the expression of this gene pair and analyse its regulation and activity in comparison to the paralogous her12 gene, and the other cyclic h/E(spl) genes in the zebrafish. The her15 gene pair and her12 display novel and distinct expression features, including a caudally restricted oscillatory domain and dynamic stripes of expression in the rostral PSM that occur at the future segmental borders. her15 expression stripes demarcate a unique two-segment interval in the rostral PSM. Mutant, morpholino, and inhibitor studies show that her12 and her15 expression in the PSM is regulated by Delta-Notch signaling in a complex manner, and is dependent on her7, but not her1 function. Morpholino-mediated her12 knockdown disrupts cyclic gene expression, indicating that it is a non-redundant core component of the segmentation clock. Over-expression of her12, her15 or her7 disrupts cyclic gene expression and somite border formation, and structure function analysis of Her7 indicates that DNA binding, but not Groucho-recruitment seems to be important in this process. Thus, the zebrafish has five functional cyclic h/E(spl) genes, which are expressed in a distinct spatial configuration. We propose that this creates a segmentation oscillator that varies in biochemical composition depending on position in the PSM.
Collapse
Affiliation(s)
- Sunita S Shankaran
- Institute for Genetics, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Helterline DL, Garikipati D, Stenkamp DL, Rodgers BD. Embryonic and tissue-specific regulation of myostatin-1 and -2 gene expression in zebrafish. Gen Comp Endocrinol 2007; 151:90-7. [PMID: 17289047 PMCID: PMC2586822 DOI: 10.1016/j.ygcen.2006.12.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 11/16/2006] [Accepted: 12/18/2006] [Indexed: 12/22/2022]
Abstract
Myostatin is a member of the TGF-beta superfamily and a potent negative regulator of muscle growth and development in mammals. Its expression is limited primarily to skeletal muscle in mammals, but occurs in many different fish tissues, although quantitative measurements of the embryonic and tissue-specific expression profiles are lacking. A recent phylogenetic analysis of all known myostatin genes identified a novel paralogue in zebrafish, zfMSTN-2, and prompted the reclassification of the entire subfamily to include MSTN-1 and -2 sister clades in the bony fishes. The differential expression profiles of both genes were therefore determined using custom RNA panels generated from pooled (100-150/sampling) embryos at different stages of development and from individual adult tissues. High levels of both transcripts were transiently present at the blastula stage, but were undetectable throughout gastrulation (7 hpf). Levels of zfMSTN-2 peaked during early somitogenesis (11 hpf), returned to basal levels during late somitogenesis and did not begin to rise again until hatching (72 hpf). By contrast, zfMSTN-1 mRNA levels peaked during late somitogenesis (15.5-19 hpf), returned to baseline at 21.5 hpf and eventually rose 25-fold by 72 hpf. In adults, both transcripts were present in a wide variety of tissues, including some not previously known to express myostatin. Expression of zfMSTN-1 was highest in brain, muscle, heart and testes and was 1-3 log orders above that in other tissues. It was also greater than zfMSTN-2 expression in most tissues, nevertheless, levels of both transcripts increased almost 600-fold in spleens of fish subjected to stocking stress. Myostatin expression was also detected in mouse spleens, suggesting that myostatin may influence immune cell development in mammals as well as fish. These studies indicate that zfMSTN-1 and -2 gene expression is differentially regulated in developing fish embryos and in adult tissues. The increased expression of both genes in spleens from stressed fish is further supportive of an immunomodulatory role and may explain increased disease susceptibility associated with stocking stress.
Collapse
Affiliation(s)
- Deri L.I. Helterline
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-6351, USA
| | - Dilip Garikipati
- School of Molecular Biosciences, Washington State University, USA
| | | | - Buel D. Rodgers
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-6351, USA
- School of Molecular Biosciences, Washington State University, USA
- Corresponding author. Fax: +1 509 335 4246. E-mail address: (B.D. Rodgers)
| |
Collapse
|
47
|
Foley AC, Korol O, Timmer AM, Mercola M. Multiple functions of Cerberus cooperate to induce heart downstream of Nodal. Dev Biol 2006; 303:57-65. [PMID: 17123501 PMCID: PMC1855199 DOI: 10.1016/j.ydbio.2006.10.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 10/05/2006] [Accepted: 10/22/2006] [Indexed: 11/25/2022]
Abstract
The TGFbeta family member Nodal has been implicated in heart induction through misexpression of a dominant negative version of the type I Nodal receptor (Alk4) and targeted deletion of the co-receptor Cripto in murine ESCs and mouse embryos; however, whether Nodal acts directly or indirectly to induce heart tissue or interacts with other signaling molecules or pathways remained unclear. Here we present Xenopus embryological studies demonstrating an unforeseen role for the DAN family protein Cerberus within presumptive foregut endoderm as essential for differentiation of cardiac mesoderm in response to Nodal. Ectopic activation of Nodal signaling in non-cardiogenic ventroposterior mesendoderm, either by misexpression of the Nodal homologue XNr1 together with Cripto or by a constitutively active Alk4 (caAlk4), induced both cardiac markers and Cerberus. Mosaic lineage tracing studies revealed that Nodal/Cripto and caAlk4 induced cardiac markers cell non-autonomously, thus supporting the idea that Cerberus or another diffusible factor is an essential mediator of Nodal-induced cardiogenesis. Cerberus alone was found sufficient to initiate cardiogenesis at a distance from its site of synthesis. Conversely, morpholino-mediated specific knockdown of Cerberus reduced both endogenous cardiomyogenesis and ectopic heart induction resulting from misactivation of Nodal/Cripto signaling. Since the specific knockdown of Cerberus did not abrogate heart induction by the Wnt antagonist Dkk1, Nodal/Cripto and Wnt antagonists appear to initiate cardiogenesis through distinct pathways. This idea was further supported by the combinatorial effect of morpholino-medicated knockdown of Cerberus and Hex, which is required for Dkk1-induced cardiogenesis, and the differential roles of essential downstream effectors: Nodal pathway activation did not induce the transcriptional repressor Hex while Dkk-1 did not induce Cerberus. These studies demonstrated that cardiogenesis in mesoderm depends on Nodal-mediated induction of Cerberus in underlying endoderm, and that this pathway functions in a pathway parallel to cardiogenesis initiated through the induction of Hex by Wnt antagonists. Both pathways operate in endoderm to initiate cardiogenesis in overlying mesoderm.
Collapse
Affiliation(s)
| | | | | | - Mark Mercola
- *author for correspondence, E-mail: , Telephone: (858) 795-5242, Fax: (858) 713 6274
| |
Collapse
|
48
|
Szeto DP, Kimelman D. The regulation of mesodermal progenitor cell commitment to somitogenesis subdivides the zebrafish body musculature into distinct domains. Genes Dev 2006; 20:1923-32. [PMID: 16847349 PMCID: PMC1522088 DOI: 10.1101/gad.1435306] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The vertebrate musculature is produced from a visually uniform population of mesodermal progenitor cells (MPCs) that progressively bud off somites populating the trunk and tail. How the MPCs are regulated to continuously release cells into the presomitic mesoderm throughout somitogenesis is not understood. Using a genetic approach to study the MPCs, we show that a subset of MPCs are set aside very early in zebrafish development, and programmed to cell-autonomously enter the tail domain beginning with the 16th somite. Moreover, we show that the trunk is subdivided into two domains, and that entry into the anterior trunk, posterior trunk, and tail is regulated by interactions between the Nodal and bone morphogenetic protein (Bmp) pathways. Finally, we show that the tail MPCs are held in a state we previously called the Maturation Zone as they wait for the signal to begin entering somitogenesis.
Collapse
Affiliation(s)
- Daniel P Szeto
- Department of Biochemistry, University of Washington, Seattle, 98195, USA
| | | |
Collapse
|
49
|
Holley SA. Anterior-posterior differences in vertebrate segments: specification of trunk and tail somites in the zebrafish blastula. Genes Dev 2006; 20:1831-7. [PMID: 16847343 DOI: 10.1101/gad.1453706] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Scott A Holley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
50
|
Moreno-Rodriguez RA, Krug EL, Reyes L, Villavicencio L, Mjaatvedt CH, Markwald RR. Bidirectional fusion of the heart-forming fields in the developing chick embryo. Dev Dyn 2006; 235:191-202. [PMID: 16252277 PMCID: PMC1855217 DOI: 10.1002/dvdy.20601] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is generally thought that the early pre-tubular chick heart is formed by fusion of the anterior or cephalic limits of the paired cardiogenic fields. However, this study shows that the heart fields initially fuse at their midpoint to form a transitory "butterfly"-shaped, cardiogenic structure. Fusion then progresses bi-directionally along the longitudinal axis in both cranial and caudal directions. Using in vivo labeling, we demonstrate that cells along the ventral fusion line are highly motile, crossing future primitive segments. We found that mesoderm cells migrated cephalically from the unfused tips of the anterior/cephalic wings into the head mesenchyme in the region that has been called the secondary heart field. Perturbing the anterior/cranial fusion results in formation of a bi-conal heart. A theoretical role of the ventral fusion line acting as a "heart organizer" and its role in cardia bifida is discussed.
Collapse
Affiliation(s)
- R A Moreno-Rodriguez
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | |
Collapse
|