1
|
Birgisson BO, Dohn AO, Jónsson H, Levi G. Decoherence and vibrational energy relaxation of the electronically excited PtPOP complex in solution. J Chem Phys 2025; 162:044306. [PMID: 39873277 DOI: 10.1063/5.0241573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Understanding the ultrafast vibrational relaxation following photoexcitation of molecules in a condensed phase is essential to predict the outcome and improve the efficiency of photoinduced molecular processes. Here, the vibrational decoherence and energy relaxation of a binuclear complex, [Pt2(P2O5H2)4]4- (PtPOP), upon electronic excitation in liquid water and acetonitrile are investigated through direct adiabatic dynamics simulations. A quantum mechanics/molecular mechanics (QM/MM) scheme is used where the excited state of the complex is modeled with orbital-optimized density functional calculations while solvent molecules are described using potential energy functions. The decoherence time of the Pt-Pt vibration dominating the photoinduced dynamics is found to be ∼1.6 ps in both solvents. This is in excellent agreement with experimental measurements in water, where intersystem crossing is slow (>10 ps). Pathways for the flow of excess energy are identified by monitoring the power of the solvent on vibrational modes. The latter are obtained as generalized normal modes from the velocity covariances, and the power is computed using QM/MM embedding forces. Excess vibrational energy is found to be predominantly released through short-range repulsive and attractive interactions between the ligand atoms and surrounding solvent molecules, whereas solute-solvent interactions involving the Pt atoms are less important. Since photoexcitation deposits most of the excess energy into Pt-Pt vibrations, energy dissipation to the solvent is inefficient. This study reveals the mechanism behind the exceptionally long vibrational coherence of the photoexcited PtPOP complex in solution and underscores the importance of short-range interactions for accurate simulations of vibrational energy relaxation of solvated molecules.
Collapse
Affiliation(s)
- Benedikt O Birgisson
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
| | - Asmus Ougaard Dohn
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
- Deptartment of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Gianluca Levi
- Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
2
|
Yang Y, Liu Z, Zheng F, Zhang P, He H, Jha A, Duan HG. Diverse Transient Chiral Dynamics in Evolutionary Distinct Photosynthetic Reaction Centers. J Chem Theory Comput 2025; 21:321-332. [PMID: 39718439 DOI: 10.1021/acs.jctc.4c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The evolution of photosynthetic reaction centers (RCs) from anoxygenic bacteria to higher-order oxygenic cynobacteria and plants highlights a remarkable journey of structural and functional diversification as an adaptation to environmental conditions. The role of chirality in these centers is important, influencing the arrangement and function of key molecules involved in photosynthesis. Investigating the role of chirality may provide a deeper understanding of photosynthesis and the evolutionary history of life on Earth. In this study, we explore chirality-related energy transfer in two evolutionarily distinct RCs: one from the anoxygenic purple sulfur bacterium Thermochromatium tepidum (BRC) and the other from the oxygenic cyanobacterium Thermosynechococcus vulcanus (PSII RC), utilizing two-dimensional electronic spectroscopy (2DES). By employing circularly polarized laser pulses, we can extract transient chiral dynamics within these RCs, offering a detailed view of their chiral contribution to energy transfer processes. We also compute traditional 2DES and compare these results with spectra related to circular dichroism. Our findings indicate that two-dimensional circular dichroism spectroscopy effectively reveals chiral dynamics, emphasizing the structural symmetries of pigments and their interactions with associated proteins. Despite having similar pigment-protein architectures, the BRC and PSII RC exhibit significantly different chiral dynamics on an ultrafast time scale. In the BRC, the complex contributions of pigments such as BChM, BPhL, BCh, and PM to key excitonic states lead to more pronounced chiral features and dynamic behavior. In contrast, the PSII RC, although significantly influenced by ChlD1 and ChlD2, shows less complex chiral effects and more subdued chiral dynamics. Notably, the PSII RC demonstrates a faster decay of coherence to localized excitonic populations compared to the BRC, which may represent an adaptive mechanism to minimize oxidative stress in oxygenic photosystems. By examining and comparing the chiral excitonic interactions and dynamics of BRC and PSII RC, this study offers valuable insights into the mechanisms of photosynthetic complexes. These findings could contribute to understanding how the functional optimization of photosynthetic proteins in ultrafast time scales is linked to biological evolution.
Collapse
Affiliation(s)
- Yonglei Yang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| | - Zihui Liu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| | - Fulu Zheng
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
- Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, 28359 Bremen, Germany
| | - Panpan Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| | - Hongxing He
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| | - Ajay Jha
- Rosalind Franklin Institute, Harwell, Oxfordshire OX11 0QX, United Kingdom
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Hong-Guang Duan
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| |
Collapse
|
3
|
Jin JYR, Zhang HY, Yao YX, Chen RH, Ai Q. Observing quantum coherent oscillations in a three-level atom via electromagnetically induced transparency by two-dimensional spectroscopy. J Chem Phys 2025; 162:014112. [PMID: 39749904 DOI: 10.1063/5.0238336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Two-dimensional electronic spectroscopy (2DES) has high spectral resolution and is a useful tool for studying atomic dynamics. In this paper, we show a smallest unit of electromagnetically induced transparency (EIT) for 2DES, i.e., a three-level system. It is found that the original main peak is split into four small ones due to the introduction of EIT. It suggests that the homogeneous broadening of 2DES can be effectively reduced by EIT. Moreover, in sharp contrast to a constant height, the height of the peaks will manifest a damped oscillation with respect to the population time. It seems that the quantum-beat phenomenon appears. These findings may help us obtain more information about the dynamics of excited states.
Collapse
Affiliation(s)
- Jing-Yi-Ran Jin
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Hao-Yue Zhang
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yi-Xuan Yao
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Rong-Hang Chen
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
- Beijing Computational Science Research Center, Beijing 100084, China
| | - Qing Ai
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Parisio F. Quantum-State Texture and Gate Identification. PHYSICAL REVIEW LETTERS 2024; 133:260801. [PMID: 39879043 DOI: 10.1103/physrevlett.133.260801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 01/31/2025]
Abstract
We introduce and explore the notion of texture of an arbitrary quantum state, in a selected basis. In the first part of this Letter we develop a resource theory and show that state texture is adequately described by an easily computable monotone, which is also directly measurable. It is shown that textures are useful in the characterization of unknown quantum gates in universal circuit layers. By using randomized input states and recording the textures of the output qubits we are able to fully characterize the circuit layer, whenever it contains at least one CNOT gate. This can be done without the need of tomographic protocols and the use of ancillary systems.
Collapse
Affiliation(s)
- Fernando Parisio
- Universidade Federal de Pernambuco, Departamento de Física, Centro de Ciências Exatas e da Natureza, Recife, Pernambuco 50670-901 Brazil
| |
Collapse
|
5
|
Beck WF. Intramolecular charge transfer and the function of vibronic excitons in photosynthetic light harvesting. PHOTOSYNTHESIS RESEARCH 2024; 162:139-156. [PMID: 38656684 DOI: 10.1007/s11120-024-01095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
A widely discussed explanation for the prevalence of pairs or clusters of closely spaced electronic chromophores in photosynthetic light-harvesting proteins is the presence of ultrafast and highly directional excitation energy transfer pathways mediated by vibronic excitons, the delocalized optical excitations derived from mixing of the electronic and vibrational states of the chromophores. We discuss herein the hypothesis that internal conversion processes between exciton states on the <100 fs timescale are possible when the excitonic potential energy surfaces are controlled by the vibrational modes that induce charge transfer character in a strongly coupled system of chromophores. We discuss two examples, the peridinin-chlorophyll protein from marine dinoflagellates and the intact phycobilisome from cyanobacteria, in which the intramolecular charge-transfer (ICT) character arising from out-of-plane distortion of the conjugation of carotenoid or bilin chromophores also results in localization of the initially delocalized optical excitation on the vibrational timescale. Tuning of the ground state conformations of the chromophores to manipulate their ICT character provides a natural photoregulatory mechanism, which would control the overall quantum yield of excitation energy transfer by turning on and off the delocalized character of the optical excitations.
Collapse
Affiliation(s)
- Warren F Beck
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
7
|
Fleming GR, Scholes GD. The development and applications of multidimensional biomolecular spectroscopy illustrated by photosynthetic light harvesting. Q Rev Biophys 2024; 57:e11. [PMID: 39434618 DOI: 10.1017/s003358352400009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The parallel and synergistic developments of atomic resolution structural information, new spectroscopic methods, their underpinning formalism, and the application of sophisticated theoretical methods have led to a step function change in our understanding of photosynthetic light harvesting, the process by which photosynthetic organisms collect solar energy and supply it to their reaction centers to initiate the chemistry of photosynthesis. The new spectroscopic methods, in particular multidimensional spectroscopies, have enabled a transition from recording rates of processes to focusing on mechanism. We discuss two ultrafast spectroscopies - two-dimensional electronic spectroscopy and two-dimensional electronic-vibrational spectroscopy - and illustrate their development through the lens of photosynthetic light harvesting. Both spectroscopies provide enhanced spectral resolution and, in different ways, reveal pathways of energy flow and coherent oscillations which relate to the quantum mechanical mixing of, for example, electronic excitations (excitons) and nuclear motions. The new types of information present in these spectra provoked the application of sophisticated quantum dynamical theories to describe the temporal evolution of the spectra and provide new questions for experimental investigation. While multidimensional spectroscopies have applications in many other areas of science, we feel that the investigation of photosynthetic light harvesting has had the largest influence on the development of spectroscopic and theoretical methods for the study of quantum dynamics in biology, hence the focus of this review. We conclude with key questions for the next decade of this review.
Collapse
Affiliation(s)
- Graham R Fleming
- Department of Chemistry and QB3 Institute, Kavli Energy Nanoscience Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
8
|
Reppert M, Dutta R, Slipchenko L. The interplay of excitonic delocalization and vibrational localization in optical lineshapes: A variational polaron approach. J Chem Phys 2024; 161:154109. [PMID: 39422207 DOI: 10.1063/5.0225083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
The dynamics of molecular excitonic systems are complicated by a competition between electronic coupling (which drives delocalization) and vibrational-electronic (vibronic) interactions (which tend to encourage electronic localization). A particular challenge of molecular systems is that they typically possess a large number of independent vibrations, with frequencies often spanning the entire spectrum of relevant electronic energy gaps. Recent spectroscopic observations and numerical simulations on a water-soluble chlorophyll-binding protein (WSCP) reveal a transition between two regimes of vibronic behavior, a Redfield-like regime in which low-frequency vibrations respond to a delocalized excitonic state, and a Förster-like regime where high-frequency vibrations act as incoherent excitations on individual pigments. Although numerical simulations can reproduce these effects, there is a need for a simple, systematic theory that accurately describes the smooth transition between these two regimes in experimental spectra. Here we address this challenge by generalizing the variational polaron transform approach of [Bloemsma et al., Chem. Phys. 481, 250 (2016)] to include arbitrary bath densities for systems with or without symmetry. We benchmark this theory against both numerical matrix-diagonalization methods and experimental 77 K fluorescence spectra for two WSCP variants, obtaining quite satisfactory agreement in both cases. We apply this theory to offer an explanation for the large loss in apparent electronic coupling in the WSCP Q57K mutant and to examine the likely impact of the interplay between excitonic delocalization and vibrational localization on vibrational sideband shapes and apparent coupling strengths in high-resolution optical spectra for chlorophyll-protein complexes such as WSCP.
Collapse
Affiliation(s)
- Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47920, USA
| | - Rajesh Dutta
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47920, USA
| | - Lyudmila Slipchenko
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47920, USA
| |
Collapse
|
9
|
Bressan G, Penty SE, Green D, Heisler IA, Jones GA, Barendt TA, Meech SR. Ultrafast and Coherent Dynamics in a Solvent Switchable "Pink Box" Perylene Diimide Dimer. Angew Chem Int Ed Engl 2024; 63:e202407242. [PMID: 39092492 DOI: 10.1002/anie.202407242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Perylene diimide (PDI) dimers and higher aggregates are key components in organic molecular photonics and photovoltaic devices, supporting singlet fission and symmetry breaking charge separation. Detailed understanding of their excited states is thus important. This has proven challenging because interchromophoric coupling is a strong function of dimer architecture. Recently, a macrocyclic PDI dimer was reported in which excitonic coupling could be turned on and off simply by changing the solvent. This presents a useful case where coupling is modified without synthetic changes to tune supramolecular structure. Here we present a detailed study of solvent dependent excited state dynamics in this dimer by means of coherent multidimensional spectroscopy. Spectral analysis resolves the different coupling strengths, which are consistent with solvent dependent changes in dimer conformation. The strongly coupled conformer forms an excimer within 300 fs. The low-frequency Raman active modes recovered from two-dimensional electronic spectra reveal frequencies characteristic of exciton coupling. These are assigned to modes modulating the coupling from the corresponding DFT calculations. Further analysis reveals a time dependent frequency during excimer formation. Analysis of two-dimensional "beatmaps" reveals features in the coupled dimer which are not predicted by the displaced harmonic oscillator model and are assigned to vibronic coupling.
Collapse
Affiliation(s)
- Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Samuel E Penty
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Dale Green
- Physics, Faculty of Science, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Ismael A Heisler
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, 9500, Brazil
| | - Garth A Jones
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Timothy A Barendt
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
10
|
Huang-Fu ZC, Qian Y, Zhang T, Brown JB, Rao Y. Development of phase-cycling interface-specific two-dimensional electronic sum frequency generation (2D-ESFG) spectroscopy. J Chem Phys 2024; 161:114201. [PMID: 39291691 DOI: 10.1063/5.0227560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Two-dimensional electronic spectroscopy (2D-ES) has become an important technique for studying energy transfer, electronic coupling, and electronic-vibrational coherence in the past ten years. However, since 2D-ES is not interface specific, the electronic information at surfaces and interfaces could not be demonstrated clearly. Two-dimensional electronic sum-frequency generation (2D-ESFG) is an emerging spectroscopic technique that explores the correlations between different interfacial electronic transitions and is the extension of 2D-ES to surface and interfacial specificity. In this work, we present the detailed development and implementation of phase-cycling 2D-ESFG spectroscopy using an acousto-optic pulse shaper in a pump-probe geometry. With the pulse pair generated by a pulse shaper rather than optical devices based on birefringence or interference, this 2D-ESFG setup enables rapid scanning, phase cycling, and the separation of rephasing and nonrephasing signals. In addition, by collecting data in a rotating frame, we greatly improve experimental efficiency. We demonstrate the method for azo-derivative molecules at the air/water interface. This method could be readily extended to different interfaces and surfaces. The unique phase-cycling 2D-ESFG technique enables one to quantify the energy transfer, charge transfer, electronic coupling, and many other electronic properties and dynamics at surfaces and interfaces with precision and relative ease of use. Our goal in this article is to present the fine details of the fourth-order nonlinear optical technique in a manner that is comprehensive, succinct, and approachable such that other researchers can implement, improve, and adapt it to probe unique and innovative problems to advance the field.
Collapse
Affiliation(s)
- Zhi-Chao Huang-Fu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Jesse B Brown
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
11
|
Grechishnikova G, Wat JH, de Cordoba N, Miyake E, Phadkule A, Srivastava A, Savikhin S, Slipchenko L, Huang L, Reppert M. Controlling Vibronic Coupling in Chlorophyll Proteins: The Effects of Excitonic Delocalization and Vibrational Localization. J Phys Chem Lett 2024; 15:9456-9465. [PMID: 39250712 DOI: 10.1021/acs.jpclett.4c01826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Vibrational-electronic (vibronic) coupling plays a critical role in excitation energy transfer in molecular aggregates and pigment-protein complexes (PPCs). But the interplay between excitonic delocalization and vibronic interactions is complex, often leaving even qualitative questions as to what conceptual framework (e.g., Redfield versus Förster theory) should be used to interpret experimental results. To shed light on this issue, we report here on the interplay between excitonic delocalization and vibronic coupling in site-directed mutants of the water-soluble chlorophyll protein (WSCP), as reflected in 77 K fluorescence spectra. Experimentally, we find that in PPCs where excitonic delocalization is disrupted (either by mutagenesis or heterodimer formation), the relative intensity of the vibrational sideband (VSB) in fluorescence spectra is suppressed by up to 37% compared to that of the native protein. Numerical simulations reveal that this effect results from the localization of high-frequency vibrations in the coupled system; while excitonic delocalization suppresses the purely electronic transition due to H-aggregate-like dipole-dipole interference, high-frequency vibrations are unaffected, leading to a relative enhancement of the VSB. By comparing VSB intensities of PPCs both in the presence and absence of excitonic delocalization, we extract a set of "local" Huang-Rhys (HR) factors for Chl a in WSCP. More generally, our results suggest a significant role for geometric effects in controlling energy-transfer rates (which depend sensitively on absorption/fluorescence line shapes) in molecular aggregates and PPCs.
Collapse
Affiliation(s)
- Galina Grechishnikova
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jacob H Wat
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicolas de Cordoba
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ethan Miyake
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Amala Phadkule
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Amit Srivastava
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sergei Savikhin
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lyudmila Slipchenko
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Rather SR, Scholes GD, Chen LX. From Coherence to Function: Exploring the Connection in Chemical Systems. Acc Chem Res 2024; 57:2620-2630. [PMID: 39222721 DOI: 10.1021/acs.accounts.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
ConspectusThe role of quantum mechanical coherences or coherent superposition states in excited state processes has received considerable attention in the last two decades largely due to advancements in ultrafast laser spectroscopy. These coherence effects hold promise for enhancing the efficiency and robustness of functionally relevant processes, even when confronted with energy disorder and environmental fluctuations. Understanding coherence deeply drives us to unravel mechanisms and dynamics controlled by order and synchronization at a quantum mechanical level, envisioning optical control of coherence to enhance functions or create new ones in molecular and material systems. In this frontier, the interplay between electronic and vibrational dynamics, specifically the influence of vibrations in directing electronic dynamics, has emerged as the leading principle. Here, two energetically disparate quantum degrees of freedom work in-sync to dictate the trajectory of an excited state reaction. Moreover, with the vibrational degree being directly related to the structural composition of molecular or material systems, new molecular designs could be inspired by tailoring certain structural elements.In the realm of chemical kinetics, our understanding of the dynamics of chemical transformations is underpinned by fundamental theories, such as transition state theory, activated rate theory, and Marcus theory. These theories elucidate reaction rates by considering the energy barriers that must be overcome for reactants to transform into products. Those barriers are surmounted by the stochastic nature of energy gap fluctuations within reacting systems, emphasizing that the reaction coordinate, the pathway from reactants to products, is not rigidly defined by a specific vibrational motion but encompasses a diverse array of molecular motions. While less is known about the involvement of specific intramolecular vibrational modes, their significance in certain cases cannot be overlooked.In this Account, we summarize key experimental findings that offer deeper insights into the complex electronic-vibrational trajectories encompassing excited states afforded from state-of-the-art ultrafast laser spectroscopy in three exemplary processes: photoinduced electron transfer, singlet-triplet intersystem crossing, and intramolecular vibrational energy flow in molecular systems. We delve into the rapid decoherence, or loss of phase and amplitude correlations, of vibrational coherences along promoter vibrations during subpicosecond intersystem crossing dynamics in a series of binuclear platinum complexes. This rapid decoherence illustrates the vibration-driven reactive pathways from the Franck-Condon state to the curve crossing region. We also explore the generation of new vibrational coherences induced by impulsive reaction dynamics rather than by the laser pulse in these systems, which sheds light on specific energy dissipation pathways and thereby on the progression of the reaction trajectory in the vicinity of the curve crossing on the product side. Another property of vibrational coherences, amplitude, reveals how energy can flow from one vibration to another in the electronic excited state of a terpyridine-molybdenum complex hosting a nonreactive dinitrogen substrate. A slight change in vibrational energy triggers a quasi-resonant interaction, leading to constructive wavepacket interference and ultimately intramolecular vibrational redistribution from a Franck-Condon active terpyridine vibration to a dinitrogen stretching vibration, energizing the dinitrogen bond.
Collapse
Affiliation(s)
- Shahnawaz R Rather
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08541, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60204, United States
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
13
|
Pios SV, Gelin MF, Luis Vasquez, Hauer J, Chen L. On-the-Fly Simulation of Two-Dimensional Fluorescence-Excitation Spectra. J Phys Chem Lett 2024; 15:8728-8735. [PMID: 39162319 DOI: 10.1021/acs.jpclett.4c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Two-dimensional (2D) fluorescence-excitation (2D-FLEX) spectroscopy is a recently proposed nonlinear femtosecond technique for the detection of photoinduced dynamics. The method records a time-resolved fluorescence signal in its excitation- and detection-frequency dependence and hence combines the exclusive detection of excited state dynamics (fluorescence) with signals resolved in both excitation and emission frequencies (2D electronic spectroscopy). In this work, we develop an on-the-fly protocol for the simulation of 2D-FLEX spectra of molecular systems, which is based on interfacing the classical doorway-window representation of spectroscopic responses with trajectory surface hopping simulations. Applying this methodology to gas-phase pyrazine, we show that femtosecond 2D-FLEX spectra can deliver detailed information that is otherwise obtainable via attosecond spectroscopy.
Collapse
Affiliation(s)
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Luis Vasquez
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | | |
Collapse
|
14
|
Kim P, Roy S, Valentine AJS, Liu X, Kromer S, Kim TW, Li X, Castellano FN, Chen LX. Real-time capture of nuclear motions influencing photoinduced electron transfer. Chem Sci 2024:d4sc01876a. [PMID: 39184296 PMCID: PMC11339639 DOI: 10.1039/d4sc01876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
Although vibronic coupling phenomena have been recognized in the excite state dynamics of transition metal complexes, its impact on photoinduced electron transfer (PET) remains largely unexplored. This study investigates coherent wavepacket (CWP) dynamics during PET processes in a covalently linked electron donor-acceptor complex featuring a cyclometalated Pt(ii) dimer as the donor and naphthalene diimide (NDI) as the acceptors. Upon photoexciting the Pt(ii) dimer electron donor, ultrafast broadband transient absorption spectroscopy revealed direct modulation of NDI radical anion formation through certain CWP motions and correlated temporal evolutions of the amplitudes for these CWPs with the NDI radical anion formation. These results provide clear evidence that the CWP motions are the vibronic coherences coupled to the PET reaction coordinates. Normal mode analysis identified that the CWP motions originate from vibrational modes associated with the dihedral angles and bond lengths between the planes of the cyclometalating ligand and the NDI, the key modes altering their π-interaction, consequently influencing PET dynamics. The findings highlight the pivotal role of vibrations in shaping the favorable trajectories for the efficient PET processes.
Collapse
Affiliation(s)
- Pyosang Kim
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
- Chemistry Department, Northwestern University Evanston IL 60208 USA
| | - Subhangi Roy
- Chemistry Department, North Carolina State University Raleigh NC 27695-8204 USA
| | | | - Xiaolin Liu
- Chemistry Department, University of Washington Seattle WA 98195 USA
| | - Sarah Kromer
- Chemistry Department, North Carolina State University Raleigh NC 27695-8204 USA
| | - Tae Wu Kim
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| | - Xiaosong Li
- Chemistry Department, University of Washington Seattle WA 98195 USA
| | - Felix N Castellano
- Chemistry Department, North Carolina State University Raleigh NC 27695-8204 USA
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
- Chemistry Department, Northwestern University Evanston IL 60208 USA
| |
Collapse
|
15
|
Calderón LF, Brumer P. Frequency-Dependent Vibronic Effects in Steady State Energy Transport. J Phys Chem B 2024. [PMID: 39052092 DOI: 10.1021/acs.jpcb.4c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The interplay between electronic and intramolecular high-frequency vibrational degrees of freedom is ubiquitous in natural light-harvesting systems. Recent studies have indicated that an intramolecular vibrational donor-acceptor frequency difference can enhance energy transport. Here, we analyze the extent to which different intramolecular donor-acceptor vibrational frequencies affect excitation energy transport in the natural nonequilibrium steady state configuration. Comments are included on the less physical equilibrium case for comparison with the literature. It is found that for constant Huang-Rhys factors, whereas the acceptor population increases in the equilibrium case when the intramolecular vibrational frequency of the acceptor exceeds that of the donor, this increase is negligible for the nonequilibrium steady state. Therefore, these changes in acceptor population do not significantly enhance energy transport in the nonequilibrium steady state for the natural scenario of incoherent light excitation with biologically relevant parameters of typical photosynthetic complexes. Insight about a potential mechanism to optimize energy transfer in the nonequilibrium steady state based on increasing the harvesting time at the reaction center is analyzed.
Collapse
Affiliation(s)
- Leonardo F Calderón
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Grupo de Física Computacional en Materia Condensada, Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Cra 27 calle 9, Bucaramanga 680002, Colombia
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
16
|
Oberg CP, Spangler LC, Coker DF, Scholes GD. Chirped Laser Pulse Control of Vibronic Wavepackets and Energy Transfer in Phycocyanin 645. J Phys Chem Lett 2024; 15:7125-7132. [PMID: 38959027 DOI: 10.1021/acs.jpclett.4c01455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Photosynthetic organisms use light-harvesting complexes to increase the spectrum of light that they absorb from solar photons. Recent ultrafast spectroscopic studies have revealed that efficient (sub-ps) energy transfer is mediated by vibronic coherence in the phycobiliprotein phycocyanin 645 (PC645). Here, we report studies that employ broadband pump-probe spectroscopy with linearly chirped excitation pulses to further investigate the relationship between vibronic state preparation and energy transfer dynamics in PC645. Negatively chirped pulse excitation is found to enhance wavepackets of a high-frequency mode (1580 cm-1) and increase the rate of downhill energy transfer, while on the other hand, positively chirped pulses suppress these oscillatory features and decrease this rate. Model calculations incorporating the influence of the chirped pump pulse are used to understand its effect on initial state preparation. These results provide mechanistic insight into how the overall nonequilibrium rate of energy transfer is influenced by initial state preparation.
Collapse
Affiliation(s)
- Catrina P Oberg
- Department of Chemistry, Princeton University, Washington Rd., Princeton, New Jersey 08544, United States
| | - Leah C Spangler
- Department of Chemistry, Princeton University, Washington Rd., Princeton, New Jersey 08544, United States
| | - David F Coker
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Washington Rd., Princeton, New Jersey 08544, United States
| |
Collapse
|
17
|
Green D, Bressan G, Heisler IA, Meech SR, Jones GA. Vibrational coherences in half-broadband 2D electronic spectroscopy: Spectral filtering to identify excited state displacements. J Chem Phys 2024; 160:234104. [PMID: 38884412 DOI: 10.1063/5.0214023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
Vibrational coherences in ultrafast pump-probe (PP) and 2D electronic spectroscopy (2DES) provide insights into the excited state dynamics of molecules. Femtosecond coherence spectra and 2D beat maps yield information about displacements of excited state surfaces for key vibrational modes. Half-broadband 2DES uses a PP configuration with a white light continuum probe to extend the detection range and resolve vibrational coherences in the excited state absorption (ESA). However, the interpretation of these spectra is difficult as they are strongly dependent on the spectrum of the pump laser and the relative displacement of the excited states along the vibrational coordinates. We demonstrate the impact of these convoluting factors for a model based upon cresyl violet. A careful consideration of the position of the pump spectrum can be a powerful tool in resolving the ESA coherences to gain insights into excited state displacements. This paper also highlights the need for caution in considering the spectral window of the pulse when interpreting these spectra.
Collapse
Affiliation(s)
- Dale Green
- Physics, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Ismael A Heisler
- Instituto de Física, Universidade Federal do Rio Grande do Sul, 91509-900 Porto Alegre, RS, Brazil
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Garth A Jones
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
18
|
Jaiswal VK, Aranda Ruiz D, Petropoulos V, Kabaciński P, Montorsi F, Uboldi L, Ugolini S, Mukamel S, Cerullo G, Garavelli M, Santoro F, Nenov A. Sub-100-fs energy transfer in coenzyme NADH is a coherent process assisted by a charge-transfer state. Nat Commun 2024; 15:4900. [PMID: 38851775 PMCID: PMC11162464 DOI: 10.1038/s41467-024-48871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/15/2024] [Indexed: 06/10/2024] Open
Abstract
Excitation energy transfer (EET) is a key photoinduced process in biological chromophoric assemblies. Here we investigate the factors which can drive EET into efficient ultrafast sub-ps regimes. We demonstrate how a coherent transport of electronic population could facilitate this in water solvated NADH coenzyme and uncover the role of an intermediate dark charge-transfer state. High temporal resolution ultrafast optical spectroscopy gives a 54±11 fs time constant for the EET process. Nonadiabatic quantum dynamical simulations computed through the time-evolution of multidimensional wavepackets suggest that the population transfer is mediated by photoexcited molecular vibrations due to strong coupling between the electronic states. The polar aqueous solvent environment leads to the active participation of a dark charge transfer state, accelerating the vibronically coherent EET process in favorably stacked conformers and solvent cavities. Our work demonstrates how the interplay of structural and environmental factors leads to diverse pathways for the EET process in flexible heterodimers and provides general insights relevant for coherent EET processes in stacked multichromophoric aggregates like DNA strands.
Collapse
Affiliation(s)
- Vishal Kumar Jaiswal
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Daniel Aranda Ruiz
- ICMol, Universidad de Valencia, Catedrático José Beltrán Martínez, 2, 46980, Paterna, Spain
| | - Vasilis Petropoulos
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Piotr Kabaciński
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Francesco Montorsi
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Lorenzo Uboldi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Simone Ugolini
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
| | - Marco Garavelli
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy.
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via Moruzzi 1, I-56124, Pisa, Italy
| | - Artur Nenov
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy.
| |
Collapse
|
19
|
Odewale EO, Avramenko AG, Rury AS. Deciphering between enhanced light emission and absorption in multi-mode porphyrin cavity polariton samples. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2695-2706. [PMID: 39678670 PMCID: PMC11636455 DOI: 10.1515/nanoph-2023-0748] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/29/2024] [Indexed: 12/17/2024]
Abstract
It remains unclear how the collective strong coupling of cavity-confined photons to the electronic transitions of molecular chromophore leverages the distinct properties of the polaritonic constituents for future technologies. In this study, we design, fabricate, and characterize multiple types of Fabry-Pérot (FP) mirco-resonators containing copper(II) tetraphenyl porphyrin (CuTPP) to show how cavity polariton formation affects radiative relaxation processes in the presence of substantial non-Condon vibronic coupling between two of this molecule's excited electronic states. Unlike the prototypical enhancement of Q state radiative relaxation of CuTPP in a FP resonator incapable of forming polaritons, we find the light emission processes in multimode cavity polariton samples become enhanced for cavity-exciton energy differences near those of vibrations known to mediate non-Condon vibronic coupling. We propose the value of this detuning is consistent with radiative relaxation of Herzberg-Teller polaritons into collective molecular states coupled to the cavity photon coherently. We contrast the feature stemming from light emission from the HT polariton state with those that occur due to polariton-enhanced light absorption. Our results demonstrate the landscape of molecular and photonic interactions enabled by cavity polariton formation using complex chromophores and how researchers can design resonators to leverage these interactions to characterize and control polaritonic properties.
Collapse
Affiliation(s)
- Elizabeth O. Odewale
- Materials Structural Dynamics Laboratory, Department of Chemistry, Wayne State University, 48202, Detroit, MI, USA
| | - Aleksandr G. Avramenko
- Materials Structural Dynamics Laboratory, Department of Chemistry, Wayne State University, 48202, Detroit, MI, USA
| | - Aaron S. Rury
- Materials Structural Dynamics Laboratory, Department of Chemistry, Wayne State University, 48202, Detroit, MI, USA
| |
Collapse
|
20
|
Kang M, Nuomin H, Chowdhury SN, Yuly JL, Sun K, Whitlow J, Valdiviezo J, Zhang Z, Zhang P, Beratan DN, Brown KR. Seeking a quantum advantage with trapped-ion quantum simulations of condensed-phase chemical dynamics. Nat Rev Chem 2024; 8:340-358. [PMID: 38641733 DOI: 10.1038/s41570-024-00595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/21/2024]
Abstract
Simulating the quantum dynamics of molecules in the condensed phase represents a longstanding challenge in chemistry. Trapped-ion quantum systems may serve as a platform for the analog-quantum simulation of chemical dynamics that is beyond the reach of current classical-digital simulation. To identify a 'quantum advantage' for these simulations, performance analysis of both analog-quantum simulation on noisy hardware and classical-digital algorithms is needed. In this Review, we make a comparison between a noisy analog trapped-ion simulator and a few choice classical-digital methods on simulating the dynamics of a model molecular Hamiltonian with linear vibronic coupling. We describe several simple Hamiltonians that are commonly used to model molecular systems, which can be simulated with existing or emerging trapped-ion hardware. These Hamiltonians may serve as stepping stones towards the use of trapped-ion simulators for systems beyond the reach of classical-digital methods. Finally, we identify dynamical regimes in which classical-digital simulations seem to have the weakest performance with respect to analog-quantum simulations. These regimes may provide the lowest hanging fruit to make the most of potential quantum advantages.
Collapse
Affiliation(s)
- Mingyu Kang
- Duke Quantum Center, Duke University, Durham, NC, USA.
- Department of Physics, Duke University, Durham, NC, USA.
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, NC, USA
| | | | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ke Sun
- Duke Quantum Center, Duke University, Durham, NC, USA
- Department of Physics, Duke University, Durham, NC, USA
| | - Jacob Whitlow
- Duke Quantum Center, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Jesús Valdiviezo
- Kenneth S. Pitzer Theory Center, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Departamento de Ciencias, Sección Química, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, NC, USA
| | - David N Beratan
- Department of Physics, Duke University, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, USA.
- Department of Biochemistry, Duke University, Durham, NC, USA.
| | - Kenneth R Brown
- Duke Quantum Center, Duke University, Durham, NC, USA.
- Department of Physics, Duke University, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
21
|
Rode AJ, Arpin PC, Turner DB. Theoretical model of femtosecond coherence spectroscopy of vibronic excitons in molecular aggregates. J Chem Phys 2024; 160:164101. [PMID: 38647298 DOI: 10.1063/5.0200570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
When used as pump pulses in transient absorption spectroscopy measurements, femtosecond laser pulses can produce oscillatory signals known as quantum beats. The quantum beats arise from coherent superpositions of the states of the sample and are best studied in the Fourier domain using Femtosecond Coherence Spectroscopy (FCS), which consists of one-dimensional amplitude and phase plots of a specified oscillation frequency as a function of the detection frequency. Prior works have shown ubiquitous amplitude nodes and π phase shifts in FCS from excited-state vibrational wavepackets in monomer samples. However, the FCS arising from vibronic-exciton states in molecular aggregates have not been studied theoretically. Here, we use a model of vibronic-exciton states in molecular dimers based on displaced harmonic oscillators to simulate FCS for dimers in two important cases. Simulations reveal distinct spectral signatures of excited-state vibronic-exciton coherences in molecular dimers that may be used to distinguish them from monomer vibrational coherences. A salient result is that, for certain relative orientations of the transition dipoles, the key resonance condition between the electronic coupling and the frequency of the vibrational mode may yield strong enhancement of the quantum-beat amplitude and, perhaps, also cause a significant decrease of the oscillation frequency to a value far lower than the vibrational frequency. Future studies using these results will lead to new insights into the excited-state coherences generated in photosynthetic pigment-protein complexes.
Collapse
Affiliation(s)
- Alexander J Rode
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Paul C Arpin
- Department of Physics, California State University, Chico, Chico, California 95929, USA
| | - Daniel B Turner
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| |
Collapse
|
22
|
Petropoulos V, Rukin PS, Quintela F, Russo M, Moretti L, Moore A, Moore T, Gust D, Prezzi D, Scholes GD, Molinari E, Cerullo G, Troiani F, Rozzi CA, Maiuri M. Vibronic Coupling Drives the Ultrafast Internal Conversion in a Functionalized Free-Base Porphyrin. J Phys Chem Lett 2024; 15:4461-4467. [PMID: 38630018 DOI: 10.1021/acs.jpclett.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Internal conversion (IC) is a common radiationless transition in polyatomic molecules. Theory predicts that molecular vibrations assist IC between excited states, and ultrafast experiments can provide insight into their structure-function relationship. Here we elucidate the dynamics of the vibrational modes driving the IC process within the Q band of a functionalized porphyrin molecule. Through a combination of ultrafast multidimensional spectroscopies and theoretical modeling, we observe a 60 fs Qy-Qx IC and demonstrate that it is driven by the interplay among multiple high-frequency modes. Notably, we identify 1510 cm-1 as the leading tuning mode that brings the porphyrin to an optimal geometry for energy surface crossing. By employing coherent wave packet analysis, we highlight a set of short-lived vibrations (1200-1400 cm-1), promoting the IC within ≈60 fs. Furthermore, we identify one coupling mode (1350 cm-1) that is responsible for vibronic mixing within the Q states. Our findings indicate that porphyrin-core functionalization modulates IC effectively, offering new opportunities in photocatalysis and optoelectronics.
Collapse
Affiliation(s)
- Vasilis Petropoulos
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Pavel S Rukin
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
| | - Frank Quintela
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 213A, I-41125 Modena, Italy
| | - Mattia Russo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Luca Moretti
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Ana Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Devens Gust
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Deborah Prezzi
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Elisa Molinari
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 213A, I-41125 Modena, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Filippo Troiani
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
| | - Carlo A Rozzi
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
| | - Margherita Maiuri
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
23
|
Bressan G, Green D, Jones GA, Heisler IA, Meech SR. Two-Dimensional Electronic Spectroscopy Resolves Relative Excited-State Displacements. J Phys Chem Lett 2024; 15:2876-2884. [PMID: 38447068 PMCID: PMC10945572 DOI: 10.1021/acs.jpclett.3c03420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Knowledge of relative displacements between potential energy surfaces (PES) is critical in spectroscopy and photochemistry. Information on displacements is encoded in vibrational coherences. Here we apply ultrafast two-dimensional electronic spectroscopy in a pump-probe half-broadband (HB2DES) geometry to probe the ground- and excited-state potential landscapes of cresyl violet. 2D coherence maps reveal that while the coherence amplitude of the dominant 585 cm-1 Raman-active mode is mainly localized in the ground-state bleach and stimulated emission regions, a 338 cm-1 mode is enhanced in excited-state absorption. Modeling these data with a three-level displaced harmonic oscillator model using the hierarchical equation of motion-phase matching approach (HEOM-PMA) shows that the S1 ← S0 PES displacement is greater along the 585 cm-1 coordinate than the 338 cm-1 coordinate, while Sn ← S1 displacements are similar along both coordinates. HB2DES is thus a powerful tool for exploiting nuclear wavepackets to extract quantitative multidimensional, vibrational coordinate information across multiple PESs.
Collapse
Affiliation(s)
- Giovanni Bressan
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Dale Green
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Garth A. Jones
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Ismael A. Heisler
- Instituto
de Fisica, Universidade Federal do Rio Grande
do Sul, 91509-900 Porto Alegre, RS, Brazil
| | - Stephen R. Meech
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| |
Collapse
|
24
|
Lorenzoni N, Cho N, Lim J, Tamascelli D, Huelga SF, Plenio MB. Systematic Coarse Graining of Environments for the Nonperturbative Simulation of Open Quantum Systems. PHYSICAL REVIEW LETTERS 2024; 132:100403. [PMID: 38518302 DOI: 10.1103/physrevlett.132.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 03/24/2024]
Abstract
Conducting precise electronic-vibrational dynamics simulations of molecular systems poses significant challenges when dealing with realistic environments composed of numerous vibrational modes. Here, we introduce a technique for the construction of effective phonon spectral densities that capture accurately open-system dynamics over a finite time interval of interest. When combined with existing nonperturbative simulation tools, our approach can reduce significantly the computational costs associated with many-body open-system dynamics.
Collapse
Affiliation(s)
- Nicola Lorenzoni
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| | - Namgee Cho
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| | - James Lim
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| | - Dario Tamascelli
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Susana F Huelga
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| |
Collapse
|
25
|
Jha A, Zhang PP, Tiwari V, Chen L, Thorwart M, Miller RJD, Duan HG. Unraveling quantum coherences mediating primary charge transfer processes in photosystem II reaction center. SCIENCE ADVANCES 2024; 10:eadk1312. [PMID: 38446882 PMCID: PMC10917350 DOI: 10.1126/sciadv.adk1312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Photosystem II (PSII) reaction center (RC) is a unique complex that is capable of efficiently separating electronic charges across the membrane. The primary energy- and charge-transfer (CT) processes occur on comparable ultrafast timescales, which makes it extremely challenging to understand the fundamental mechanism responsible for the near-unity quantum efficiency of the transfer. Here, we elucidate the role of quantum coherences in the ultrafast energy and CT in the PSII RC by performing two-dimensional (2D) electronic spectroscopy at the cryogenic temperature of 20 kelvin, which captures the distinct underlying quantum coherences. Specifically, we uncover the electronic and vibrational coherences along with their lifetimes during the primary ultrafast processes of energy and CT. We construct an excitonic model that provides evidence for coherent energy and CT at low temperature in the 2D electronic spectra. The principles could provide valuable guidelines for creating artificial photosystems with exploitation of system-bath coupling and control of coherences to optimize the photon conversion efficiency to specific functions.
Collapse
Affiliation(s)
- Ajay Jha
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P.R. China
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
- Rosalind Franklin Institute, Harwell, Oxfordshire OX11 0QX, UK
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Pan-Pan Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P.R. China
| | - Vandana Tiwari
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Chemistry, University of Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| | - Lipeng Chen
- Zhejiang Laboratory, Hangzhou 311100, P.R. China
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg, Notkestr. 9, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R. J. Dwayne Miller
- The Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Hong-Guang Duan
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P.R. China
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
- I. Institut für Theoretische Physik, Universität Hamburg, Notkestr. 9, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
26
|
Mendis KC, Li X, Valdiviezo J, Banziger SD, Zhang P, Ren T, Beratan DN, Rubtsov IV. Electron transfer rate modulation with mid-IR in butadiyne-bridged donor-bridge-acceptor compounds. Phys Chem Chem Phys 2024; 26:1819-1828. [PMID: 38168814 DOI: 10.1039/d3cp03175f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Controlling electron transfer (ET) processes in donor-bridge-acceptor (DBA) compounds by mid-IR excitation can enhance our understanding of the ET dynamics and may find practical applications in molecular sensing and molecular-scale electronics. Alkyne moieties are attractive to serve as ET bridges, as they offer the possibility of fast ET and present convenient vibrational modes to perturb the ET dynamics. Yet, these bridges introduce complexity because of the strong torsion angle dependence of the ET rates and transition dipoles among electronic states and a shallow torsion barrier. In this study, we implemented ultrafast 3-pulse laser spectroscopy to investigate how the ET from the dimethyl aniline (D) electron donor to the N-isopropyl-1,8-napthalimide (NAP) electron acceptor can be altered by exciting the CC stretching mode (νCC) of the butadiyne bridge linking the donor and acceptor. The electron transfer was initiated by electronically exciting the acceptor moiety at 400 nm, followed by vibrational excitation of the alkyne, νCC, and detecting the changes in the absorption spectrum in the visible spectral region. The experiments were performed at different delay times t1 and t2, which are the delays between UV-mid-IR and mid-IR-Vis pulses, respectively. Two sets of torsion-angle conformers were identified, one featuring a very fast mean ET time of 0.63 ps (group A) and another featuring a slower mean ET time of 4.3 ps (group B), in the absence of the mid-IR excitation. TD-DFT calculations were performed to determine key torsion angle dependent molecular parameters, including the electronic and vibrational transition dipoles, transition frequencies, and electronic couplings. To describe the 3-pulse data, we developed a kinetic model that includes a locally excited, acceptor-based S2 state, a charge separated S1 state, and their vibrationally excited counterparts, with either excited νCC (denoted as S1Atr, S1Btr, S2Atr, and S2Btr, where tr stands for the excited triplet bond, νCC) or excited daughter modes of the νCC relaxation (S1Ah, S1Bh, S2Ah, and S2Bh, where h stands for vibrationally hot species). The kinetic model was solved analytically, and the species-associated spectra (SAS) were determined numerically using a matrix approach, treating first the experiments with longer t1 delays and then using the already determined SAS for modeling the experiments with shorter t1 delays. Strong vibronic coupling of νCC and of vibrationally hot states makes the analysis complicated. Nevertheless, the SAS were identified and the ET rates of the vibrationally excited species, S2Atr, S2Btr and S2Bh, were determined. The results show that the ET rate for the S2A species is ca. 1.2-fold slower when the νCC mode is excited. The ET rate for species S2B is slower by ca. 1.3-fold if the compound is vibrationally hot and is essentially unchanged when the νCC mode is excited. The SAS determined for the tr and h species resemble the SAS for their respective precursor species in the 2-pulse transient absorption experiments, which validates the procedure used and the results.
Collapse
Affiliation(s)
- Kasun C Mendis
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA.
| | - Xiao Li
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA.
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Susannah D Banziger
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Tong Ren
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, USA
| | - Igor V Rubtsov
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
27
|
Silori Y, Willow R, Nguyen HH, Shen G, Song Y, Gisriel CJ, Brudvig GW, Bryant DA, Ogilvie JP. Two-Dimensional Electronic Spectroscopy of the Far-Red-Light Photosystem II Reaction Center. J Phys Chem Lett 2023; 14:10300-10308. [PMID: 37943008 DOI: 10.1021/acs.jpclett.3c02604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Understanding the role of specific pigments in primary energy conversion in the photosystem II (PSII) reaction center has been impeded by the spectral overlap of its constituent pigments. When grown in far-red light, some cyanobacteria incorporate chlorophyll-f and chlorophyll-d into PSII, relieving the spectral congestion. We employ two-dimensional electronic spectroscopy to study PSII at 77 K from Synechococcus sp. PCC 7335 cells that were grown in far-red light (FRL-PSII). We observe the formation of a radical pair within ∼3 ps that we assign to ChlD1•-PD1•+. While PheoD1 is thought to act as the primary electron acceptor in PSII from cells grown in visible light, we see no evidence of its involvement, which we attribute to its reduction by dithionite treatment in our samples. Our work demonstrates that primary charge separation occurs between ChlD1 and PD1 in FRL-PSII, suggesting that PD1/PD2 may play an underappreciated role in PSII's charge separation mechanism.
Collapse
Affiliation(s)
- Yogita Silori
- Department of Physics and Biophysics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States
| | - Rhiannon Willow
- Department of Physics and Biophysics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States
| | - Hoang H Nguyen
- Department of Physics and Biophysics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yin Song
- School of Optics and Photonics, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Christopher J Gisriel
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jennifer P Ogilvie
- Department of Physics and Biophysics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
28
|
Novoderezhkin VI. Resonant vibrations produce quantum bridge over high-energy states in heterogeneous antenna. PHOTOSYNTHESIS RESEARCH 2023; 158:13-21. [PMID: 37584896 DOI: 10.1007/s11120-023-01042-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/29/2023] [Indexed: 08/17/2023]
Abstract
Photosynthetic light-harvesting complexes usually contain several pools of molecules with a big difference in transition energies, for example, chlorophylls a and b in plant antennas. Some pathways of the excitation energy transfer may include pigments from the low-energy pool separated by a site occupied by a high-energy molecule. We demonstrate that such pathways may be functional if high-frequency intramolecular vibrations fall in resonance with the energy gap between the neighboring molecules belonging to different pools. In this case, a vibration-assisted mixing of the excited states can produce delocalized vibronic states playing a role of 'quantum bridge' that facilitates a passage over high-energy barrier. We perform calculations of the excitation dynamics in the model three-state system with the parameters emerging from our previous studies of real antennas. Simulation of the dynamics in an explicit electron-vibrational basis demonstrates that the rate of transfer between the two chlorophylls a through the chlorophyll b intermediate is increased by a factor of 1.7-2 in the presence of resonant vibration. A possible influence of energetic disorder and other (non-resonant) vibrations on this effect is discussed.
Collapse
Affiliation(s)
- Vladimir I Novoderezhkin
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119992, Moscow, Russia.
| |
Collapse
|
29
|
Fujihashi Y, Miwa K, Higashi M, Ishizaki A. Probing exciton dynamics with spectral selectivity through the use of quantum entangled photons. J Chem Phys 2023; 159:114201. [PMID: 37712788 DOI: 10.1063/5.0169768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Quantum light is increasingly recognized as a promising resource for developing optical measurement techniques. Particular attention has been paid to enhancing the precision of the measurements beyond classical techniques by using nonclassical correlations between quantum entangled photons. Recent advances in the quantum optics technology have made it possible to manipulate spectral and temporal properties of entangled photons, and photon correlations can facilitate the extraction of matter information with relatively simple optical systems compared to conventional schemes. In these respects, the applications of entangled photons to time-resolved spectroscopy can open new avenues for unambiguously extracting information on dynamical processes in complex molecular and materials systems. Here, we propose time-resolved spectroscopy in which specific signal contributions are selectively enhanced by harnessing nonclassical correlations of entangled photons. The entanglement time characterizes the mutual delay between an entangled twin and determines the spectral distribution of photon correlations. The entanglement time plays a dual role as the knob for controlling the accessible time region of dynamical processes and the degrees of spectral selectivity. In this sense, the role of the entanglement time is substantially equivalent to the temporal width of the classical laser pulse. The results demonstrate that the application of quantum entangled photons to time-resolved spectroscopy leads to monitoring dynamical processes in complex molecular and materials systems by selectively extracting desired signal contributions from congested spectra. We anticipate that more elaborately engineered photon states would broaden the availability of quantum light spectroscopy.
Collapse
Affiliation(s)
- Yuta Fujihashi
- Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Kuniyuki Miwa
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| |
Collapse
|
30
|
Yang J, Gelin MF, Chen L, Šanda F, Thyrhaug E, Hauer J. Two-dimensional fluorescence excitation spectroscopy: A novel technique for monitoring excited-state photophysics of molecular species with high time and frequency resolution. J Chem Phys 2023; 159:074201. [PMID: 37581414 DOI: 10.1063/5.0156297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
We propose a novel UV/Vis femtosecond spectroscopic technique, two-dimensional fluorescence-excitation (2D-FLEX) spectroscopy, which combines spectral resolution during the excitation process with exclusive monitoring of the excited-state system dynamics at high time and frequency resolution. We discuss the experimental feasibility and realizability of 2D-FLEX, develop the necessary theoretical framework, and demonstrate the high information content of this technique by simulating the 2D-FLEX spectra of a model four-level system and the Fenna-Matthews-Olson antenna complex. We show that the evolution of 2D-FLEX spectra with population time directly monitors energy transfer dynamics and can thus yield direct qualitative insight into the investigated system. This makes 2D-FLEX a highly efficient instrument for real-time monitoring of photophysical processes in polyatomic molecules and molecular aggregates.
Collapse
Affiliation(s)
- Jianmin Yang
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | - František Šanda
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, 12116 Prague, Czech Republic
| | - Erling Thyrhaug
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| |
Collapse
|
31
|
Terry Weatherly CK, Provazza J, Weiss EA, Tempelaar R. Theory predicts UV/vis-to-IR photonic down conversion mediated by excited state vibrational polaritons. Nat Commun 2023; 14:4804. [PMID: 37558658 PMCID: PMC10412565 DOI: 10.1038/s41467-023-40400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
This work proposes a photophysical phenomenon whereby ultraviolet/visible (UV/vis) excitation of a molecule involving a Franck-Condon (FC) active vibration yields infrared (IR) emission by strong coupling to an optical cavity. The resulting UV/vis-to-IR photonic down conversion process is mediated by vibrational polaritons in the electronic excited state potential. It is shown that the formation of excited state vibrational polaritons (ESVP) via UV/vis excitation only involve vibrational modes with both a non-zero FC activity and IR activity in the excited state. Density functional theory calculations are used to identify 1-Pyreneacetic acid as a molecule with this property and the dynamics of ESVP are modeled. Overall, this work introduces an avenue of polariton chemistry where excited state dynamics are influenced by the formation of vibrational polaritons. Along with this, the UV/vis-to-IR photonic down conversion is potentially useful in both sensing excited state vibrations and quantum transduction schemes.
Collapse
Affiliation(s)
| | - Justin Provazza
- Department of Chemistry, Northwestern University, Evanston, IL, 60208-3113, USA.
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, IL, 60208-3113, USA.
| | - Roel Tempelaar
- Department of Chemistry, Northwestern University, Evanston, IL, 60208-3113, USA.
| |
Collapse
|
32
|
Zhan S, Gelin MF, Huang X, Sun K. Ab initio simulation of peak evolutions and beating maps for electronic two-dimensional signals of a polyatomic chromophore. J Chem Phys 2023; 158:2890773. [PMID: 37191214 DOI: 10.1063/5.0150387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
By employing the doorway-window (DW) on-the-fly simulation protocol, we performed ab initio simulations of peak evolutions and beating maps of electronic two-dimensional (2D) spectra of a polyatomic molecule in the gas phase. As the system under study, we chose pyrazine, which is a paradigmatic example of photodynamics dominated by conical intersections (CIs). From the technical perspective, we demonstrate that the DW protocol is a numerically efficient methodology suitable for simulations of 2D spectra for a wide range of excitation/detection frequencies and population times. From the information content perspective, we show that peak evolutions and beating maps not only reveal timescales of transitions through CIs but also pinpoint the most relevant coupling and tuning modes active at these CIs.
Collapse
Affiliation(s)
- Siying Zhan
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiang Huang
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | - Kewei Sun
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
33
|
Abstract
Optimization of pump-probe signal requires a complete understanding of how signal scales with experimental factors. In simple systems, signal scales quadratically with molar absorptivity, and linearly with fluence, concentration, and path length. In practice, scaling factors weaken beyond certain thresholds (e.g., OD > 0.1) due to asymptotic limits related to optical density, fluence and path length. While computational models can accurately account for subdued scaling, quantitative explanations often appear quite technical in the literature. This Perspective aims to present a simpler understanding of the subject with concise formulas for estimating absolute magnitudes of signal under both ordinary and asymptotic scaling conditions. This formulation may be more appealing for spectroscopists seeking rough estimates of signal or relative comparisons. We identify scaling dependencies of signal with respect to experimental parameters and discuss applications for improving signal under broad conditions. We also review other signal enhancement methods, such as local-oscillator attenuation and plasmonic enhancement, and discuss respective benefits and challenges regarding asymptotic limits that signal cannot exceed.
Collapse
Affiliation(s)
- Kevin C Robben
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
34
|
Nguyen HH, Song Y, Maret EL, Silori Y, Willow R, Yocum CF, Ogilvie JP. Charge separation in the photosystem II reaction center resolved by multispectral two-dimensional electronic spectroscopy. SCIENCE ADVANCES 2023; 9:eade7190. [PMID: 37134172 PMCID: PMC10156117 DOI: 10.1126/sciadv.ade7190] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The photosystem II reaction center (PSII RC) performs the primary energy conversion steps of oxygenic photosynthesis. While the PSII RC has been studied extensively, the similar time scales of energy transfer and charge separation and the severely overlapping pigment transitions in the Qy region have led to multiple models of its charge separation mechanism and excitonic structure. Here, we combine two-dimensional electronic spectroscopy (2DES) with a continuum probe and two-dimensional electronic vibrational spectroscopy (2DEV) to study the cyt b559-D1D2 PSII RC at 77 K. This multispectral combination correlates the overlapping Qy excitons with distinct anion and pigment-specific Qx and mid-infrared transitions to resolve the charge separation mechanism and excitonic structure. Through extensive simultaneous analysis of the multispectral 2D data, we find that charge separation proceeds on multiple time scales from a delocalized excited state via a single pathway in which PheoD1 is the primary electron acceptor, while ChlD1 and PD1 act in concert as the primary electron donor.
Collapse
Affiliation(s)
- Hoang H Nguyen
- Department of Physics and Biophysics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
| | - Yin Song
- Department of Physics and Biophysics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
- School of Optics and Photonics, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Elizabeth L Maret
- Department of Physics and Biophysics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
| | - Yogita Silori
- Department of Physics and Biophysics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
| | - Rhiannon Willow
- Department of Physics and Biophysics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
| | - Charles F Yocum
- Department of Molecular, Cellular and Developmental Biology and Department of Chemistry, University of Michigan, 450 Church St, Ann Arbor, MI 48109, USA
| | - Jennifer P Ogilvie
- Department of Physics and Biophysics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Liu Z, Jha A, Liang XT, Duan HG. Transient chiral dynamics revealed by two-dimensional circular dichroism spectroscopy. Phys Rev E 2023; 107:054119. [PMID: 37329099 DOI: 10.1103/physreve.107.054119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
Chirality has been considered as one of the key factors in the evolution of life in nature. It is important to uncover how chiral potentials of molecular systems play vital role in fundamental photochemical processes. Here, we investigate the role of chirality in photoinduced energy transfer in a model dimeric system, where the monomers are excitonically coupled. To observe transient chiral dynamics and energy transfer, we employ circularly polarized laser pulses in two-dimensional electronic spectroscopy to construct the two-dimensional circular dichroism (2DCD) spectral maps. Tracking time-resolved peak magnitudes in 2DCD spectra allows one to identify chirality induced population dynamics. The dynamics of energy transfer is revealed by the time-resolved kinetics of cross peaks. However, the differential signal of 2DCD spectra shows the magnitude of cross peaks is dramatically reduced at initial waiting time, which indicates the weak chiral interactions between two monomers. The downhill energy transfer is resolved by presenting a strong magnitude of cross peak in 2DCD spectra after long waiting time. The chiral contribution towards coherent and incoherent energy-transfer pathways in the model dimer system is further examined via control of excitonic couplings between two monomers. Applications are made to study the energy-transfer process in the Fenna-Matthews-Olson complex. Our work uncovers the potential of 2DCD spectroscopy to resolve the chiral-induced interactions and population transfers in excitonically coupled systems.
Collapse
Affiliation(s)
- Zihui Liu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| | - Ajay Jha
- Rosalind Franklin Institute, Harwell, Oxfordshire OX11 0QX, United Kingdom
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Xian-Ting Liang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| | - Hong-Guang Duan
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| |
Collapse
|
36
|
Ansteatt S, Uthe B, Mandal B, Gelfand RS, Dunietz BD, Pelton M, Ptaszek M. Engineering giant excitonic coupling in bioinspired, covalently bridged BODIPY dyads. Phys Chem Chem Phys 2023; 25:8013-8027. [PMID: 36876508 DOI: 10.1039/d2cp05621f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Strong excitonic coupling in photosynthetic systems is believed to enable efficient light absorption and quantitative charge separation, motivating the development of artificial multi-chromophore arrays with equally strong or even stronger excitonic coupling. However, large excitonic coupling strengths have typically been accompanied by fast non-radiative recombination, limiting the potential of the arrays for solar energy conversion as well as other applications such as fluorescent labeling. Here, we report giant excitonic coupling leading to broad optical absorption in bioinspired BODIPY dyads that have high photostability, excited-state lifetimes at the nanosecond scale, and fluorescence quantum yields of nearly 50%. Through the synthesis, spectroscopic characterization, and computational modeling of a series of dyads with different linking moieties, we show that the strongest coupling is obtained with diethynylmaleimide linkers, for which the coupling occurs through space between BODIPY units with small separations and slipped co-facial orientations. Other linkers allow for broad tuning of both the relative through-bond and through-space coupling contributions and the overall strength of interpigment coupling, with a tradeoff observed in general between the strength of the two coupling mechanisms. These findings open the door to the synthesis of molecular systems that function effectively as light-harvesting antennas and as electron donors or acceptors for solar energy conversion.
Collapse
Affiliation(s)
- Sara Ansteatt
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Brian Uthe
- Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Bikash Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Rachel S Gelfand
- Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| | - Matthew Pelton
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA. .,Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
37
|
Calderón LF, Chuang C, Brumer P. Electronic-Vibrational Resonance Does Not Significantly Alter Steady-State Transport in Natural Light-Harvesting Systems. J Phys Chem Lett 2023; 14:1436-1444. [PMID: 36734680 DOI: 10.1021/acs.jpclett.2c03842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Oscillations in time-dependent two-dimensional electronic spectra appear as evidence of quantum coherence in light-harvesting systems related to electronic-vibrational resonant interactions. Nature, however, takes place in a non-equilibrium steady-state; therefore, the relevance of these arguments to the natural process is unclear. Here, we examine the role of intramolecular vibrations in the non-equilibrium steady-state of photosynthetic dimers in the natural scenario of incoherent light excitation. Specifically, we analyze the PEB dimer in the cryptophyte algae PE545 antenna protein. It is found that vibrations resonant with the energy difference between exciton states only marginally increase the quantum yield and the imaginary part of the intersite coherence that is relevant for transport compared to non-resonant vibrations in the natural non-equilibrium steady-state. That is, the electronic-vibrational resonance interaction does not significantly enhance energy transport under natural incoherent light excitation conditions.
Collapse
Affiliation(s)
- Leonardo F Calderón
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Grupo de Física Computacional en Materia Condensada, Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Carrera 27 Calle 9, Bucaramanga, Santander 680002, Colombia
| | - Chern Chuang
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
38
|
Tsubouchi M, Ishii N, Kagotani Y, Shimizu R, Fujita T, Adachi M, Itakura R. Beat-frequency-resolved two-dimensional electronic spectroscopy: disentangling vibrational coherences in artificial fluorescent proteins with sub-10-fs visible laser pulses. OPTICS EXPRESS 2023; 31:6890-6906. [PMID: 36823935 DOI: 10.1364/oe.480505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
We perform a beat-frequency-resolved analysis for two-dimensional electronic spectroscopy using a high-speed and stable 2D electronic spectrometer and few-cycle visible laser pulses to disentangle the vibrational coherences in an artificial fluorescent protein. We develop a highly stable ultrashort light source that generates 5.3-fs visible pulses with a pulse energy of 4.7 µJ at a repetition rate of 10 kHz using multi-plate pulse compression and laser filamentation in a gas cell. The above-5.3-fs laser pulses together with a high-speed multichannel detector enable us to measure a series of 2D electronic spectra, which are resolved in terms of beat frequency related to vibrational coherence. We successfully extract the discrete vibrational peaks behind the inhomogeneous broadening in the absorption spectra and the vibrational quantum beats of the excited electronic state behind the strong incoherent population background in the typical 2D electronic spectra.
Collapse
|
39
|
Leng X, Yan Y, Zhu R, Zou J, Zhang W, Shi Q. Revealing Intermolecular Electronic and Vibronic Coherence with Polarization-Dependent Two-Dimensional Beating Maps. J Phys Chem Lett 2023; 14:838-845. [PMID: 36656105 DOI: 10.1021/acs.jpclett.2c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional electronic spectroscopy (2DES) has been widely employed as an efficient tool to reveal the impact of intermolecular electronic and/or vibronic quantum coherence on excitation energy transfer in light-harvesting complexes. However, intramolecular vibrational coherence would also contribute to oscillating signals in 2D spectra, along with the intermolecular coherence signals that are directly related to energy transfer. In this work, the possibility of screening the vibrational coherence signals is explored through polarization-dependent 2DES. The all-parallel (AP) and double-crossed (DC) polarization-dependent two-dimensional rephasing spectra (2DRS) are simulated for a minimalist heterodimer model with vibrational coupling. By combining the DC-2DRS and the 2D beating maps, we demonstrate that the population and vibrational coherence signals can be largely suppressed, resulting in highlighted intermolecular electronic and vibronic coherence signals. Moreover, the AP- and DC-2DBMs show rather different patterns at the vibrational frequency, indicating a possible way to identify pure vibrational coherence.
Collapse
Affiliation(s)
- Xuan Leng
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Ruidan Zhu
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiading Zou
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhao Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Jing H, Magdaong NCM, Diers JR, Kirmaier C, Bocian DF, Holten D, Lindsey JS. Dyads with tunable near-infrared donor-acceptor excited-state energy gaps: molecular design and Förster analysis for ultrafast energy transfer. Phys Chem Chem Phys 2023; 25:1827-1847. [PMID: 36601996 DOI: 10.1039/d2cp04689j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bacteriochlorophylls, nature's near-infrared absorbers, play an essential role in energy transfer in photosynthetic antennas and reaction centers. To probe energy-transfer processes akin to those in photosynthetic systems, nine synthetic bacteriochlorin-bacteriochlorin dyads have been prepared wherein the constituent pigments are joined at the meso-positions by a phenylethyne linker. The phenylethyne linker is an unsymmetric auxochrome, which differentially shifts the excited-state energies of the phenyl- or ethynyl-attached bacteriochlorin constituents in the dyad. Molecular designs utilized known effects of macrocycle substituents to engineer bacteriochlorins with S0 → S1 (Qy) transitions spanning 725-788 nm. The design-predicted donor-acceptor excited-state energy gaps in the dyads agree well with those obtained from time dependent density functional theory calculations and with the measured range of 197-1089 cm-1. Similar trends with donor-acceptor excited-state energy gaps are found for (1) the measured ultrafast energy-transfer rates of (0.3-1.7 ps)-1, (2) the spectral overlap integral (J) in Förster energy-transfer theory, and (3) donor-acceptor electronic mixing manifested in the natural transition orbitals for the S0 → S1 transition. Subtle outcomes include the near orthogonal orientation of the π-planes of the bacteriochlorin macrocycles, and the substituent-induced shift in transition-dipole moment from the typical coincidence with the NH-NH axis; the two features together afforded the Förster orientation term κ2 ranging from 0.55-1.53 across the nine dyads, a value supportive of efficient excited-state energy transfer. The molecular design and collective insights on the dyads are valuable for studies relevant to artificial photosynthesis and other processes requiring ultrafast energy transfer.
Collapse
Affiliation(s)
- Haoyu Jing
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
| | | | - James R Diers
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA.
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, USA.
| | - David F Bocian
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA.
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, USA.
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
| |
Collapse
|
41
|
Zakutauskaitė K, Mačernis M, Nguyen HH, Ogilvie JP, Abramavičius D. Extracting the excitonic Hamiltonian of a chlorophyll dimer from broadband two-dimensional electronic spectroscopy. J Chem Phys 2023; 158:015103. [PMID: 36610982 DOI: 10.1063/5.0108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We apply Frenkel exciton theory to model the entire Q-band of a tightly bound chlorophyll dimer inspired by the photosynthetic reaction center of photosystem II. The potential of broadband two-dimensional electronic spectroscopy experiment spanning the Qx and Qy regions to extract the parameters of the model dimer Hamiltonian is examined through theoretical simulations of the experiment. We find that the local nature of Qx excitation enables identification of molecular properties of the delocalized Qy excitons. Specifically, we demonstrate that the cross-peak region, where excitation energy is resonant with Qy while detection is at Qx, contains specific spectral signatures that can reveal the full real-space molecular Hamiltonian, a task that is impossible by considering the Qy transitions alone. System-bath coupling and site energy disorder in realistic systems may limit the resolution of these spectral signatures due to spectral congestion.
Collapse
Affiliation(s)
- Kristina Zakutauskaitė
- Institute of Chemical Physics, Vilnius University, Sauletekio al. 9-III, Vilnius, Lithuania
| | - Mindaugas Mačernis
- Institute of Chemical Physics, Vilnius University, Sauletekio al. 9-III, Vilnius, Lithuania
| | - Hoang H Nguyen
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Darius Abramavičius
- Institute of Chemical Physics, Vilnius University, Sauletekio al. 9-III, Vilnius, Lithuania
| |
Collapse
|
42
|
Wang Z, Zhang Y, Zhang S, Ge M, Zhang H, Wang S, Chen Z, Li S, Yang C. Natural xylose-derived carbon dots towards efficient semi-artificial photosynthesis. J Colloid Interface Sci 2023; 629:12-21. [PMID: 36150244 DOI: 10.1016/j.jcis.2022.09.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Photosynthesis by plants stores sunlight into chemicals and drives CO2 fixation into sugars with low biomass conversion efficiency due to the unoptimized solar spectrum utilization and various chemical conversion possibilities that follow H2O oxidation. Expanding the solar spectrum utilization and optimizing the charge transfer pathway of photosynthesis is critical to improving the conversion efficiency. Here, a group of carbon dots (CDs) with distinct content of sp2 CC domain are prepared by one-step carbonization of natural xylose, which penetrated natural chloroplasts and integrated with the grana thylakoid to promote in vitro photosynthesis. Structural characterization and electrochemical results reveal the positive impact of graphitization degree on the electron transport capacity of CDs. Classic Hill reaction and ATP production demonstrate the enhanced photosynthetic activity resulting from the CDs-mediated electron transfer of photosystem II. In-depth studies of the structure-function relationship prove the synergistic effect of intensified biotic-abiotic interaction between CDs and chloroplast, lower charge transfer resistance, and extended light absorption. This work posts a promising method to optimize electron transport and improve natural photosynthesis using artificial interventions.
Collapse
Affiliation(s)
- Zirui Wang
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yahui Zhang
- Chinese Academy of Forestry, Research Institute of Wood Industry, Xiang Shan Road, Haidian, 100091 Beijing China.
| | - Siyu Zhang
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Min Ge
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Zhijun Chen
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Shujun Li
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Chenhui Yang
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
43
|
Zhang L, Fassioli F, Fu B, She ZS, Scholes GD. Modeling Excited-State Proton Transfer Using the Lindblad Equation: Quantification of Time-Resolved Spectroscopy with Mechanistic Insights. ACS PHYSICAL CHEMISTRY AU 2022; 3:107-118. [PMID: 36718263 PMCID: PMC9881171 DOI: 10.1021/acsphyschemau.2c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
The quantum dynamics of excited-state intramolecular proton transfer (ESIPT) is studied using a multilevel vibronic Hamiltonian and the Lindblad master equation. We simulate time-resolved fluorescence spectroscopy of 2-(2'-hydroxyphenyl) benzothiazole (HBT) and 10-hydroxybenzo[h]quinoline (HBQ), which suggests that the underlying mechanism behind the initial ultrafast rise and decay in the spectra is electronic state population that evolves simultaneously with proton wave packet dynamics. The results predict that the initial rise and decay signals at different wavelengths vary significantly with system properties in terms of their shape, the time, and the intensity of the maximum. These findings provide clues for data interpretation, mechanism validation, and control of the dynamics, and the model serves as an attempt toward clarifying ESIPT by direct comparison to time-resolved spectroscopy.
Collapse
Affiliation(s)
- Luhao Zhang
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Francesca Fassioli
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States,SISSA
− Scuola Internazionale Superiore di Studi Avanzati, 34136Trieste, TS, Italy,
| | - Bo Fu
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Zhen-Su She
- Department
of Mechanical and Engineering Science, Peking
University, Beijing100871, China,. Phone: +86-010-62766559
| | - Gregory D. Scholes
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States,. Phone: +1-609-258-0729
| |
Collapse
|
44
|
From antenna to reaction center: Pathways of ultrafast energy and charge transfer in photosystem II. Proc Natl Acad Sci U S A 2022; 119:e2208033119. [PMID: 36215463 PMCID: PMC9586314 DOI: 10.1073/pnas.2208033119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The photosystem II core complex (PSII-CC) is a photosynthetic complex that contains antenna proteins, which collect energy from sunlight, and a reaction center, which converts the collected energy to redox potential. Understanding the interplay between the antenna proteins and the reaction center will facilitate the development of more efficient solar energy conversion technologies. Here, we study the sub-100-ps dynamics of PSII-CC with two-dimensional electronic-vibrational spectroscopy, which connects energy flows with physical space, allowing a direct mapping of energy transfer pathways. Our results reveal a complex dynamical scheme which includes a specific pathway that connects CP43 to the reaction center. Resolving this pathway experimentally provides insights into the energy conversion processes in natural photosynthesis. The photosystem II core complex (PSII-CC) is the smallest subunit of the oxygenic photosynthetic apparatus that contains core antennas and a reaction center, which together allow for rapid energy transfer and charge separation, ultimately leading to efficient solar energy conversion. However, there is a lack of consensus on the interplay between the energy transfer and charge separation dynamics of the core complex. Here, we report the application of two-dimensional electronic-vibrational (2DEV) spectroscopy to the spinach PSII-CC at 77 K. The simultaneous temporal and spectral resolution afforded by 2DEV spectroscopy facilitates the separation and direct assignment of coexisting dynamical processes. Our results show that the dominant dynamics of the PSII-CC are distinct in different excitation energy regions. By separating the excitation regions, we are able to distinguish the intraprotein dynamics and interprotein energy transfer. Additionally, with the improved resolution, we are able to identify the key pigments involved in the pathways, allowing for a direct connection between dynamical and structural information. Specifically, we show that C505 in CP43 and the peripheral chlorophyll ChlzD1 in the reaction center are most likely responsible for energy transfer from CP43 to the reaction center.
Collapse
|
45
|
Nüßeler A, Tamascelli D, Smirne A, Lim J, Huelga SF, Plenio MB. Fingerprint and Universal Markovian Closure of Structured Bosonic Environments. PHYSICAL REVIEW LETTERS 2022; 129:140604. [PMID: 36240420 DOI: 10.1103/physrevlett.129.140604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
We exploit the properties of chain mapping transformations of bosonic environments to identify a finite collection of modes able to capture the characteristic features, or fingerprint, of the environment. Moreover we show that the countable infinity of residual bath modes can be replaced by a universal Markovian closure, namely, a small collection of damped modes undergoing a Lindblad-type dynamics whose parametrization is independent of the spectral density under consideration. We show that the Markovian closure provides a quadratic speedup with respect to standard chain mapping techniques and makes the memory requirement independent of the simulation time, while preserving all the information on the fingerprint modes. We illustrate the application of the Markovian closure to the computation of linear spectra but also to nonlinear spectral response, a relevant experimentally accessible many body coherence witness for which efficient numerically exact calculations in realistic environments are currently lacking.
Collapse
Affiliation(s)
- Alexander Nüßeler
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89069 Ulm, Germany
| | - Dario Tamascelli
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89069 Ulm, Germany
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Andrea Smirne
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
| | - James Lim
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89069 Ulm, Germany
| | - Susana F Huelga
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89069 Ulm, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89069 Ulm, Germany
| |
Collapse
|
46
|
Magdaong NCM, Jing H, Diers JR, Kirmaier C, Lindsey JS, Bocian DF, Holten D. Probing the Effects of Electronic-Vibrational Resonance on the Rate of Excited-State Energy Transfer in Bacteriochlorin Dyads. J Phys Chem Lett 2022; 13:7906-7910. [PMID: 35980198 DOI: 10.1021/acs.jpclett.2c02154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The impact of vibrational-electronic resonances on the rate of excited-state energy transfer is examined in a set of bacteriochlorin dyads that employ the same phenylethyne linker. The donor/acceptor excited-state energy gap is tuned from ∼200 to ∼1100 cm-1 using peripheral substituents on the donor and acceptor bacteriochlorin macrocycles. Ultrafast energy transfer is observed with rate constants of (0.3 ps)-1 to (1.7 ps)-1, which agree with those predicted by Förster theory to within a factor of 2. Furthermore, the measured rates follow a trend-line with only small deviations that do not correlate with the density of vibrations at the donor/acceptor excited-state energy gap. Thus, if vibrational-electronic resonances occur in any of these dyads, which seems likely, the impact on the rate of energy transfer is small.
Collapse
Affiliation(s)
- Nikki Cecil M Magdaong
- Department of Chemistry, Washington University, St. Louis, Missouri63130-4889, United States
| | - Haoyu Jing
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina27695-8204, United States
| | - James R Diers
- Department of Chemistry, University of California, Riverside, Riverside, California92521-0403, United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri63130-4889, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina27695-8204, United States
| | - David F Bocian
- Department of Chemistry, University of California, Riverside, Riverside, California92521-0403, United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri63130-4889, United States
| |
Collapse
|
47
|
Parker KA, Schultz JD, Singh N, Wasielewski MR, Beratan DN. Mapping Simulated Two-Dimensional Spectra to Molecular Models Using Machine Learning. J Phys Chem Lett 2022; 13:7454-7461. [PMID: 35930790 DOI: 10.1021/acs.jpclett.2c01913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) spectroscopy encodes molecular properties and dynamics into expansive spectral data sets. Translating these data into meaningful chemical insights is challenging because of the many ways chemical properties can influence the spectra. To address the task of extracting chemical information from 2D spectroscopy, we study the capacity of simple feedforward neural networks (NNs) to map simulated 2D electronic spectra to underlying physical Hamiltonians. We examined hundreds of simulated 2D spectra corresponding to monomers and dimers with varied Franck-Condon active vibrations and monomer-monomer electronic couplings. We find the NNs are able to correctly characterize most Hamiltonian parameters in this study with an accuracy above 90%. Our results demonstrate that NNs can aid in interpreting 2D spectra, leading from spectroscopic features to underlying effective Hamiltonians.
Collapse
Affiliation(s)
- Kelsey A Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Niven Singh
- Program in Computational Biology and Bioinformatics, Center for Genomics and Computational Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
48
|
Fang J, Chen ZH, Su Y, Zhu ZF, Wang Y, Xu RX, Yan Y. Coherent excitation energy transfer in model photosynthetic reaction center: Effects of non-Markovian quantum environment. J Chem Phys 2022; 157:084119. [DOI: 10.1063/5.0104641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Excitation energy transfer (EET) and electron transfer (ET) are crucially involved in photosynthetic processes. In reality, the photosynthetic reaction center constitutes an open quantum system of EET and ET, which manifests an interplay of pigments, solar light and phonon baths. So far theoretical studies have been mainly based on master equation approaches in the Markovian condition. The non-Markovian environmental effect, which may play a crucial role, has not been sufficiently considered. In this work, we propose a mixed dynamic approach to investigate this open system. The influence of phonon bath is treated via the exact dissipaton equation of motion (DEOM) while that of photon bath is via the Lindblad master equation. Specifically, we explore the effect of non-Markovian quantum phonon bath on the coherent transfer dynamics and its manipulation on the current--voltage behavior. Distinguished from the results of completely Markovian Lindblad equation and those adopting classical environment description, the mixed DEOM--Lindblad simulations exhibittransfer coherence up to a few hundreds femtosecondsand the related environmental manipulation effect on current.These non-Markovian quantum coherent effects may be extended tomore complex and realistic systems and be helpful to thedesign of organic photovoltaic devices.
Collapse
Affiliation(s)
- Jie Fang
- University of Science and Technology of China, China
| | - Zi-Hao Chen
- University of Science and Technology of China, China
| | - Yu Su
- Department of Chemical Physics, University of Science and Technology of China, China
| | - Zi-Fan Zhu
- University of Science and Technology of China, China
| | - Yao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, China
| | - Rui-Xue Xu
- University of Science and Technology of China, China
| | - YiJing Yan
- Department of Chemical Physics, USTC, China
| |
Collapse
|
49
|
Cherepanov DA, Semenov AY, Mamedov MD, Aybush AV, Gostev FE, Shelaev IV, Shuvalov VA, Nadtochenko VA. Current state of the primary charge separation mechanism in photosystem I of cyanobacteria. Biophys Rev 2022; 14:805-820. [PMID: 36124265 PMCID: PMC9481807 DOI: 10.1007/s12551-022-00983-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022] Open
Abstract
This review analyzes new data on the mechanism of ultrafast reactions of primary charge separation in photosystem I (PS I) of cyanobacteria obtained in the last decade by methods of femtosecond absorption spectroscopy. Cyanobacterial PS I from many species harbours 96 chlorophyll a (Chl a) molecules, including six specialized Chls denoted Chl1A/Chl1B (dimer P700, or PAPB), Chl2A/Chl2B, and Chl3A/Chl3B arranged in two branches, which participate in electron transfer reactions. The current data indicate that the primary charge separation occurs in a symmetric exciplex, where the special pair P700 is electronically coupled to the symmetrically located monomers Chl2A and Chl2B, which can be considered together as a symmetric exciplex Chl2APAPBChl2B with the mixed excited (Chl2APAPBChl2B)* and two charge-transfer states P700 +Chl2A - and P700 +Chl2B -. The redistribution of electrons between the branches in favor of the A-branch occurs after reduction of the Chl2A and Chl2B monomers. The formation of charge-transfer states and the symmetry breaking mechanisms were clarified by measuring the electrochromic Stark shift of β-carotene and the absorption dynamics of PS I complexes with the genetically altered Chl 2B or Chl 2A monomers. The review gives a brief description of the main methods for analyzing data obtained using femtosecond absorption spectroscopy. The energy levels of excited and charge-transfer intermediates arising in the cyanobacterial PS I are critically analyzed.
Collapse
Affiliation(s)
- Dmitry A. Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Mahir D. Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Arseniy V. Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Fedor E. Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Ivan V. Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Vladimir A. Shuvalov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Victor A. Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia
| |
Collapse
|
50
|
Quintela Rodriguez FE, Troiani F. Vibrational response functions for multidimensional electronic spectroscopy in the adiabatic regime: A coherent-state approach. J Chem Phys 2022; 157:034107. [DOI: 10.1063/5.0094512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multi-dimensional spectroscopy represents a particularly insightful tool for investigating the interplay of nuclear and electronic dynamics, which plays an important role in a number of photophysical processes and photochemical reactions. Here, we present a coherent state representation of the vibronic dynamics and of the resulting response functions for the widely used linearly displaced harmonic oscillator model. Analytical expressions are initially derived for the case of third-order response functions in an N-level system, with ground state initialization of the oscillator (zero-temperature limit). The results are then generalized to the case of Mth order response functions, with arbitrary M. The formal derivation is translated into a simple recipe, whereby the explicit analytical expressions of the response functions can be derived directly from the Feynman diagrams. We further generalize to the whole set of initial coherent states, which form an overcomplete basis. This allows one, in principle, to derive the dependence of the response functions on arbitrary initial states of the vibrational modes and is here applied to the case of thermal states. Finally, a non-Hermitian Hamiltonian approach is used to include in the above expressions the effect of vibrational relaxation.
Collapse
Affiliation(s)
| | - Filippo Troiani
- Centro S3, CNR-Istituto di Nanoscienze, I-41125 Modena, Italy
| |
Collapse
|