1
|
Xu X, Gao C, Emusani R, Jia C, Xiang D. Toward Practical Single-Molecule/Atom Switches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400877. [PMID: 38810145 PMCID: PMC11304318 DOI: 10.1002/advs.202400877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/29/2024] [Indexed: 05/31/2024]
Abstract
Electronic switches have been considered to be one of the most important components of contemporary electronic circuits for processing and storing digital information. Fabricating functional devices with building blocks of atomic/molecular switches can greatly promote the minimization of the devices and meet the requirement of high integration. This review highlights key developments in the fabrication and application of molecular switching devices. This overview offers valuable insights into the switching mechanisms under various stimuli, emphasizing structural and energy state changes in the core molecules. Beyond the molecular switches, typical individual metal atomic switches are further introduced. A critical discussion of the main challenges for realizing and developing practical molecular/atomic switches is provided. These analyses and summaries will contribute to a comprehensive understanding of the switch mechanisms, providing guidance for the rational design of functional nanoswitch devices toward practical applications.
Collapse
Affiliation(s)
- Xiaona Xu
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Chunyan Gao
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Ramya Emusani
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Chuancheng Jia
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Dong Xiang
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| |
Collapse
|
2
|
Gao HY. Recent advances in organic molecule reactions on metal surfaces. Phys Chem Chem Phys 2024; 26:19052-19068. [PMID: 38860468 DOI: 10.1039/d3cp06148e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Chemical reactions of organic molecules on metal surfaces have been intensively investigated in the past decades, where metals play the role of catalysts in many cases. In this review, first, we summarize recent works on spatial molecules, small H2O, O2, CO, CO2 molecules, and the molecules carrying silicon groups as the new trends of molecular candidates for on-surface chemistry applications. Then, we introduce spectroscopy and DFT study advances in on-surface reactions. Especially, in situ spectroscopy technologies, such as electron spectroscopy, force spectroscopy, X-ray photoemission spectroscopy, STM-induced luminescence, tip-enhanced Raman spectroscopy, temperature-programmed desorption spectroscopy, and infrared reflection adsorption spectroscopy, are important to confirm the occurrence of organic reactions and analyze the products. To understand the underlying mechanism, the DFT study provides detailed information about reaction pathways, conformational evolution, and organometallic intermediates. Usually, STM/nc-AFM topological images, in situ spectroscopy data, and DFT studies are combined to describe the mechanism behind on-surface organic reactions.
Collapse
Affiliation(s)
- Hong-Ying Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300350, China
- Tianjin Key Laboratory of Applied Catalysis Science and Engineering, Tianjin 300350, China
| |
Collapse
|
3
|
Rehhagen C, Argüello Cordero MA, Kamounah FS, Deneva V, Angelov I, Krupp M, Svenningsen SRW, Pittelkow M, Lochbrunner S, Antonov L. Reversible Switching Based on Truly Intramolecular Long-Range Proton Transfer─Turning the Theoretical Concept into Experimental Reality. J Am Chem Soc 2024; 146:2043-2053. [PMID: 38214997 DOI: 10.1021/jacs.3c10789] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Herein, we demonstrate a working prototype of a conjugated proton crane, a reversible tautomeric switching molecule in which truly intramolecular long-range proton transfer occurs in solution at room temperature. The system consists of a benzothiazole rotor attached to a 7-hydroxy quinoline stator. According to the experimental and theoretical results, the OH proton is delivered under irradiation to the quinolyl nitrogen atom through a series of consecutive proton transfer and twisting steps. The use of a rigid rotor prevents undesired side processes that decrease the switching performance in previously described proton cranes and provides an unprecedented switching efficiency and fatigue resistance. The newly designed system confirms the theoretical concept for the application of proton transfer-initiated intramolecular twisting as the switching mechanism, developed more than 10 years ago, and provides unique insights for the further development of tautomeric molecular switches and motors, molecular logic gates, and new molecular-level energy storage systems.
Collapse
Affiliation(s)
- Chris Rehhagen
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Miguel A Argüello Cordero
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Vera Deneva
- Institute of Electronics, Bulgarian Academy of Sciences, BG-1784 Sofia, Bulgaria
| | - Ivan Angelov
- Institute of Electronics, Bulgarian Academy of Sciences, BG-1784 Sofia, Bulgaria
| | - Marvin Krupp
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - So Ren W Svenningsen
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Michael Pittelkow
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Stefan Lochbrunner
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Liudmil Antonov
- Institute of Electronics, Bulgarian Academy of Sciences, BG-1784 Sofia, Bulgaria
| |
Collapse
|
4
|
Waluk J. Nuclear Quantum Effects in Proton or Hydrogen Transfer. J Phys Chem Lett 2024; 15:598-607. [PMID: 38198616 PMCID: PMC10801683 DOI: 10.1021/acs.jpclett.3c03368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Proton or hydrogen transfers, basic chemical reactions, proceed either by thermally activated barrier crossing or via tunneling. Studies of molecules undergoing single or double proton or hydrogen transfer in the ground or excited electronic state reveal that tunneling can dominate under conditions usually considered to favor the thermal process. Moreover, the tunneling probability strongly varies for excitation of certain vibrational modes, which changes the effective barrier and/or proton transfer distance. When the reaction is fast compared to vibrational relaxation, the mode selectivity can still be maintained for molecules in solutions at 293 K. These observations point to dangers of relating the calculated minimum energy paths and the associated barriers to the experimentally obtained activation energies. The multidimensional character of the reaction coordinate is obvious; it can dramatically change for slowly and rapidly relaxing environments. We postulate that the hydrogen bond definition should be extended by specifically including the role of molecular vibrations.
Collapse
Affiliation(s)
- Jacek Waluk
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty
of Mathematics and Science, Cardinal Stefan
Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| |
Collapse
|
5
|
Cao Y, Mieres-Perez J, Rowen JF, Sanchez-Garcia E, Sander W, Morgenstern K. Chirality control of a single carbene molecule by tip-induced van der Waals interactions. Nat Commun 2023; 14:4500. [PMID: 37495625 PMCID: PMC10371978 DOI: 10.1038/s41467-023-39870-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/28/2023] [Indexed: 07/28/2023] Open
Abstract
Non-covalent interactions such as van der Waals interactions and hydrogen bonds are crucial for the chiral induction and control of molecules, but it remains difficult to study them at the single-molecule level. Here, we report a carbene molecule on a copper surface as a prototype of an anchored molecule with a facile chirality change. We examine the influence of the attractive van der Waals interactions on the chirality change by regulating the tip-molecule distance, resulting in an excess of a carbene enantiomer. Our model study provides insight into the change of molecular chirality controlled by van der Waals interactions, which is fundamental for understanding the mechanisms of chiral induction and amplification.
Collapse
Affiliation(s)
- Yunjun Cao
- Physical Chemistry I, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801, Bochum, Germany
| | - Joel Mieres-Perez
- Computational Bioengineering, Technical University Dortmund, Emil-Figge-Str. 66, 44227, Dortmund, Germany
- Computational Biochemistry, Universität Duisburg-Essen, Universitätsstr. 2, D-45141, Essen, Germany
| | - Julien Frederic Rowen
- Organic Chemistry II, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801, Bochum, Germany
| | - Elsa Sanchez-Garcia
- Computational Bioengineering, Technical University Dortmund, Emil-Figge-Str. 66, 44227, Dortmund, Germany
- Computational Biochemistry, Universität Duisburg-Essen, Universitätsstr. 2, D-45141, Essen, Germany
| | - Wolfram Sander
- Organic Chemistry II, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801, Bochum, Germany
| | - Karina Morgenstern
- Physical Chemistry I, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801, Bochum, Germany.
| |
Collapse
|
6
|
Tang C, Stuyver T, Lu T, Liu J, Ye Y, Gao T, Lin L, Zheng J, Liu W, Shi J, Shaik S, Xia H, Hong W. Voltage-driven control of single-molecule keto-enol equilibrium in a two-terminal junction system. Nat Commun 2023; 14:3657. [PMID: 37339947 DOI: 10.1038/s41467-023-39198-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023] Open
Abstract
Keto-enol tautomerism, describing an equilibrium involving two tautomers with distinctive structures, provides a promising platform for modulating nanoscale charge transport. However, such equilibria are generally dominated by the keto form, while a high isomerization barrier limits the transformation to the enol form, suggesting a considerable challenge to control the tautomerism. Here, we achieve single-molecule control of a keto-enol equilibrium at room temperature by using a strategy that combines redox control and electric field modulation. Based on the control of charge injection in the single-molecule junction, we could access charged potential energy surfaces with opposite thermodynamic driving forces, i.e., exhibiting a preference for the conducting enol form, while the isomerization barrier is also significantly reduced. Thus, we could selectively obtain desired and stable tautomers, which leads to significant modulation of the single-molecule conductance. This work highlights the concept of single-molecule control of chemical reactions on more than one potential energy surface.
Collapse
Affiliation(s)
- Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Thijs Stuyver
- Institute of Chemistry, Edmond J. Safra Campus at Givat Ram, The Hebrew University, Jerusalem, 91904, Israel
- Ecole Nationale Supérieure de Chimie de Paris, Université PSL, CNRS, Institute of Chemistry for Life and Health Sciences, 75 005, Paris, France
| | - Taige Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yiling Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Tengyang Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Luchun Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wenqing Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Sason Shaik
- Institute of Chemistry, Edmond J. Safra Campus at Givat Ram, The Hebrew University, Jerusalem, 91904, Israel.
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
| |
Collapse
|
7
|
Jaekel S, Durant E, Schied M, Persson M, Ostapko J, Kijak M, Waluk J, Grill L. Tautomerization of single asymmetric oxahemiporphycene molecules on Cu(111). Phys Chem Chem Phys 2023; 25:1096-1104. [PMID: 36530140 DOI: 10.1039/d2cp04746b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have studied 22-oxahemiporphycene molecules by a combination of scanning tunneling microscopy at low temperatures and density functional theory calculations. In contrast to other molecular switches with typically two switching states, these molecules can in principle exist in three different tautomers, due to their asymmetry and three inequivalent binding positions of a hydrogen atom in their macrocycle. Different tautomers are identified from the typical appearance on the surface and tunneling electrons can be used to tautomerize single molecules in a controllable way with the highest rates if the STM tip is placed close to the hydrogen binding positions in the cavity. Characteristic switching processes are explained by the different energy pathways upon adsorption on the surface. Upon applying higher bias voltages, deprotonation occurs instead of tautomerization, which becomes evident in the molecular appearance.
Collapse
Affiliation(s)
- Simon Jaekel
- Department of Physical Chemistry, University of Graz, Heinrichstraße 28, Graz, Austria.
| | - Emile Durant
- Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, UK
| | - Monika Schied
- Department of Physical Chemistry, University of Graz, Heinrichstraße 28, Graz, Austria.
| | - Mats Persson
- Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, UK
| | - Jakub Ostapko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Michał Kijak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jacek Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| | - Leonhard Grill
- Department of Physical Chemistry, University of Graz, Heinrichstraße 28, Graz, Austria.
| |
Collapse
|
8
|
Mbakara I, Gajewska A, Listkowski A, Kijak M, Nawara K, Kumpulainen T, Vauthey E, Waluk J. Spectroscopic investigation of photophysics and tautomerism of amino- and nitroporphycenes. Phys Chem Chem Phys 2022; 24:29655-29666. [PMID: 36453100 DOI: 10.1039/d2cp04555a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parent, unsubstituted porphycene and its two derivatives: 2,7,12,17-tetra-n-propylporphycene and 2,7,12,17-tetra-t-butylporphycene were substituted at the meso position with amino and nitro groups. These two families of porphycenes were characterized in detail with respect to their spectral, photophysical, and tautomeric properties. Two trans tautomers of similar energies coexist in the ground electronic state, but only one form dominates in the lowest excited singlet state. Absorption, magnetic circular dichroism (MCD), and emission anisotropy combined with quantum-chemical calculations led to the assignment of S1 and S2 transitions in both tautomers. Compared with the parent porphycene, the S1-S2 energy gap significantly increases; for one tautomeric form, the effect is twice as large as for the other. Both amino- and nitroporphycenes emit single fluorescence; previously reported dual emission of aminoporphycenes is attributed to a degradation product. Introduction of bulky t-butyl groups leads to a huge decrease in fluorescence intensity; this effect, arising from the interaction of the meso substituent with the adjacent t-butyl moiety, is particularly strong in the nitro derivative.
Collapse
Affiliation(s)
- Idaresit Mbakara
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland.
| | - Agnieszka Gajewska
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland.
| | - Arkadiusz Listkowski
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland. .,Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| | - Michał Kijak
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland.
| | - Krzysztof Nawara
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland. .,Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| | - Tatu Kumpulainen
- Physical Chemistry Department, Sciences II, University of Geneva, 30, Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Eric Vauthey
- Physical Chemistry Department, Sciences II, University of Geneva, 30, Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Jacek Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Kasprzaka 44/52, Poland. .,Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| |
Collapse
|
9
|
Rothe K, Néel N, Bocquet ML, Kröger J. Tracking the Interaction between a CO-Functionalized Probe and Two Ag-Phthalocyanine Conformers by Local Vertical Force Spectroscopy. J Phys Chem A 2022; 126:6890-6897. [PMID: 36154143 DOI: 10.1021/acs.jpca.2c04760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intentionally terminating scanning probes with a single atom or molecule belongs to a rapidly growing field in the quantum chemistry and physics at surfaces. However, the detailed understanding of the coupling between the probe and adsorbate is in its infancy. Here, an atomic force microscopy probe functionalized with a single CO molecule is approached with picometer control to two conformational isomers of Ag-phthalocyanine adsorbed on Ag(111). The isomer with the central Ag atom pointing to CO exhibits a complex evolution of the distance-dependent interaction, while the conformer with Ag bonded to the metal surface gives rise to a Lennard-Jones behavior. By virtue of spatially resolved force spectroscopy and the comparison with results obtained from microscope probes terminated with a single Ag atom, the mutual coupling of the protruding O atom of the tip and the Ag atom of the phthalocyanine molecule is identified as the cause for the unconventional variation of the force. Simulations of the entire junction within density functional theory unveil the presence of ample relaxations in the case of one conformer, which represents a rationale for the peculiar vertical-distance evolution of the interaction. The simulations highlight the role of physisorption, chemisorption, and unexpected junction distortions at the verge of bond formation in the interpretation of the distance-dependent force between two molecules.
Collapse
Affiliation(s)
- Karl Rothe
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Nicolas Néel
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Marie-Laure Bocquet
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, F-75005 Paris, France
| | - Jörg Kröger
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| |
Collapse
|
10
|
Rothe K, Néel N, Bocquet ML, Kröger J. Extraction of Chemical Reactivity and Structural Relaxations of an Organic Dye from the Short-Range Interaction with a Molecular Probe. J Phys Chem Lett 2022; 13:8660-8665. [PMID: 36084075 DOI: 10.1021/acs.jpclett.2c02140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A CO-functionalized atomic force microscope tip is used to locally probe local chemical reactivity and subtle structural relaxations of a single phthalocyanine molecule at different stages of pyrrolic-H abstraction. Spatially resolved vertical force spectroscopy unveils a variation of the maximum short-range attraction between CO and intramolecular sites, which is interpreted as a measure for the local chemical reactivity. In addition, the vertical position of the point of maximum attraction is observed to vary across the molecules. These changes follow the calculated adsorption heights of the probed molecular atoms.
Collapse
Affiliation(s)
- Karl Rothe
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Nicolas Néel
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Marie-Laure Bocquet
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, F-75005 Paris, France
| | - Jörg Kröger
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| |
Collapse
|
11
|
Gawinkowski S, Prakash O. Searching for correlations between geometric and spectroscopic parameters of intramolecular hydrogen bonds in porphyrin-like macrocycles. Phys Chem Chem Phys 2022; 24:22319-22329. [PMID: 36098255 DOI: 10.1039/d2cp01195f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical bond lengths and angles are characteristic structural parameters of a molecule. Similarly, the frequencies of the vibrational modes and the NMR chemical shifts are unique "chemical fingerprints" specific to a compound. These are the basic parameters describing newly obtained compounds and enabling their identification. Intramolecular hydrogen bonding significantly influences the physicochemical properties of macrocyclic compounds with a porphyrin-like structure. This work presents the verification for correlations between geometric and spectroscopic parameters related to hydrogen bonds in this type of macrocyclic compounds. In particular, such relationships were investigated for a large group of porphyrin, porphycene, and dibenzotetraaza[14]annulene derivatives and a group of other macrocycles with similar structure. A very strong linear correlation was found only between the vibrational frequencies of the NH groups involved in a hydrogen bond and the length of this bond, which applied to all macrocyclic compounds of this type. Several other relationships were found between spectroscopic (IR, Raman, NMR) and geometric (X-ray) parameters, highlighting differences and similarities between different families of macrocycles. Apart from providing a better understanding of the nature of hydrogen bonds and their characteristics in porphyrin-like macrocyclic compounds, these relationships will facilitate the identification of new macrocycles and the extrapolation of their spectroscopic properties.
Collapse
Affiliation(s)
- Sylwester Gawinkowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Om Prakash
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
12
|
Albrecht F, Fatayer S, Pozo I, Tavernelli I, Repp J, Peña D, Gross L. Selectivity in single-molecule reactions by tip-induced redox chemistry. Science 2022; 377:298-301. [DOI: 10.1126/science.abo6471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Controlling selectivity of reactions is an ongoing quest in chemistry. In this work, we demonstrate reversible and selective bond formation and dissociation promoted by tip-induced reduction-oxidation reactions on a surface. Molecular rearrangements leading to different constitutional isomers are selected by the polarity and magnitude of applied voltage pulses from the tip of a combined scanning tunneling and atomic force microscope. Characterization of voltage dependence of the reactions and determination of reaction rates demonstrate selectivity in constitutional isomerization reactions and provide insight into the underlying mechanisms. With support of density functional theory calculations, we find that the energy landscape of the isomers in different charge states is important to rationalize the selectivity. Tip-induced selective single-molecule reactions increase our understanding of redox chemistry and could lead to novel molecular machines.
Collapse
Affiliation(s)
| | - Shadi Fatayer
- IBM Research Europe – Zurich, 8803 Rüschlikon, Switzerland
- Applied Physics Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Iago Pozo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | | | - Jascha Repp
- Institute of Experimental and Applied Physics, University of Regensburg, 93053 Regensburg, Germany
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - Leo Gross
- IBM Research Europe – Zurich, 8803 Rüschlikon, Switzerland
| |
Collapse
|
13
|
Li P, Zhou L, Zhao C, Ju H, Gao Q, Si W, Cheng L, Hao J, Li M, Chen Y, Jia C, Guo X. Single-molecule nano-optoelectronics: insights from physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086401. [PMID: 35623319 DOI: 10.1088/1361-6633/ac7401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Single-molecule optoelectronic devices promise a potential solution for miniaturization and functionalization of silicon-based microelectronic circuits in the future. For decades of its fast development, this field has made significant progress in the synthesis of optoelectronic materials, the fabrication of single-molecule devices and the realization of optoelectronic functions. On the other hand, single-molecule optoelectronic devices offer a reliable platform to investigate the intrinsic physical phenomena and regulation rules of matters at the single-molecule level. To further realize and regulate the optoelectronic functions toward practical applications, it is necessary to clarify the intrinsic physical mechanisms of single-molecule optoelectronic nanodevices. Here, we provide a timely review to survey the physical phenomena and laws involved in single-molecule optoelectronic materials and devices, including charge effects, spin effects, exciton effects, vibronic effects, structural and orbital effects. In particular, we will systematically summarize the basics of molecular optoelectronic materials, and the physical effects and manipulations of single-molecule optoelectronic nanodevices. In addition, fundamentals of single-molecule electronics, which are basic of single-molecule optoelectronics, can also be found in this review. At last, we tend to focus the discussion on the opportunities and challenges arising in the field of single-molecule optoelectronics, and propose further potential breakthroughs.
Collapse
Affiliation(s)
- Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Zhou
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Hongyu Ju
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Wei Si
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Cheng
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jie Hao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Mengmeng Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Yijian Chen
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| |
Collapse
|
14
|
Li Z, Liu Q, Zhang D, Wang Y, Zhang Y, Li Q, Dong M. Probing the hydration friction of ionic interfaces at the atomic scale. NANOSCALE HORIZONS 2022; 7:368-375. [PMID: 35195643 DOI: 10.1039/d1nh00564b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the extensive studies conducted in exploring friction in the aqueous environment, the mechanism of hydration friction remains not well understood. Herein, we directly probed hydration friction on mica-electrolyte interfaces with different hydrated alkali cations through a combination of three-dimensional atomic force microscopy and friction force microscopy. The atomic scale imaging of the hydration layers at the mica surface in different electrolyte solutions clearly revealed a correlation between the alkali cations and the structure of the hydration layers. Our detailed analysis showed that the hydration force was much higher at high ionic concentrations than that at low concentrations. The hydration friction coefficient was found to follow the trend K+< Na+< Li+< Cs+, which contrasts with the Hofmeister series, indicating that the hydration friction depends not only on the hydration strength of the alkali cations but also on the arrangement of the alkali cations at the interface. The results of this study provide deep insights into the origins of hydration friction, with potential implications for the development of new boundary lubrication in aqueous media.
Collapse
Affiliation(s)
- Zibo Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Qian Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Deliang Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yin Wang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, DK-8000, Denmark.
| | - Yuge Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, DK-8000, Denmark.
| |
Collapse
|
15
|
Rothe K, Néel N, Bocquet ML, Kröger J. Quantifying Force and Energy in Single-Molecule Metalation. J Am Chem Soc 2022; 144:7054-7057. [PMID: 35324186 DOI: 10.1021/jacs.2c00900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An atomic force microscope is used to determine the attractive interaction at the verge of adding a Ag atom from the probe to a single free-base phthalocyanine molecule adsorbed on Ag(111). The experimentally extracted energy for the spontaneous atom transfer can be compared to the energy profile determined by density functional theory using the nudged-elastic-band method at a defined probe-sample distance.
Collapse
Affiliation(s)
- Karl Rothe
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Nicolas Néel
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Marie-Laure Bocquet
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Jörg Kröger
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| |
Collapse
|
16
|
Meng P, Brock A, Wang X, Xu Y, McMurtrie J, Xu J. Competition of Hydrogen Bonds and Coordinate Bonds Induces a Reversible Crystal Transformation. Inorg Chem 2022; 61:2086-2092. [PMID: 35050601 DOI: 10.1021/acs.inorgchem.1c03291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Achieving reversible molecular crystal transformation between coordinate aggregates and hydrogen bonded assemblies has been a challenging task because coordinate bonds are generally much stronger than hydrogen bonds. Recently, we have reported the incorporation of silver ions into the cyanuric acid-melamine (CAM) network, resulting in the formation of a 1D coordination polymer (crystal 1) through forming the κ1N-Ag-κ2N coordination bonds. In this work, we find crystal 1 will undergo reversible transformation to hydrogen bonded coordinate units (crystal 2) through the breaking of coordinate chains and then the addition of CAM hydrogen bonding motifs into the framework. Crystal 2 presents a pseudohexagonal arrangement comprised of the κ1N-Ag-κ2N units connected by two sets of the triple hydrogen bonds, which extends two-dimensionally and stacks into a layer-structured crystal. Light was shed on the tautomerization of CA and M ligands associated with the crystal transformations using single crystal X-ray diffraction and infrared spectroscopy by analyzing the bond lengths and vibrations. We also highlight that photoluminescence can be a useful tool to probe the tautomer conversions of conjugated molecules. Furthermore, crystal 1 demonstrates high flexibility and can be bent over 180° and recover to its original shape after stress release. Crystal 2, on the contrary, is brittle and shows distinct mechanical anisotropy along different crystal orientations, as unveiled by nanoindentation measurements. The elastic modulus is well correlated with the chemical bonding strength along each orientation, and it is noteworthy that the contribution of the triple hydrogen bonds is comparable to that of the coordination bonds.
Collapse
Affiliation(s)
- Peng Meng
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Aidan Brock
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Xiaodong Wang
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Yanan Xu
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - John McMurtrie
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Jingsan Xu
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| |
Collapse
|
17
|
Desmedt E, Woller T, Teunissen JL, De Vleeschouwer F, Alonso M. Fine-Tuning of Nonlinear Optical Contrasts of Hexaphyrin-Based Molecular Switches Using Inverse Design. Front Chem 2021; 9:786036. [PMID: 34926405 PMCID: PMC8677951 DOI: 10.3389/fchem.2021.786036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
In the search for new nonlinear optical (NLO) switching devices, expanded porphyrins have emerged as ideal candidates thanks to their tunable chemical and photophysical properties. Introducing meso-substituents to these macrocycles is a successful strategy to enhance the NLO contrasts. Despite its potential, the influence of meso-substitution on their structural and geometrical properties has been scarcely investigated. In this work, we pursue to grasp the underlying pivotal concepts for the fine-tuning of the NLO contrasts of hexaphyrin-based molecular switches, with a particular focus on the first hyperpolarizability related to the hyper-Rayleigh scattering (βHRS). Building further on these concepts, we also aim to develop a rational design protocol. Starting from the (un)substituted hexaphyrins with various π-conjugation topologies and redox states, structure-property relationships are established linking aromaticity, photophysical properties and βHRS responses. Ultimately, inverse molecular design using the best-first search algorithm is applied on the most favorable switches with the aim to further explore the combinatorial chemical compound space of meso-substituted hexaphyrins in search of high-contrast NLO switches. Two definitions of the figure-of-merit of the switch performance were used as target objectives in the optimization problem. Several meso-substitution patterns and their underlying characteristics are identified, uncovering molecular symmetry and the electronic nature of the substituents as the key players for fine-tuning the βHRS values and NLO contrasts of hexaphyrin-based switches.
Collapse
Affiliation(s)
- Eline Desmedt
- General Chemistry - Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tatiana Woller
- General Chemistry - Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jos L Teunissen
- General Chemistry - Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Freija De Vleeschouwer
- General Chemistry - Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mercedes Alonso
- General Chemistry - Eenheid Algemene Chemie (ALGC), Department of Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
18
|
Koga D, Ono T, Shinjo H, Hisaeda Y. Hydrogen Bond Engineering Visualized by Picometer-Level Distortion of Planar Porphyrin Isomers. J Phys Chem Lett 2021; 12:10429-10436. [PMID: 34672583 DOI: 10.1021/acs.jpclett.1c03020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Directly investigating hydrogen bond (HB) dynamics in molecular materials is a challenging task. Here, we report a set of porphyrin isomers, porphycenes, that visualize slight changes on the order of picometers in the intramolecular HB dynamics. Intramolecular HBs of porphycenes were regulated by the systematic modification at meso positions with methyl (Me), cyclopentyl (Cy5), and cyclohexyl (Cy6) moieties. Notably, the quantum yields varied from 35 to 0.04% in chloroform, depending on a slight distortion in the porphycene framework. SC-XRD, XPS, and NMR clearly revealed that the Me and Cy6 moieties increased the nonradiative deactivation by strengthening the intramolecular NH···N HBs whereas Cy5 retained their photoluminescence properties. This is the first example of how the distortion of planar porphyrinoids at the picometer level along with the strength of the intramolecular NH···N HBs can drastically affect their optical properties. The results revealed new avenues of HB engineering based on porphyrinoids.
Collapse
|
19
|
Ishii A, Shiotari A, Sugimoto Y. Mechanically induced single-molecule helicity switching of graphene-nanoribbon-fused helicene on Au(111). Chem Sci 2021; 12:13301-13306. [PMID: 34777748 PMCID: PMC8528025 DOI: 10.1039/d1sc03976h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Helicene is a functional material with chirality caused by its characteristic helical geometry. The inversion of its helicity by external stimuli is a challenging task in the advanced control of the molecular chirality. This study fabricated a novel helical molecule, specifically a pentahelicene-analogue twisted aromatic hydrocarbon fused with a graphene nanoribbon, via on-surface synthesis using multiple precursors. Noncontact atomic force microscopy imaging with high spatial resolution confirmed the helicity of the reaction products. The helicity was geometrically converted by pushing a CO-terminated tip into the twisted framework, which is the first demonstration of helicity switching at the single-molecule scale.
Collapse
Affiliation(s)
- Ayumu Ishii
- Department of Advanced Materials Science, The University of Tokyo 5-1-5 Kashiwanoha 277-8561 Kashiwa Japan +81 4 7536 4058 +81 4 7536 3997
| | - Akitoshi Shiotari
- Department of Advanced Materials Science, The University of Tokyo 5-1-5 Kashiwanoha 277-8561 Kashiwa Japan +81 4 7536 4058 +81 4 7536 3997
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
| | - Yoshiaki Sugimoto
- Department of Advanced Materials Science, The University of Tokyo 5-1-5 Kashiwanoha 277-8561 Kashiwa Japan +81 4 7536 4058 +81 4 7536 3997
| |
Collapse
|
20
|
Yesilpinar D, Schulze Lammers B, Timmer A, Hu Z, Ji W, Amirjalayer S, Fuchs H, Mönig H. Mechanical and Chemical Interactions in Atomically Defined Contacts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101637. [PMID: 34288402 DOI: 10.1002/smll.202101637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single adsorbed atoms or molecules. However, the chemical and structural properties of the probe-tip can drastically influence the results. Establishing atomically defined contacts in such experiments, the tips in the present study are functionalized with various chemically and structurally different terminations. Xenon atoms are moved along an atomically defined metal/metal-oxide boundary where all tips show a pulling mechanism and slight force variations, which are assigned to polarization effects within the tip-sample junction. Detaching Xe atoms from the boundary involves a significantly higher energy barrier where chemical reactive Cu-tips cause Xe pickup before any lateral manipulation. Passivating the tip by inert probe particles (Xe or CO) allows further approaching the surface Xe atom. Yet, the small vertical attraction and pronounced tip relaxations prevent reaching sufficient threshold forces inducing manipulation. In contrast, the high structural rigidity of oxygen-terminated Cu-tips allows manipulations even beyond the threshold where they evolve from initial pulling, via sliding to pushing mode. The detailed quantitative analysis of the processes in the atomically defined junctions emphasizes the mechanical and chemical interactions for highly controlled experiments with piconewton sensitivity.
Collapse
Affiliation(s)
- Damla Yesilpinar
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
| | - Bertram Schulze Lammers
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
| | - Alexander Timmer
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
| | - Zhixin Hu
- Center for Joint Quantum Studies and Department of Physics, Tianjin University, Tianjin, 300350, China
| | - Wei Ji
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Renmin University of China, Beijing, 100872, China
| | - Saeed Amirjalayer
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
- Center for Multiscale Theory and Computation, 48149, Münster, Germany
| | - Harald Fuchs
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
| | - Harry Mönig
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
| |
Collapse
|
21
|
Schulze Lammers B, Yesilpinar D, Timmer A, Hu Z, Ji W, Amirjalayer S, Fuchs H, Mönig H. Benchmarking atomically defined AFM tips for chemical-selective imaging. NANOSCALE 2021; 13:13617-13623. [PMID: 34477636 DOI: 10.1039/d1nr04080d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controlling the identity of the tip-terminating atom or molecule in low-temperature atomic force microscopy has led to ground breaking progress in surface chemistry and nanotechnology. Lacking a comparative tip-performance assessment, a profound standardization in such experiments is highly desirable. Here we directly compare the imaging and force-spectroscopy capabilities of four atomically defined tips, namely Cu-, Xe-, CO-, and O-terminated Cu-tips (CuOx-tips). Using a nanostructured copper-oxide surface as benchmark system, we found that Cu-tips react with surface oxygen, while chemically inert Xe- and CO-tips allow entering the repulsive force regime enabling increased resolution. However, their high flexibility leads to imaging artifacts and their strong passivation suppresses the chemical contrast. The higher rigidity and selectively increased chemical reactivity of CuOx-tips prevent tip-bending artifacts and generate a distinct chemical contrast. This result is particularly promising in view of future studies on other metal-oxide surfaces.
Collapse
Affiliation(s)
- Bertram Schulze Lammers
- Physikalisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany.
- Center for Nanotechnology, 48149 Münster, Germany
| | - Damla Yesilpinar
- Physikalisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany.
- Center for Nanotechnology, 48149 Münster, Germany
| | | | - Zhixin Hu
- Center for Quantum Joint Studies and Department of Physics, Tianjin University, Tianjin, China.
| | - Wei Ji
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Renmin University of China, Beijing, China
| | - Saeed Amirjalayer
- Physikalisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany.
- Center for Nanotechnology, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, 48149 Münster, Germany
| | - Harald Fuchs
- Physikalisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany.
- Center for Nanotechnology, 48149 Münster, Germany
| | - Harry Mönig
- Physikalisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany.
- Center for Nanotechnology, 48149 Münster, Germany
| |
Collapse
|
22
|
Cahlík A, Hellerstedt J, Mendieta-Moreno JI, Švec M, Santhini VM, Pascal S, Soler-Polo D, Erlingsson SI, Výborný K, Mutombo P, Marsalek O, Siri O, Jelínek P. Significance Of Nuclear Quantum Effects In Hydrogen Bonded Molecular Chains. ACS NANO 2021; 15:10357-10365. [PMID: 34033457 DOI: 10.1021/acsnano.1c02572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In hydrogen-bonded systems, nuclear quantum effects such as zero-point motion and tunneling can significantly affect their material properties through underlying physical and chemical processes. Presently, direct observation of the influence of nuclear quantum effects on the strength of hydrogen bonds with resulting structural and electronic implications remains elusive, leaving opportunities for deeper understanding to harness their fascinating properties. We studied hydrogen-bonded one-dimensional quinonediimine molecular networks which may adopt two isomeric electronic configurations via proton transfer. Herein, we demonstrate that concerted proton transfer promotes a delocalization of π-electrons along the molecular chain, which enhances the cohesive energy between molecular units, increasing the mechanical stability of the chain and giving rise to distinctive electronic in-gap states localized at the ends. These findings demonstrate the identification of a class of isomeric hydrogen-bonded molecular systems where nuclear quantum effects play a dominant role in establishing their chemical and physical properties. This identification is a step toward the control of mechanical and electronic properties of low-dimensional molecular materials via concerted proton tunneling.
Collapse
Affiliation(s)
- Aleš Cahlík
- Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnicka 10, CZ-16200 Prague 6, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 78/7, CZ-11519 Prague 1, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Jack Hellerstedt
- Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnicka 10, CZ-16200 Prague 6, Czech Republic
| | - Jesús I Mendieta-Moreno
- Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnicka 10, CZ-16200 Prague 6, Czech Republic
| | - Martin Švec
- Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnicka 10, CZ-16200 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Vijai M Santhini
- Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnicka 10, CZ-16200 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Simon Pascal
- Aix Marseille Univ, CNRS, CINaM, UMR 7325, Campus de Luminy, F-13288 Marseille Cedex 09 France
| | - Diego Soler-Polo
- Universidad Autónoma de Madrid, Campus Cantoblanco, ES-28049, Madrid, Spain
| | - Sigurdur I Erlingsson
- School of Science and Engineering, Reykjavik University, Menntavegi 1, IS-101 Reykjavik, Iceland
| | - Karel Výborný
- Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnicka 10, CZ-16200 Prague 6, Czech Republic
| | - Pingo Mutombo
- Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnicka 10, CZ-16200 Prague 6, Czech Republic
- Department of Petrochemistry and Refining, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Ondrej Marsalek
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, CZ-12116 Prague 2, Czech Republic
| | - Olivier Siri
- Aix Marseille Univ, CNRS, CINaM, UMR 7325, Campus de Luminy, F-13288 Marseille Cedex 09 France
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnicka 10, CZ-16200 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| |
Collapse
|
23
|
Kalaiselvan A, Spergen A, Krishna ISV, Reddy VS, Gokulnath S. Double intramolecular hydrogen transfer assisted dual emission in a carbazole-embedded porphyrin-like macrocycle. Chem Commun (Camb) 2021; 57:4420-4423. [PMID: 33949463 DOI: 10.1039/d1cc00868d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The introduction of a pyrrole ring at one of the meso positions of carbazole-based porphyrins lowers the structural symmetry and results in dual emission, which strongly depends on the excitation wavelength and temperature. The origin of dual emission induced by NH-tautomerism is confirmed via photophysical and DFT calculations.
Collapse
Affiliation(s)
- Arumugan Kalaiselvan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram-695551, Maruthamala P.O., Vithura, Kerala, India.
| | - Aswini Spergen
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram-695551, Maruthamala P.O., Vithura, Kerala, India.
| | - Isukapalli Sai Vamsi Krishna
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram-695551, Maruthamala P.O., Vithura, Kerala, India.
| | - Vennapusa Sivaranjana Reddy
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram-695551, Maruthamala P.O., Vithura, Kerala, India.
| | - Sabapathi Gokulnath
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram-695551, Maruthamala P.O., Vithura, Kerala, India.
| |
Collapse
|
24
|
Zhou P, Zheng J, Han T, Chen L, Cao W, Zhu Y, Zhou D, Li R, Tian Y, Liu Z, Liu J, Hong W. Electrostatic gating of single-molecule junctions based on the STM-BJ technique. NANOSCALE 2021; 13:7600-7605. [PMID: 33928979 DOI: 10.1039/d1nr00157d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The gating of charge transport through single-molecule junctions is considered a critical step towards molecular circuits but remains challenging. In this work, we report an electrostatic gating method to tune the conductance of single-molecule junctions using the scanning tunneling microscope break junction (STM-BJ) technique incorporated with a back-gated chip as a substrate. We demonstrated that the conductance varied at different applied gating voltages (Vgs). The HOMO-dominated molecules show a decrease in conductance with an increase in Vg, and the LUMO-dominated molecules show the opposite trend. The measured conductance trends with Vg are consistent with the transition voltage spectroscopy measurements. Moreover, the transmission functions simulated from density functional theory (DFT) calculations and the finite element analysis all suggest that Vg changed the energy alignment of the molecular junction. This work provides a simple method for modulating the molecular orbitals' alignment relative to the Fermi energy (Ef) of metal electrodes to explore the charge transport properties at the single-molecule scale.
Collapse
Affiliation(s)
- Ping Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University, 361005, Xiamen, China.
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University, 361005, Xiamen, China.
| | - Tianyang Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University, 361005, Xiamen, China.
| | - Lijue Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University, 361005, Xiamen, China.
| | - Wenqiang Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University, 361005, Xiamen, China.
| | - Yixuan Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University, 361005, Xiamen, China.
| | - Dahai Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University, 361005, Xiamen, China.
| | - Ruihao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University, 361005, Xiamen, China.
| | - Yingyu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University, 361005, Xiamen, China.
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University, 361005, Xiamen, China.
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University, 361005, Xiamen, China.
| |
Collapse
|
25
|
Weymouth AJ, Riegel E, Simmet B, Gretz O, Giessibl FJ. Lateral Force Microscopy Reveals the Energy Barrier of a Molecular Switch. ACS NANO 2021; 15:3264-3271. [PMID: 33523628 DOI: 10.1021/acsnano.0c09965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Copper phthalocyanine (CuPc) is a small molecule often used in organic light emitting diodes where it is deposited on a conducting electrode. Previous scanning tunneling microscopy (STM) studies of CuPc on Cu(111) have shown that inelastic tunneling events can cause CuPc to switch between a ground state and two symmetrically equivalent metastable states in which the molecule is rotated. We investigated CuPc on Cu(111) and Ag(111) with STM and lateral force microscopy (LFM). Even without inelastic events, the presence of the tip can induce rotations and upon closer approach, causes the rotated states to be favored. Combining STM measurements at various temperatures and LFM measurements, we show that the long-range attraction of the tip changes the potential energy landscape of this molecular switch. We can also determine the geometry of the rotated and ground states. We compare our observations of CuPc on Cu(111) to CuPc on Ag(111). On Ag(111), CuPc appears flat and does not rotate. Stronger bonding typically involves shorter bond lengths, larger shifts of energy levels, and structural stability. Although the binding of CuPc to Cu(111) is stronger than that on Ag(111), the nonplanar geometry of CuPc on Cu(111) is accompanied by two metastable states which are not present on the Ag(111) surface.
Collapse
Affiliation(s)
| | | | | | - Oliver Gretz
- University of Regensburg, Regensburg 93053, Germany
| | | |
Collapse
|
26
|
Bettens T, Hoffmann M, Alonso M, Geerlings P, Dreuw A, De Proft F. Mechanochemically Triggered Topology Changes in Expanded Porphyrins. Chemistry 2021; 27:3397-3406. [PMID: 33170967 PMCID: PMC7898923 DOI: 10.1002/chem.202003869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/16/2022]
Abstract
A hitherto unexplored class of molecules for molecular force probe applications are expanded porphyrins. This work proves that mechanical force is an effective stimulus to trigger the interconversion between Hückel and Möbius topologies in [28]hexaphyrin, making these expanded porphyrins suitable to act as conformational mechanophores operating at mild (sub-1 nN) force conditions. A straightforward approach based on distance matrices is proposed for the selection of pulling scenarios that promote either the planar Hückel topology or the three lowest lying Möbius topologies. This approach is supported by quantum mechanochemical calculations. Force distribution analyses reveal that [28]hexaphyrin selectively allocates the external mechanical energy to molecular regions that trigger Hückel-Möbius interconversions, explaining why certain pulling scenarios favor the Hückel two-sided topology and others favor Möbius single-sided topologies. The meso-substitution pattern on [28]hexaphyrin determines whether the energy difference between the different topologies can be overcome by mechanical activation.
Collapse
Affiliation(s)
- Tom Bettens
- Eenheid Algemene Chemie (ALGC)Vrije Universiteit Brussel (VUB)Pleinlaan 21050BrusselsBelgium
| | - Marvin Hoffmann
- Interdisciplinary Center for Scientific ComputingRuprecht-Karls UniversityIm Neuenheimer Feld 205A69120HeidelbergGermany
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC)Vrije Universiteit Brussel (VUB)Pleinlaan 21050BrusselsBelgium
| | - Paul Geerlings
- Eenheid Algemene Chemie (ALGC)Vrije Universiteit Brussel (VUB)Pleinlaan 21050BrusselsBelgium
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific ComputingRuprecht-Karls UniversityIm Neuenheimer Feld 205A69120HeidelbergGermany
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC)Vrije Universiteit Brussel (VUB)Pleinlaan 21050BrusselsBelgium
| |
Collapse
|
27
|
Krumbein L, Anggara K, Stella M, Michnowicz T, Ochner H, Abb S, Rinke G, Portz A, Dürr M, Schlickum U, Baldwin A, Floris A, Kern K, Rauschenbach S. Fast Molecular Compression by a Hyperthermal Collision Gives Bond-Selective Mechanochemistry. PHYSICAL REVIEW LETTERS 2021; 126:056001. [PMID: 33605738 DOI: 10.1103/physrevlett.126.056001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Using electrospray ion beam deposition, we collide the complex molecule Reichardt's dye (C_{41}H_{30}NO^{+}) at low, hyperthermal translational energy (2-50 eV) with a Cu(100) surface and image the outcome at single-molecule level by scanning tunneling microscopy. We observe bond-selective reaction induced by the translational kinetic energy. The collision impulse compresses the molecule and bends specific bonds, prompting them to react selectively. This dynamics drives the system to seek thermally inaccessible reactive pathways, since the compression timescale (subpicosecond) is much shorter than the thermalization timescale (nanosecond), thereby yielding reaction products that are unobtainable thermally.
Collapse
Affiliation(s)
- Lukas Krumbein
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
| | - Kelvin Anggara
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
| | - Martina Stella
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, London SW7 2A2, United Kingdom
| | - Tomasz Michnowicz
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
| | - Hannah Ochner
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
| | - Sabine Abb
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
| | - Gordon Rinke
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
| | - André Portz
- Institut für Angewandte Physik, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, DE-35392 Giessen, Germany
| | - Michael Dürr
- Institut für Angewandte Physik, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 16, DE-35392 Giessen, Germany
| | - Uta Schlickum
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
- Institut für Angewandte Physik, Technische Universität Braunschweig, Mendelssohnstrasse 2, DE-38106 Braunschweig, Germany
| | - Andrew Baldwin
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Andrea Floris
- School of Chemistry, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | - Klaus Kern
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
- Institut de Physique, École Polytechnique Fédérale de Lausanne, Laussane CH-1015, Switzerland
| | - Stephan Rauschenbach
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
28
|
Luo Y, Kong FF, Tian XJ, Yu YJ, Zhang L, Chen G, Zhang Y, Zhang Y, Dong ZC. What can single-molecule Fano resonance tell? J Chem Phys 2021; 154:044309. [PMID: 33514086 DOI: 10.1063/5.0033200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In this work, we showcase applications of single-molecule Fano resonance (SMFR) measurements beyond the determination of molecular excitonic energy and associated dipole orientation. We use the SMFR measurement to probe the local influence of a man-made single chlorine vacancy on the molecular transition of a single zinc phthalocyanine, which clearly reveals the lifting-up of the double degeneracy of the excited states due to defect-induced configurational changes. Furthermore, time-trace SMFR measurements at different excitation voltages are used to track the tautomerization process in a free-base phthalocyanine. Different behaviors in switching between two inner-hydrogen configurations are observed with decreasing voltages, which helps to reveal the underlying tautomerization mechanism involving both the molecular electronic excited states and vibrational excited states in the ground state.
Collapse
Affiliation(s)
- Yang Luo
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fan-Fang Kong
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao-Jun Tian
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yun-Jie Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Gong Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhen-Chao Dong
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
29
|
Larson AM, Balema TA, Zahl P, Schilling AC, Stacchiola DJ, Sykes ECH. Hypothetical Efficiency of Electrical to Mechanical Energy Transfer during Individual Stochastic Molecular Switching Events. ACS NANO 2020; 14:16558-16564. [PMID: 32946215 DOI: 10.1021/acsnano.0c04082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There are now many examples of single molecule rotors, motors, and switches in the literature that, when driven by photons, electrons, or chemical reactions, exhibit well-defined motions. As a step toward using these single molecule devices to perform useful functions, one must understand how they interact with their environment and quantify their ability to perform work on it. Using a single molecule rotary switch, we examine the transfer of electrical energy, delivered via electron tunneling, to mechanical motion and measure the forces the switch experiences with a noncontact q-plus atomic force microscope. Action spectra reveal that the molecular switch has two stable states and can be excited resonantly between them at a bias of 100 mV via a one-electron inelastic tunneling process which corresponds to an energy input of 16 zJ. While the electrically induced switching events are stochastic and no net work is done on the cantilever, by measuring the forces between the molecular switch and the AFM cantilever, we can derive the maximum hypothetical work the switch could perform during a single switching event, which is ∼55 meV, equal to 8.9 zJ, which translates to a hypothetical efficiency of ∼55% per individual inelastic tunneling electron-induced switching event. When considering the total electrical energy input, this drops to 1 × 10-7% due to elastic tunneling events that dominate the tunneling current. However, this approach constitutes a general method for quantifying and comparing the energy input and output of molecular-mechanical devices.
Collapse
Affiliation(s)
- Amanda M Larson
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Tedros A Balema
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Percy Zahl
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alex C Schilling
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Dario J Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - E Charles H Sykes
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
30
|
Liu W, Yang S, Li J, Su G, Ren J. One molecule, two states: Single molecular switch on metallic electrodes. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Liu
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| | - Sha Yang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| | - Jingtai Li
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| | - Guirong Su
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| | - Ji‐Chang Ren
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| |
Collapse
|
31
|
Litman Y, Rossi M. Multidimensional Hydrogen Tunneling in Supported Molecular Switches: The Role of Surface Interactions. PHYSICAL REVIEW LETTERS 2020; 125:216001. [PMID: 33275002 DOI: 10.1103/physrevlett.125.216001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/08/2020] [Indexed: 06/12/2023]
Abstract
The nuclear tunneling crossover temperature (T_{c}) of hydrogen transfer reactions in supported molecular-switch architectures can lie close to room temperature. This calls for the inclusion of nuclear quantum effects (NQEs) in the calculation of reaction rates even at high temperatures. However, computations of NQEs relying on standard parametrized dimensionality-reduced models quickly become inadequate in these environments. In this Letter, we study the paradigmatic molecular switch based on porphycene molecules adsorbed on metallic surfaces with full-dimensional calculations that combine density-functional theory for the electrons with the semiclassical ring-polymer instanton approximation for the nuclei. We show that the double intramolecular hydrogen transfer (DHT) rate can be enhanced by orders of magnitude due to surface fluctuations in the deep-tunneling regime. We also explain the origin of an Arrhenius temperature dependence of the rate below T_{c} and why this dependence differs at different surfaces. We propose a simple model to rationalize the temperature dependence of DHT rates spanning diverse fcc [110] surfaces.
Collapse
Affiliation(s)
- Yair Litman
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany and Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Mariana Rossi
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany and MPI for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
32
|
Shiotari A, Hamada I, Nakae T, Mori S, Okujima T, Uno H, Sakaguchi H, Hamamoto Y, Morikawa Y, Sugimoto Y. Manipulable Metal Catalyst for Nanographene Synthesis. NANO LETTERS 2020; 20:8339-8345. [PMID: 33090808 DOI: 10.1021/acs.nanolett.0c03510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Performing bottom-up synthesis by using molecules adsorbed on a surface is an effective method to yield functional polycyclic aromatic hydrocarbons (PAHs) and nanocarbon materials. The intramolecular cyclodehydrogenation of hydrocarbons is a critical process in this synthesis; however, thus far, its elementary steps have not been elucidated thoroughly. In this study, we utilize the metal tip of a low-temperature noncontact atomic force microscope as a manipulable metal surface to locally activate dehydrogenation for PAH-forming cyclodehydrogenation. This method leads to the dissociation of a H atom of an intermediate to yield the cyclodehydrogenated product in a target-selective and reproducible manner. We demonstrate the metal-tip-catalyzed dehydrogenation for both benzenoid and nonbenzonoid PAHs, suggesting its universal applicability as a catalyst for nanographene synthesis.
Collapse
Affiliation(s)
- Akitoshi Shiotari
- Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, 277-8561 Kashiwa, Japan
| | - Ikutaro Hamada
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 565-0871 Suita, Japan
| | - Takahiro Nakae
- Institute of Advanced Energy, Kyoto University, 611-0011 Uji, Japan
| | - Shigeki Mori
- Advanced Research Support Center, Ehime University, 790-8577 Matsuyama, Japan
| | - Tetsuo Okujima
- Graduate School of Science and Engineering, Ehime University, 790-8577 Matsuyama, Japan
| | - Hidemitsu Uno
- Graduate School of Science and Engineering, Ehime University, 790-8577 Matsuyama, Japan
| | | | - Yuji Hamamoto
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 565-0871 Suita, Japan
| | - Yoshitada Morikawa
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 565-0871 Suita, Japan
- Research Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 565-0871 Suita, Japan
| | - Yoshiaki Sugimoto
- Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, 277-8561 Kashiwa, Japan
| |
Collapse
|
33
|
Sub-cycle atomic-scale forces coherently control a single-molecule switch. Nature 2020; 585:58-62. [PMID: 32879499 DOI: 10.1038/s41586-020-2620-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/30/2020] [Indexed: 12/31/2022]
Abstract
Scanning probe techniques can leverage atomically precise forces to sculpt matter at surfaces, atom by atom. These forces have been applied quasi-statically to create surface structures1-7 and influence chemical processes8,9, but exploiting local dynamics10-14 to realize coherent control on the atomic scale remains an intriguing prospect. Chemical reactions15-17, conformational changes18,19 and desorption20 have been followed on ultrafast timescales, but directly exerting femtosecond forces on individual atoms to selectively induce molecular motion has yet to be realized. Here we show that the near field of a terahertz wave confined to an atomically sharp tip provides femtosecond atomic-scale forces that selectively induce coherent hindered rotation in the molecular frame of a bistable magnesium phthalocyanine molecule. Combining lightwave-driven scanning tunnelling microscopy21-24 with ultrafast action spectroscopy10,13, we find that the induced rotation modulates the probability of the molecule switching between its two stable adsorption geometries by up to 39 per cent. Mapping the response of the molecule in space and time confirms that the force acts on the atomic scale and within less than an optical cycle (that is, faster than an oscillation period of the carrier wave of light). We anticipate that our strategy might ultimately enable the coherent manipulation of individual atoms within single molecules or solids so that chemical reactions and ultrafast phase transitions can be manipulated on their intrinsic spatio-temporal scales.
Collapse
|
34
|
Qi J, Gao Y, Jia H, Richter M, Huang L, Cao Y, Yang H, Zheng Q, Berger R, Liu J, Lin X, Lu H, Cheng Z, Ouyang M, Feng X, Du S, Gao HJ. Force-Activated Isomerization of a Single Molecule. J Am Chem Soc 2020; 142:10673-10680. [PMID: 32459961 DOI: 10.1021/jacs.0c00192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding and controlling isomerization at the single molecular level should provide new insight into the molecular dynamics and design guidelines of functional devices. Scanning tunneling microscopy (STM) has been demonstrated to be a powerful tool to study isomerization of single molecules on a substrate, by either electric field or inelastic electron tunneling mechanisms. A similar molecular isomerization process can in principle be induced by mechanical force; however, relevant study has remained elusive. Here, we demonstrate that isomerization of a N,N-dimethylamino-dianthryl-benzene molecule on Ag(100) can be mechanically driven by the STM tip. The existence of an out-of-plane dimethylamino group in the molecule is found to play a pivotal role in the isomerization process by providing a steric hindrance effect for asymmetric interaction between the STM tip and the molecule. This underlying mechanism is further confirmed by performing molecular dynamics simulations, which show agreement with experimental results. Our work opens the opportunity to manipulate the molecular configuration on the basis of mechanical force.
Collapse
Affiliation(s)
- Jing Qi
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yixuan Gao
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Haihong Jia
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Marcus Richter
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Li Huang
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yun Cao
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Huan Yang
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Zheng
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Reinhard Berger
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Junzhi Liu
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Xiao Lin
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongliang Lu
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhihai Cheng
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
| | - Min Ouyang
- Department of Physics and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, United States
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany.,School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shixuan Du
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Jun Gao
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
35
|
Kijak M, Nawara K, Listkowski A, Masiera N, Buczyńska J, Urbańska N, Orzanowska G, Pietraszkiewicz M, Waluk J. 2 + 2 Can Make Nearly a Thousand! Comparison of Di- and Tetra- Meso-Alkyl-Substituted Porphycenes. J Phys Chem A 2020; 124:4594-4604. [PMID: 32423205 PMCID: PMC7590974 DOI: 10.1021/acs.jpca.0c02155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two porphycenes, substituted at the meso positions with two and four methyl groups, respectively, reveal similar absorption spectra, but their photophysical properties are completely different. 9,20-dimethylporphycene emits fluorescence with about 20% quantum yield, independent of the solvent. In contrast, fluorescence of 9,10,19,20-tetramethylporphycene is extremely weak in nonviscous solvents, but it can be recovered by placing the chromophore in a rigid environment. We propose a model that explains these differences, based on calculations and structural analogies with other extremely weakly emitting derivatives, dibenzo[cde,mno]porphycenes. The efficient S1 deactivation involves delocalization of two inner cavity protons coupled with proton translocation toward a high-energy cis tautomer. The latter process leads to distortion from planarity. The probability of deactivation increases with the strength of the intramolecular NH···N hydrogen bonds. The model also explains the observation of biexponential fluorescence decay in weakly emitting porphycenes. It can be extended to other derivatives, in particular, the asymmetrically substituted ones. We also point to the possibility of using specific porphycenes as viscosity sensors, in particular, when working in single molecule regime.
Collapse
Affiliation(s)
- Michał Kijak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Krzysztof Nawara
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| | - Arkadiusz Listkowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| | - Natalia Masiera
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Joanna Buczyńska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Natalia Urbańska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Grażyna Orzanowska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marek Pietraszkiewicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jacek Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| |
Collapse
|
36
|
Bauer A, Maier M, Schosser WM, Diegel J, Paschke F, Dedkov Y, Pauly F, Winter RF, Fonin M. Tip-Induced Inversion of the Chirality of a Molecule's Adsorption Potential Probed by the Switching Directionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907390. [PMID: 32064673 DOI: 10.1002/adma.201907390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/27/2019] [Indexed: 06/10/2023]
Abstract
The switching behavior of surface-supported molecular units excited by current, light, or mechanical forces is determined by the shape of the adsorption potential. The ability to tailor the energy landscape in which a molecule resides at a surface gives the possibility of imposing a desired response, which is of paramount importance for the realization of molecular electronic units. Here, by means of scanning tunneling microscopy, a triazatruxene (TAT) molecule on Ag(111) is studied, which shows a switching behavior characterized by transitions of the molecule between three states, and which is attributed to three energetically degenerate bonding configurations. Upon tunneling current injection, the system can be excited and continuously driven, showing a switching directionality close to 100%. Two surface enantiomers of TAT show opposite switching directions pointing at the chirality of the energy landscape of the adsorption potential as a key ingredient for directional switching. Further, it is shown that by tuning the tunneling parameters, the symmetry of the adsorption potential can be controllably adjusted, leading to a suppression of the directionality or an inversion of the switching direction. The findings represent a molecule-surface model system exhibiting unprecedented control of the shape of its adsorption potential.
Collapse
Affiliation(s)
- Anja Bauer
- Fachbereich Physik, Universität Konstanz, 78457, Konstanz, Germany
| | - Markus Maier
- Fachbereich Chemie, Universität Konstanz, 78457, Konstanz, Germany
| | - Werner M Schosser
- Fachbereich Physik, Universität Konstanz, 78457, Konstanz, Germany
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Josefine Diegel
- Fachbereich Physik, Universität Konstanz, 78457, Konstanz, Germany
| | - Fabian Paschke
- Fachbereich Physik, Universität Konstanz, 78457, Konstanz, Germany
| | - Yuriy Dedkov
- Department of Physics, Shanghai University, 99 Shangda Road, 200444, Shanghai, China
| | - Fabian Pauly
- Fachbereich Physik, Universität Konstanz, 78457, Konstanz, Germany
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| | - Rainer F Winter
- Fachbereich Chemie, Universität Konstanz, 78457, Konstanz, Germany
| | - Mikhail Fonin
- Fachbereich Physik, Universität Konstanz, 78457, Konstanz, Germany
| |
Collapse
|
37
|
Doppagne B, Neuman T, Soria-Martinez R, López LEP, Bulou H, Romeo M, Berciaud S, Scheurer F, Aizpurua J, Schull G. Single-molecule tautomerization tracking through space- and time-resolved fluorescence spectroscopy. NATURE NANOTECHNOLOGY 2020; 15:207-211. [PMID: 31959932 DOI: 10.1038/s41565-019-0620-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/09/2019] [Indexed: 05/21/2023]
Abstract
Tautomerization, the interconversion between two constitutional molecular isomers, is ubiquitous in nature1, plays a major role in chemistry2 and is perceived as an ideal switch function for emerging molecular-scale devices3. Within free-base porphyrin4, porphycene5 or phthalocyanine6, this process involves the concerted or sequential hopping of the two inner hydrogen atoms between equivalent nitrogen sites of the molecular cavity. Electronic and vibronic changes6 that result from this NH tautomerization, as well as details of the switching mechanism, were extensively studied with optical spectroscopies, even with single-molecule sensitivity7. The influence of atomic-scale variations of the molecular environment and submolecular spatial resolution of the tautomerization could only be investigated using scanning probe microscopes3,8-11, at the expense of detailed information provided by optical spectroscopies. Here, we combine these two approaches, scanning tunnelling microscopy (STM) and fluorescence spectroscopy12-15, to study the tautomerization within individual free-base phthalocyanine (H2Pc) molecules deposited on a NaCl-covered Ag(111) single-crystal surface. STM-induced fluorescence (STM-F) spectra exhibit duplicate features that we assign to the emission of the two molecular tautomers. We support this interpretation by comparing hyper-resolved fluorescence maps15-18(HRFMs) of the different spectral contributions with simulations that account for the interaction between molecular excitons and picocavity plasmons19. We identify the orientation of the molecular optical dipoles, determine the vibronic fingerprint of the tautomers and probe the influence of minute changes in their atomic-scale environment. Time-correlated fluorescence measurements allow us to monitor the tautomerization events and to associate the proton dynamics to a switching two-level system. Finally, optical spectra acquired with the tip located at a nanometre-scale distance from the molecule show that the tautomerization reaction occurs even when the tunnelling current does not pass through the molecule. Together with other observations, this remote excitation indicates that the excited state of the molecule is involved in the tautomerization reaction path.
Collapse
Affiliation(s)
| | - Tomáš Neuman
- Center for Materials Physics (CSIC-UPV/EHU) and DIPC, Donostia-San Sebastián, Spain
| | | | | | - Hervé Bulou
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France
| | | | | | - Fabrice Scheurer
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France
| | - Javier Aizpurua
- Center for Materials Physics (CSIC-UPV/EHU) and DIPC, Donostia-San Sebastián, Spain
| | - Guillaume Schull
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg, France.
| |
Collapse
|
38
|
Wu R, Bao DL, Yan L, Wang Y, Ren J, Zhang YF, Huan Q, Zhang YY, Du S, Pantelides ST, Gao HJ. Direct Visualization of Hydrogen-Transfer Intermediate States by Scanning Tunneling Microscopy. J Phys Chem Lett 2020; 11:1536-1541. [PMID: 32011142 DOI: 10.1021/acs.jpclett.0c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogen atoms bonded within molecular cavities often undergo tunneling or thermal-transfer processes that play major roles in diverse physical phenomena. Such transfers may or may not entail intermediate states. The existence of such fleeting states is typically determined by indirect means, while their direct visualization has not been achieved, largely because their concentrations under equilibrium conditions are negligible. Here we use density-functional-theory calculations and scanning-tunneling-microscopy (STM) image simulations to predict that, under specially designed nonequilibrium conditions of voltage-enhanced high transfer rates, the cis-intermediate of the two-hydrogen transfer process in metal-free naphthalocyanine molecules adsorbed on Ag(111) surfaces would be visualizable in a composite image of double-C morphology. As guided by the theoretical predictions, at adjusted scanning temperature and bias, STM experiments achieve a direct visualization of the cis-intermediate. This work demonstrates a practical way to directly visualize elusive intermediates, which enhances understanding of the quantum dynamics of hydrogen atoms.
Collapse
Affiliation(s)
- Rongting Wu
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
| | - De-Liang Bao
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
- Department of Physics and Astronomy & Department of Electrical Engineering and Computer Science , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Linghao Yan
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yeliang Wang
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
| | - Junhai Ren
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yan-Fang Zhang
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
| | - Qing Huan
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
| | - Yu-Yang Zhang
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
- Department of Physics and Astronomy & Department of Electrical Engineering and Computer Science , Vanderbilt University , Nashville , Tennessee 37235 , United States
- Key Laboratory for Vacuum Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Shixuan Du
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
- Key Laboratory for Vacuum Physics , Chinese Academy of Sciences , Beijing 100049 , China
- Songshan Lake Materials Laboratory , Dongguan , Guangdong 523808 , China
| | - Sokrates T Pantelides
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- Department of Physics and Astronomy & Department of Electrical Engineering and Computer Science , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Hong-Jun Gao
- Institute of Physics and University of the Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
- CAS Centre for Excellence in Topological Quantum Computation, Chinese Academy of Sciences , Beijing 100190 , China
- Key Laboratory for Vacuum Physics , Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
39
|
Litman Y, Behler J, Rossi M. Temperature dependence of the vibrational spectrum of porphycene: a qualitative failure of classical-nuclei molecular dynamics. Faraday Discuss 2020; 221:526-546. [DOI: 10.1039/c9fd00056a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Approximate quantum dynamics succeed in predicting a temperature-dependent blue-shift of the high-frequency stretch bands that arise from vibrational coupling between low-frequency thermally activated modes and high-frequency quantized ones. Classical nuclei molecular dynamics fail and instead predict a red-shift.
Collapse
Affiliation(s)
- Yair Litman
- Fritz Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| | - Jörg Behler
- Universität Göttingen
- Institut für Physikalische Chemie, Theoretische Chemie
- 37077 Göttingen
- Germany
| | - Mariana Rossi
- Fritz Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| |
Collapse
|
40
|
Wang C, Chi L, Ciesielski A, Samorì P. Chemische Synthese an Oberflächen mit Präzision in atomarer Größenordnung: Beherrschung von Komplexität und Genauigkeit. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Can Wang
- Université de Strasbourg CNRS ISIS 8 alleé Gaspard Monge 67000 Strasbourg France
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices Soochow University Suzhou 215123 V.R. China
| | - Artur Ciesielski
- Université de Strasbourg CNRS ISIS 8 alleé Gaspard Monge 67000 Strasbourg France
| | - Paolo Samorì
- Université de Strasbourg CNRS ISIS 8 alleé Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
41
|
Wang C, Chi L, Ciesielski A, Samorì P. Chemical Synthesis at Surfaces with Atomic Precision: Taming Complexity and Perfection. Angew Chem Int Ed Engl 2019; 58:18758-18775. [DOI: 10.1002/anie.201906645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/25/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Can Wang
- Université de StrasbourgCNRSISIS 8 alleé Gaspard Monge 67000 Strasbourg France
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon Based Functional, Materials & DevicesSoochow University Suzhou 215123 P. R. China
| | - Artur Ciesielski
- Université de StrasbourgCNRSISIS 8 alleé Gaspard Monge 67000 Strasbourg France
| | - Paolo Samorì
- Université de StrasbourgCNRSISIS 8 alleé Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
42
|
Liang X, Nakajima K. Investigating the Dynamic Viscoelasticity of Single Polymer Chains using Atomic Force Microscopy. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaobin Liang
- Department of Chemical Science and EngineeringSchool of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2‐12‐1, Meguro‐ku Tokyo 152‐8552 Japan
| | - Ken Nakajima
- Department of Chemical Science and EngineeringSchool of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2‐12‐1, Meguro‐ku Tokyo 152‐8552 Japan
| |
Collapse
|
43
|
Brand J, Leitherer S, Papior NR, Néel N, Lei Y, Brandbyge M, Kröger J. Nonequilibrium Bond Forces in Single-Molecule Junctions. NANO LETTERS 2019; 19:7845-7851. [PMID: 31556298 DOI: 10.1021/acs.nanolett.9b02845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Passing a current across two touching C60 molecules imposes a nonequilibrium population of bonding and antibonding molecular orbitals, which changes the equilibrium bond character and strength. A current-induced bond force therefore contributes to the total force at chemical-bond distances. The combination of first-principles calculations with scanning probe experiments exploring currents and forces in a wide C60-C60 distance range consistently evidences the presence of current-induced attraction that occurs when the two molecules are on the verge of forming a chemical bond. The unique opportunity to arrange matter at the atomic scale with the atomic force and scanning tunneling microscope tip has enabled closely matching molecular junctions in theory and experiment. The findings consequently represent the first report of current-induced bond forces at the single-molecule level and further elucidate the intimate relation between charge transport and force. The results are relevant to molecular electronics and chemical reactions in the presence of a current.
Collapse
Affiliation(s)
- Jonathan Brand
- Institut für Physik , Technische Universität Ilmenau , D-98693 Ilmenau , Germany
| | - Susanne Leitherer
- Center for Nanostructured Graphene, Department of Physics , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Nick R Papior
- Department of Applied Mathematics and Computer Science , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Nicolas Néel
- Institut für Physik , Technische Universität Ilmenau , D-98693 Ilmenau , Germany
| | - Yong Lei
- Institut für Physik , Technische Universität Ilmenau , D-98693 Ilmenau , Germany
| | - Mads Brandbyge
- Center for Nanostructured Graphene, Department of Physics , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Jörg Kröger
- Institut für Physik , Technische Universität Ilmenau , D-98693 Ilmenau , Germany
| |
Collapse
|
44
|
Li J, Yang S, Ren JC, Su G, Li S, Butch CJ, Ding Z, Liu W. Deep Molecular Orbital Driven High-Temperature Hydrogen Tautomerization Switching. J Phys Chem Lett 2019; 10:6755-6761. [PMID: 31613631 DOI: 10.1021/acs.jpclett.9b02671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogen tautomerization molecular switches, a promising class of molecular components for the construction of complex nanocircuits, have been extensively studied using low-temperature scanning tunneling microscopy. However, these molecules are generally only reliably controllable in cryogenic environments, obstructing their utility in real devices. Here, we use dispersion-inclusive density functional theory and systematically investigate the adsorption and tautomerization behaviors of porphycene on six transition-metal surfaces. Among these surfaces, we found that hydrogen tautomerization on the Pt(110) surface corresponds to the largest switching barrier, allowing a controllable transition at high temperature. The switching behavior is closely related to the exceptional degree of charge transfer in the HOMO-2 orbital, illustrating the important role of deep orbital-surface interactions in porphycene molecular switching. Our work provides an in-depth understanding of the porphycene tautomerization mechanism and highlights new research avenues toward the practical application of molecular switches.
Collapse
Affiliation(s)
- Jingtai Li
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| | - Sha Yang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| | - Ji-Chang Ren
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| | - Guirong Su
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| | - Shuang Li
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| | - Christopher J Butch
- Department of Biomedical Engineering , Nanjing University , Nanjing , China
- Blue Marble Space Institute of Science , Seattle , Washington 98154 , United States
| | - Zhigang Ding
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| | - Wei Liu
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , Jiangsu , China
| |
Collapse
|
45
|
Campione M, Bossi A, Yivlialin R, Bussetti G. Uniaxial Alignment of a Monolayer of Flat-on Free-Base Porphyrins on an Exfoliable Insulating Substrate. NANO LETTERS 2019; 19:5537-5543. [PMID: 31295407 DOI: 10.1021/acs.nanolett.9b02067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Porphyrins are an extremely valuable class of molecules engaged in a variety of roles spanning from biology to optoelectronics. Manipulation of the chemical and physical properties of the inner cavity of porphyrins has been recognized as crucial for the exploitation of these systems in organic devices, particularly when porphyrins self-organize at the interface with a flat-on orientation of the macrocycle. Such an orientation has been mostly observed on metallic surfaces. Unfortunately, the physical-chemical properties of the molecules result in being largely perturbed due to the molecule-metal interaction. In addition, conducting substrates are unsuited to exploit electrically driven devices based on organic layers. To overcome these issues, we performed a topology-based analysis of insulating organic single crystal structures to identify a surface which (i) ensures easy exfoliation through mechanical methods, (ii) ensures epitaxial match with an overlayer of close-packed flat-on porphyrin molecules, and (iii) displays chirality. The outcome of this work is represented by a unique crystal of mixed 2,5-diketopiperazine and fumaric acid in a 1:1 ratio. We demonstrate that the (110) surface of this crystal fulfills the aforementioned requirements and, thanks to its peculiar subnanometric corrugations, allows one to grow uniaxially aligned monolayers of flat-on porphyrin molecules assembled through van der Waals interactions.
Collapse
Affiliation(s)
- Marcello Campione
- Department of Earth and Environmental Sciences , Università degli Studi di Milano - Bicocca , Piazza della Scienza 4 , I-20126 Milano , Italy
| | - Alberto Bossi
- Istituto di Scienze e Tecnologie Molecolari of the CNR (ISTM-CNR) , via Fantoli 16/15 , I-20138 Milano , Italy
- SmartMatLab Center , via Golgi 19 , I-20133 Milano , Italy
| | - Rossella Yivlialin
- Department of Physics , Politecnico di Milano , p.za Leonardo da Vinci 32 , I-20133 Milano , Italy
| | - Gianlorenzo Bussetti
- Department of Physics , Politecnico di Milano , p.za Leonardo da Vinci 32 , I-20133 Milano , Italy
| |
Collapse
|
46
|
Afsari S, Yasini P, Peng H, Perdew JP, Borguet E. Anisotropic Conductivity at the Single‐Molecule Scale. Angew Chem Int Ed Engl 2019; 58:14275-14280. [DOI: 10.1002/anie.201903898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Sepideh Afsari
- Department of Chemistry Temple University 1901 N. 13th St. Philadelphia PA 19122 USA
| | - Parisa Yasini
- Department of Chemistry Temple University 1901 N. 13th St. Philadelphia PA 19122 USA
| | - Haowei Peng
- Department of Physics Temple University 1925 N 12th St. Philadelphia PA 19122 USA
| | - John P. Perdew
- Department of Chemistry Temple University 1901 N. 13th St. Philadelphia PA 19122 USA
- Department of Physics Temple University 1925 N 12th St. Philadelphia PA 19122 USA
| | - Eric Borguet
- Department of Chemistry Temple University 1901 N. 13th St. Philadelphia PA 19122 USA
| |
Collapse
|
47
|
Afsari S, Yasini P, Peng H, Perdew JP, Borguet E. Anisotropic Conductivity at the Single‐Molecule Scale. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sepideh Afsari
- Department of Chemistry Temple University 1901 N. 13th St. Philadelphia PA 19122 USA
| | - Parisa Yasini
- Department of Chemistry Temple University 1901 N. 13th St. Philadelphia PA 19122 USA
| | - Haowei Peng
- Department of Physics Temple University 1925 N 12th St. Philadelphia PA 19122 USA
| | - John P. Perdew
- Department of Chemistry Temple University 1901 N. 13th St. Philadelphia PA 19122 USA
- Department of Physics Temple University 1925 N 12th St. Philadelphia PA 19122 USA
| | - Eric Borguet
- Department of Chemistry Temple University 1901 N. 13th St. Philadelphia PA 19122 USA
| |
Collapse
|
48
|
Kuzuhara D, Nakaoka H, Matsuo K, Aratani N, Yamada H. 2,7,12,17-Tetra(2,5-thienylene)-substituted porphycenes. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report syntheses of thiophene and dithiophene-substituted porphycenes (ThPc and DThPc) at 2,7,12,17-positions by McMurry coupling. The crystal structure of ThPc revealed that the porphycene plane shows a highly planar structure, and the dihedral angles between the porphycene core and thiophene are relatively small at 21[Formula: see text] and 18[Formula: see text]. ThPc and DThPc exhibit red-shifted and broadened absorption because of the extension of [Formula: see text] conjugations through porphycene to the substituted thiophenes. We found that introduction of thiophene units onto porphycene results in decreasing the HOMO–LUMO differences effectively.
Collapse
Affiliation(s)
- Daiki Kuzuhara
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Haruka Nakaoka
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Kyohei Matsuo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Naoki Aratani
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hiroko Yamada
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
49
|
Li J, He X, Oguzie E, Peng C. Orbital mechanism of upright CO activation on Fe(100). SURF INTERFACE ANAL 2019. [DOI: 10.1002/sia.6678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jibiao Li
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM)Yangtze Normal University Chongqing China
- Department of PhysicsAlbaNova University Center, Stockholm University Stockholm Sweden
| | - Xin He
- School of Intelligent ManufacturingSichuan University of Arts and Science Dazhou China
| | - Emeka Oguzie
- Electrochemistry and Materials Science Research Laboratory, Department of ChemistryFederal University of Technology Owerri Nigeria
| | - Cheng Peng
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM)Yangtze Normal University Chongqing China
| |
Collapse
|
50
|
Zhang J, Rogers FJM, Darwish N, Gonçales VR, Vogel YB, Wang F, Gooding JJ, Peiris MCR, Jia G, Veder JP, Coote ML, Ciampi S. Electrochemistry on Tribocharged Polymers Is Governed by the Stability of Surface Charges Rather than Charging Magnitude. J Am Chem Soc 2019; 141:5863-5870. [DOI: 10.1021/jacs.9b00297] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jinyang Zhang
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Fergus J. M. Rogers
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Vinicius R. Gonçales
- School of Chemistry, The Australian Centre for NanoMedicine and the Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yan B. Vogel
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Fei Wang
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - J. Justin Gooding
- School of Chemistry, The Australian Centre for NanoMedicine and the Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - M. Chandramalika. R. Peiris
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Jean-Pierre Veder
- John de Laeter Centre, Curtin University, Bentley, Western Australia 6102, Australia
| | - Michelle L. Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|