1
|
Berger J, Terruzzi S, Bunzen H, Ballerini F, Vandone M, Marelli M, Braglia L, Fischer RA, Colombo V, Kieslich G. CO 2 and Temperature Induced Switching of a Flexible Metal-Organic Framework with Surface-Mounted Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2408137. [PMID: 39777914 DOI: 10.1002/smll.202408137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Within the material family of metal-organic frameworks (MOFs) the subclass of flexible MOFs (flexMOFs) has attracted great attention, showing structural flexibility as a response to external stimuli such as guest adsorption, temperature, and pressure. Hybrid composites like nanoparticle (NP) loaded flexible MOFs, which stand to potentially combine advantageous properties of both are yet largely unexplored. Here the synthesis of flexMOFs with surface mounted nanoparticles, e. g. NP@Zn2(BME-bdc)2dabco composites (NP = Pt and SiO2 nanoparticles, BME-bdc2- = 2,5-bismethoxyethoxy-1,4-benzenedicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]octane) is reported, studying the impact of nanoparticles on the stimulus-responsiveness of a flexMOF. It is shown that CO2 physisorption triggered flexibility of the MOF is retained and reversible for all NP@flexMOF composites. Additionally, it is observed that NPs stabilize the large pore state of the MOF, slightly increasing and shifting the switching pressure window. This effect is also observed during temperature-induced switching but Pt@flexMOF composites partially lose long-range order during the reversion to their narrow pore state, while attached SiO2 NPs allow for a fully reversible transition. These findings suggest that the total exerted material strain triggering the switching is heavily dependent on NP size and the applied stimulus and that guest-induced switchability can be fully realized in NP@flexMOF hybrid materials.
Collapse
Affiliation(s)
- Jan Berger
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Stephanie Terruzzi
- Department of Chemistry and INSTM, UdR Milano, University of Milan, Via Golgi 19, Milan, 20133, Italy
| | - Hana Bunzen
- Institute of Physics, University of Augsburg, Universitätsstr. 1, 86159, Augsburg, Germany
| | - Filippo Ballerini
- Department of Chemistry and INSTM, UdR Milano, University of Milan, Via Golgi 19, Milan, 20133, Italy
| | - Marco Vandone
- Department of Chemistry and INSTM, UdR Milano, University of Milan, Via Golgi 19, Milan, 20133, Italy
| | - Marcello Marelli
- CNR SCITEC - Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Via Fantoli 16/15, Milan, 20138, Italy
| | - Luca Braglia
- I CNR IOM - Istituto Officina dei Materiali, Basovizza, Trieste, 34149, Italy
- AREA Science Park, Padriciano. 99, Trieste, 34149, Italy
| | - Roland A Fischer
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Valentina Colombo
- Department of Chemistry and INSTM, UdR Milano, University of Milan, Via Golgi 19, Milan, 20133, Italy
| | - Gregor Kieslich
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstr. 4, 85748, Garching, Germany
| |
Collapse
|
2
|
Gómez-Muñoz I, Hu Z, Vitórica-Yrezábal IJ, Coronado E, Mínguez Espallargas G. Implementing magnetic properties on demand with a dynamic lanthanoid-organic framework. Chem Sci 2024:d4sc07042a. [PMID: 39822900 PMCID: PMC11733734 DOI: 10.1039/d4sc07042a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
We present the synthesis of a lanthanoid-organic framework (LOF) featuring a dynamic structure that exhibits tunable magnetic properties. The LOF undergoes breathing and gate-opening phenomena in response to changes in DMF content and N2 sorption, leading to the emergence of new crystal phases with distinct characteristics. Notably, the desolvated form of the LOF excels as a single-ion magnet, while the fully activated structure demonstrates impressive qubit properties, exhibiting Rabi oscillations up to 60 K. Our work enables precise control over the LOF's geometry, allowing us to selectively tailor its magnetic behavior to achieve either of these two intriguing functionalities.
Collapse
Affiliation(s)
- Iván Gómez-Muñoz
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia c/Catedrático José Beltrán 2 Paterna 46980 Spain
| | - Ziqi Hu
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia c/Catedrático José Beltrán 2 Paterna 46980 Spain
| | - Iñigo J Vitórica-Yrezábal
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada Av. Fuente Nueva Granada 18070 Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia c/Catedrático José Beltrán 2 Paterna 46980 Spain
| | | |
Collapse
|
3
|
Watanabe S, Hiraide S, Arima H, Fukuta A, Mori M, Tanaka H, Miyahara MT. Size-dependent guest-memory switching of the flexible and robust adsorption characteristics of layered metal-organic frameworks. SCIENCE ADVANCES 2024; 10:eadr1387. [PMID: 39642228 PMCID: PMC11623303 DOI: 10.1126/sciadv.adr1387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/01/2024] [Indexed: 12/08/2024]
Abstract
Flexible-robust metal-organic frameworks (MOFs), which exhibit unique hybrid nature comprising both flexible and rigid framework characteristics, exhibit high potential for hydrocarbon separations. However, no clear guidelines have been established to regulate their hybrid characteristics owing to limited understanding of their adsorption mechanism. This study investigates the effects of the particle size of a flexible-robust MOF on its adsorption and structural transition behaviors. The robust nature originates from the structural transition of a metastable guest-free structure, while its flexible nature arises from another guest-free structure. The type of guest-free structure is predominantly determined by the particle size; particles below the critical size are trapped in the metastable guest-free structure. Notably, the critical size varies with the type of guest molecule to be removed; consequently, the difference in critical size results in guest-memory characteristics, enabling guest-free structure switching. These results underscore the importance of controlling the particle size to fine-tune hybrid adsorption characteristics of flexible-robust MOFs.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Shotaro Hiraide
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Homare Arima
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Akiko Fukuta
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Miyuki Mori
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Hideki Tanaka
- Institute for Aqua Regeneration (ARG), Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Minoru T. Miyahara
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
4
|
Sobczak SK, Drwęska J, Gromelska W, Roztocki K, Janiak AM. Multivariate Flexible Metal-Organic Frameworks and Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402486. [PMID: 39380355 DOI: 10.1002/smll.202402486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Precise control of the void environment, achieved through multiple functional groups and enhanced by structural adaptations to guest molecules, stands at the forefront of scientific inquiry. Flexible multivariate open framework materials (OFMs), including covalent organic frameworks and metal-organic frameworks, meet these criteria and are expected to play a crucial role in gas storage and separation, pollutant removal, and catalysis. Nevertheless, there is a notable lack of critical evaluation of achievements in their chemistry and future prospects for their development or implementation. To provide a comprehensive historical context, the initial discussion explores into the realm of "classical" flexible OFMs, where their origin, various modes of flexibility, similarities to proteins, advanced tuning methods, and recent applications are explored. Subsequently, multivariate flexible materials, the methodologies involved in their synthesis, and horizons of their application are focussed. Furthermore, the reader to the concept of spatial distribution is introduced, providing a brief overview of the latest reports that have contributed to its elucidation. In summary, the critical review not only explores the landscape of multivariate flexible materials but also sheds light on the obstacles that the scientific community must overcome to fully unlock the potential of this fascinating field.
Collapse
Affiliation(s)
- Szymon K Sobczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Joanna Drwęska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Wiktoria Gromelska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Kornel Roztocki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Agnieszka M Janiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| |
Collapse
|
5
|
Liang K, Liang Y, Tang M, Liu J, Tang ZB, Liu Z. π-Diamond: A Diamondoid Superstructure Driven by π-Interactions. Angew Chem Int Ed Engl 2024; 63:e202409507. [PMID: 38896433 DOI: 10.1002/anie.202409507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Modulating the arrangement of superstructures through noncovalent interactions has a significant impact on macroscopic shape and the expression of unique properties. Constructing π-interaction-driven hierarchical three-dimensional (3D) superstructures poses challenges on account of limited directional control and weak intermolecular interactions. Here we report the construction of a 3D diamondoid superstructure, named π-Diamond, employing a ditopic strained Z-shaped building block comprising a porphyrin unit as bow-limb double-strapped with two m-xylylene units as bowstrings. This superstructure, reminiscent of diamond's tetrahedral carbon composition, is composed of double-walled tetrahedron (DWT) driven solely by π-interactions. Hetero-π-stacking interactions between porphyrin and m-xylylene panels drive the assembly of four building blocks predominantly into a DWT, which undergoes extension to create an adamantane unit and eventually a diamondoid superstructure wherein each porphyrin panel is shared by two neighboring tetrahedra through hetero-π-stacking. π-Diamond exhibits a solid-state fluorescent quantum yield 44 times higher than that of tetraphenylporphyrin along with excellent photocatalytic performance. The precise 3D directionality of π-interactions, achieved through strained multipanel building blocks, revolutionizes the assembly of hierarchical 3D superstructures driven by π-interactions.
Collapse
Affiliation(s)
- Kejiang Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Yimin Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Min Tang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Jiali Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Zheng-Bin Tang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Zhichang Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
6
|
Auras F, Ascherl L, Bon V, Vornholt SM, Krause S, Döblinger M, Bessinger D, Reuter S, Chapman KW, Kaskel S, Friend RH, Bein T. Dynamic two-dimensional covalent organic frameworks. Nat Chem 2024; 16:1373-1380. [PMID: 38702406 DOI: 10.1038/s41557-024-01527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/02/2024] [Indexed: 05/06/2024]
Abstract
Porous covalent organic frameworks (COFs) enable the realization of functional materials with molecular precision. Past research has typically focused on generating rigid frameworks where structural and optoelectronic properties are static. Here we report dynamic two-dimensional (2D) COFs that can open and close their pores upon uptake or removal of guests while retaining their crystalline long-range order. Constructing dynamic, yet crystalline and robust frameworks requires a well-controlled degree of flexibility. We have achieved this through a 'wine rack' design where rigid π-stacked columns of perylene diimides are interconnected by non-stacked, flexible bridges. The resulting COFs show stepwise phase transformations between their respective contracted-pore and open-pore conformations with up to 40% increase in unit-cell volume. This variable geometry provides a handle for introducing stimuli-responsive optoelectronic properties. We illustrate this by demonstrating switchable optical absorption and emission characteristics, which approximate 'null-aggregates' with monomer-like behaviour in the contracted COFs. This work provides a design strategy for dynamic 2D COFs that are potentially useful for realizing stimuli-responsive materials.
Collapse
Affiliation(s)
- Florian Auras
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Dresden, Germany.
| | - Laura Ascherl
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Volodymyr Bon
- Department of Inorganic Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | - Simon M Vornholt
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Simon Krause
- Department of Inorganic Chemistry, TUD Dresden University of Technology, Dresden, Germany
- Nanochemistry Department, Max-Planck-Institute for Solid State Research, Stuttgart, Germany
| | - Markus Döblinger
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Derya Bessinger
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Stephan Reuter
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Stefan Kaskel
- Department of Inorganic Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | | | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany.
| |
Collapse
|
7
|
Li X, Sensharma D, Loots L, Geng S, Nikkhah SJ, Lin E, Bon V, Liu W, Wang Z, He T, Mukherjee S, Vandichel M, Kaskel S, Barbour LJ, Zhang Z, Zaworotko MJ. Reversible Phase Transformations in a Double-Walled Diamondoid Coordination Network with a Stepped Isotherm for Methane. J Am Chem Soc 2024; 146:18387-18395. [PMID: 38904843 PMCID: PMC11240251 DOI: 10.1021/jacs.4c03555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Flexible metal-organic materials (FMOMs) with stepped isotherms can offer enhanced working capacity in storage applications such as adsorbed natural gas (ANG) storage. Unfortunately, whereas >1000 FMOMs are known, only a handful exhibit methane uptake of >150 cm3/cm3 at 65 atm and 298 K, conditions relevant to ANG. Here, we report a double-walled 2-fold interpenetrated diamondoid (dia) network, X-dia-6-Ni, [Ni2L4(μ-H2O)]n, comprising a new azo linker ligand, L- (L- = (E)-3-(pyridin-4-yldiazenyl)benzoate) and 8-connected dinuclear molecular building blocks. X-dia-6-Ni exhibited gas (CO2, N2, CH4) and liquid (C8 hydrocarbons)-induced reversible transformations between its activated narrow-pore β phase and γ, a large-pore phase with ca. 33% increase in unit cell volume. Single-crystal X-ray diffraction (SCXRD) studies of the as-synthesized phase α, β, and γ revealed that structural transformations were enabled by twisting of the azo moiety and/or deformation of the MBB. Further insight into these transformations was gained from variable temperature powder XRD and in situ variable pressure powder XRD. Low-temperature N2 and CO2 sorption revealed stepped Type F-II isotherms with saturation uptakes of 422 and 401 cm3/g, respectively. X-dia-6-Ni exhibited uptake of 200 cm3/cm3 (65 atm, 298 K) and a high CH4 working capacity of 166 cm3/cm3 (5-65 bar, 298 K, 33 cycles), the third highest value yet reported for an FMOM and the highest value for an FMOM with a Type F-II isotherm.
Collapse
Affiliation(s)
- Xia Li
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Debobroto Sensharma
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Leigh Loots
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland 7602, South Africa
| | - Shubo Geng
- College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Sousa Javan Nikkhah
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - En Lin
- College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Volodymyr Bon
- Faculty of Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Wansheng Liu
- College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhifang Wang
- College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Tao He
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Soumya Mukherjee
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Matthias Vandichel
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Stefan Kaskel
- Faculty of Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Leonard J Barbour
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland 7602, South Africa
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Michael J Zaworotko
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| |
Collapse
|
8
|
Xiao C, Tian J, Jiang F, Yuan D, Chen Q, Hong M. Optimizing Iodine Enrichment through Induced-Fit Transformations in a Flexible Ag(I)-Organic Framework: From Accelerated Adsorption Kinetics to Record-High Storage Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311181. [PMID: 38361209 DOI: 10.1002/smll.202311181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Efficient capture and storage of radioactive I2 is a prerequisite for developing nuclear power but remains a challenge. Here, two flexible Ag-MOFs (FJI-H39 and 40) with similar active sites but different pore sizes and flexibility are prepared; both of them can capture I2 with excellent removal efficiencies and high adsorption capacities. Due to the more flexible pores, FJI-H39 not only possesses the record-high I2 storage density among all the reported MOFs but also displays a very fast adsorption kinetic (124 times faster than FJI-H40), while their desorption kinetics are comparable. Mechanistic studies show that FJI-H39 can undergo induced-fit transformations continuously (first contraction then expansion), making the adsorbed iodine species enrich near the Ag(I) nodes quickly and orderly, from discrete I- anion to the dense packing of various iodine species, achieving the very fast adsorption kinetic and the record-high storage density simultaneously. However, no significant structural transformations caused by the adsorbed iodine are observed in FJI-H40. In addition, FJI-H39 has excellent stability/recyclability/obtainability, making it a practical adsorbent for radioactive I2. This work provides a useful method for synthesizing practical radioactive I2 adsorbents.
Collapse
Affiliation(s)
- Cao Xiao
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jindou Tian
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
9
|
Zhang JA, Chao Y, Xiao X, Luo S, Chen W, Tian W. Self-Adaptive Aromatic Cation-π Driven Dimensional Polymorphism in Supramolecular Polymers for the Photocatalytic Oxidation and Separation of Aromatic/Cyclic Aliphatic Compounds. Angew Chem Int Ed Engl 2024; 63:e202402760. [PMID: 38483296 DOI: 10.1002/anie.202402760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 04/06/2024]
Abstract
The phenomenon of polymorphism is ubiquitous in nature, the controlled manipulation of which not only increases our ontological understanding of nature but also facilitates the conceptualization and realization of novel functional materials. However, achieving targeted polymorphism in supramolecular assemblies (SAs) remains a formidable challenge, largely because of the constraints inherent in controlling the specific binding motifs of noncovalent interactions. Herein, we propose self-adaptive aromatic cation-π binding motifs to construct polymorphic SAs in both the solid and solution states. Using distinct discrete cation-π-cation and long-range cation-π binding motifs enables control of the self-assembly directionality of a C2h-symmetric bifunctional monomer, resulting in the successful formation of both two-dimensional and three-dimensional crystalline SAs (2D-CSA and 3D-CSA). The differences in the molecular packing of 3D-CSA compared with that of 2D-CSA significantly improve the charge separation and carrier mobility, leading to enhanced photocatalytic activity for the aerobic oxidation of thioanisole to methyl phenyl sulfoxide (yield of 99 % vs 57 %). 2D-CSA, which has a vertical extended structure with favorable stronger interaction with toluene though face-to-face cation-π interactions than methylcyclohexane, shows higher toluene/methylcyclohexane separation efficiency than 3D-CSA (96.9 % for 2D-CSA vs 56.3 % for 3D-CSA).
Collapse
Affiliation(s)
- Ju-An Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yi Chao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xuedong Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shuai Luo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wenzhuo Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xian-yang, 712046, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
10
|
Su Y, Otake KI, Zheng JJ, Wang P, Lin Q, Kitagawa S, Gu C. Diffusion-rate sieving of propylene and propane mixtures in a cooperatively dynamic porous crystal. Nat Commun 2024; 15:2898. [PMID: 38575596 PMCID: PMC10995200 DOI: 10.1038/s41467-024-47268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Selective molecular recognition is an important alternative to the energy-intensive industrial separation process. Porous coordination polymers (PCPs) offer designing platforms for gas separation because they possess precise controllability over structures at the molecular level. However, PCPs-based gas separations are dominantly achieved using strong adsorptive sites for thermodynamic recognition or pore-aperture control for size sieving, which suffer from insufficient selectivity or sluggish kinetics. Developing PCPs that work at high temperatures and feature both high uptake capacity and selectivity is urgently required but remains challenging. Herein, we report diffusion-rate sieving of propylene/propane (C3H6/C3H8) at 300 K by constructing a PCP material whose global and local dynamics cooperatively govern the adsorption process via the mechanisms of the gate opening for C3H6 and the diffusion regulation for C3H8, respectively, yielding substantial differences in both uptake capacity and adsorption kinetics. Dynamic separation of an equimolar C3H6/C3H8 mixture reveals outstanding sieving performance with a C3H6 purity of 99.7% and a separation factor of 318.
Collapse
Affiliation(s)
- Yan Su
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ping Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qing Lin
- ReadCrystal Biotech Co., Ltd., Suzhou, 215505, P. R. China
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Cheng Gu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| |
Collapse
|
11
|
Boström HLB, Emmerling S, Heck F, Koschnick C, Jones AJ, Cliffe MJ, Al Natour R, Bonneau M, Guillerm V, Shekhah O, Eddaoudi M, Lopez-Cabrelles J, Furukawa S, Romero-Angel M, Martí-Gastaldo C, Yan M, Morris AJ, Romero-Muñiz I, Xiong Y, Platero-Prats AE, Roth J, Queen WL, Mertin KS, Schier DE, Champness NR, Yeung HHM, Lotsch BV. How Reproducible is the Synthesis of Zr-Porphyrin Metal-Organic Frameworks? An Interlaboratory Study. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304832. [PMID: 37669645 DOI: 10.1002/adma.202304832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Indexed: 09/07/2023]
Abstract
Metal-organic frameworks (MOFs) are a rapidly growing class of materials that offer great promise in various applications. However, the synthesis remains challenging: for example, a range of crystal structures can often be accessed from the same building blocks, which complicates the phase selectivity. Likewise, the high sensitivity to slight changes in synthesis conditions may cause reproducibility issues. This is crucial, as it hampers the research and commercialization of affected MOFs. Here, it presents the first-ever interlaboratory study of the synthetic reproducibility of two Zr-porphyrin MOFs, PCN-222 and PCN-224, to investigate the scope of this problem. For PCN-222, only one sample out of ten was phase pure and of the correct symmetry, while for PCN-224, three are phase pure, although none of these show the spatial linker order characteristic of PCN-224. Instead, these samples resemble dPCN-224 (disordered PCN-224), which has recently been reported. The variability in thermal behavior, defect content, and surface area of the synthesised samples are also studied. The results have important ramifications for field of metal-organic frameworks and their crystallization, by highlighting the synthetic challenges associated with a multi-variable synthesis space and flat energy landscapes characteristic of MOFs.
Collapse
Affiliation(s)
- Hanna L B Boström
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
- Present address: Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Sebastian Emmerling
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - Fabian Heck
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - Charlotte Koschnick
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - Andrew J Jones
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthew J Cliffe
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Rawan Al Natour
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mickaële Bonneau
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Vincent Guillerm
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Javier Lopez-Cabrelles
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - María Romero-Angel
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán-2, Paterna, 46980, Spain
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán-2, Paterna, 46980, Spain
| | - Minliang Yan
- Macromolecules innovation institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amanda J Morris
- Macromolecules innovation institute, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ignacio Romero-Muñiz
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Ying Xiong
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Ana E Platero-Prats
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Jocelyn Roth
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950, Switzerland
| | - Wendy L Queen
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950, Switzerland
| | - Kalle S Mertin
- Institute of Inorganic Chemistry, Christian-Albrechts-University Kiel, 24118, Kiel, Germany
| | - Danielle E Schier
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Neil R Champness
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hamish H-M Yeung
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Bettina V Lotsch
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
- Department of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13, Haus D, 81377, Munich, Germany
| |
Collapse
|
12
|
Fernández-Seriñán P, Roztocki K, Safarifard V, Guillerm V, Rodríguez-Hermida S, Juanhuix J, Imaz I, Morsali A, Maspoch D. Modulation of the Dynamics of a Two-Dimensional Interweaving Metal-Organic Framework through Induced Hydrogen Bonding. Inorg Chem 2024; 63:5552-5558. [PMID: 38484385 DOI: 10.1021/acs.inorgchem.3c04522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Inducing, understanding, and controlling the flexibility in metal-organic frameworks (MOFs) are of utmost interest due to the potential applications of dynamic materials in gas-related technologies. Herein, we report the synthesis of two isostructural two-dimensional (2D) interweaving zinc(II) MOFs, TMU-27 [Zn(bpipa)(bdc)] and TMU-27-NH2 [Zn(bpipa)(NH2-bdc)], based on N,N'-bis-4-pyridyl-isophthalamide (bpipa) and 1,4-benzenedicarboxylate (bdc) or 2-amino-1,4-benzenedicarboxylate (NH2-bdc), respectively. These frameworks differ only by the substitution at the meta-position of their respective bdc groups: an H atom in TMU-27 vs an NH2 group in TMU-27-NH2. This difference strongly influences their respective responses to external stimuli, since we observed that the structure of TMU-27 changed due to desolvation and adsorption, whereas TMU-27-NH2 remained rigid. Using single-crystal X-ray diffraction and CO2-sorption measurements, we discovered that upon CO2 sorption, TMU-27 undergoes a transition from a closed-pore phase to an open-pore phase. In contrast, we attributed the rigidification in TMU-27-NH2 to intermolecular hydrogen bonding between interweaving layers, namely, between the H atoms from the bdc-amino groups and the O atoms from the bpipa-amide groups within these layers. Additionally, by using scanning electron microscopy to monitor the CO2 adsorption and desorption in TMU-27, we were able to establish a correlation between the crystal size of this MOF and its transformation pressure.
Collapse
Affiliation(s)
- Pilar Fernández-Seriñán
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain
- Chemistry Department of Autonomous, University of Barcelona (UAB), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Kornel Roztocki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Vincent Guillerm
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Sabina Rodríguez-Hermida
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Judith Juanhuix
- ALBA Synchrotron, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain
- Chemistry Department of Autonomous, University of Barcelona (UAB), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-175, Iran
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain
- Chemistry Department of Autonomous, University of Barcelona (UAB), Campus UAB, Bellaterra, Barcelona 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
13
|
Li L, Zhao S, Huang H, Dong M, Liang J, Li H, Hao J, Zhao E, Gu X. Advanced Soft Porous Organic Crystal with Multiple Gas-Induced Single-Crystal-to-Single-Crystal Transformations for Highly Selective Separation of Propylene and Propane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303057. [PMID: 38098252 PMCID: PMC10916656 DOI: 10.1002/advs.202303057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/20/2023] [Indexed: 03/07/2024]
Abstract
Soft porous organic crystals with stimuli-responsive single-crystal-to-single-crystal (SCSC) transformations are important tools for unraveling their structural transformations at the molecular level, which is of crucial importance for the rapid development of stimuli-responsive systems. Carefully balancing the crystallinity and flexibility of materials is the prerequisite to construct advanced organic crystals with SCSC, which remains challenging. Herein, a squaraine-based soft porous organic crystal (SPOC-SQ) with multiple gas-induced SCSC transformations and temperature-regulated gate-opening adsorption of various C1-C3 hydrocarbons is reported. SPOC-SQ is featured with both crystallinity and flexibility, which enable pertaining the single crystallinity of the purely organic framework during accommodating gas molecules and directly unveiling gas-framework interplays by SCXRD technique. Thanks to the excellent softness of SPOC-SQ crystals, multiple metastable single crystals are obtained after gas removals, which demonstrates a molecular-scale shape-memory effect. Benefiting from the single crystallinity, the molecule-level structural evolutions of the SPOC-SQ crystal framework during gas departure are uncovered. With the unique temperature-dependent gate-opening structural transformations, SPOC-SQ exhibits distinctly different absorption behaviors towards C3 H6 and C3 H8 , and highly efficient and selective separation of C3 H6 /C3 H8 (v/v, 50/50) is achieved at 273 K. Such advanced soft porous organic crystals are of both theoretical values and practical implications.
Collapse
Affiliation(s)
- Lin Li
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Shuhong Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Huiming Huang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Muyao Dong
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Jie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Jian Hao
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Engui Zhao
- School of ScienceHarbin Institute of TechnologyShenzhenHIT Campus of University TownShenzhen518055P. R. China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Chemical Resource EngineeringCollege of Materials Science and EngineeringAnalysis and Test CenterBeijing University of Chemical TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
- Beijing National Laboratory for Molecular SciencesBeijing100190P. R. China
| |
Collapse
|
14
|
Boström HLB, Cairns AB, Chen M, Daisenberger D, Ridley CJ, Funnell NP. The pressure response of Jahn-Teller-distorted Prussian blue analogues. Chem Sci 2024; 15:3155-3164. [PMID: 38425511 PMCID: PMC10901509 DOI: 10.1039/d3sc06912e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Jahn-Teller (JT) distorted CuII-containing compounds often display interesting structural and functional behaviour upon compression. We use high-pressure X-ray and neutron diffraction to investigate four JT-distorted Prussian blue analogues: Cu[Co(CN)6]0.67, CuPt(CN)6, and ACuCo(CN)6 (A = Rb, Cs), where the first two were studied in both their hydrated and dehydrated forms. All compounds are less compressible than the JT-inactive MnII-based counterparts, indicating a coupling between the electronic and mechanical properties. The effect is particularly strong for Cu[Co(CN)6]0.67, where the local JT distortions are uncorrelated (so-called orbital disorder). This sample amorphises at 0.5 GPa when dehydrated. CuPt(CN)6 behaves similarly to the MnII-analogues, with phase transitions at around 1 GPa and low sensitivity to water. For ACuCo(CN)6, the JT distortions reduce the propensity for phase transitions, although RbCuCo(CN)6 transitions to a new phase (P2/m) around 3 GPa. Our results have a bearing on both the topical Prussian blue analogues and the wider field of flexible frameworks.
Collapse
Affiliation(s)
- Hanna L B Boström
- Max Planck Institute for Solid State Research Heisenbergstraße 1 D-70569 Stuttgart Germany
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Materials and Environmental Chemistry, Stockholm University SE-114 18 Stockholm Sweden
| | - Andrew B Cairns
- Department of Materials, Imperial College London, Royal School of Mines Exhibition Road SW7 2AZ London UK
- London Centre for Nanotechnology, Imperial College London SW7 2AZ London UK
| | - Muzi Chen
- Department of Materials, Imperial College London, Royal School of Mines Exhibition Road SW7 2AZ London UK
- London Centre for Nanotechnology, Imperial College London SW7 2AZ London UK
| | | | - Christopher J Ridley
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory Harwell Campus Didcot OX11 0QX UK
| | - Nicholas P Funnell
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory Harwell Campus Didcot OX11 0QX UK
| |
Collapse
|
15
|
Zhang L, Song L, Meng LL, Guo YN, Zhu XY, Qin LZ, Chen CX, Xiong XH, Wei ZW, Su CY. Anionic Ni-Based Metal-Organic Framework with Li(I) Cations in the Pores for Efficient C 2H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:847-852. [PMID: 38153916 DOI: 10.1021/acsami.3c16019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Acetylene (C2H2) is widely used as a raw material for producing various downstream commodities in the petrochemical and electronic industry. Therefore, the acquisition of high-purity C2H2 from a C2H2/CO2 mixture produced by partial methane combustion or thermal hydrocarbon cracking is of great significance yet highly challenging due to their similar physical and chemical properties. Herein, we report an anionic metal-organic framework (MOF) named LIFM-210, which has Li+ cations in the pores and shows a higher adsorption affinity for C2H2 than CO2. LIFM-210 is constructed by a unique tetranuclear Ni(II) cluster acting as a 10-connected node and an organic ligand acting as a 5-connected node. Single-component adsorption and transient breakthrough experiments demonstrate the good C2H2 selective separation performance of LIFM-210. Theoretical calculations revealed that Li+ ions strongly prefer C2H2 to CO2 and are primary adsorption sites, playing vital roles in the selective separation of C2H2/CO2.
Collapse
Affiliation(s)
- Liang Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liang Song
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liu-Li Meng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ya-Nan Guo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Yan Zhu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lu-Zhu Qin
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Xia Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Hong Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhang-Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
16
|
Kalashnikova GO, Krivovichev SV, Yakovenchuk VN, Selivanova EA, Avdontceva MS, Ivanyuk GY, Pakhomovsky YA, Gryaznova DV, Kabanova NA, Morkhova YA, Sinel’shchikova OY, Bocharov VN, Nikolaev AI, Goychuk OF, Volkov SN, Panikorovskii TL. The AM-4 Family of Layered Titanosilicates: Single-Crystal-to-Single-Crystal Transformation, Synthesis and Ionic Conductivity. MATERIALS (BASEL, SWITZERLAND) 2023; 17:111. [PMID: 38203965 PMCID: PMC10780191 DOI: 10.3390/ma17010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Abstract
Flexible crystal() structures, which exhibit() single-crystal()-to-single-crystal() (SCSC) transformations(), are attracting attention() in many applied aspects: magnetic() switches, catalysis, ferroelectrics and sorption. Acid treatment() for titanosilicate material() AM-4 and natural() compounds with the same structures led to SCSC transformation() by loss() Na+, Li+ and Zn2+ cations with large structural() changes (20% of the unit()-cell() volume()). The conservation() of crystallinity through complex() transformation() is possible due() to the formation() of a strong hydrogen bonding() system(). The mechanism() of transformation() has been characterized using single-crystal() X-ray() diffraction analysis(), powder() diffraction, Rietvield refinement, Raman spectroscopy and electron microscopy. The low migration() energy() of cations in the considered materials() is confirmed using bond()-valence and density() functional() theory() calculations, and the ion conductivity of the AM-4 family's materials() has been experimentally verified.
Collapse
Affiliation(s)
- Galina O. Kalashnikova
- Laboratory for Synthesis and Research of the Properties of Mineral-Like Functional Materials, Nanomaterial Research Center of the Kola Science Centre, Russian Academy of Sciences, Fersmana str. 14, 184209 Apatity, Russia; (G.O.K.); (S.V.K.); (V.N.Y.); (E.A.S.); (G.Y.I.); (Y.A.P.); (D.V.G.); (A.I.N.); (O.F.G.)
| | - Sergey V. Krivovichev
- Laboratory for Synthesis and Research of the Properties of Mineral-Like Functional Materials, Nanomaterial Research Center of the Kola Science Centre, Russian Academy of Sciences, Fersmana str. 14, 184209 Apatity, Russia; (G.O.K.); (S.V.K.); (V.N.Y.); (E.A.S.); (G.Y.I.); (Y.A.P.); (D.V.G.); (A.I.N.); (O.F.G.)
- Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, 7–9 University Emb., 199034 St. Petersburg, Russia;
| | - Victor N. Yakovenchuk
- Laboratory for Synthesis and Research of the Properties of Mineral-Like Functional Materials, Nanomaterial Research Center of the Kola Science Centre, Russian Academy of Sciences, Fersmana str. 14, 184209 Apatity, Russia; (G.O.K.); (S.V.K.); (V.N.Y.); (E.A.S.); (G.Y.I.); (Y.A.P.); (D.V.G.); (A.I.N.); (O.F.G.)
- Geological Institute, Kola Science Center of Russian Academy of Sciences, 14 Fersman Street, 184200 Apatity, Russia
| | - Ekaterina A. Selivanova
- Laboratory for Synthesis and Research of the Properties of Mineral-Like Functional Materials, Nanomaterial Research Center of the Kola Science Centre, Russian Academy of Sciences, Fersmana str. 14, 184209 Apatity, Russia; (G.O.K.); (S.V.K.); (V.N.Y.); (E.A.S.); (G.Y.I.); (Y.A.P.); (D.V.G.); (A.I.N.); (O.F.G.)
- Geological Institute, Kola Science Center of Russian Academy of Sciences, 14 Fersman Street, 184200 Apatity, Russia
| | - Margarita S. Avdontceva
- Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, 7–9 University Emb., 199034 St. Petersburg, Russia;
| | - Gregory Yu. Ivanyuk
- Laboratory for Synthesis and Research of the Properties of Mineral-Like Functional Materials, Nanomaterial Research Center of the Kola Science Centre, Russian Academy of Sciences, Fersmana str. 14, 184209 Apatity, Russia; (G.O.K.); (S.V.K.); (V.N.Y.); (E.A.S.); (G.Y.I.); (Y.A.P.); (D.V.G.); (A.I.N.); (O.F.G.)
| | - Yakov A. Pakhomovsky
- Laboratory for Synthesis and Research of the Properties of Mineral-Like Functional Materials, Nanomaterial Research Center of the Kola Science Centre, Russian Academy of Sciences, Fersmana str. 14, 184209 Apatity, Russia; (G.O.K.); (S.V.K.); (V.N.Y.); (E.A.S.); (G.Y.I.); (Y.A.P.); (D.V.G.); (A.I.N.); (O.F.G.)
- Geological Institute, Kola Science Center of Russian Academy of Sciences, 14 Fersman Street, 184200 Apatity, Russia
| | - Darya V. Gryaznova
- Laboratory for Synthesis and Research of the Properties of Mineral-Like Functional Materials, Nanomaterial Research Center of the Kola Science Centre, Russian Academy of Sciences, Fersmana str. 14, 184209 Apatity, Russia; (G.O.K.); (S.V.K.); (V.N.Y.); (E.A.S.); (G.Y.I.); (Y.A.P.); (D.V.G.); (A.I.N.); (O.F.G.)
| | - Natalya A. Kabanova
- Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic, Nanomaterial Research Center of the Kola Science Centre, Russian Academy of Sciences, Fersmana str. 14, 184209 Apatity, Russia;
- Samara Center for Theoretical Materials Science, Samara State Technical University, Molodogvardeyskaya Str. 244, 443100 Samara, Russia
| | - Yelizaveta A. Morkhova
- Institute of Experimental Medicine and Biotechnology, Samara State Medical University, Chapayevskaya Srt. 89, 443099 Samara, Russia;
| | - Olga Yu. Sinel’shchikova
- Laboratory of Physicochemical Design and Synthesis of Functional Materials, Institute of Silicate Chemistry of Russian Academy of Sciences, 2 Adm. Makarova, 199034 St. Petersburg, Russia;
| | - Vladimir N. Bocharov
- Geo Environmental Centre “Geomodel”, St. Petersburg State University, Universitetskaya nab., 7/9, 199034 St. Petersburg, Russia;
| | - Anatoly I. Nikolaev
- Laboratory for Synthesis and Research of the Properties of Mineral-Like Functional Materials, Nanomaterial Research Center of the Kola Science Centre, Russian Academy of Sciences, Fersmana str. 14, 184209 Apatity, Russia; (G.O.K.); (S.V.K.); (V.N.Y.); (E.A.S.); (G.Y.I.); (Y.A.P.); (D.V.G.); (A.I.N.); (O.F.G.)
- Tananaev Institute of Chemistry of the Kola Science Centre, Russian Academy of Sciences, Academic Town, 26a, 184209 Apatity, Russia
| | - Olga F. Goychuk
- Laboratory for Synthesis and Research of the Properties of Mineral-Like Functional Materials, Nanomaterial Research Center of the Kola Science Centre, Russian Academy of Sciences, Fersmana str. 14, 184209 Apatity, Russia; (G.O.K.); (S.V.K.); (V.N.Y.); (E.A.S.); (G.Y.I.); (Y.A.P.); (D.V.G.); (A.I.N.); (O.F.G.)
- Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic, Nanomaterial Research Center of the Kola Science Centre, Russian Academy of Sciences, Fersmana str. 14, 184209 Apatity, Russia;
| | - Sergei N. Volkov
- Laboratory of Arctic Mineralogy and Material Sciences, Nanomaterial Research Center of the Kola Science Centre, Russian Academy of Sciences, Fersmana str. 14, 184209 Apatity, Russia;
| | - Taras L. Panikorovskii
- Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic, Nanomaterial Research Center of the Kola Science Centre, Russian Academy of Sciences, Fersmana str. 14, 184209 Apatity, Russia;
| |
Collapse
|
17
|
Yin MC, Wei PC, Li Y, Hsu T, Jian JY, Chang KC, Lu CP, Tu HL, Wang CM. Structural Variants and Ultralow Detection Ability for Tryptamine in Two Polymorphs of a Zincophosphite Framework. Inorg Chem 2023; 62:18150-18156. [PMID: 37870276 DOI: 10.1021/acs.inorgchem.3c02620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Two organic-inorganic hybrid zinc phosphites incorporating 1,2,4,5-tetrakis(imidazol-1-ylmethyl)benzene (TIMB) molecules were synthesized under hydro(solvo)thermal methods and structurally characterized by single-crystal X-ray diffraction (SCXD). Interestingly, the solvent ratio of water to dimethylformamide induced the formation of a new compound of Zn2(TIMB)0.5(HPO3)2·3H2O (1) and our previously reported structure of Zn2(TIMB)0.5(HPO3)2·H2O (2). Additionally, their dehydrated crystals (1a and 2a) were prepared through heat treatment at 150 °C. SCXD and powder X-ray diffraction showed that all four compounds share the same framework formula of Zn2(TIMB)0.5(HPO3)2 but exhibit a huge difference in their inorganic components and final structures. In 1 and 1a, the inorganic units formed two-dimensional zincophosphite layers, while in 2 and 2a, they formed one-dimensional chains. The inorganic parts of 1 (1a) and 2 (2a) were bridged with TIMB linkers, resulting in 3D structures with rectangular and tubular windows, respectively. Furthermore, 1 was coated on the screen-printed carbon electron as a hybrid material, displaying excellent performance while having a linear relationship with an R2 value of 0.99 within the concentration range of 10-10 to 10-6 mol/L for detecting tryptamine (Try) molecules. Moreover, the results showed that 1 exhibits an ultralow limit of detection of 5.43 × 10-11 mol/L and high specificity toward Try over histamine, ascorbic acid, uric acid, and glucose. The synthesis, structural diversity, stability, and sensing ability are also discussed.
Collapse
Affiliation(s)
- Mu-Chien Yin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung ,202, 20224, Taiwan, R.O.C
| | - Pi-Chen Wei
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung ,202, 20224, Taiwan, R.O.C
| | - Ying Li
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung ,202, 20224, Taiwan, R.O.C
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Todd Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung ,202, 20224, Taiwan, R.O.C
| | - Jia-Yi Jian
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung ,202, 20224, Taiwan, R.O.C
| | - Kai-Chi Chang
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung ,202, 20224, Taiwan, R.O.C
| | - Ching-Ping Lu
- Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung ,202, 20224, Taiwan, R.O.C
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 11529, Taiwan
| | - Chih-Min Wang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung ,202, 20224, Taiwan, R.O.C
- General Education Center, National Taiwan Ocean University, Keelung ,202, 20224, Taiwan, R.O.C
| |
Collapse
|
18
|
Song D, Jiang F, Yuan D, Chen Q, Hong M. Optimizing Sieving Effect for CO 2 Capture from Humid Air Using an Adaptive Ultramicroporous Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302677. [PMID: 37357172 DOI: 10.1002/smll.202302677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Indexed: 06/27/2023]
Abstract
Excessive CO2 in the air can not only lead to serious climate problems but also cause serious damage to humans in confined spaces. Here, a novel metal-organic framework (FJI-H38) with adaptive ultramicropores and multiple active sites is prepared. It can sieve CO2 from air with the very high adsorption capacity/selectivity but the lowest adsorption enthalpy among the reported physical adsorbents. Such excellent adsorption performances can be retained even at high humidity. Mechanistic studies show that the polar ultramicropore is very suitable for molecular sieving of CO2 from N2 , and the distinguishable adsorption sites for H2 O and CO2 enable them to be co-adsorbed. Notably, the adsorbed-CO2 -driven pore shrinkage can further promote CO2 capture while the adsorbed-H2 O-induced phase transitions in turn inhibit H2 O adsorption. Moreover, FJI-H38 has excellent stability and recyclability and can be synthesized on a large scale, making it a practical trace CO2 adsorbent. This will provide a new strategy for developing practical adsorbents for CO2 capture from the air.
Collapse
Affiliation(s)
- Danhua Song
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| |
Collapse
|
19
|
Jiang Y, Wan Z, He X, Yang J. Fine-Tuning Electrolyte Concentration and Metal-Organic Framework Surface toward Actuating Fast Zn 2+ Dehydration for Aqueous Zn-Ion Batteries. Angew Chem Int Ed Engl 2023; 62:e202307274. [PMID: 37694821 DOI: 10.1002/anie.202307274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
Functional porous coating on zinc electrode is emerging as a powerful ionic sieve to suppress dendrite growth and side reactions, thereby improving highly reversible aqueous zinc ion batteries. However, the ultrafast charge rate is limited by the substantial cation transmission strongly associated with dehydration efficiency. Here, we unveil the entire dynamic process of solvated Zn2+ ions' continuous dehydration from electrolyte across the MOF-electrolyte interface into channels with the aid of molecular simulations, taking zeolitic imidazolate framework ZIF-7 as proof-of-concept. The moderate concentration of 2 M ZnSO4 electrolyte being advantageous over other concentrations possesses the homogeneous water-mediated ion pairing distribution, resulting in the lowest dehydration energy, which elucidates the molecular mechanism underlying such concentration adopted by numerous experimental studies. Furthermore, we show that modifying linkers on the ZIF-7 surface with hydrophilic groups such as -OH or -NH2 can weaken the solvation shell of Zn2+ ions to lower the dehydration free energy by approximately 1 eV, and may improve the electrical conductivity of MOF. These results shed light on the ions delivery mechanism and pave way to achieve long-term stable zinc anodes at high capacities through atomic-scale modification of functional porous materials.
Collapse
Affiliation(s)
- Yizhi Jiang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zheng Wan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200062, China
| | - Jinrong Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
20
|
Zhang C, Wang Z, Si WD, Chu H, Zhou L, Li T, Huang XQ, Gao ZY, Azam M, Tung CH, Cui P, Sun D. Dynamic and transformable Cu 12 cluster-based C-H···π-stacked porous supramolecular frameworks. Nat Commun 2023; 14:6413. [PMID: 37828068 PMCID: PMC10570389 DOI: 10.1038/s41467-023-42201-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
The assembly of cluster-based π-stacked porous supramolecular frameworks presents daunting challenges, including the design of suitable cluster building units, control of the sufficient C-H···π interactions, trade-off between structural dynamics and stability as well as understanding the resulting collective properties. Herein, we report a cluster-based C-H···π interaction-stacked porous supramolecular framework, namely, Cu12a-π, consisting of Cu12 nanocluster as a 6-connected node, which is further propagated to a dynamic porous supramolecular frameworks via dense intralayer C-H···π interactions, yielding permanent porosity. In addition, Cu12a-π can be transformed into cluster-based nonporous adaptive crystals (Cu12b-NACs) via ligand-exchange following a dissociation-reassembly mechanism. Moreover, Cu12a-π can efficiently remove 97.2% of iodine from saturated iodine aqueous solutions with a high uptake capacity of 2.96 g·g-1. These prospective results positioned at cluster-based porous supramolecular framework and enlighten follow-up researchers to design and synthesize such materials with better performance.
Collapse
Affiliation(s)
- Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Hongxu Chu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Lan Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Tong Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Xian-Qiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, People's Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Ping Cui
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China.
| |
Collapse
|
21
|
Zhou J, Zhang Y, Zhang J, Zhang D, Zhou X, Xiong J. Breathable Metal-Organic Framework Enhanced Humidity-Responsive Nanofiber Actuator with Autonomous Triboelectric Perceptivity. ACS NANO 2023; 17:17920-17930. [PMID: 37668183 DOI: 10.1021/acsnano.3c04022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Autonomous object manipulation and perception with environmental factor-triggered and self-powered actuation is one of the most attractive directions for developing next-generation soft robotics with a smart human-machine-environment interface. Humidity, as a sustainable energy source ubiquitous in the surrounding environment, can be used for triggering smart grippers. In this work, it is proposed that by contacts between the gripper and objects upon humidity-induced actuation, real-time distinguishable triboelectric signals can be generated to realize the humidity-driven object manipulation and identification. Herein, a thermo-modified electrospun polyvinylpyrrolidone/poly(acrylic acid)/MIL-88A (T-PPM) nanofibrous film with micro-to-nano cross-scale porosity is developed, and a bilayer humidity-responsive actuator (T-HRA) was designed, mimicking the tamariskoid spikemoss to enhance the humidity-driven actuation. The breathing effect of MIL-88A and hierarchical porous structure of the T-PPM facilitate moisture diffusion and offer huge actuation (2.41 cm-1) with a fast response (0.084 cm-1 s-1). For autonomous object manipulation perception, T-PPM was verified as a tribo-positive material located between paper and silk. Accordingly, the T-HRA was demonstrated as a smart soft gripper that generates a different electric signal upon contact with objects of different material. This work proposes a concept of soft robots that are interactive with the environment for both autonomous object manipulation and information acquisition.
Collapse
Affiliation(s)
- Jiahui Zhou
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yufan Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jiwei Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Desuo Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xinran Zhou
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jiaqing Xiong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
22
|
Zhou ZB, Sun HH, Qi QY, Zhao X. Gradually Tuning the Flexibility of Two-Dimensional Covalent Organic Frameworks via Stepwise Structural Transformation and Their Flexibility-Dependent Properties. Angew Chem Int Ed Engl 2023; 62:e202305131. [PMID: 37496161 DOI: 10.1002/anie.202305131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
Flexible covalent organic frameworks (COFs) are intriguing for their dynamic properties distinctive from rigid counterparts but still suffer from limited accessibility. Especially, controlling flexibility of COFs is challenging and the impact of different flexibility on properties of COFs has rarely been unveiled. This article reports stepwise adjustment on flexibility of two-dimensional COFs, which is realized by the designed synthesis of rigid COF (R-COF), semi-flexible COF (SF-COF), and flexible COF (F-COF) through polymerization, linker exchange, and linkage conversion with a newly developed method for reduction of hydrazone, respectively. Significant difference in breathing behavior and self-adaptive capability of the three COFs are uncovered through vapor response and iodine capture experiments. Gas sorption experiments indicate that the porosity of F-COF could switch from "close" state in nitrogen to "open" state in carbon dioxide, which are not observed for R-COF and SF-COF. This study not only develops a strategy to adjust the flexibility of COFs by tuning their linkers and linkages, but also provides a deep insight into the impact of different flexibility on properties of COFs, which lays a foundation for the development of this new class of dynamic porous materials.
Collapse
Affiliation(s)
- Zhi-Bei Zhou
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hui-Hui Sun
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xin Zhao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
23
|
Fan W, Cheng Y, Feng M, Liu P, Wang L, Liu Y, Cao QE, Zheng LY. Lanthanide Metal-Organic Framework Isomers with Novel Water-Boosting Lanthanide Luminescence Behaviors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41977-41991. [PMID: 37606315 DOI: 10.1021/acsami.3c10272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Lanthanide metal-organic frameworks (Ln-MOFs) with exceptional optical performance and structural diversity offer a unique platform for the development of luminescent materials. However, Ln-MOFs often suffer from luminescence quenching by high-vibrating oscillators, especially in aqueous solution. Thus, multiple strategies have been adopted to improve the luminescence of Ln3+. Anomalous research about water-induced lanthanide luminescence enhancement of Ln-MOFs is in the primary stage. Here, two Eu-based metal-organic framework (Eu-MOF) isomers named QXBA-Eu-1 and QXBA-Eu-2 were constructed by using the same ligand under different solvent thermal conditions, which exhibited distinctive water- and methanol-boosting emission behaviors. As for QXBA-Eu-1, water and methanol molecules replaced the free N,N-dimethylacetamide (DMA) molecules in the framework, repressed the rotation or libration suppression of the QXBA linker, and formed hydrogen bonds with the coordinated water molecules, which suppressed the O-H high-energy vibrations, reduced nonradiative transitions, stabilized the T1 state, and facilitated the intersystem crossing (ISC) process. For QXBA-Eu-2, water molecules tended to replace the coordinated DMA ligands, which altered the S1 and T1 energy levels of the ligand and facilitated the ligand-to-metal energy transfer (LMET) process and strengthened the luminescence of Eu3+. Importantly, free solvent molecules and the hydroxylation of Eu3+ centers also restrained the rotation or libration of the QXBA linker, by which the nonradiative transition was further inhibited and the lanthanide luminescence enhanced. Thus, this work not only opened an unprecedented path to enhance lanthanide luminescence in aqueous solution but also expanded its application scope.
Collapse
Affiliation(s)
- Wenwen Fan
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Yi Cheng
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Mingxia Feng
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Peng Liu
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Longjie Wang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Yanxiong Liu
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Qiu-E Cao
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| | - Li-Yan Zheng
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China
| |
Collapse
|
24
|
Morris JJ, Nevin A, Cornelio J, Easun TL. Characterization of an unanticipated indium-sulfur metallocycle complex. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230060. [PMID: 37736529 PMCID: PMC10509580 DOI: 10.1098/rsos.230060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/07/2023] [Indexed: 09/23/2023]
Abstract
We have produced a novel indium-based metallocycle complex (In-MeSH), which we initially observed as an unanticipated side-product in metal-organic framework (MOF) syntheses. The serendipitously synthesized metallocycle forms via the acid-catalysed decomposition of dimethyl sulfoxide (DMSO) during solvothermal reactions in the presence of indium nitrate, dimethylformamide and nitric acid. A search through the Cambridge Structural Database revealed isostructural zinc, ruthenium and palladium metallocycle complexes formed by other routes. The ruthenium analogue is catalytically active and the In-MeSH structure similarly displays accessible open metal sites around the outside of the ring. Furthermore, this study also gives access to the relatively uncommon oxidation state of In(II), the targeted synthesis of which can be challenging. In(II) complexes have been reported as having potentially important applications in areas such as catalytic water splitting.
Collapse
Affiliation(s)
- Joshua J. Morris
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Adam Nevin
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Joel Cornelio
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- School of Chemistry, University of Birmingham, Haworth Building, Edgbaston, Birmingham B15 2TT, UK
| | - Timothy L. Easun
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- School of Chemistry, University of Birmingham, Haworth Building, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
25
|
Andaloussi YH, Bezrukov AA, Sensharma D, Zaworotko MJ. Supramolecular isomerism and structural flexibility in coordination networks sustained by cadmium rod building blocks. CrystEngComm 2023; 25:4175-4181. [PMID: 37492238 PMCID: PMC10364239 DOI: 10.1039/d3ce00557g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
Bifunctional N-donor carboxylate linkers generally afford dia and sql topology coordination networks of general formula ML2 that are based upon the MN2(CO2)2 molecular building block (MBB). Herein, we report on a new N-donor carboxylate linker, β-(3,4-pyridinedicarboximido)propionate (PyImPr), which afforded Cd(PyImPr)2via reaction of PyImPrH with Cd(acetate)2·2H2O. We observed that, depending upon whether Cd(PyImPr)2 was prepared by layering or solvothermal methods, 2D or 3D supramolecular isomers, respectively, of Cd(PyImPr)2 were isolated. Single crystal X-ray diffraction studies revealed that both supramolecular isomers are comprised of the same carboxylate bridged rod building block, RBB. We were interested to determine if the ethylene moiety of PyImPr could enable structural flexibility. Indeed, open-to-closed structural transformations occurred upon solvent removal for both phases, but they were found to be irreversible. A survey of the Cambridge Structural Database (CSD) was conducted to analyse the relative frequency of RBB topologies in related ML2 coordination networks in order to provide insight from a crystal engineering perspective.
Collapse
Affiliation(s)
- Yassin H Andaloussi
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Andrey A Bezrukov
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Debobroto Sensharma
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Michael J Zaworotko
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| |
Collapse
|
26
|
Xu Y, Sun T, Zeng T, Zhang X, Yao X, Liu S, Shi Z, Wen W, Zhao Y, Jiang S, Ma Y, Zhang YB. Symmetry-breaking dynamics in a tautomeric 3D covalent organic framework. Nat Commun 2023; 14:4215. [PMID: 37452038 PMCID: PMC10349083 DOI: 10.1038/s41467-023-39998-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
The enolimine-ketoenamine tautomerism has been utilised to construct 2D covalent organic frameworks (COFs) with a higher level of chemical robustness and superior photoelectronic activity. However, it remains challenging to fully control the tautomeric states and correlate their tautomeric structure-photoelectronic properties due to the mobile equilibrium of proton transfer between two other atoms. We show that symmetry-asymmetry tautomerisation from diiminol to iminol/cis-ketoenamine can be stabilised and switched in a crystalline, porous, and dynamic 3D COF (dynaCOF-301) through concerted structural transformation and host-guest interactions upon removal and adaptive inclusion of various guest molecules. Specifically, the tautomeric dynaCOF-301 is constructed by linking the hydroquinone with a tetrahedral building block through imine linkages to form 7-fold interwoven diamondoid networks with 1D channels. Reversible framework deformation and ordering-disordering transition are determined from solvated to activated and hydrated phases, accompanied by solvatochromic and hydrochromic effects useful for rapid, steady, and visual naked-eye chemosensing.
Collapse
Affiliation(s)
- Yangyang Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tu Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Tengwu Zeng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiangyu Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xuan Yao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhaolin Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen Wen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academic of Sciences, Shanghai, 201210, China
| | - Yingbo Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Shan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
27
|
Doñagueda Suso B, Legrand A, Weetman C, Kennedy AR, Fletcher AJ, Furukawa S, Craig GA. Porous Metal-Organic Cages Based on Rigid Bicyclo[2.2.2]oct-7-ene Type Ligands: Synthesis, Structure, and Gas Uptake Properties. Chemistry 2023; 29:e202300732. [PMID: 37022280 PMCID: PMC10947411 DOI: 10.1002/chem.202300732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/07/2023]
Abstract
Three new ligands containing a bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxydiimide unit have been used to assemble lantern-type metal-organic cages with the general formula [Cu4 L4 ]. Functionalisation of the backbone of the ligands leads to distinct crystal packing motifs between the three cages, as observed with single-crystal X-ray diffraction. The three cages vary in their gas sorption behaviour, and the capacity of the materials for CO2 is found to depend on the activation conditions: softer activation conditions lead to superior uptake, and one of the cages displays the highest BET surface area found for lantern-type cages so far.
Collapse
Affiliation(s)
| | - Alexandre Legrand
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto UniversityiCeMS Research Building Yoshida, Sakyo-kuKyotoJapan
- Unité de Catalyse et Chimie du Solide (UCCS)Université de LilleCNRSCentrale LilleUniversité d'ArtoisUMR 818159000LilleFrance
| | - Catherine Weetman
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Alan R. Kennedy
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Ashleigh J. Fletcher
- Department of Chemical and Process EngineeringUniversity of StrathclydeGlasgowG1 1XJUK
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto UniversityiCeMS Research Building Yoshida, Sakyo-kuKyotoJapan
- Department of Synthetic Chemistry and Biological ChemistryKyoto UniversityiCeMS Research Building Yoshida, Sakyo-kuKyotoJapan
| | - Gavin A. Craig
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| |
Collapse
|
28
|
Huang Q, Yang Y, Qian J. Structure-directed growth and morphology of multifunctional metal-organic frameworks. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
29
|
Designed metal-organic frameworks with potential for multi-component hydrocarbon separation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
30
|
Subanbekova A, Nikolayenko VI, Bezrukov AA, Sensharma D, Kumar N, O'Hearn DJ, Bon V, Wang SQ, Koupepidou K, Darwish S, Kaskel S, Zaworotko MJ. Water vapour and gas induced phase transformations in an 8-fold interpenetrated diamondoid metal-organic framework. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:9691-9699. [PMID: 37153821 PMCID: PMC10153660 DOI: 10.1039/d3ta01574b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
In this work, we report the synthesis, structural characterisation and sorption properties of an 8-fold interpenetrated diamondoid (dia) metal-organic framework (MOF) that is sustained by a new extended linker ligand, [Cd(Imibz)2], X-dia-2-Cd, HImibz or 2 = 4-((4-(1H-imidazol-1-yl)phenylimino)methyl)benzoic acid. X-dia-2-Cd was found to exhibit reversible single-crystal-to-single-crystal (SC-SC) transformations between four distinct phases: an as-synthesised (from N,N-dimethylformamide) wide-pore phase, X-dia-2-Cd-α; a narrow-pore phase, X-dia-2-Cd-β, formed upon exposure to water; a narrow-pore phase obtained by activation, X-dia-2-Cd-γ; a medium-pore CO2-loaded phase X-dia-2-Cd-δ. While the space group remained constant in the four phases, the cell volumes and calculated void space ranged from 4988.7 Å3 and 47% (X-dia-2-Cd-α), respectively, to 3200.8 Å3 and 9.1% (X-dia-2-Cd-γ), respectively. X-dia-2-Cd-γ also exhibited a water vapour-induced structural transformation to the water-loaded X-dia-2-Cd-β phase, resulting in an S-shaped sorption isotherm. The inflection point occurred at 18% RH with negligible hysteresis on the desorption profile. Water vapour temperature-humidity swing cycling (60% RH, 300 K to 0% RH, 333 K) indicated hydrolytic stability of X-dia-2-Cd and working capacity was retained after 128 cycles of sorbent regeneration. CO2 (at 195 K) was also observed to induce a structural transformation in X-dia-2-Cd-γ and in situ PXRD studies at 1 bar of CO2, 195 K revealed the formation of X-dia-2-Cd-δ, which exhibited 31% larger unit cell volume than X-dia-2-Cd-γ.
Collapse
Affiliation(s)
- Aizhamal Subanbekova
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Varvara I Nikolayenko
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Andrey A Bezrukov
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Debobroto Sensharma
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Naveen Kumar
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Daniel J O'Hearn
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Volodymyr Bon
- Faculty of Chemistry, Technische Universität Dresden Bergstrasse 66 01062 Dresden Germany
| | - Shi-Qiang Wang
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way 138634 Singapore
| | - Kyriaki Koupepidou
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Shaza Darwish
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Stefan Kaskel
- Faculty of Chemistry, Technische Universität Dresden Bergstrasse 66 01062 Dresden Germany
| | - Michael J Zaworotko
- Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick V94 T9PX Republic of Ireland
| |
Collapse
|
31
|
Xiao H, Lian Y, Zhang S, Zhang M, Zhang J, Li C. A combined theoretical and experimental investigation on the photocatalytic hydrogenation of CO 2 on Cu/ZnO polar surface. NANOSCALE 2023; 15:9040-9048. [PMID: 37129866 DOI: 10.1039/d3nr01001e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The photocatalytic hydrogenation of CO2 by Cu-deposited ZnO (Cu/ZnO) polar surfaces is investigated through density functional theory (DFT) calculations combined with experimental work. The DFT results demonstrate that, without Cu-loading, CO2 and H2 present weak physisorption on the clean ZnO polar surface, except that H2 undergoes strong chemisorption on the ZnO(0001̄) surface. Cu deposition on the ZnO polar surface could remarkably enhance the CO2 chemisorption ability, due to the induced charge redistribution on the interface of the Cu/ZnO polar surface systems. Additionally, a Cu-nanoisland, which was simulated using a Cu(111) slab model, exhibited strong ability to chemically adsorb H2. Thus, H2 may act as an adsorption competitor to CO2 on the Cu/ZnO(0001̄), while, in contrast, CO2 and H2 (syngas) may have more opportunity to simultaneously adsorb on Cu/ZnO(0001) to promote the CO2 hydrogenation. These facet-dependent properties lead us to assume that Cu/ZnO(0001) should be a favorable photocatalyst for CO2 hydrogenation. This assumption is further verified by our photocatalysis experiment based on a ZnO single crystal. According to the theoretical and experimental results, the optimal HCOO* reaction pathway for the photocatalytic hydrogenation of CO2 on Cu/ZnO(0001) is proposed. In this optimal HCOO* path, the hydrogenation of CO2* step and hydrogenation of HCOO* step could be promoted by the coupling of a photo-generated spillover proton and a photoelectron on the interface of Cu/ZnO(0001). This research demonstrates the feasibility of the photocatalytic reduction of CO2 on Cu/ZnO(0001), and will help to develop related high-efficiency catalysts.
Collapse
Affiliation(s)
- Han Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihong Lian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Shiduo Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Minyi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiye Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Chunsen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, Fujian 361005, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
32
|
Influence of surface chemistry and channel shapes on the lithium-ion separation in metal-organic-framework-nanochannel membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
33
|
Koupepidou K, Nikolayenko VI, Sensharma D, Bezrukov AA, Vandichel M, Nikkhah SJ, Castell DC, Oyekan KA, Kumar N, Subanbekova A, Vandenberghe WG, Tan K, Barbour LJ, Zaworotko MJ. One Atom Can Make All the Difference: Gas-Induced Phase Transformations in Bisimidazole-Linked Diamondoid Coordination Networks. J Am Chem Soc 2023; 145:10197-10207. [PMID: 37099724 PMCID: PMC10176468 DOI: 10.1021/jacs.3c01113] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Coordination networks (CNs) that undergo gas-induced transformation from closed (nonporous) to open (porous) structures are of potential utility in gas storage applications, but their development is hindered by limited control over their switching mechanisms and pressures. In this work, we report two CNs, [Co(bimpy)(bdc)]n (X-dia-4-Co) and [Co(bimbz)(bdc)]n (X-dia-5-Co) (H2bdc = 1,4-benzendicarboxylic acid; bimpy = 2,5-bis(1H-imidazole-1-yl)pyridine; bimbz = 1,4-bis(1H-imidazole-1-yl)benzene), that both undergo transformation from closed to isostructural open phases involving at least a 27% increase in cell volume. Although X-dia-4-Co and X-dia-5-Co only differ from one another by one atom in their N-donor linkers (bimpy = pyridine, and bimbz = benzene), this results in different pore chemistry and switching mechanisms. Specifically, X-dia-4-Co exhibited a gradual phase transformation with a steady increase in the uptake when exposed to CO2, whereas X-dia-5-Co exhibited a sharp step (type F-IV isotherm) at P/P0 ≈ 0.008 or P ≈ 3 bar (195 or 298 K, respectively). Single-crystal X-ray diffraction, in situ powder XRD, in situ IR, and modeling (density functional theory calculations, and canonical Monte Carlo simulations) studies provide insights into the nature of the switching mechanisms and enable attribution of pronounced differences in sorption properties to the changed pore chemistry.
Collapse
Affiliation(s)
- Kyriaki Koupepidou
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Varvara I Nikolayenko
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Debobroto Sensharma
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Andrey A Bezrukov
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Matthias Vandichel
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin D02 R590, Republic of Ireland
| | - Sousa Javan Nikkhah
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Dominic C Castell
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Kolade A Oyekan
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Naveen Kumar
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Aizhamal Subanbekova
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - William G Vandenberghe
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Kui Tan
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Leonard J Barbour
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland 7602, South Africa
| | - Michael J Zaworotko
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin D02 R590, Republic of Ireland
| |
Collapse
|
34
|
Roztocki K, Gromelska W, Formalik F, Giordana A, Andreo L, Mahmoudi G, Bon V, Kaskel S, Barbour LJ, Janiak A, Priola E. Shape-Memory Effect Triggered by π-π Interactions in a Flexible Terpyridine Metal-Organic Framework. ACS MATERIALS LETTERS 2023; 5:1256-1260. [PMID: 37034385 PMCID: PMC10074452 DOI: 10.1021/acsmaterialslett.3c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Shape-memory polymers and alloys are adaptable materials capable of reversing from a deformed, metastable phase to an energetically favored original phase in response to external stimuli. In the context of metal-organic frameworks, the term shape-memory is defined as the property of a switchable framework to stabilize the reopened pore phase after the first switching transition. Herein we describe a novel flexible terpyridine MOF which, upon desolvation, transforms into a nonporous structure that reopens into a shape-memory phase when exposed to CO2 at 195 K. Based on comprehensive in situ experimental studies (SC-XRD and PXRD) and DFT energetic considerations combined with literature reports, we recommend dividing shape-memory MOFs into two categories, viz responsive and nonresponsive, depending on the transformability of the gas-free reopened pore phase into the collapsed phase. Furthermore, considering the methodological gap in discovering and understanding shape-memory porous materials, we emphasize the importance of multicycle physisorption experiments for dynamic open framework materials, including metal-organic and covalent organic frameworks.
Collapse
Affiliation(s)
- Kornel Roztocki
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Wiktoria Gromelska
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Filip Formalik
- Department
of Micro, Nano, and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Alessia Giordana
- Dipartimento
di Chimica, Università degli Studi
di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Luca Andreo
- Dipartimento
di Chimica, Università degli Studi
di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Ghodrat Mahmoudi
- Department
of Chemistry, Faculty of Science, University
of Maragheh, P.O. Box 55136-83111, Maragheh 83111-55181, Iran
| | - Volodymyr Bon
- Chair
of Inorganic Chemistry, Technische Universität
Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Stefan Kaskel
- Chair
of Inorganic Chemistry, Technische Universität
Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Leonard J. Barbour
- Department
of Chemistry and Polymer Science, University
of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Agnieszka Janiak
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Emanuele Priola
- Dipartimento
di Chimica, Università degli Studi
di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| |
Collapse
|
35
|
Tran QN, Lee HJ, Tran N. Covalent Organic Frameworks: From Structures to Applications. Polymers (Basel) 2023; 15:polym15051279. [PMID: 36904520 PMCID: PMC10007052 DOI: 10.3390/polym15051279] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Three-dimensional covalent organic frameworks possess hierarchical nanopores, enormous surface areas with high porosity, and open positions. The synthesis of large crystals of three-dimensional covalent organic frameworks is a challenge, since different structures are generated during the synthesis. Presently, their synthesis with new topologies for promising applications has been developed by the use of building units with varied geometries. Covalent organic frameworks have multiple applications: chemical sensing, fabrication of electronic devices, heterogeneous catalysts, etc. We have presented the techniques for the synthesis of three-dimensional covalent organic frameworks, their properties, and their potential applications in this review.
Collapse
Affiliation(s)
- Quang Nhat Tran
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
- Correspondence: (Q.N.T.); (N.T.)
| | - Hyun Jong Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Ngo Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
- Correspondence: (Q.N.T.); (N.T.)
| |
Collapse
|
36
|
Dong A, Chen D, Li Q, Qian J. Metal-Organic Frameworks for Greenhouse Gas Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2201550. [PMID: 36563116 DOI: 10.1002/smll.202201550] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Using petrol to supply energy for a car or burning coal to heat a building generates plenty of greenhouse gas (GHG) emissions, including carbon dioxide (CO2 ), water vapor (H2 O), methane (CH4 ), nitrous oxide (N2 O), ozone (O3 ), fluorinated gases. These up-and-coming metal-organic frameworks (MOFs) are structurally endowed with rigid inorganic nodes and versatile organic linkers, which have been extensively used in the GHG-related applications to improve the lives and protect the environment. Porous MOF materials and their derivatives have been demonstrated to be competitive and promising candidates for GHG separation, storage and conversions as they shows facile preparation, large porosity, adjustable nanostructure, abundant topology, and tunable physicochemical property. Enormous progress has been made in GHG storage and separation intrinsically stemmed from the different interaction between guest molecule and host framework from MOF itself in the recent five years. Meanwhile, the use of porous MOF materials to transform GHG and the influence of external conditions on the adsorption performance of MOFs for GHG are also enclosed. In this review, it is also highlighted that the existing challenges and future directions are discussed and envisioned in the rational design, facile synthesis and comprehensive utilization of MOFs and their derivatives for practical applications.
Collapse
Affiliation(s)
- Anrui Dong
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Dandan Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Qipeng Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, 657099, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
37
|
Tang J, Qin J, Li J, Liu L, Zeng H. Cu 2+@NMOFs-to-bimetallic CuFe PBA transformation: An instant catalyst with oxidase-mimicking activity for highly sensitive impedimetric biosensor. Biosens Bioelectron 2023; 222:114961. [PMID: 36470060 DOI: 10.1016/j.bios.2022.114961] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/16/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
In this work, a facile impedance biosensor was constructed for sensitive assaying of miRNA-10b based on the Cu2+ modified NH2-metal organic frameworks (NMOF@Cu2+) coupling with a three-dimensional (3D) DNA walker signal amplification strategy. Specifically, abundant Cu2+ can adhere to the MOF via the coordination reaction between NH2 and Cu2+, which can be applied as a skeleton to produce CuFe Prussian blue analogue@NMOF (CuFe PBA@NMOF) just in time. Meanwhile, the carboxyl group, which is rich in the organic ligands of the NMOF, can be used to assemble DNA strands (complementary strand, CS) (CS-NMOF@Cu2+) for biorecognition reaction. With the introduction of the target, a 3D DNA walker was triggered to shear out large amounts of assistant strands (AS), which were then anchored on the surface of GCE. Afterward, CS-NMOF@Cu2+ can be assembled on the GCE by hybridization with AS. Eventually, abundant CuFe PBA@NMOF were generated in situ on the electrode with the help of K₃[Fe(CN)6], which can catalyze the 4-chloro-1-naphthol (4-CN) precipitation without H2O2, thereby increasing the resistance of the platform. Under the optimal conditions, the EIS biosensor presents reliable analytical performance in a wide linear range from 0.8 pM to 250 pM with a low detection limit of 0.5 pM.
Collapse
Affiliation(s)
- Juan Tang
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China.
| | - Jiao Qin
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Jinjin Li
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Liping Liu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Haisen Zeng
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| |
Collapse
|
38
|
Designed Synthesis of Three-Dimensional Covalent Organic Frameworks: A Mini Review. Polymers (Basel) 2023; 15:polym15040887. [PMID: 36850171 PMCID: PMC9959482 DOI: 10.3390/polym15040887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Covalent organic frameworks are porous crystals of polymers with two categories based on their covalent linkages: layered structures with two dimensions and networks with three-dimensional structures. Three-dimensional covalent organic frameworks are porous, have large surface areas, and have highly ordered structures. Since covalent bonds are responsible for the formation of three-dimensional covalent organic frameworks, their synthesis has been a challenge and different structures are generated during the synthesis. Moreover, initially, their topologies have been limited to dia, ctn, and bor which are formed by the condensation of triangular or linear units with tetrahedral units. There are very few building units available for their synthesis. Finally, the future perspective of 3D COFs has been designated for the future development of three-dimensional covalent organic frameworks.
Collapse
|
39
|
Tian J, Chen Q, Jiang F, Yuan D, Hong M. Optimizing Acetylene Sorption through Induced-fit Transformations in a Chemically Stable Microporous Framework. Angew Chem Int Ed Engl 2023; 62:e202215253. [PMID: 36524616 DOI: 10.1002/anie.202215253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Developing practical storage technologies for acetylene (C2 H2 ) is important but challenging because C2 H2 is useful but explosive. Here, a novel metal-organic framework (MOF) (FJI-H36) with adaptive channels was prepared. It can effectively capture C2 H2 (159.9 cm3 cm-3 ) at 1 atm and 298 K, possessing a record-high storage density (561 g L-1 ) but a very low adsorption enthalpy (28 kJ mol-1 ) among all the reported MOFs. Structural analyses show that such excellent adsorption performance comes from the synergism of active sites, flexible framework, and matched pores; where the adsorbed-C2 H2 can drive FJI-H36 to undergo induced-fit transformations step by step, including deformation/reconstruction of channels, contraction of pores, and transformation of active sites, finally leading to dense packing of C2 H2 . Moreover, FJI-H36 has excellent chemical stability and recyclability, and can be prepared on a large scale, enabling it as a practical adsorbent for C2 H2 . This will provide a useful strategy for developing practical and efficient adsorbents for C2 H2 storage.
Collapse
Affiliation(s)
- Jindou Tian
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
40
|
Singh M, Neogi S. Largely Entangled Diamondoid Framework with High-Density Urea and Divergent Metal Nodes for Selective Scavenging of CO 2 and Molecular Dimension-Mediated Size-Exclusive H-Bond Donor Catalysis. Inorg Chem 2023; 62:871-884. [PMID: 36580539 DOI: 10.1021/acs.inorgchem.2c03684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pore environment modulation with high-density polarizing groups in metal-organic frameworks (MOFs) can effectively accomplish selective and multicyclic carbon dioxide (CO2) adsorption, whereas the incorporation of task-specific organic sites inside these porous vessels promise to evade self-quenching, solubility, and recyclability issues in hydrogen-bond donating (HBD) catalysis. However, concurrent amalgamation of both these attributes over a single platform is rare but extremely demanding in view of sustainable applications. We designed a robust diamondoid framework CSMCRI-17 (CSMCRI = Central Salt and Marine Chemicals Research Institute) from the mixed-ligand assembly of azo group-containing dicarboxylate ligand, urea-functionalized pyridyl linker, and Zn(II) nodes with specific divergent coordination. Seven-fold interpenetration to the microporous structure largely augments N-rich functionality that facilitates high CO2 uptake in the activated form (17a) with good CO2 selectivity over N2 and CH4 that outperform many reported materials. The framework displays very strong CO2 affinity and no reduction in adsorption capacity over multiple uptake-release cycles. Benefitting from the pore-wall decoration with urea functionality from the pillaring strut, 17a further demonstrates hydrogen-bond-mediated Friedel-Crafts alkylation of indole with β-nitrostyrene under mild conditions, with multicyclic usability and excellent reactivity toward wide ranges of substituted nucleophiles and electrophiles. Interestingly, interpenetration-generated optimum-sized pores induce poor conversion to sterically encumbered substrate via molecular dimension-mediated size selectivity that is alternatively ascribed from additional control experiments and support the occurrence of HBD reaction within the MOF cavity. The catalytic path is detailed in light of the change of emission intensity of the framework by the electrophile as well as the judicious choice of the substrate, which authenticates the prime role of urea moiety-governed two-point hydrogen bonding.
Collapse
Affiliation(s)
- Manpreet Singh
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Subhadip Neogi
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
41
|
Borgmans S, Rogge SMJ, De Vos JS, Van Der Voort P, Van Speybroeck V. Exploring the phase stability in interpenetrated diamondoid covalent organic frameworks. Commun Chem 2023; 6:5. [PMID: 36698041 PMCID: PMC9822923 DOI: 10.1038/s42004-022-00808-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Soft porous crystals, which are responsive to external stimuli such as temperature, pressure, or gas adsorption, are being extensively investigated for various technological applications. However, while substantial research has been devoted to stimuli-responsive metal-organic frameworks, structural flexibility in 3D covalent organic frameworks (COFs) remains ill-understood, and is almost exclusively found in COFs exhibiting the diamondoid (dia) topology. Herein, we systemically investigate how the structural decoration of these 3D dia COFs-their specific building blocks and degree of interpenetration-as well as external triggers such as temperature and guest adsorption may promote or suppress their phase transformations, as captured by a collection of 2D free energy landscapes. Together, these provide a comprehensive understanding of the necessary conditions to design flexible diamondoid COFs. This study reveals how their flexibility originates from the balance between steric hindrance and dispersive interactions of the structural decoration, thereby providing insight into how new flexible 3D COFs can be designed.
Collapse
Affiliation(s)
- Sander Borgmans
- grid.5342.00000 0001 2069 7798Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, 9052 Zwijnaarde, Belgium
| | - Sven M. J. Rogge
- grid.5342.00000 0001 2069 7798Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, 9052 Zwijnaarde, Belgium
| | - Juul S. De Vos
- grid.5342.00000 0001 2069 7798Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, 9052 Zwijnaarde, Belgium
| | - Pascal Van Der Voort
- grid.5342.00000 0001 2069 7798Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Gent, Belgium
| | - Veronique Van Speybroeck
- grid.5342.00000 0001 2069 7798Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, 9052 Zwijnaarde, Belgium
| |
Collapse
|
42
|
Wei L, Sun T, Shi Z, Xu Z, Wen W, Jiang S, Zhao Y, Ma Y, Zhang YB. Guest-adaptive molecular sensing in a dynamic 3D covalent organic framework. Nat Commun 2022; 13:7936. [PMID: 36566293 DOI: 10.1038/s41467-022-35674-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Molecular recognition is an attractive approach to designing sensitive and selective sensors for volatile organic compounds (VOCs). Although organic macrocycles and cages have been well-developed for recognising organics by their adaptive pockets in liquids, porous solids for gas detection require a deliberate design balancing adaptability and robustness. Here we report a dynamic 3D covalent organic framework (dynaCOF) constructed from an environmentally sensitive fluorophore that can undergo concerted and adaptive structural transitions upon adsorption of gas and vapours. The COF is capable of rapid and reliable detection of various VOCs, even for non-polar hydrocarbon gas under humid conditions. The adaptive guest inclusion amplifies the host-guest interactions and facilitates the differentiation of organic vapours by their polarity and sizes/shapes, and the covalently linked 3D interwoven networks ensure the robustness and coherency of the materials. The present result paves the way for multiplex fluorescence sensing of various VOCs with molecular-specific responses.
Collapse
Affiliation(s)
- Lei Wei
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tu Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Zhaolin Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zezhao Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen Wen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Shan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Yingbo Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China.
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China.
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
43
|
Li Y, Hao ZM, Chao MY, Zhang WH, Young DJ. Vacuum-Induced Guest N, N′-Diethylformamide Binding in a Metastable Cd 5-Based Metal–Organic Framework. Inorg Chem 2022; 61:20227-20231. [DOI: 10.1021/acs.inorgchem.2c03549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhi-Min Hao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Meng-Yao Chao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - David J. Young
- College of Engineering, Information Technology and Environment, Charles Darwin University, Darwin, Northern Territory 0909, Australia
| |
Collapse
|
44
|
Li X, Liu J, Zhou K, Ullah S, Wang H, Zou J, Thonhauser T, Li J. Tuning Metal–Organic Framework (MOF) Topology by Regulating Ligand and Secondary Building Unit (SBU) Geometry: Structures Built on 8-Connected M 6 (M = Zr, Y) Clusters and a Flexible Tetracarboxylate for Propane-Selective Propane/Propylene Separation. J Am Chem Soc 2022; 144:21702-21709. [DOI: 10.1021/jacs.2c09487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Xingyu Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong 518055, P. R. China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jiaqi Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong 518055, P. R. China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong 518055, P. R. China
| | - Saif Ullah
- Department of Physics and Center for functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong 518055, P. R. China
| | - Jizhao Zou
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Timo Thonhauser
- Department of Physics and Center for functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong 518055, P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
45
|
Improving the permselectivity of asymmetric isoporous membranes by blending the micro-sized metal-organic frameworks(MOFs) crystals with block copolymer. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Ehrling S, Senkovska I, Efimova A, Bon V, Abylgazina L, Petkov P, Evans JD, Gamal Attallah A, Wharmby MT, Roslova M, Huang Z, Tanaka H, Wagner A, Schmidt P, Kaskel S. Temperature Driven Transformation of the Flexible Metal-Organic Framework DUT-8(Ni). Chemistry 2022; 28:e202201281. [PMID: 35802315 DOI: 10.1002/chem.202201281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 01/07/2023]
Abstract
DUT-8(Ni) metal-organic framework (MOF) belongs to the family of flexible pillared layer materials. The desolvated framework can be obtained in the open pore form (op) or in the closed pore form (cp), depending on the crystal size regime. In the present work, we report on the behaviour of desolvated DUT-8(Ni) at elevated temperatures. For both, op and cp variants, heating causes a structural transition, leading to a new, crystalline compound, containing two interpenetrated networks. The state of the framework before transition (op vs. cp) influences the transition temperature: the small particles of the op phase transform at significantly lower temperature in comparison to the macroparticles of the cp phase, transforming close to the decomposition temperature. The new compound, confined closed pore phase (ccp), was characterized by powder X-ray diffraction and spectroscopic techniques, such as IR, EXAFS, and positron annihilation lifetime spectroscopy (PALS). Thermal effects of structural transitions were studied using differential scanning calorimetry (DSC), showing an overall exothermic effect of the process, involving bond breaking and reformation. Theoretical calculations reveal the energetics, driving the observed temperature induced phase transition.
Collapse
Affiliation(s)
- Sebastian Ehrling
- Inorganic Chemistry I, Technische Universität Dresden, Bergstr. 66, 01187, Dresden, Germany
| | - Irena Senkovska
- Inorganic Chemistry I, Technische Universität Dresden, Bergstr. 66, 01187, Dresden, Germany
| | - Anastasia Efimova
- Inorganic Chemistry, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Volodymyr Bon
- Inorganic Chemistry I, Technische Universität Dresden, Bergstr. 66, 01187, Dresden, Germany
| | - Leila Abylgazina
- Inorganic Chemistry I, Technische Universität Dresden, Bergstr. 66, 01187, Dresden, Germany
| | - Petko Petkov
- University of Sofia, Faculty of Chemistry and Pharmacy, 1164, Sofia, Bulgaria
| | - Jack D Evans
- Inorganic Chemistry I, Technische Universität Dresden, Bergstr. 66, 01187, Dresden, Germany
- The University of Adelaide, Centre for Advanced Nanomaterials and Department of Chemistry, 5000, Adelaide, Australia
| | - Ahmed Gamal Attallah
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Physics Department, Faculty of Science, Minia University, 61519, Minia, Egypt
| | | | - Maria Roslova
- IFW Dresden, 01182, Dresden, Germany
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Zhehao Huang
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Hideki Tanaka
- Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan
| | - Andreas Wagner
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Peer Schmidt
- Inorganic Chemistry, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Stefan Kaskel
- Inorganic Chemistry I, Technische Universität Dresden, Bergstr. 66, 01187, Dresden, Germany
| |
Collapse
|
47
|
Xie FT, Li YL, Yang T, Yang YH, Hu R. Metal-Organic Framework UiO-66-Mediated Dual-Signal Ratiometric Electrochemical Sensor for microRNA Detection with DNA Walker Amplification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11828-11836. [PMID: 36148509 DOI: 10.1021/acs.langmuir.2c00932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical nanotags with strong signal input are necessary for a ratiometric electrochemical sensor to overcome the drawbacks of inaccurate detection results. In this paper, the metal-organic framework (MOF) UiO-66 was utilized as an electrochemical signal tag. A stable and strong current response at +0.9 V can be detected in neutral conditions. MicroRNA (miRNA) was employed as the model analyte. Herein, an enzyme-free DNA-walker-based ultrasensitive ratiometric electrochemical biosensor in combination with Zr MOF (UiO-66) signal tags to detect miRNA was demonstrated. In the presence of miRNA, the autonomous walker movement can be initiated by miRNA, leading to the release of biotin-modified fragments. Thus, streptavidin-labeled UiO-66 nanomaterials were not bound to the electrode, generating a low signal response of UiO-66 at +0.9 V. However, the current signal of electrolyte solution as reference at +0.2 V was increased due to the enhancement of electrode conductivity. This ratiometic sensor demonstrated high sensitivity, selectivity, and reproducibility. It can eliminate the disturbance of environmental factors and basic electrode characteristics, providing more accurate signals. A limit of detection (LOD) of 0.17 fM was achieved. Moreover, the method was also used to detect miRNA-21 spiked in real serum samples.
Collapse
Affiliation(s)
- Fa-Ting Xie
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, P.R. China
| | - Yu-Long Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, P.R. China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, P.R. China
| | - Yun-Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, P.R. China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
48
|
Kulachenkov N, Barsukova M, Alekseevskiy P, Sapianik AA, Sergeev M, Yankin A, Krasilin AA, Bachinin S, Shipilovskikh S, Poturaev P, Medvedeva N, Denislamova E, Zelenovskiy PS, Shilovskikh VV, Kenzhebayeva Y, Efimova A, Novikov AS, Lunev A, Fedin VP, Milichko VA. Dimensionality Mediated Highly Repeatable and Fast Transformation of Coordination Polymer Single Crystals for All-Optical Data Processing. NANO LETTERS 2022; 22:6972-6981. [PMID: 36018814 DOI: 10.1021/acs.nanolett.2c01770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A family of coordination polymers (CPs) based on dynamic structural elements are of great fundamental and commercial interest addressing modern problems in controlled molecular separation, catalysis, and even data processing. Herein, the endurance and fast structural dynamics of such materials at ambient conditions are still a fundamental challenge. Here, we report on the design of a series of Cu-based CPs [Cu(bImB)Cl2] and [Cu(bImB)2Cl2] with flexible ligand bImB (1,4-bis(imidazol-1-yl)butane) packed into one- and two-dimensional (1D, 2D) structures demonstrating dimensionality mediated flexibility and reversible structural transformations. Using the laser pulses as a fast source of activation energy, we initiate CP heating followed by anisotropic thermal expansion and 0.2-0.8% volume changes with the record transformation rates from 2220 to 1640 s-1 for 1D and 2D CPs, respectively. The endurance over 103 cycles of structural transformations, achieved for the CPs at ambient conditions, allows demonstrating optical fiber integrated all-optical data processing.
Collapse
Affiliation(s)
- Nikita Kulachenkov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Marina Barsukova
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Pavel Alekseevskiy
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Aleksandr A Sapianik
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Maxim Sergeev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Andrei Yankin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Andrei A Krasilin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Ioffe Institute, St. Petersburg 194021, Russia
| | - Semyon Bachinin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Sergei Shipilovskikh
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | - Petr Poturaev
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | - Natalia Medvedeva
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | | | - Pavel S Zelenovskiy
- Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg 620000, Russia
| | | | - Yuliya Kenzhebayeva
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Anastasiia Efimova
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Alexander S Novikov
- Saint Petersburg State University, Saint Petersburg 198504, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Artem Lunev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Institut Jean Lamour, Universit de Lorraine, UMR CNRS 7198, 54011 Nancy, France
| |
Collapse
|
49
|
Dunning SG, Gupta NK, Reynolds JE, Sagastuy-Breña M, Flores JG, Martínez-Ahumada E, Sánchez-González E, Lynch VM, Gutiérrez-Alejandre A, Aguilar-Pliego J, Kim KS, Ibarra IA, Humphrey SM. Mn-CUK-1: A Flexible MOF for SO 2, H 2O, and H 2S Capture. Inorg Chem 2022; 61:15037-15044. [PMID: 36083270 DOI: 10.1021/acs.inorgchem.2c02012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The environmentally benign metal-organic framework (MOF) CUK-1 based on 2,4-pyridine dicarboxylate has been prepared for the first time using Mn(II) as the inorganic node and water as the only solvent. Mn-CUK-1 shows reversible and efficient capture of H2O, SO2, and H2S. Compared to previously studied Co(II) and Mg(II) versions of the same MOF, Mn-CUK-1 also exhibited unique temperature-induced structural flexibility due to organic linker torsion, as detailed by variable-temperature single-crystal X-ray diffraction studies. Owing to this inherent solid-state flexibility, Mn-CUK-1 showed stepwise adsorption for polar gases, which induce structural deformations upon adsorption, while the nonpolar guest adsorbates were reversibly sorbed in a more classical manner. Notably, Mn-CUK-1 demonstrates the highest reported H2S capacity-to-surface area ratio among MOFs that are chemically stable toward this reactive acidic molecule. Moreover, Mn-CUK-1 displays exceptional structural stability in the presence of high relative humidity and corrosive gases and shows soft crystalline behavior triggered by changes in both the adsorption temperature and guest molecule identity.
Collapse
Affiliation(s)
- Samuel G Dunning
- Department of Chemistry, The University of Texas at Austin, Welch Hall 2.204, 105 CE. 24th St. Stop A5300, Austin Texas 78712-1224, United States
| | - Nishesh Kumar Gupta
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyocán, 04510 Ciudad de México, Mexico.,University of Science and Technology (UST), Daejeon 34113, Republic of Korea.,Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Republic of Korea
| | - Joseph E Reynolds
- Department of Chemistry, The University of Texas at Austin, Welch Hall 2.204, 105 CE. 24th St. Stop A5300, Austin Texas 78712-1224, United States.,Sandia National Laboratories, 7011 East Avenue, Livermore California 94550, United States
| | - Mónica Sagastuy-Breña
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyocán, 04510 Ciudad de México, Mexico
| | - J Gabriel Flores
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyocán, 04510 Ciudad de México, Mexico
| | - Eva Martínez-Ahumada
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyocán, 04510 Ciudad de México, Mexico
| | - Elí Sánchez-González
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyocán, 04510 Ciudad de México, Mexico
| | - Vincent M Lynch
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyocán, 04510 Ciudad de México, Mexico
| | - Aída Gutiérrez-Alejandre
- UNICAT, Departamento de Ingeniería Química, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, Mexico
| | | | - Kwang-Soo Kim
- University of Science and Technology (UST), Daejeon 34113, Republic of Korea.,Department of Land, Water, and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Republic of Korea
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyocán, 04510 Ciudad de México, Mexico
| | - Simon M Humphrey
- Department of Chemistry, The University of Texas at Austin, Welch Hall 2.204, 105 CE. 24th St. Stop A5300, Austin Texas 78712-1224, United States
| |
Collapse
|
50
|
Manna B, Yokoi H, Yamashita A, Sato S, Ohyama J, Kunitake M, Ida S. Infusion of Variable Chemical Structure to Tune Stacking among Metal‐Organic Layers in 2D Nano MOF. Chemistry 2022; 28:e202201665. [DOI: 10.1002/chem.202201665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Biplab Manna
- Institute of Industrial Nanomaterials Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
- Department of Applied Chemistry and Biochemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
| | - Hiroyuki Yokoi
- Institute of Industrial Nanomaterials Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
- Department of Materials Science and Engineering Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto, 860-8555 Japan
| | - Akihiro Yamashita
- Technical division Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto, 860-8555 Japan
| | - Shota Sato
- Department of Applied Chemistry and Biochemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
| | - Junya Ohyama
- Institute of Industrial Nanomaterials Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
- Department of Applied Chemistry and Biochemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
| | - Masashi Kunitake
- Institute of Industrial Nanomaterials Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
- Department of Applied Chemistry and Biochemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
| | - Shintaro Ida
- Institute of Industrial Nanomaterials Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
- Department of Applied Chemistry and Biochemistry Graduate School of Science and Technology Kumamoto University 2-39-1 Kurokami Chuo Ward Kumamoto 860-8555 Japan
| |
Collapse
|