1
|
Xiao D, Jin Z, Sheng G, Chen L, Xiao X, Shan T, Wang J, Navik R, Xu J, Zhou L, Guo QH, Li G, Zhu Y, Stoddart JF, Huang F. Single crystals of purely organic free-standing two-dimensional woven polymer networks. Nat Chem 2024; 16:1906-1914. [PMID: 39026092 PMCID: PMC11527790 DOI: 10.1038/s41557-024-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
The aesthetic and practicality of macroscopic fabrics continue to encourage chemists to weave molecules into interlaced patterns with the aim of providing emergent physical and chemical properties when compared with their starting materials. Weaving purely organic molecular threads into flawless two-dimensional patterns remains a formidable challenge, even though its feasibility has been proposed on several occasions. Herein we describe the synthesis of a flawless, purely organic, free-standing two-dimensional woven polymer network driven by dative B-N bonds. Single crystals of this woven polymer network were obtained and its well-defined woven topology was revealed by X-ray diffraction analysis. Free-standing two-dimensional monolayer nanosheets of the woven polymer network were exfoliated from the layered crystals using Scotch Magic Tape. The surface features of the nanosheets were investigated by integrated low-dose and cryogenic electron microscopy imaging techniques. These findings demonstrate the precise construction of purely organic woven polymer networks and highlight the unique opportunities for the application of woven topologies in two-dimensional organic materials.
Collapse
Affiliation(s)
- Ding Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, P. R. China
| | - Zhitong Jin
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Guan Sheng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Liya Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Xuedong Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, P. R. China
| | - Tianyu Shan
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, P. R. China
| | - Jiao Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, P. R. China
| | - Rahul Navik
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jianping Xu
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, P. R. China
| | - Lin Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, P. R. China
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, P. R. China.
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, P. R. China.
| | - J Fraser Stoddart
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, P. R. China.
- Department of Chemistry, University of Hong Kong, Hong Kong, P. R. China.
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA.
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, P. R. China.
| |
Collapse
|
2
|
Kroonen CCE, Hinaut A, D'Addio A, Prescimone A, Häussinger D, Navarro-Marín G, Fuhr O, Fenske D, Meyer E, Mayor M. Toward Molecular Textiles: Synthesis and Characterization of Molecular Patches. Chemistry 2024:e202402866. [PMID: 39325654 DOI: 10.1002/chem.202402866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
This works describes a new step into the assembly of molecular textiles by the use of covalent templating. To establish a well-founded base and to tackle pre-mature obstacles, expected during the fabrication of the desired 2D-material, we opted to investigate the in-solution synthesis of molecular patches e. g. cut-outs of a textile. A bi-functional cross-shaped monomer was designed, synthesized and was in-detail characterized by means of 1H-NMR and chiro-optical spectroscopy. In addition, x-ray structure crystallography was used to assess the absolute configuration. The monomer was used in an in-solution oligomerization to assemble the molecular patches via imine condensation, which revealed the formation of predominately dimeric patches. The imine-oligomer mixtures were further analyzed by reduction and cleaved to investigate the conditions required post mono-layer assembly. All reaction stages were followed by FT-IR and 1H-NMR analysis. Finally, we address the adsorption of the cross-shaped monomer onto a Au(111) surface, via high vacuum electrospray deposition. The subsequent annealing of the interface induced the on-surface imine condensation reaction, leading to unidimensional oligomers co-adsorbed with clusters of cyclic-dimers. Nc-AFM analysis revealed the tridimensional molecular structures, and together with electrospray deposition technique showed to be a promising pathway to investigate potential monomer candidates.
Collapse
Affiliation(s)
- Camiel C E Kroonen
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Antoine Hinaut
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Adriano D'Addio
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Gema Navarro-Marín
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Olaf Fuhr
- Institute for Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021, Karlsruhe Eggenstein-Leopoldshafen,, Germany
| | - Dieter Fenske
- Institute for Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021, Karlsruhe Eggenstein-Leopoldshafen,, Germany
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - Marcel Mayor
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
- Institute for Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021, Karlsruhe Eggenstein-Leopoldshafen,, Germany
- Lehn Institute of Functional Materials(LIFM), School of Chemistry, Sun Yat-Sen University (SYSU), Guangzhou, 510275, P.R. of China
| |
Collapse
|
3
|
Ganatra P, Wang DF, Ganatra V, Dang VT, Nguyen AI. Diverse Proteomimetic Frameworks via Rational Design of π-Stacking Peptide Tectons. J Am Chem Soc 2024; 146:22236-22246. [PMID: 39096501 DOI: 10.1021/jacs.4c03094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Peptide-based frameworks aim to integrate protein architecture into solid-state materials using simpler building blocks. Despite the growing number of peptide frameworks, there are few strategies to rationally engineer essential properties like pore size and shape. Designing peptide assemblies is generally hindered by the difficulty of predicting complex networks of weak intermolecular interactions. Peptides conjugated to polyaromatic groups are a unique case where assembly appears to be strongly driven by π-π interactions, suggesting that rationally adjusting the geometry of the π-stackers could create novel structures. Here, we report peptide elongation as a simple mechanism to predictably tune the angle between the π-stacking groups to produce a remarkable diversity of pore shapes and sizes, including some that are mesoporous. Notably, rapid jumps in pore size and shape can occur with just a single amino acid insertion. The geometry of the π-stacking residues also significantly influences framework structure, representing an additional dimension for tuning. Lastly, sequence identity can also indirectly modulate the π-π interactions. By correlating each of these factors with detailed crystallographic data, we find that, despite the complexity of peptide structure, the shape and polarity of the tectons are straightforward predictors of framework structure. These guidelines are expected to accelerate the development of advanced porous materials with protein-like capabilities.
Collapse
Affiliation(s)
- Pragati Ganatra
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Daniel F Wang
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Vaibhav Ganatra
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Viet Thuc Dang
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Andy I Nguyen
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
4
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
5
|
Marvaniya K, Dobariya P, Maurya A, Patel K, Kushwaha S. Epitaxially Grown Mechanically Robust 2D Thin Film of Secondary Interactions Led Molecularly Woven Material. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310797. [PMID: 38368253 DOI: 10.1002/smll.202310797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/19/2024] [Indexed: 02/19/2024]
Abstract
Molecularly woven materials with striking mechanical resilience, and 2D controlled topologies like textiles, fishing nets, and baskets are highly anticipated. Molecular weaving exclusively apprehended by the secondary interactions expanding to laterally grown 2D self-assemblies with retained crystalline arrangement is stimulating. The interlacing entails planar molecules screwed together to form 2D woven thin films. Here, secondary interactions led 2D interlaced molecularly woven material (2°MW) built by 1D helical threads of organic chromophores twisted together via end-to-end CH···O connections, held strongly at inter-crossing by multiple OH···N interactions to prevent slippage is presented. Whereas, 1D helical threads with face-to-face O-H···O connections sans interlacing led the non-woven material (2°NW). The polarity-driven directionality in 2°MW led the water-actuated epitaxial growth of 2D-sheets to lateral thin films restricted to nano-scale thickness. The molecularly woven thin film is self-healing, flexible, and mechanically resilient in nature, while maintaining the crystalline regularity is attributed to the supple secondary interactions (2°).
Collapse
Affiliation(s)
- Karan Marvaniya
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- CSIR-Human Resource Development Centre, Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, India
| | - Priyanka Dobariya
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- CSIR-Human Resource Development Centre, Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, India
| | - Ashish Maurya
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- CSIR-Human Resource Development Centre, Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, India
| | - Ketan Patel
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- CSIR-Human Resource Development Centre, Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, India
| | - Shilpi Kushwaha
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- CSIR-Human Resource Development Centre, Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, India
| |
Collapse
|
6
|
Li L, Yang G, Lyu J, Sheng Z, Ma F, Zhang X. Folk arts-inspired twice-coagulated configuration-editable tough aerogels enabled by transformable gel precursors. Nat Commun 2023; 14:8450. [PMID: 38114508 PMCID: PMC10730912 DOI: 10.1038/s41467-023-44156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Aerogels, as famous lightweight and porous nanomaterials, have attracted considerable attention in various emerging fields in recent decades, however, both low density and weak mechanical performance make their configuration-editing capability challenging. Inspired by folk arts, herein we establish a highly efficient twice-coagulated (TC) strategy to fabricate configuration-editable tough aerogels enabled by transformable gel precursors. As a proof of concept, aramid nanofibers (ANFs) and polyvinyl alcohol (PVA) are selected as the main components of aerogel, among which PVA forms a flexible configuration-editing gel network in the first coagulation process, and ANF forms a configuration-locking gel network in the second coagulation process. TC strategy guarantees the resulting aerogels with both high toughness and feasible configuration editing capability individually or simultaneously. Altogether, the resulting tough aerogels with special configuration through soft to hard modulation provide great opportunities to break through the performance limits of the aerogels and expand application areas of aerogels.
Collapse
Affiliation(s)
- Lishan Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
| | - Guandu Yang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
- Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, PR China
| | - Jing Lyu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
| | - Zhizhi Sheng
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
| | - Fengguo Ma
- Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, PR China
| | - Xuetong Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China.
- Division of Surgery & Interventional Science, University College London, London, UK.
| |
Collapse
|
7
|
Han X, Neumann SE, Nannenga BL, Wang K, Li KKY, Mirzaei S, Yao X, Zhu C, Gao MY, Zhang YB, Cui Y, Yaghi OM. Directing Molecular Weaving of Covalent Organic Frameworks and Their Dimensionality by Angular Control. J Am Chem Soc 2023; 145:22885-22889. [PMID: 37844128 DOI: 10.1021/jacs.3c09691] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Although reticular chemistry has commonly utilized mutually embracing tetrahedral metal complexes as crossing points to generate three-dimensional molecularly woven structures, weaving in two dimensions remains largely unexplored. We report a new strategy to access 2D woven COFs by controlling the angle of the usually linear linker, resulting in the successful synthesis of a 2D woven pattern based on chain-link fence. The synthesis was accomplished by linking aldehyde-functionalized copper(I) bisphenanthroline complexes with bent 4,4'-oxydianiline building units. This results in the formation of a crystalline solid, termed COF-523-Cu, whose structure was characterized by spectroscopic techniques and electron and X-ray diffraction techniques to reveal a molecularly woven, twofold-interpenetrated chain-link fence. The present work significantly advances the concept of molecular weaving and its practice in the design of complex chemical structures.
Collapse
Affiliation(s)
- Xing Han
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - S Ephraim Neumann
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Brent L Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Kaiyu Wang
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Kelvin Kam-Yun Li
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Saber Mirzaei
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Xuan Yao
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mei-Yan Gao
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Yue-Biao Zhang
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Omar M Yaghi
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
- KACST-UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and TechnologyRiyadh 11442, Saudi Arabia
| |
Collapse
|
8
|
Hess SS, Coppola F, Dang VT, Tran PN, Mickel PJ, Oktawiec J, Ren Z, Král P, Nguyen AI. Noncovalent Peptide Assembly Enables Crystalline, Permutable, and Reactive Thiol Frameworks. J Am Chem Soc 2023; 145:19588-19600. [PMID: 37639365 DOI: 10.1021/jacs.3c03645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Though thiols are exceptionally versatile, their high reactivity has also hindered the synthesis and characterization of well-defined thiol-containing porous materials. Leveraging the mild conditions of the noncovalent peptide assembly, we readily synthesized and characterized a number of frameworks with thiols displayed at many unique positions and in several permutations. Importantly, nearly all assemblies were structurally determined using single-crystal X-ray diffraction to reveal their rich sequence-structure landscape and the cooperative noncovalent interactions underlying their assembly. These observations and supporting molecular dynamics calculations enabled rational engineering by the positive and negative design of noncovalent interactions. Furthermore, the thiol-containing frameworks undergo diverse single-crystal-to-single-crystal reactions, including toxic metal ion coordination (e.g., Cd2+, Pb2+, and Hg2+), selective uptake of Hg2+ ions, and redox transformations. Notably, we find a framework that supports thiol-nitrosothiol interconversion, which is applicable for biocompatible nitric oxide delivery. The modularity, ease of synthesis, functionality, and well-defined nature of these peptide-based thiol frameworks are expected to accelerate the design of complex materials with reactive active sites.
Collapse
Affiliation(s)
- Selina S Hess
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Francesco Coppola
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Viet Thuc Dang
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Phuong Nguyen Tran
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Philip J Mickel
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Julia Oktawiec
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhong Ren
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Petr Král
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Andy I Nguyen
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
9
|
Xiao X, Xiao D, Sheng G, Shan T, Wang J, Miao X, Liu Y, Li G, Zhu Y, Sessler JL, Huang F. Formation of polyrotaxane crystals driven by dative boron-nitrogen bonds. SCIENCE ADVANCES 2023; 9:eadi1169. [PMID: 37406124 DOI: 10.1126/sciadv.adi1169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023]
Abstract
The integration of mechanically interlocked molecules (MIMs) into purely organic crystalline materials is expected to produce materials with properties that are not accessible using more classic approaches. To date, this integration has proved elusive. We present a dative boron-nitrogen bond-driven self-assembly strategy that allows for the preparation of polyrotaxane crystals. The polyrotaxane nature of the crystalline material was confirmed by both single-crystal x-ray diffraction analysis and cryogenic high-resolution low-dose transmission electron microscopy. Enhanced softness and greater elasticity are seen for the polyrotaxane crystals than for nonrotaxane polymer controls. This finding is rationalized in terms of the synergetic microscopic motion of the rotaxane subunits. The present work thus highlights the benefits of integrating MIMs into crystalline materials.
Collapse
Affiliation(s)
- Xuedong Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Ding Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Guan Sheng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Tianyu Shan
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Jiao Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou 310024, P. R. China
| | - Yikuan Liu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| |
Collapse
|
10
|
Kusumoto S, Atoini Y, Masuda S, Koide Y, Chainok K, Kim Y, Harrowfield J, Thuéry P. Woven, Polycatenated, or Cage Structures: Effect of Modulation of Ligand Curvature in Heteroleptic Uranyl Ion Complexes. Inorg Chem 2023; 62:7803-7813. [PMID: 37167333 DOI: 10.1021/acs.inorgchem.3c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Combining the flexible zwitterionic dicarboxylate 4,4'-bis(2-carboxylatoethyl)-4,4'-bipyridinium (L) and the anionic dicarboxylate ligands isophthalate (ipht2-) and 1,2-, 1,3-, or 1,4-phenylenediacetate (1,2-, 1,3-, and 1,4-pda2-), of varying shape and curvature, has allowed isolation of five uranyl ion complexes by synthesis under solvo-hydrothermal conditions. [(UO2)2(L)(ipht)2] (1) and [(UO2)2(L)(1,2-pda)2]·2H2O (2) have the same stoichiometry, and both crystallize as monoperiodic coordination polymers containing two uranyl-(anionic carboxylate) strands united by L linkers into a wide ribbon, all ligands being in the divergent conformation. Complex 3, [(UO2)2(L)(1,3-pda)2]·0.5CH3CN, with the same stoichiometry but ligands in a convergent conformation, is a discrete, binuclear species which is the first example of a heteroleptic uranyl carboxylate coordination cage. With all ligands in a divergent conformation, [(UO2)2(L)(1,4-pda)(1,4-pdaH)2] (4) crystallizes as a sinuous and thread-like monoperiodic polymer; two families of chains run along different directions and are woven into diperiodic layers. Modification of the synthetic conditions leads to [(UO2)4(LH)2(1,4-pda)5]·H2O·2CH3CN (5), a monoperiodic polymer based on tetranuclear (UO2)4(1,4-pda)4 rings; intrachain hydrogen bonding of the terminal LH+ ligands results in diperiodic network formation through parallel polycatenation involving the tetranuclear rings and the LH+ rods. Complexes 1-3 and 5 are emissive, with complex 2 having the highest photoluminescence quantum yield (19%), and their spectra show the maxima positions usual for tris-κ2O,O'-chelated uranyl cations.
Collapse
Affiliation(s)
- Sotaro Kusumoto
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Youssef Atoini
- Technical University of Munich, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany
| | - Shunya Masuda
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yoshihiro Koide
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Yang Kim
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand
- Department of Chemistry, Graduate School of Science and Technology, Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Jack Harrowfield
- Université de Strasbourg, ISIS, 8 allée Gaspard Monge, 67083 Strasbourg, France
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| |
Collapse
|
11
|
Liu Y, Yan X. Woven Polymer Networks: From Crystalline to Elastomeric Materials. Chemistry 2023; 29:e202203365. [PMID: 36398470 DOI: 10.1002/chem.202203365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Weaving technology has been extensively used for manufacturing macroscopic fabrics and satisfying the artistic demands of humans through the ages. Integrating woven geometries into molecular structures is a persistent pursuit, and yet a significant challenge to chemists, owing to the lack of effective methodologies to guide the regular mutual interlacing of molecular strands. In this Concept article, recent progress and related strategies in constructing woven polymer networks (WPNs) are summarized and discussed. An outlook is then given to highlight the future opportunities and challenges in the development of both molecularly woven structures and molecularly woven functional materials.
Collapse
Affiliation(s)
- Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
12
|
Feng HN, Sun Z, Chen S, Zhang ZH, Li Z, Zhong Z, Sun T, Ma Y, Zhang L. A Star of David [2]catenane of single handedness. Chem 2022. [DOI: 10.1016/j.chempr.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
13
|
Fernandes R, Chowdhary S, Mikula N, Saleh N, Kanevche K, Berlepsch HV, Hosogi N, Heberle J, Weber M, Böttcher C, Koksch B. Cyanine Dye Coupling Mediates Self-assembly of a pH Sensitive Peptide into Novel 3D Architectures. Angew Chem Int Ed Engl 2022; 61:e202208647. [PMID: 36161448 PMCID: PMC9828782 DOI: 10.1002/anie.202208647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/12/2023]
Abstract
Synthetic multichromophore systems are of great importance in artificial light harvesting devices, organic optoelectronics, tumor imaging and therapy. Here, we introduce a promising strategy for the construction of self-assembled peptide templated dye stacks based on coupling of a de novo designed pH sensitive peptide with a cyanine dye Cy5 at its N-terminus. Microscopic techniques, in particular cryogenic TEM (cryo-TEM) and cryo-electron tomography technique (cryo-ET), reveal two types of highly ordered three-dimensional assembly structures on the micrometer scale. Unbranched compact layered rods are observed at pH 7.4 and two-dimensional membrane-like assemblies at pH 3.4, both species displaying spectral features of H-aggregates. Molecular dynamics simulations reveal that the coupling of Cy5 moieties promotes the formation of both ultrastructures, whereas the protonation states of acidic and basic amino acid side chains dictates their ultimate three-dimensional organization.
Collapse
Affiliation(s)
- Rita Fernandes
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Suvrat Chowdhary
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Natalia Mikula
- Mathematics for Life and Materials SciencesZuse Institute BerlinTakustraße 714195BerlinGermany
| | - Noureldin Saleh
- Mathematics for Life and Materials SciencesZuse Institute BerlinTakustraße 714195BerlinGermany
| | - Katerina Kanevche
- Department of PhysicsExperimental Molecular BiophysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Hans v. Berlepsch
- Research Center for Electron Microscopy and Core Facility BioSupraMolFreie Universität BerlinFabeckstraße 36a14195BerlinGermany
| | | | - Joachim Heberle
- Department of PhysicsExperimental Molecular BiophysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Marcus Weber
- Mathematics for Life and Materials SciencesZuse Institute BerlinTakustraße 714195BerlinGermany
| | - Christoph Böttcher
- Research Center for Electron Microscopy and Core Facility BioSupraMolFreie Universität BerlinFabeckstraße 36a14195BerlinGermany
| | - Beate Koksch
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| |
Collapse
|
14
|
Wang J, Wicher B, Maurizot V, Huc I. Directing the Self-Assembly of Aromatic Foldamer Helices using Acridine Appendages and Metal Coordination. Chemistry 2022; 28:e202201345. [PMID: 35965255 PMCID: PMC9826129 DOI: 10.1002/chem.202201345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 01/11/2023]
Abstract
Folded molecules provide complex interaction interfaces amenable to sophisticated self-assembly motifs. Because of their high conformational stability, aromatic foldamers constitute suitable candidates for the rational elaboration of self-assembled architectures. Several multiturn helical aromatic oligoamides have been synthesized that possess arrays of acridine appendages pointing in one or two directions. The acridine units were shown to direct self-assembly in the solid state via aromatic stacking leading to recurrent helix-helix association patterns under the form of discrete dimers or extended arrays. In the presence of Pd(II), metal coordination of the acridine units overwhelms other forces and generates new metal-mediated multihelical self-assemblies, including macrocycles. These observations demonstrate simple access to different types of foldamer-containing architectures, ranging from discrete objects to 1D and, by extension, 2D and 3D arrays.
Collapse
Affiliation(s)
- Jinhua Wang
- CBMN (UMR5248)Univ. Bordeaux – CNRS – IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
| | - Barbara Wicher
- Department of Chemical Technology of DrugsPoznan University of Medical SciencesGrunwaldzka 660-780PoznanPoland
| | - Victor Maurizot
- CBMN (UMR5248)Univ. Bordeaux – CNRS – IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
| | - Ivan Huc
- CBMN (UMR5248)Univ. Bordeaux – CNRS – IPBInstitut Européen de Chimie et Biologie2 rue Escarpit33600PessacFrance
- Department of PharmacyLudwig-Maximilians-UniversitätButenandtstrasse 5–1381377MünchenGermany
- Cluster of Excellence e-conversion85748GarchingGermany
| |
Collapse
|
15
|
Ma PP, Hao ZM, Wang P, Zhang WH, Young DJ. trans-[Ni(pdm)2]2+ (pdm = 2-pyridinemethanol) as a reliable synthon for isoreticular metal–organic frameworks of linear dicarboxylates. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Dannenhoffer A, Sai H, Bruckner EP, Ðorđević L, Narayanan A, Yang Y, Ma X, Palmer LC, Stupp SI. Metallurgical alloy approach to two-dimensional supramolecular materials. Chem 2022. [DOI: 10.1016/j.chempr.2022.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Ashbridge Z, Fielden SDP, Leigh DA, Pirvu L, Schaufelberger F, Zhang L. Knotting matters: orderly molecular entanglements. Chem Soc Rev 2022; 51:7779-7809. [PMID: 35979715 PMCID: PMC9486172 DOI: 10.1039/d2cs00323f] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/29/2022]
Abstract
Entangling strands in a well-ordered manner can produce useful effects, from shoelaces and fishing nets to brown paper packages tied up with strings. At the nanoscale, non-crystalline polymer chains of sufficient length and flexibility randomly form tangled mixtures containing open knots of different sizes, shapes and complexity. However, discrete molecular knots of precise topology can also be obtained by controlling the number, sequence and stereochemistry of strand crossings: orderly molecular entanglements. During the last decade, substantial progress in the nascent field of molecular nanotopology has been made, with general synthetic strategies and new knotting motifs introduced, along with insights into the properties and functions of ordered tangle sequences. Conformational restrictions imparted by knotting can induce allostery, strong and selective anion binding, catalytic activity, lead to effective chiral expression across length scales, binding modes in conformations efficacious for drug delivery, and facilitate mechanical function at the molecular level. As complex molecular topologies become increasingly synthetically accessible they have the potential to play a significant role in molecular and materials design strategies. We highlight particular examples of molecular knots to illustrate why these are a few of our favourite things.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| | - Lucian Pirvu
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - Liang Zhang
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| |
Collapse
|
18
|
Li G, Zhao J, Zhang Z, Zhao X, Cheng L, Liu Y, Guo Z, Yu W, Yan X. Robust and Dynamic Polymer Networks Enabled by Woven Crosslinks. Angew Chem Int Ed Engl 2022; 61:e202210078. [DOI: 10.1002/anie.202210078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Guangfeng Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311200 P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xinyang Zhao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhewen Guo
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
19
|
Li G, Zhao J, Zhang Z, Zhao X, Cheng L, Liu Y, Guo Z, Yu W, Yan X. Robust and Dynamic Polymer Networks Enabled by Woven Crosslinks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guangfeng Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Jun Zhao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Zhaoming Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Xinyang Zhao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Lin Cheng
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Yuhang Liu
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Zhewen Guo
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Wei Yu
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Xuzhou Yan
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 800 Dongchuan Road 200240 Shanghai CHINA
| |
Collapse
|
20
|
Matsubara S, Okamoto Y, Yoshikawa M, Tsukiji S, Higuchi M. A Peptide Nanocage Constructed by Self-Assembly of Oligoproline Conjugates. Bioconjug Chem 2022; 33:1785-1788. [PMID: 35900377 DOI: 10.1021/acs.bioconjchem.2c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cage-like supramolecular assemblies called molecular cages, which possess attractive functions, have been prepared. Although biomolecule-based nanocages are required for biological/medical applications such as drug delivery systems, the majority of nanocages are constructed using aromatic compounds with lower biocompatibility and biodegradability. In this study, the construction of a peptide nanocage consisting of an oligoproline conjugate is demonstrated. The conjugate was easy to prepare and had high biocompatibility. The oligoproline moiety of the conjugate had a rigid, rod-like structure suitable for the backbone of the supramolecular nanocage. The conjugates self-assembled to form peptide nanocages with a huge inner cavity.
Collapse
Affiliation(s)
- Shogo Matsubara
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Yui Okamoto
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Masaru Yoshikawa
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Shinya Tsukiji
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.,Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Masahiro Higuchi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
21
|
Woods JF, Gallego L, Pfister P, Maaloum M, Vargas Jentzsch A, Rickhaus M. Shape-assisted self-assembly. Nat Commun 2022; 13:3681. [PMID: 35760814 PMCID: PMC9237116 DOI: 10.1038/s41467-022-31482-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Self-assembly and molecular recognition are critical processes both in life and material sciences. They usually depend on strong, directional non-covalent interactions to gain specificity and to make long-range organization possible. Most supramolecular constructs are also at least partially governed by topography, whose role is hard to disentangle. This makes it nearly impossible to discern the potential of shape and motion in the creation of complexity. Here, we demonstrate that long-range order in supramolecular constructs can be assisted by the topography of the individual units even in the absence of highly directional interactions. Molecular units of remarkable simplicity self-assemble in solution to give single-molecule thin two-dimensional supramolecular polymers of defined boundaries. This dramatic example spotlights the critical function that topography can have in molecular assembly and paves the path to rationally designed systems of increasing sophistication. Self-assembly and molecular recognition usually depend on strong, directional non-covalent interactions but also topography can play a role in the formation of supramolecular constructs which makes it nearly impossible to discern the potential of shape and motion in the creation of complexity. Here, the authors demonstrate that long-range order in supramolecular constructs can be assisted by the topography of the individual units even in the absence of highly directional interactions.
Collapse
Affiliation(s)
- Joseph F Woods
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Lucía Gallego
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Pauline Pfister
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Mounir Maaloum
- SAMS Research Group, University of Strasbourg, Institut Charles Sadron, CNRS, 67200, Strasbourg, France
| | - Andreas Vargas Jentzsch
- SAMS Research Group, University of Strasbourg, Institut Charles Sadron, CNRS, 67200, Strasbourg, France
| | - Michel Rickhaus
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
22
|
Heinz-Kunert SL, Pandya A, Dang VT, Tran PN, Ghosh S, McElheny D, Santarsiero BD, Ren Z, Nguyen AI. Assembly of π-Stacking Helical Peptides into a Porous and Multivariable Proteomimetic Framework. J Am Chem Soc 2022; 144:7001-7009. [PMID: 35390261 DOI: 10.1021/jacs.2c02146] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The evolution of proteins from simpler, self-assembled peptides provides a powerful blueprint for the design of complex synthetic materials. Previously, peptide-metal frameworks using short sequences (≤3 residues) have shown great promise as proteomimetic materials that exhibit sophisticated capabilities. However, their development has been hindered due to few variable residues and restricted choice of side-chains that are compatible with metal ions. Herein, we developed a noncovalent strategy featuring π-stacking bipyridyl residues to assemble much longer peptides into crystalline frameworks that tolerate even previously incompatible acidic and basic functionalities and allow an unprecedented level of pore variations. Single-crystal X-ray structures are provided for all variants to guide and validate rational design. These materials exhibit hallmark proteomimetic behaviors such as guest-selective induced fit and assembly of multimetallic units. Significantly, we demonstrate facile optimization of the framework design to substantially increase affinity toward a complex organic molecule.
Collapse
Affiliation(s)
- Sherrie L Heinz-Kunert
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Ashma Pandya
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Viet Thuc Dang
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Phuong Nguyen Tran
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Sabari Ghosh
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Dan McElheny
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Bernard D Santarsiero
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Zhong Ren
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Andy I Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
23
|
Insua I, Bergueiro J, Méndez-Ardoy A, Lostalé-Seijo I, Montenegro J. Bottom-up supramolecular assembly in two dimensions. Chem Sci 2022; 13:3057-3068. [PMID: 35414883 PMCID: PMC8926289 DOI: 10.1039/d1sc05667k] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/19/2022] [Indexed: 01/17/2023] Open
Abstract
The self-assembly of molecules in two dimensions (2D) is gathering attention from all disciplines across the chemical sciences. Attracted by the interesting properties of two-dimensional inorganic analogues, monomers of different chemical natures are being explored for the assembly of dynamic 2D systems. Although many important discoveries have been already achieved, great challenges are still to be addressed in this field. Hierarchical multicomponent assembly, directional non-covalent growth and internal structural control are a just a few of the examples that will be discussed in this perspective about the exciting present and the bright future of two-dimensional supramolecular assemblies. The self-assembly of molecules in two dimensions (2D) is gathering attention from all disciplines across the chemical sciences. This perspective discusses the main strategies to direct the supramolecular self-assembly of organic monomers in 2D.![]()
Collapse
Affiliation(s)
- Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Julian Bergueiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Alejandro Méndez-Ardoy
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| |
Collapse
|
24
|
Ashbridge Z, Kreidt E, Pirvu L, Schaufelberger F, Stenlid JH, Abild-Pedersen F, Leigh DA. Vernier template synthesis of molecular knots. Science 2022; 375:1035-1041. [PMID: 35239374 DOI: 10.1126/science.abm9247] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Molecular knots are often prepared using metal helicates to cross the strands. We found that coordinatively mismatching oligodentate ligands and metal ions provides a more effective way to synthesize larger knots using Vernier templating. Strands composed of different numbers of tridentate 2,6-pyridinedicarboxamide groups fold around nine-coordinate lanthanide (III) ions to generate strand-entangled complexes with the lowest common multiple of coordination sites for the ligand strands and metal ions. Ring-closing olefin metathesis then completes the knots. A 3:2 (ditopic strand:metal) Vernier assembly produces +31#+31 and -31#-31 granny knots. Vernier complexes of 3:4 (tetratopic strand:metal) stoichiometry selectively form a 378-atom-long trefoil-of-trefoils triskelion knot with 12 alternating strand crossings or, by using opposing stereochemistry at the terminus of the strand, an inverted-core triskelion knot with six alternating and six nonalternating strand crossings.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Elisabeth Kreidt
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Lucian Pirvu
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | | | - Joakim Halldin Stenlid
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
25
|
Zhang ZH, Andreassen BJ, August DP, Leigh DA, Zhang L. Molecular weaving. NATURE MATERIALS 2022; 21:275-283. [PMID: 35115722 DOI: 10.1038/s41563-021-01179-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Historically, the interlacing of strands at the molecular level has mainly been limited to coordination polymers and DNA. Despite being proposed on a number of occasions, the direct, bottom-up assembly of molecular building blocks into woven organic polymers remained an aspirational, but elusive, target for several decades. However, recent successes in two-dimensional and three-dimensional molecular-level weaving now offer new opportunities and research directions at the interface of polymer science and molecular nanotopology. This Perspective provides an overview of the features and potential of the periodic nanoscale weaving of polymer chains, distinguishing it from randomly entangled polymer networks and rigid crystalline frameworks. We review the background and experimental progress so far, and conclude by considering the potential of molecular weaving and outline some of the current and future challenges in this emerging field.
Collapse
Affiliation(s)
- Zhi-Hui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | | | - David P August
- Department of Chemistry, University of Manchester, Manchester, UK
| | - David A Leigh
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - Liang Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| |
Collapse
|
26
|
Sawada T, Fujita M. Orderly Entangled Nanostructures of Metal–Peptide Strands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210218] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tomohisa Sawada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
27
|
Baek C, Martin AG, Poincloux S, Chen T, Reis PM. Smooth Triaxial Weaving with Naturally Curved Ribbons. PHYSICAL REVIEW LETTERS 2021; 127:104301. [PMID: 34533354 DOI: 10.1103/physrevlett.127.104301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Triaxial weaving is a handicraft technique that has long been used to create curved structures using initially straight and flat ribbons. Weavers typically introduce discrete topological defects to produce nonzero Gaussian curvature, albeit with faceted surfaces. We demonstrate that, by tuning the in-plane curvature of the ribbons, the integrated Gaussian curvature of the weave can be varied continuously, which is not feasible using traditional techniques. Further, we reveal that the shape of the physical unit cells is dictated solely by the in-plane geometry of the ribbons, not elasticity. Finally, we leverage the geometry-driven nature of triaxial weaving to design a set of ribbon profiles to weave smooth spherical, ellipsoidal, and toroidal structures.
Collapse
Affiliation(s)
- Changyeob Baek
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Flexible Structures Laboratory, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | | | - Samuel Poincloux
- Flexible Structures Laboratory, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Tian Chen
- Flexible Structures Laboratory, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
- Computer Graphics and Geometry Laboratory, School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Pedro M Reis
- Flexible Structures Laboratory, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
28
|
O'Keeffe M, Treacy MMJ. On Borromean links and related structures. Acta Crystallogr A Found Adv 2021; 77:379-391. [PMID: 34473093 DOI: 10.1107/s2053273321005568] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/30/2021] [Indexed: 03/31/2023] Open
Abstract
The creation of knotted, woven and linked molecular structures is an exciting and growing field in synthetic chemistry. Presented here is a description of an extended family of structures related to the classical `Borromean rings', in which no two rings are directly linked. These structures may serve as templates for the designed synthesis of Borromean polycatenanes. Links of n components in which no two are directly linked are termed `n-Borromean' [Liang & Mislow (1994). J. Math. Chem. 16, 27-35]. In the classic Borromean rings the components are three rings (closed loops). More generally, they may be a finite number of periodic objects such as graphs (nets), or sets of strings related by translations as in periodic chain mail. It has been shown [Chamberland & Herman (2015). Math. Intelligencer, 37, 20-25] that the linking patterns can be described by complete directed graphs (known as tournaments) and those up to 13 vertices that are vertex-transitive are enumerated. In turn, these lead to ring-transitive (isonemal) n-Borromean rings. Optimal piecewise-linear embeddings of such structures are given in their highest-symmetry point groups. In particular, isonemal embeddings with rotoinversion symmetry are described for three, five, six, seven, nine, ten, 11, 13 and 14 rings. Piecewise-linear embeddings are also given of isonemal 1- and 2-periodic polycatenanes (chains and chain mail) in their highest-symmetry setting. Also the linking of n-Borromean sets of interleaved honeycomb nets is described.
Collapse
Affiliation(s)
- Michael O'Keeffe
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Michael M J Treacy
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
29
|
Huang Q, Li W, Mao Z, Zhang H, Li Y, Ma D, Wu H, Zhao J, Yang Z, Zhang Y, Gong L, Aldred MP, Chi Z. Dynamic molecular weaving in a two-dimensional hydrogen-bonded organic framework. Chem 2021. [DOI: 10.1016/j.chempr.2021.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Garifullin R, Guler MO. Electroactive peptide-based supramolecular polymers. Mater Today Bio 2021; 10:100099. [PMID: 33778465 PMCID: PMC7985408 DOI: 10.1016/j.mtbio.2021.100099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
The electroactivity as a supramolecular feature of intelligently designed self-assembled systems stimulates a wide interest in development of new stimuli-responsive biomaterials. A diverse set of nanostructures are fabricated through programmed self-assembly of molecules for functional materials. Electroactive groups are conjugated as a functional moiety for organic semiconductor applications. In this review, we present recent examples of self-assembling peptide molecules and electroactive units for supramolecular functional electronic and optical materials with potential biomedical and bioelectronics applications.
Collapse
Affiliation(s)
- Ruslan Garifullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russian Federation
| | - Mustafa O. Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
31
|
Caporale A, Adorinni S, Lamba D, Saviano M. Peptide-Protein Interactions: From Drug Design to Supramolecular Biomaterials. Molecules 2021; 26:1219. [PMID: 33668767 PMCID: PMC7956380 DOI: 10.3390/molecules26051219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The self-recognition and self-assembly of biomolecules are spontaneous processes that occur in Nature and allow the formation of ordered structures, at the nanoscale or even at the macroscale, under thermodynamic and kinetic equilibrium as a consequence of specific and local interactions. In particular, peptides and peptidomimetics play an elected role, as they may allow a rational approach to elucidate biological mechanisms to develop new drugs, biomaterials, catalysts, or semiconductors. The forces that rule self-recognition and self-assembly processes are weak interactions, such as hydrogen bonding, electrostatic attractions, and van der Waals forces, and they underlie the formation of the secondary structure (e.g., α-helix, β-sheet, polyproline II helix), which plays a key role in all biological processes. Here, we present recent and significant examples whereby design was successfully applied to attain the desired structural motifs toward function. These studies are important to understand the main interactions ruling the biological processes and the onset of many pathologies. The types of secondary structure adopted by peptides during self-assembly have a fundamental importance not only on the type of nano- or macro-structure formed but also on the properties of biomaterials, such as the types of interaction, encapsulation, non-covalent interaction, or covalent interaction, which are ultimately useful for applications in drug delivery.
Collapse
Affiliation(s)
- Andrea Caporale
- IC-CNR, c/o Area Science Park, S.S. 14 Km 163.5 Basovizza, 34149 Trieste, Italy;
| | - Simone Adorinni
- Dipartimento di Scienze Chimiche e Farmaceutiche di Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy;
| | - Doriano Lamba
- IC-CNR, c/o Area Science Park, S.S. 14 Km 163.5 Basovizza, 34149 Trieste, Italy;
- Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, Viale delle Medaglie d’Oro 305, I-00136 Roma, Italy
| | - Michele Saviano
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (IC-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
32
|
Leigh DA, Danon JJ, Fielden SDP, Lemonnier JF, Whitehead GFS, Woltering SL. A molecular endless (7 4) knot. Nat Chem 2021; 13:117-122. [PMID: 33318672 DOI: 10.1038/s41557-020-00594-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023]
Abstract
Current strategies for the synthesis of molecular knots focus on twisting, folding and/or threading molecular building blocks. Here we report that Zn(II) or Fe(II) ions can be used to weave ligand strands to form a woven 3 × 3 molecular grid. We found that the process requires tetrafluoroborate anions to template the assembly of the interwoven grid by binding within the square cavities formed between the metal-coordinated criss-crossed ligands. The strand ends of the grid can subsequently be joined through within-grid alkene metathesis reactions to form a topologically trivial macrocycle (unknot), a doubly interlocked [2]catenane (Solomon link) and a knot with seven crossings in a 258-atom-long closed loop. This 74 knot topology corresponds to that of an endless knot, which is a basic motif of Celtic interlace, the smallest Chinese knot and one of the eight auspicious symbols of Buddhism and Hinduism. The weaving of molecular strands within a discrete layer by anion-template metal-ion coordination opens the way for the synthesis of other molecular knot topologies and to woven polymer materials.
Collapse
Affiliation(s)
- David A Leigh
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China. .,Department of Chemistry, University of Manchester, Manchester, UK.
| | - Jonathan J Danon
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
33
|
Schnitzer T, Paenurk E, Trapp N, Gershoni-Poranne R, Wennemers H. Peptide-Metal Frameworks with Metal Strings Guided by Dispersion Interactions. J Am Chem Soc 2021; 143:644-648. [PMID: 33417437 DOI: 10.1021/jacs.0c11793] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite impressive advances in the construction of metal-organic frameworks (MOFs), the formation of networks from peptidic ligands is difficult, though they are sought after for their modularity and biocompatibility. Herein we present a peptide-metal framework that consists of helical oligoproline ligands and Zn/K (or Zn/Rb). The crystalline network contains pleated nanosheets with the metal ions aligned in strings. This unprecedented architecture derives from under-appreciated London dispersion interactions between the oligoproline ligands that play in concert with the metal coordination to create the network. Hence, the secondary structure of the peptidic ligand represents an additional control element for the creation of new MOF architectures. We anticipate that our results will instruct the design of further peptidic MOFs and enable the generation of versatile biocompatible materials.
Collapse
|
34
|
August DP, Dryfe RAW, Haigh SJ, Kent PRC, Leigh DA, Lemonnier JF, Li Z, Muryn CA, Palmer LI, Song Y, Whitehead GFS, Young RJ. Self-assembly of a layered two-dimensional molecularly woven fabric. Nature 2020; 588:429-435. [PMID: 33328664 DOI: 10.1038/s41586-020-3019-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
Fabrics-materials consisting of layers of woven fibres-are some of the most important materials in everyday life1. Previous nanoscale weaves2-16 include isotropic crystalline covalent organic frameworks12-14 that feature rigid helical strands interlaced in all three dimensions, rather than the two-dimensional17,18 layers of flexible woven strands that give conventional textiles their characteristic flexibility, thinness, anisotropic strength and porosity. A supramolecular two-dimensional kagome weave15 and a single-layer, surface-supported, interwoven two-dimensional polymer16 have also been reported. The direct, bottom-up assembly of molecular building blocks into linear organic polymer chains woven in two dimensions has been proposed on a number of occasions19-23, but has not previously been achieved. Here we demonstrate that by using an anion and metal ion template, woven molecular 'tiles' can be tessellated into a material consisting of alternating aliphatic and aromatic segmented polymer strands, interwoven within discrete layers. Connections between slowly precipitating pre-woven grids, followed by the removal of the ion template, result in a wholly organic molecular material that forms as stacks and clusters of thin sheets-each sheet up to hundreds of micrometres long and wide but only about four nanometres thick-in which warp and weft single-chain polymer strands remain associated through periodic mechanical entanglements within each sheet. Atomic force microscopy and scanning electron microscopy show clusters and, occasionally, isolated individual sheets that, following demetallation, have slid apart from others with which they were stacked during the tessellation and polymerization process. The layered two-dimensional molecularly woven material has long-range order, is birefringent, is twice as stiff as the constituent linear polymer, and delaminates and tears along well-defined lines in the manner of a macroscopic textile. When incorporated into a polymer-supported membrane, it acts as a net, slowing the passage of large ions while letting smaller ions through.
Collapse
Affiliation(s)
- David P August
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Robert A W Dryfe
- Department of Chemistry, University of Manchester, Manchester, UK.,Henry Royce Institute, University of Manchester, Manchester, UK
| | - Sarah J Haigh
- Department of Materials, National Graphene Institute, University of Manchester, Manchester, UK
| | - Paige R C Kent
- Department of Chemistry, University of Manchester, Manchester, UK
| | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
| | | | - Zheling Li
- Department of Materials, National Graphene Institute, University of Manchester, Manchester, UK
| | | | - Leoni I Palmer
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Yiwei Song
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - Robert J Young
- Department of Materials, National Graphene Institute, University of Manchester, Manchester, UK
| |
Collapse
|
35
|
Suzuki Y, Tohnai N, Hisaki I. Triaxially Woven Hydrogen‐Bonded Chicken Wires of a Tetrakis(carboxybiphenyl)ethene. Chemistry 2020; 26:17056-17062. [DOI: 10.1002/chem.202002546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/20/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Yuto Suzuki
- Graduate School of Engineering Science Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Norimitsu Tohnai
- Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Ichiro Hisaki
- Graduate School of Engineering Science Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
36
|
Yi H, Albrecht M, Pan F, Valkonen A, Rissanen K. Stacking of Sterically Congested Trifluoromethylated Aromatics in their Crystals – The Role of Weak F···π or F···F Contacts. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hai Yi
- College of Chemistry and Pharmaceutical Engineering Zhumadian Academy of Industry Innovation and Development Huanghuai University Kaiyuan Road 76 463000 Zhumadian P. R. China
- Institut für Organische Chemie RWTH Aachen Landoltweg 1 52074 Aachen Germany
| | - Markus Albrecht
- Institut für Organische Chemie RWTH Aachen Landoltweg 1 52074 Aachen Germany
| | - Fangfang Pan
- Department of Chemistry Nanoscience Center University of Jyvaskyla P. O. Box 35 40014 University of Jyväskylä Finland
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis College of Chemistry Central China Normal University Luoyu Road 152 430079 Wuhan P. R. China
| | - Arto Valkonen
- Department of Chemistry Nanoscience Center University of Jyvaskyla P. O. Box 35 40014 University of Jyväskylä Finland
| | - Kari Rissanen
- Department of Chemistry Nanoscience Center University of Jyvaskyla P. O. Box 35 40014 University of Jyväskylä Finland
| |
Collapse
|
37
|
Díaz S, Insua I, Bhak G, Montenegro J. Sequence Decoding of 1D to 2D Self‐Assembling Cyclic Peptides. Chemistry 2020; 26:14765-14770. [DOI: 10.1002/chem.202003265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/09/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Sandra Díaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| | - Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| | - Ghibom Bhak
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| |
Collapse
|
38
|
Madhanagopal B, More SH, Bansode ND, Ganesh KN. Conformation and Morphology of 4-(NH 2/OH)-Substituted l/d-Prolyl Polypeptides: Effect of Homo- and Heterochiral Backbones on Formation of β-Structures and Nanofibers. ACS OMEGA 2020; 5:21781-21795. [PMID: 32905392 PMCID: PMC7469381 DOI: 10.1021/acsomega.0c02826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
The relative stereochemistry of C2 and C4 in 4-substituted prolyl polypeptides plays an important role in defining the derived conformation in solution. cis-(2S,4S)-Amino/hydroxy-l-prolyl polypeptide (lC-Amp 9/lC-Hyp 9) shows a PPII conformation in phosphate buffer and a β-structure in a relatively hydrophobic solvent, trifluoroethanol (TFE). It is now demonstrated that the homochiral enantiomeric cis-substituted d-prolyl polypeptide (dC-Amp 9/dC-Hyp 9) exhibits mirror image β-structures in TFE. In the case of alternating heterochiral prolyl peptides, it is the trans-substituted [lT(2S,4R)-dT(2R,4S)] n prolyl polypeptide that shows β-structures in TFE, while the cis-substituted [lC(2S,4S)-dC(2R,4R)] n prolyl polypeptide is disordered in both phosphate buffer and TFE. The results highlight the important chirality-specific structural requirements for β-structure formation. The observed conformation in solution (circular dichroism (CD)) is also correlated with the morphology of the self-assemblies (field emission scanning electron microscopy (FESEM)), with the PPII form leading to spherical nanoparticles and β-structures leading to nanofiber formation. The results shed light on the role of relative stereochemistry at C2 and C4 in defining the polyproline peptide conformation in solution and how different conformations drive self-assemblies of peptides toward specific nanostructures.
Collapse
Affiliation(s)
- Bharath
Raj Madhanagopal
- Indian
Institute of Science Education and Research (IISER), Tirupati, Karkambadi Road, Tirupati 517507, Andhra Pradesh, India
| | - Shahaji H. More
- Indian
Institute of Science Education and Research (IISER), Tirupati, Karkambadi Road, Tirupati 517507, Andhra Pradesh, India
| | - Nitin D. Bansode
- LCPO,
ENSCBP, UMR 5629, University of Bordeaux, Pessac 33600, France
| | - Krishna N. Ganesh
- Indian
Institute of Science Education and Research (IISER), Tirupati, Karkambadi Road, Tirupati 517507, Andhra Pradesh, India
- Indian
Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
39
|
Zhu K, Kamochi K, Kodama T, Tobisu M, Amaya T. Chiral cyclic [ n]spirobifluorenylenes: carbon nanorings consisting of helically arranged quaterphenyl rods illustrating partial units of woven patterns. Chem Sci 2020; 11:9604-9610. [PMID: 34094226 PMCID: PMC8161682 DOI: 10.1039/d0sc02452j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chiral cyclic [n]spirobifluorenylenes consisting of helically arranged quaterphenyl rods, illustrating partial units of woven patterns, were designed and synthesized as a new family of carbon nanorings. The synthesis was accomplished by the Ni(0)-mediated Yamamoto-coupling of chiral spirobifluorene building blocks. The structures of the cyclic 3-, 4-, and 5-mers were determined by X-ray crystallographic analysis. These carbon nanorings exhibited a strong violet colored emission with high quantum yields in solution (95%, 93%, and 94% for 3-, 4-, and 5-mer, respectively). Other spectroscopic properties, including their chiroptical properties, were also investigated. The g-values for circularly polarized luminescence were found to be in the order of 10−3. Characteristic spiroconjugation induced by multiple (≧3) bifluorenyl units, for example the even-odd effect of the number of units in the matching of the signs of the orbitals, was also indicated by DFT calculations. Chiral cyclic [n]spirobifluorenylenes consisting of helically arranged quaterphenyl rods, illustrating partial units of woven patterns, were designed and synthesized as a new family of carbon nanorings.![]()
Collapse
Affiliation(s)
- Kaige Zhu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Kosuke Kamochi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Takuya Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Toru Amaya
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
40
|
Li G, Wang L, Wu L, Guo Z, Zhao J, Liu Y, Bai R, Yan X. Woven Polymer Networks via the Topological Transformation of a [2]Catenane. J Am Chem Soc 2020; 142:14343-14349. [PMID: 32787257 DOI: 10.1021/jacs.0c06416] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Weaving technology has been widely used to manufacture macroscopic fabrics to meet the artistic and practical needs of humanity for thousands of years. However, the fabrication of molecular fabrics with fascinating topologies and unique mechanical properties represents a significant challenge. Herein, we describe a topological transformation strategy to construct woven polymer networks (WPNs) at the molecular level via ring-opening metathesis polymerization (ROMP) of a zinc-template [2]catenane. The key feature of this approach is the exploitation of the pre-existing catenane crossing points that maintain the dense woven structure and the flexible alkyl chains on the [2]catenane that synergistically work with the crossing points to modulate the physicochemical and mechanical properties of the woven materials. As a result, the WPN possesses a certain degree of flexibility and stretchability, as well as high thermostability and mechanical robustness. Furthermore, we could remove the zinc ions to endow the WPN with more degrees of freedom and then enhance its mechanical behaviors by remetalation. This study not only provides a novel strategy toward woven materials with intriguing structural features and emergent mechanical adaptivities, but also highlights that mechanically interlocked molecules could offer unique opportunities for the construction of smart supramolecular materials with peculiar interlaced topologies at the molecular scale.
Collapse
Affiliation(s)
- Guangfeng Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhewen Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
41
|
|
42
|
Carloni LE, Bezzu CG, Bonifazi D. Patterning Porous Networks through Self-Assembly of Programmed Biomacromolecules. Chemistry 2019; 25:16179-16200. [PMID: 31491049 DOI: 10.1002/chem.201902576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/11/2019] [Indexed: 11/08/2022]
Abstract
Two-dimensional (2D) porous networks are of great interest for the fabrication of complex organized functional materials for potential applications in nanotechnologies and nanoelectronics. This review aims at providing an overview of bottom-up approaches towards the engineering of 2D porous networks by using biomacromolecules, with a particular focus on nucleic acids and proteins. The first part illustrates how the advancements in DNA nanotechnology allowed for the attainment of complex ordered porous two-dimensional DNA nanostructures, thanks to a biomimetic approach based on DNA molecules self-assembly through specific hydrogen-bond base pairing. The second part focuses the attention on how polypeptides and proteins structural properties could be used to engineer organized networks templating the formation of multifunctional materials. The structural organization of all examples is discussed as revealed by scanning probe microscopy or transmission electron microscopy imaging techniques.
Collapse
Affiliation(s)
- Laure-Elie Carloni
- Department of Chemistry and Namur Research College (NARC), University of Namur, Rue de Bruxelles 61, Namur, 5000, Belgium
| | - C Grazia Bezzu
- Cardiff University, School of Chemistry, Park Place, Main Building, CF10 3AT, Cardiff, Wales, UK
| | - Davide Bonifazi
- Cardiff University, School of Chemistry, Park Place, Main Building, CF10 3AT, Cardiff, Wales, UK
| |
Collapse
|
43
|
Affiliation(s)
- Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
44
|
Zhang Y, Barboiu M. Ligand Mediated Metal Cations Exchanges within Metallo-Dynameric Solid Films. ChemistryOpen 2019; 8:1345-1349. [PMID: 31741819 PMCID: PMC6848901 DOI: 10.1002/open.201900294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Indexed: 11/20/2022] Open
Abstract
Dynameric solid films may be generated via the adequate imine-bond connection between bis(pyridine-2,6-diimine) core centres, coordinated with different metal cations and diaminoPEG connectors. The adequate selection of metal cations leads to cross-linked metallo-dynameric films, allowing the fine modulation of their colour and mechanical property. The coordination of the metal cations and bis(pyridine-2,6-diimine), results in the formation of interlocked structures, leading to the most probably formation of interweaved structures with better mechanical properties than those formed in the absence of the metallic cations. Removal and addition of metal cations from solid films can be achieved via tris(2-aminoethyl)amine (TREN) complexing agent, which strongly binds the metal cations, followed by subsequent insertion of other metallic cations. It allows a ligand-modulated dynamic release of the metal cations from the solid films, together with colour transfer and change of mechanical strength at the interfaces between various solid films.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical SciencesJiangnan University1800 Lihu AvenueWuxi214122
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems GroupUniversity of Montpellier, ENSCM, CNRSPlace Eugène Bataillon, CC 047F-34095MontpellierFrance
| |
Collapse
|
45
|
Shakeel A, Bhattacharya R, Jeevanandham S, Kochhar D, Singh A, Mehra L, Ghufran M, Garg P, Sangam S, Biswas S, Tyagi A, Kalyanasundaram D, Chakrabarti S, Mukherjee M. Graphene Quantum Dots in the Game of Directing Polymer Self-Assembly to Exotic Kagome Lattice and Janus Nanostructures. ACS NANO 2019; 13:9397-9407. [PMID: 31381848 DOI: 10.1021/acsnano.9b04188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene quantum dots (GQDs) are the harbingers of a paradigm shift that revitalize self-assembly of the colloidal puzzle by adding shape and size to the material-design palette. Although self-assembly is ubiquitous in nature, the extent to which these molecular legos can be engineered reminds us that we are still apprenticing polymer carpenters. In this quest to unlock exotic nanostructures ascending from eventual anisotropy, we have utilized different concentrations of GQDs as a filler in free-radical-mediated aqueous copolymerization. Extensive polymer grafting over the geometrically confined landscape of GQDs (0.05%) bolsters crystallization instilling a loom which steers interaction of polymeric cilia into interlaced equilateral triangles with high sophistication. Such two-dimensional (2D) assemblies epitomizing the planar tiling of "Star of David" forming a molecular kagome lattice (KL) without metal templation evoke petrichor. Interestingly, a higher percentage (0.3%) of GQDs allow selective tuning of the interfacial property of copolymers breaking symmetry due to surface energy incongruity, producing exotic Janus nanomicelles (JNMs). Herein, with the help of a suite of characterizations, we delineate the mechanism behind the formation of the KL and JNMs which forms a depot of heightened drug accretion with targeted delivery of 5-fluorouracil in the colon as validated by gamma scintigraphy studies.
Collapse
Affiliation(s)
- Adeeba Shakeel
- Amity Institute of Biotechnology , Amity University , Noida 201303 , India
| | - Rohan Bhattacharya
- Amity Institute of Biotechnology , Amity University , Noida 201303 , India
- Amity Institute of Click Chemistry Research and Studies , Amity University , Noida 201303 , India
| | - Sampathkumar Jeevanandham
- Amity Institute of Click Chemistry Research and Studies , Amity University , Noida 201303 , India
- Amity Institute of Nanotechnology , Amity University , Noida 201303 , India
| | - Dakshi Kochhar
- Amity Institute of Biotechnology , Amity University , Noida 201303 , India
| | - Aarti Singh
- Amity Institute of Click Chemistry Research and Studies , Amity University , Noida 201303 , India
| | - Lalita Mehra
- Institute of Nuclear Medicine and Allied Sciences , Defence Research & Development Organisation , Timarpur , Delhi 110054 , India
| | - Maryam Ghufran
- Amity Institute of Molecular Medicine and Stem Cell Research , Amity University , Noida 201303 , India
| | - Piyush Garg
- Amity Institute of Biotechnology , Amity University , Noida 201303 , India
| | - Sujata Sangam
- Amity Institute of Biotechnology , Amity University , Noida 201303 , India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine and Stem Cell Research , Amity University , Noida 201303 , India
| | - Amit Tyagi
- Institute of Nuclear Medicine and Allied Sciences , Defence Research & Development Organisation , Timarpur , Delhi 110054 , India
| | - Dinesh Kalyanasundaram
- Centre for Biomedical Engineering , Indian Institute of Technology Delhi , Hauz Khas, New Delhi 110016 , India
| | - Sandip Chakrabarti
- Amity Institute of Nanotechnology , Amity University , Noida 201303 , India
| | - Monalisa Mukherjee
- Amity Institute of Biotechnology , Amity University , Noida 201303 , India
- Amity Institute of Click Chemistry Research and Studies , Amity University , Noida 201303 , India
| |
Collapse
|
46
|
Li P, Chen Z, Ryder MR, Stern CL, Guo QH, Wang X, Farha OK, Stoddart JF. Assembly of a Porous Supramolecular Polyknot from Rigid Trigonal Prismatic Building Blocks. J Am Chem Soc 2019; 141:12998-13002. [DOI: 10.1021/jacs.9b06445] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Penghao Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhijie Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthew R. Ryder
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Qing-Hui Guo
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
47
|
Teng P, Gray GM, Zheng M, Singh S, Li X, Wojtas L, van der Vaart A, Cai J. Orthogonal Halogen-Bonding-Driven 3D Supramolecular Assembly of Right-Handed Synthetic Helical Peptides. Angew Chem Int Ed Engl 2019; 58:7778-7782. [PMID: 30957356 PMCID: PMC6534470 DOI: 10.1002/anie.201903259] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 01/08/2023]
Abstract
Peptide-mediated self-assembly is a prevalent method for creating highly ordered supramolecular architectures. Herein, we report the first example of orthogonal C-X⋅⋅⋅X-C/C-X⋅⋅⋅π halogen bonding and hydrogen bonding driven crystalline architectures based on synthetic helical peptides bearing hybrids of l-sulfono-γ-AApeptides and natural amino acids. The combination of halogen bonding, intra-/intermolecular hydrogen bonding, and intermolecular hydrophobic interactions enabled novel 3D supramolecular assembly. The orthogonal halogen bonding in the supramolecular architecture exerts a novel mechanism for the self-assembly of synthetic peptide foldamers and gives new insights into molecular recognition, supramolecular design, and rational design of biomimetic structures.
Collapse
Affiliation(s)
- Peng Teng
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Geoffrey M Gray
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Mengmeng Zheng
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Sylvia Singh
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| |
Collapse
|
48
|
Ochs NAK, Lewandowska U, Zajaczkowski W, Corra S, Reger S, Herdlitschka A, Schmid S, Pisula W, Müllen K, Bäuerle P, Wennemers H. Oligoprolines guide the self-assembly of quaterthiophenes. Chem Sci 2019; 10:5391-5396. [PMID: 31191896 PMCID: PMC6540903 DOI: 10.1039/c8sc05742g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Control over the molecular organization of π-conjugated oligothiophenes into different types of supramolecular assemblies is key to their use in organic electronics but difficult to achieve as these chromophores have a pronounced tendency to aggregate. Herein we show that oligoprolines, which do not self-assemble on their own, control the self-assembly of quaterthiophenes. Spectroscopic, microscopic, and diffraction studies with quaterthiophene-oligoproline conjugates revealed the formation of mono- or double-layered sheets or, alternatively, helically twisted ribbons - depending on the length of the oligoproline. The dimensions of the nanoscopic objects, which extend into the micrometer regime, correlate with the molecular dimensions of the quaterthiophene-oligoproline building blocks.
Collapse
Affiliation(s)
- Nellie A K Ochs
- Laboratory of Organic Chemistry , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| | - Urszula Lewandowska
- Laboratory of Organic Chemistry , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| | - Wojciech Zajaczkowski
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany .
| | - Stefano Corra
- Laboratory of Organic Chemistry , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| | - Stephan Reger
- Institute of Organic Chemistry II and Advanced Materials , University of Ulm , Germany .
| | - Andreas Herdlitschka
- Laboratory of Organic Chemistry , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| | - Sylvia Schmid
- Institute of Organic Chemistry II and Advanced Materials , University of Ulm , Germany .
| | - Wojciech Pisula
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany .
- Department of Molecular Physics , Faculty of Chemistry , Lodz University of Technology , Zeromskiego 116 , 90-924 Lodz , Poland
| | - Klaus Müllen
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany .
| | - Peter Bäuerle
- Institute of Organic Chemistry II and Advanced Materials , University of Ulm , Germany .
| | - Helma Wennemers
- Laboratory of Organic Chemistry , ETH Zürich , Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland .
| |
Collapse
|
49
|
Teng P, Gray GM, Zheng M, Singh S, Li X, Wojtas L, van der Vaart A, Cai J. Orthogonal Halogen‐Bonding‐Driven 3D Supramolecular Assembly of Right‐Handed Synthetic Helical Peptides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Peng Teng
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Geoffrey M. Gray
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Mengmeng Zheng
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Sylvia Singh
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Xiaopeng Li
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Arjan van der Vaart
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Jianfeng Cai
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| |
Collapse
|
50
|
Foletti C, Trapp N, Loosli S, Lewandowski B, Wennemers H. 4‐Naphthylmethyl Proline Forms a Channel Structure. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Carlotta Foletti
- Laboratorium für Organische Chemie, D-CHABETH Zurich Vladimir-Prelog-Weg 3 CH-8093 Zurich
| | - Nils Trapp
- Laboratorium für Organische Chemie, D-CHABETH Zurich Vladimir-Prelog-Weg 3 CH-8093 Zurich
| | - Simon Loosli
- Laboratorium für Organische Chemie, D-CHABETH Zurich Vladimir-Prelog-Weg 3 CH-8093 Zurich
| | - Bartosz Lewandowski
- Laboratorium für Organische Chemie, D-CHABETH Zurich Vladimir-Prelog-Weg 3 CH-8093 Zurich
| | - Helma Wennemers
- Laboratorium für Organische Chemie, D-CHABETH Zurich Vladimir-Prelog-Weg 3 CH-8093 Zurich
| |
Collapse
|