1
|
Sarkar M, Kushwaha V, Boomishankar R. Ligand-Directed Synthesis of a Self-Organized Chloro-Bridged Cubic Pd(II) Cage Showing Selective Encapsulation of Phenols. Angew Chem Int Ed Engl 2024; 63:e202406358. [PMID: 39073222 DOI: 10.1002/anie.202406358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 07/30/2024]
Abstract
The synthesis and guest recognition properties of a neutral Pd24-cubic cage, [{Pd3(NiPr)3PO}8(μ2-Cl)24] 1 are reported. The formation of the cubical assembly takes place by an exclusive one-pot ligand-assisted pathway directed by an oximido linker. The initial coordination of the oximido ligand pre-organizes the [Pd3(NiPr)3PO]3+ polyhedral building units into a tetrameric intermediate, which then transforms into an oximido-tethered tetrahedral assembly and to the cubical cage 1 in the presence of chloride ions. In the absence of the directing oximido linker, no cage formation was observed, and the Pd6-precursor was found to undergo self-condensation, giving rise to a new pentameric polyhedral cluster, [Pd5{(NiPr)3PO}2(OAc)2(OH)2] 2. The central cavity of the cube has been probed for guest encapsulation studies, which shows a high binding with phenolic guest molecules with association constants of the order of 104-105 M-1. The favorable formation of host-guest complexes was attributed to the strong hydrogen bonding interactions between the host and guest functional groups.
Collapse
Affiliation(s)
- Meghamala Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune-, 411008, India
| | - Vikash Kushwaha
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune-, 411008, India
| | - Ramamoorthy Boomishankar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune-, 411008, India
- Centre of Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune-, 411008, India
| |
Collapse
|
2
|
Zhang H, Li X, Liu J, Lan YQ, Han Y. Advancing Single-Particle Analysis in Synthetic Chemical Systems: A Forward-Looking Discussion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2406914. [PMID: 39180273 DOI: 10.1002/adma.202406914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Single-particle analysis (SPA) is a fundamental method of cryo-electron microscopy developed to resolve the structures of biological macromolecules. This method has seen significant success in structural biology, yet its potential applications in synthetic chemical systems remain underexplored. In this perspective article, SPA and associated electron microscopy techniques are first briefly introduced. It is then proposed that SPA is well-suited for structural analysis of chemical systems where discrete, identical macromolecules can be readily obtained. Applicable systems include various clusters such as coinage metal clusters, metal-oxo/sulfur clusters, metal-organic clusters, and supramolecular compounds like coordination cages and metallo-supramolecular cages. When high-quality large single crystals are unattainable, SPA provides an alternative method for determining their structures. Beyond these end products, it is suggested that SPA can be instrumental in studying synthetic intermediates of materials with specific building units, such as metal-organic frameworks and zeolites. Given that various intermediates coexist in the reaction system, a purification step is necessary before conducting SPA, which can be facilitated by soft-landing electrospray ionization mass spectrometry.
Collapse
Affiliation(s)
- Hui Zhang
- Center for Electron Microscopy, South China University of Technology, Guangzhou, 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangzhou, 510640, China
| | - Xiaopeng Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou, 510631, China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510631, China
| | - Yu Han
- Center for Electron Microscopy, South China University of Technology, Guangzhou, 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangzhou, 510640, China
| |
Collapse
|
3
|
Zhong J, Sun Z, Zhang L, Whitehead GFS, Vitorica-Yrezabal IJ, Leigh DA. Folding a Molecular Strand into a Trefoil Knot of Single Handedness with Co(II)/Co(III) Chaperones. J Am Chem Soc 2024; 146:21762-21768. [PMID: 39060953 PMCID: PMC11311214 DOI: 10.1021/jacs.4c05953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
We report the synthesis of a right-handed (Δ-stereochemistry of strand crossings) trefoil knot from a single molecular strand containing three pyrazine-2,5-dicarboxamide units adjacent to point-chiral centers and six pyridine moieties. The oligomeric ligand strand folds into an overhand (open-trefoil) knot through the assistance of coordinatively dynamic Co(II) "chaperones" that drive the formation of a three-metal-ion circular helicate. The entangled structure is kinetically locked by oxidation to Co(III) and covalently captured by ring-closing olefin metathesis to generate a trefoil knot of single topological handedness. The stereochemistry of the strand crossings in the metal-coordinated overhand knot is governed by the stereochemistry of the point-chiral carbon centers in the ligand strand. The overhand and trefoil knots were characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography. Removal of the metal ions from the knot, followed by hydrogenation of the alkene, yielded the wholly organic trefoil knot. The metal-free knot and parent ligand were investigated by circular dichroism (CD) spectroscopy. The CD spectra indicate that the topological stereochemistry of the knot has a greater effect on the asymmetry of the chromophore environment than do the point-chiral centers of the strand.
Collapse
Affiliation(s)
- Jiankang Zhong
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Zhanhu Sun
- School
of Chemistry and Molecular Engineering, East China Normal University, 200062 Shanghai, China
| | - Liang Zhang
- School
of Chemistry and Molecular Engineering, East China Normal University, 200062 Shanghai, China
| | | | | | - David A. Leigh
- School
of Chemistry and Molecular Engineering, East China Normal University, 200062 Shanghai, China
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
4
|
Liu Y, Liu FZ, Li S, Liu H, Yan K. Biasing the Formation of Solution-Unstable Intermediates in Coordination Self-Assembly by Mechanochemistry. Chemistry 2023; 29:e202302563. [PMID: 37670119 DOI: 10.1002/chem.202302563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Due to the reversible nature of coordination bonds and solvation effect, coordination self-assembly pathways are often difficult to elucidate experimentally in solution, as intermediates and products are in constant equilibration. The present study shows that some of these transient and high-energy self-assembly intermediates can be accessed by means of ball-milling approaches. Among them, highly aqueous-unstable Pd3 L11 and Pd6 L14 open-cage intermediates of the framed Fujita Pd6 L14 cage and Pd2 L22 , Pd3 L21 and Pd4 L22 intermediates of Mukherjee Pd6 L24 capsule are successfully trapped in solid-state, where Pd=tmedaPd2+ , L1=2,4,6-tris(4-pyridyl)-1,3,5-triazine and L2=1,3,5-tris(1-imidazolyl)benzene). Their structures are assigned by a combination of solution-based characterization tools such as standard NMR spectroscopy, DOSY NMR, ESI-MS and X-ray diffraction. Collectively, these results highlight the opportunity of using mechanochemistry to access unique chemical space with vastly different reactivity compared to conventional solution-based supramolecular self-assembly reactions.
Collapse
Affiliation(s)
- Yan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Fang-Zi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shi Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hua Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
5
|
Chen X, Chen H, Fraser Stoddart J. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angew Chem Int Ed Engl 2023; 62:e202211387. [PMID: 36131604 PMCID: PMC10099103 DOI: 10.1002/anie.202211387] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/02/2023]
Abstract
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Xiao‐Yang Chen
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
| | - Hongliang Chen
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
6
|
Li K, Zhang S, Hu Y, Kang S, Yu X, Wang H, Wang M, Li X. Shape-Dependent Complementary Ditopic Terpyridine Pair with Two Levels of Self-Recognition for Coordination-Driven Self-Assembly. Macromol Rapid Commun 2023; 44:e2200303. [PMID: 35666548 DOI: 10.1002/marc.202200303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/28/2022] [Indexed: 01/11/2023]
Abstract
Molecular recognition in biological systems plays a vital role in the precise construction of biomacromolecules and the corresponding biological activities. Such recognition mainly relies on the highly specific binding of complementary molecular pairs with complementary sizes, shapes, and intermolecular forces. It still remains challenging to develop artificial complementary motif pairs for coordination-driven self-assembly. Herein, a series of shape-dependent complementary motif pairs, based on ditopic 2,2':6',2″-terpyridine (TPY) backbone, are designed and synthesized. The fidelity degrees of self-assemblies from these motifs are carefully evaluated by multi-dimensional mass spectrometry, nuclear magnetic resonance spectroscopy, and molecular modeling. In addition, two levels of self-recognition in both homoleptic and heteroleptic assembly are discovered in the assembled system. Through finely tuning the shape and size of the ligands, a complementary pair is developed with error-free narcissistically self-sorting at two levels of self-recognition, and the intrinsic principle is carefully investigated.
Collapse
Affiliation(s)
- Kehuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China.,College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shunran Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Yaqi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shimin Kang
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
7
|
|
8
|
Ashbridge Z, Fielden SDP, Leigh DA, Pirvu L, Schaufelberger F, Zhang L. Knotting matters: orderly molecular entanglements. Chem Soc Rev 2022; 51:7779-7809. [PMID: 35979715 PMCID: PMC9486172 DOI: 10.1039/d2cs00323f] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/29/2022]
Abstract
Entangling strands in a well-ordered manner can produce useful effects, from shoelaces and fishing nets to brown paper packages tied up with strings. At the nanoscale, non-crystalline polymer chains of sufficient length and flexibility randomly form tangled mixtures containing open knots of different sizes, shapes and complexity. However, discrete molecular knots of precise topology can also be obtained by controlling the number, sequence and stereochemistry of strand crossings: orderly molecular entanglements. During the last decade, substantial progress in the nascent field of molecular nanotopology has been made, with general synthetic strategies and new knotting motifs introduced, along with insights into the properties and functions of ordered tangle sequences. Conformational restrictions imparted by knotting can induce allostery, strong and selective anion binding, catalytic activity, lead to effective chiral expression across length scales, binding modes in conformations efficacious for drug delivery, and facilitate mechanical function at the molecular level. As complex molecular topologies become increasingly synthetically accessible they have the potential to play a significant role in molecular and materials design strategies. We highlight particular examples of molecular knots to illustrate why these are a few of our favourite things.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| | - Lucian Pirvu
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - Liang Zhang
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| |
Collapse
|
9
|
Ashbridge Z, Knapp OM, Kreidt E, Leigh DA, Pirvu L, Schaufelberger F. Social Self-Sorting Synthesis of Molecular Knots. J Am Chem Soc 2022; 144:17232-17240. [PMID: 36067448 PMCID: PMC9501921 DOI: 10.1021/jacs.2c07682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We report the synthesis of molecular prime and composite
knots
by social self-sorting of 2,6-pyridinedicarboxamide (pdc) ligands
of differing topicity and stereochemistry. Upon mixing achiral monotopic
and ditopic pdc-ligand strands in a 1:1:1 ratio with Lu(III), a well-defined
heteromeric complex featuring one of each ligand strand and the metal
ion is selectively formed. Introducing point-chiral centers into the
ligands leads to single-sense helical stereochemistry of the resulting
coordination complex. Covalent capture of the entangled structure
by ring-closing olefin metathesis then gives a socially self-sorted
trefoil knot of single topological handedness. In a related manner,
a heteromeric molecular granny knot (a six-crossing composite knot
featuring two trefoil tangles of the same handedness) was assembled
from social self-sorting of ditopic and tetratopic multi-pdc strands.
A molecular square knot (a six-crossing composite knot of two trefoil
tangles of opposite handedness) was assembled by social self-sorting
of a ditopic pdc strand with four (S)-centers and
a tetratopic strand with two (S)- and six (R)-centers. Each of the entangled structures was characterized
by 1H and 13C NMR spectroscopy, mass spectrometry,
and circular dichroism spectroscopy. The precise control of composition
and topological chirality through social self-sorting enables the
rapid assembly of well-defined sequences of entanglements for molecular
knots.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - Olivia M Knapp
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - Elisabeth Kreidt
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Lucian Pirvu
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | | |
Collapse
|
10
|
Nosiglia MA, Colley ND, Danielson MK, Palmquist MS, Delawder AO, Tran SL, Harlan GH, Barnes JC. Metalation/Demetalation as a Postgelation Strategy To Tune the Mechanical Properties of Catenane-Crosslinked Gels. J Am Chem Soc 2022; 144:9990-9996. [PMID: 35617307 DOI: 10.1021/jacs.2c03166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanically interlocked molecules (MIMs) possess unique architectures and nontraditional degrees of freedom that arise from well-defined topologies that are achieved through precise mechanical bonding. Incorporation of MIMs into materials can thus provide an avenue to discover new and emergent macroscale properties. Here, the synthesis of a phenanthroline-based [2]catenane crosslinker and its incorporation into polyacrylate organogels are described. Specifically, Cu(I) metalation and demetalation was used as a postgelation strategy to tune the mechanical properties of a gel by controlling the conformational motions of integrated MIMs. The organogels were prepared via thermally initiated free radical polymerization, and Cu(I) metal was added in MeOH to the pretreated, swollen gels. Demetalation of the gels was achieved by adding lithium cyanide and washing the gels. Changes in Young's and shear moduli, as well as tensile strength, were quantified through oscillatory shear rheology and tensile testing. The reported approach provides a general method for postgelation tuning of mechanical properties using metals and well-defined catenane topologies as part of a gel network architecture.
Collapse
Affiliation(s)
- Mark A Nosiglia
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Nathan D Colley
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Mary K Danielson
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Mark S Palmquist
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Abigail O Delawder
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Sheila L Tran
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Gray H Harlan
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Jonathan C Barnes
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
11
|
Xu GT, Chang XY, Low KH, Wu LL, Wan Q, Shu HX, To WP, Huang JS, Che CM. Self-Assembly of Molecular Trefoil Knots Featuring Pentadecanuclear Homoleptic Au I -, Au I /Ag I -, or Au I /Cu I -Alkynyl Coordination. Angew Chem Int Ed Engl 2022; 61:e202200748. [PMID: 35183066 DOI: 10.1002/anie.202200748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 12/17/2022]
Abstract
Metal-free and metal-containing molecular trefoil knots are fascinating ensembles that are usually covalently assembled, the latter requiring the rational design of di- or multidentate/multipodal ligands as connectors. In this work, we describe the self-assembly of pentadecanuclear AuI trefoil knots [Au15 (C≡CR)15 ] from monoalkynes HC≡CR (R=9,9-X2 -fluorenyl with X=nBu, n-hexyl) and [AuI (THT)Cl]. Hetero-bimetallic counterparts [Au9 M6 (C≡CR)15 ] (M=Cu/Ag) were self-assembled by reactions of [Au15 (C≡CR)15 ] with [Cu(MeCN)4 ]+ /AgNO3 and HC≡CR. The type of pentadecanuclear trefoil knots described herein is characterized by X-ray crystallography, 2D NMR and HR-ESI-MS. [Au9 Cu6 (C≡CR)15 ] is relatively stable in hexane; its excited state properties were investigated. DFT calculations revealed that non-covalent metal-metal and metal-ligand interactions, together with longer alkyl chain-strengthened inter-ligand dispersion interactions, govern the stability of the trefoil knot structures.
Collapse
Affiliation(s)
- Guang-Tao Xu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiao-Yong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Kam-Hung Low
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Liang-Liang Wu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Qingyun Wan
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Hui-Xing Shu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
12
|
Liu Y, Liu FZ, Yan K. Mechanochemical Access to a Short-Lived Cyclic Dimer Pd 2 L 2 : An Elusive Kinetic Species En Route to Molecular Triangle Pd 3 L 3 and Molecular Square Pd 4 L 4. Angew Chem Int Ed Engl 2022; 61:e202116980. [PMID: 35191567 DOI: 10.1002/anie.202116980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 11/08/2022]
Abstract
Pd-based molecular square Pd4 L4 and triangle Pd3 L3 represent the molecular ancestors of metal-coordination polyhedra that have been an integral part of the field for the last 30 years. Conventional solution-based reactions between cis-protected Pd ions and 2,2'-bipyridine exclusively give Pd4 L4 and/or Pd3 L3 as the sole products. We herein show that, under solvent-free mechanochemical conditions, the self-assembly energy landscape can be thermodynamically manipulated to form an elusive cyclic dimer Pd2 L2 for the first time. In the absence of solvent, Pd2 L2 is indefinitely stable in the solid-state, but converts rapidly to its thermodynamic products Pd3 L3 and Pd4 L4 in solution, confirming Pd2 L2 as a short-lived kinetic species in the solution-based self-assembly process. Our results highlight how mechanochemistry grants access to a vastly different chemical space than available under conventional solution conditions. This provides a unique opportunity to isolate elusive species in self-assembly processes that are too reactive to both "see" and "capture".
Collapse
Affiliation(s)
- Yan Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Fang-Zi Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| |
Collapse
|
13
|
Wang J, Wang F, Dong Q, Chen M, Jiang Z, Zhao H, Liu D, Jiang Z, Su P, Li Y, Liu Q, Liu H, Wang P. Tetratopic Terpyridine Building Unit as a Precursor to Wheel-Like Metallo-Supramolecules. Inorg Chem 2022; 61:5343-5351. [PMID: 35324194 DOI: 10.1021/acs.inorgchem.2c00123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In an effort to construct molecules with distinct shapes and functions, the design and synthesis of multitopic ligands are often able to play an important role. Here, we report the synthesis of a novel tetratopic organic ligand LA, which can be viewed as a bis-tenon with successive angular orientations in space. The particular ligand has been treated with different tailored metal-organic ligands to afford new members of the molecular wheel family (multi-rhomboidal-shaped wheel and bis-trapezium-shaped wheel) that show enhanced stability. Two-dimensional (2D) diffusion nuclear magnetic resonance (NMR) spectroscopy (DOSY), electrospray ionization (ESI) mass spectrometry, traveling wave ion mobility (TWIM), and gradient tandem mass spectrometry (gMS2) experiments, as well as molecular modeling, have been employed to provide structural information and differentiate the isomeric separation process. In addition, considering that LA has rotational properties, it is expected to open the door to functional supramolecules and stimuli-responsive materials.
Collapse
Affiliation(s)
- Jun Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Feng Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Qiangqiang Dong
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhiyuan Jiang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - He Zhao
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Die Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Peiyang Su
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiming Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Qianqian Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan410083, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.,Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
14
|
Liu Y, Liu F, Yan K. Mechanochemical Access to a Short‐Lived Cyclic Dimer Pd
2
L
2
: An Elusive Kinetic Species En Route to Molecular Triangle Pd
3
L
3
and Molecular Square Pd
4
L
4. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yan Liu
- School of Physical Science and Technology ShanghaiTech University 201210 Shanghai China
| | - Fang‐Zi Liu
- School of Physical Science and Technology ShanghaiTech University 201210 Shanghai China
| | - KaKing Yan
- School of Physical Science and Technology ShanghaiTech University 201210 Shanghai China
| |
Collapse
|
15
|
Zhang ZH, Andreassen BJ, August DP, Leigh DA, Zhang L. Molecular weaving. NATURE MATERIALS 2022; 21:275-283. [PMID: 35115722 DOI: 10.1038/s41563-021-01179-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Historically, the interlacing of strands at the molecular level has mainly been limited to coordination polymers and DNA. Despite being proposed on a number of occasions, the direct, bottom-up assembly of molecular building blocks into woven organic polymers remained an aspirational, but elusive, target for several decades. However, recent successes in two-dimensional and three-dimensional molecular-level weaving now offer new opportunities and research directions at the interface of polymer science and molecular nanotopology. This Perspective provides an overview of the features and potential of the periodic nanoscale weaving of polymer chains, distinguishing it from randomly entangled polymer networks and rigid crystalline frameworks. We review the background and experimental progress so far, and conclude by considering the potential of molecular weaving and outline some of the current and future challenges in this emerging field.
Collapse
Affiliation(s)
- Zhi-Hui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | | | - David P August
- Department of Chemistry, University of Manchester, Manchester, UK
| | - David A Leigh
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - Liang Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| |
Collapse
|
16
|
Xu GT, Chang XY, Low KH, Wu LL, Wan Q, Shu HX, To WP, Huang JS, Che CM. Self‐Assembly of Molecular Trefoil Knots Featuring Pentadecanuclear Homoleptic AuI‐, AuI/AgI‐, or AuI/CuI‐Alkynyl Coordination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Xiao-Yong Chang
- Southern University of Science and Technology Chemistry CHINA
| | | | | | - Qingyun Wan
- The University of Hong Kong Chemistry HONG KONG
| | | | - Wai-Pong To
- The University of Hong Kong Chemistry HONG KONG
| | | | - Chi-Ming Che
- The University of Hong Kong Pokfulam Road - Hong Kong HONG KONG
| |
Collapse
|
17
|
Affiliation(s)
- Arthur H. G. David
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310021 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
18
|
Carpenter JP, McTernan CT, Greenfield JL, Lavendomme R, Ronson TK, Nitschke JR. Controlling the shape and chirality of an eight-crossing molecular knot. Chem 2021. [DOI: 10.1016/j.chempr.2021.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Leigh DA, Danon JJ, Fielden SDP, Lemonnier JF, Whitehead GFS, Woltering SL. A molecular endless (7 4) knot. Nat Chem 2021; 13:117-122. [PMID: 33318672 DOI: 10.1038/s41557-020-00594-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023]
Abstract
Current strategies for the synthesis of molecular knots focus on twisting, folding and/or threading molecular building blocks. Here we report that Zn(II) or Fe(II) ions can be used to weave ligand strands to form a woven 3 × 3 molecular grid. We found that the process requires tetrafluoroborate anions to template the assembly of the interwoven grid by binding within the square cavities formed between the metal-coordinated criss-crossed ligands. The strand ends of the grid can subsequently be joined through within-grid alkene metathesis reactions to form a topologically trivial macrocycle (unknot), a doubly interlocked [2]catenane (Solomon link) and a knot with seven crossings in a 258-atom-long closed loop. This 74 knot topology corresponds to that of an endless knot, which is a basic motif of Celtic interlace, the smallest Chinese knot and one of the eight auspicious symbols of Buddhism and Hinduism. The weaving of molecular strands within a discrete layer by anion-template metal-ion coordination opens the way for the synthesis of other molecular knot topologies and to woven polymer materials.
Collapse
Affiliation(s)
- David A Leigh
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China. .,Department of Chemistry, University of Manchester, Manchester, UK.
| | - Jonathan J Danon
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Dan Preston
- Research School of Chemistry, The Australian National University, Canberra, Acton, Australia
| | - Paul E Kruger
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
21
|
August DP, Dryfe RAW, Haigh SJ, Kent PRC, Leigh DA, Lemonnier JF, Li Z, Muryn CA, Palmer LI, Song Y, Whitehead GFS, Young RJ. Self-assembly of a layered two-dimensional molecularly woven fabric. Nature 2020; 588:429-435. [PMID: 33328664 DOI: 10.1038/s41586-020-3019-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
Fabrics-materials consisting of layers of woven fibres-are some of the most important materials in everyday life1. Previous nanoscale weaves2-16 include isotropic crystalline covalent organic frameworks12-14 that feature rigid helical strands interlaced in all three dimensions, rather than the two-dimensional17,18 layers of flexible woven strands that give conventional textiles their characteristic flexibility, thinness, anisotropic strength and porosity. A supramolecular two-dimensional kagome weave15 and a single-layer, surface-supported, interwoven two-dimensional polymer16 have also been reported. The direct, bottom-up assembly of molecular building blocks into linear organic polymer chains woven in two dimensions has been proposed on a number of occasions19-23, but has not previously been achieved. Here we demonstrate that by using an anion and metal ion template, woven molecular 'tiles' can be tessellated into a material consisting of alternating aliphatic and aromatic segmented polymer strands, interwoven within discrete layers. Connections between slowly precipitating pre-woven grids, followed by the removal of the ion template, result in a wholly organic molecular material that forms as stacks and clusters of thin sheets-each sheet up to hundreds of micrometres long and wide but only about four nanometres thick-in which warp and weft single-chain polymer strands remain associated through periodic mechanical entanglements within each sheet. Atomic force microscopy and scanning electron microscopy show clusters and, occasionally, isolated individual sheets that, following demetallation, have slid apart from others with which they were stacked during the tessellation and polymerization process. The layered two-dimensional molecularly woven material has long-range order, is birefringent, is twice as stiff as the constituent linear polymer, and delaminates and tears along well-defined lines in the manner of a macroscopic textile. When incorporated into a polymer-supported membrane, it acts as a net, slowing the passage of large ions while letting smaller ions through.
Collapse
Affiliation(s)
- David P August
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Robert A W Dryfe
- Department of Chemistry, University of Manchester, Manchester, UK.,Henry Royce Institute, University of Manchester, Manchester, UK
| | - Sarah J Haigh
- Department of Materials, National Graphene Institute, University of Manchester, Manchester, UK
| | - Paige R C Kent
- Department of Chemistry, University of Manchester, Manchester, UK
| | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
| | | | - Zheling Li
- Department of Materials, National Graphene Institute, University of Manchester, Manchester, UK
| | | | - Leoni I Palmer
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Yiwei Song
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - Robert J Young
- Department of Materials, National Graphene Institute, University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Song Y, Schaufelberger F, Ashbridge Z, Pirvu L, Vitorica-Yrezabal IJ, Leigh DA. Effects of turn-structure on folding and entanglement in artificial molecular overhand knots. Chem Sci 2020; 12:1826-1833. [PMID: 34163946 PMCID: PMC8179330 DOI: 10.1039/d0sc05897a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The length and constitution of spacers linking three 2,6-pyridinedicarboxamide units in a molecular strand influence the tightness of the resulting overhand (open-trefoil) knot that the strand folds into in the presence of lanthanide(iii) ions. The use of β-hairpin forming motifs as linkers enables a metal-coordinated pseudopeptide with a knotted tertiary structure to be generated. The resulting pseudopeptide knot has one of the highest backbone-to-crossing ratios (BCR)—a measure of knot tightness (a high value corresponding to looseness)—for a synthetic molecular knot to date. Preorganization in the crossing-free turn section of the knot affects aromatic stacking interactions close to the crossing region. The metal-coordinated pseudopeptide knot is compared to overhand knots with other linkers of varying tightness and turn preorganization, and the entangled architectures characterized by NMR spectroscopy, ESI-MS, CD spectroscopy and, in one case, X-ray crystallography. The results show how it is possible to program specific conformational properties into different key regions of synthetic molecular knots, opening the way to systems where knotting can be systematically incorporated into peptide-like chains through design. Spacers linking 2,6-pyridinedicarboxamide units influence the tightness of the corresponding lanthanide-coordinated overhand knot. β-Hairpin forming motifs generate a metal-coordinated pseudopeptide with a knotted tertiary structure.![]()
Collapse
Affiliation(s)
- Yiwei Song
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 PR China
| | | | - Zoe Ashbridge
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Lucian Pirvu
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | - David A Leigh
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 PR China .,Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
23
|
Chen XY, Shen D, Cai K, Jiao Y, Wu H, Song B, Zhang L, Tan Y, Wang Y, Feng Y, Stern CL, Stoddart JF. Suit[3]ane. J Am Chem Soc 2020; 142:20152-20160. [PMID: 33180476 DOI: 10.1021/jacs.0c09896] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Suitanes are a class of mechanically interlocked molecules (MIMs) that consist of two components: a body with limbs protruding outward and a suit that fits appropriately around it, so that there is no easy way for the suit to be removed from the body. Herein, we report the synthesis and characterization of a suit[3]ane, which contains a benzotrithiophene derivative (THBTT) with three protruding hexyl chains as the body and a 3-fold symmetric, extended pyridinium-based cage, namely, HexaCage6+, as the suit. Central to its realization is effective templation, provided by THBTT during cage formation, an observation that has been supported by the strong binding constant between benzotrithiophene (BTT) and the empty cage. The solid-state structure of the suit[3]ane reveals that the body is confined within the suit's cavity with its alkyl chains protruding outward through the orifices in the cage. Notably, such a seemingly unstable molecule, having three flexible alkyl chains as its only protruding limbs, does not dissociate after prolonged heating in CD3CN at 100 °C under pressure for 7 days. No evidence for guest exchange with the host was observed at this temperature in a 2:1 mixture of THBTT and HexaCage6+ in CD3CN. The results indicate that flexible protruding limbs are sufficient for a suit[3]ane to remain mechanically stable even at high temperatures in solution.
Collapse
Affiliation(s)
- Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dengke Shen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yu Tan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
24
|
Wang J, Zhao H, Chen M, Jiang Z, Wang F, Wang G, Li K, Zhang Z, Liu D, Jiang Z, Wang P. Construction of Macromolecular Pinwheels Using Predesigned Metalloligands. J Am Chem Soc 2020; 142:21691-21701. [PMID: 33206521 DOI: 10.1021/jacs.0c08020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Developing a methodology to build target structures is one of the major themes of synthetic chemistry. However, it has proven to be immensely challenging to achieve multilevel elaborate molecular architectures in a predictable way. Herein, we describe the self-assembly of a series of pinwheel-shaped starlike supramolecules through three rationally preorganized metalloligands L1-L3. The key octa-uncomplexed terpyridine (tpy) metalloligand L3, synthesized with an 8-fold Suzuki coupling reaction to metal-containing complexes, has four different types of terpyridines connected with three ⟨tpy-Ru2+-tpy⟩ units, making this the most subunits known so far for a preorganized module. Based on the principle of geometric complementation and the high "density of coordination sites", these metalloligands were assembled with Zn2+ ions to form a pinwheel-shaped star trigon P1, pentagram P2, and hexagram P3 with precisely controlled shapes in nearly quantitative yields. With molecular weights ranging from 16756 to 56053 Da and diameters of 6.7-13.6 nm, the structural composition, shape, and rigidity of these pinwheel-shaped architectures have been fully characterized by 1D and 2D (NMR), electrospray ionization mass spectrometry, traveling-wave ion mobility mass spectrometry, and transmission electron microscopy.
Collapse
Affiliation(s)
- Jun Wang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - He Zhao
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Zhiyuan Jiang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Feng Wang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Guotao Wang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Kaixiu Li
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Die Liu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry; Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.,Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
25
|
Dang LL, Feng HJ, Lin YJ, Jin GX. Self-Assembly of Molecular Figure-Eight Knots Induced by Quadruple Stacking Interactions. J Am Chem Soc 2020; 142:18946-18954. [DOI: 10.1021/jacs.0c09162] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Li-Long Dang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Hui-Jun Feng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
26
|
Margolis EA, Keyes RJ, Lockey SD, Fenlon EE. Design and synthesis of a bis-macrocyclic host and guests as building blocks for small molecular knots. Beilstein J Org Chem 2020; 16:2314-2321. [PMID: 33014171 PMCID: PMC7509378 DOI: 10.3762/bjoc.16.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 09/02/2020] [Indexed: 11/23/2022] Open
Abstract
The thread–link–cut (TLC) approach has previously shown promise as a novel method to synthesize molecular knots. The modular second-generation approach to small trefoil knots described herein involves electrostatic interactions between an electron-rich bis-macrocyclic host compound and electron-deficient guests in the threading step. The bis-macrocyclic host was synthesized in eight steps and 6.6% overall yield. Ammonium and pyridinium guests were synthesized in 4–5 steps. The TLC knot-forming sequence was carried out and produced a product with the expected molecular weight, but, unfortunately, further characterization did not produce conclusive results regarding the topology of the product.
Collapse
Affiliation(s)
- Elizabeth A Margolis
- Department of Chemistry, Franklin & Marshall College, PO Box 3003, Lancaster, PA 17601, USA
| | - Rebecca J Keyes
- Department of Chemistry, Franklin & Marshall College, PO Box 3003, Lancaster, PA 17601, USA
| | - Stephen D Lockey
- Department of Chemistry, Franklin & Marshall College, PO Box 3003, Lancaster, PA 17601, USA
| | - Edward E Fenlon
- Department of Chemistry, Franklin & Marshall College, PO Box 3003, Lancaster, PA 17601, USA
| |
Collapse
|
27
|
Katsonis N, Lancia F, Leigh DA, Pirvu L, Ryabchun A, Schaufelberger F. Knotting a molecular strand can invert macroscopic effects of chirality. Nat Chem 2020; 12:939-944. [DOI: 10.1038/s41557-020-0517-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 06/25/2020] [Indexed: 11/10/2022]
|
28
|
Colley ND, Nosiglia MA, Li L, Amir F, Chang C, Greene AF, Fisher JM, Li R, Li X, Barnes JC. One-Pot Synthesis of a Linear [4]Catenate Using Orthogonal Metal Templation and Ring-Closing Metathesis. Inorg Chem 2020; 59:10450-10460. [DOI: 10.1021/acs.inorgchem.0c00735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nathan D. Colley
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Mark A. Nosiglia
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Lei Li
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Faheem Amir
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Christy Chang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Angelique F. Greene
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Jeremy M. Fisher
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Ruihan Li
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Xuesong Li
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Jonathan C. Barnes
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
29
|
Kumar A, Mukherjee PS. Multicomponent Self‐Assembly of Pd
II
/Pt
II
Interlocked Molecular Cages: Cage‐to‐Cage Conversion and Self‐Sorting in Aqueous Medium. Chemistry 2020; 26:4842-4849. [DOI: 10.1002/chem.202000122] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Atul Kumar
- Inorganic and Physical Chemistry DepartmentIndian Institute of Science Bangalore 560012 India
| | | |
Collapse
|
30
|
Shan W, Gao X, Lin Y, Jin G. Template‐Free Self‐Assembly of Molecular Trefoil Knots and Double Trefoil Knots Featuring Cp*Rh Building Blocks. Chemistry 2020; 26:5093-5099. [DOI: 10.1002/chem.202000525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/15/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Wei‐Long Shan
- State Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan University 220 Handan Road Shanghai 200433 P. R. China
- School of Chemistry and Chemical EngineeringAnhui University of Technology Maanshan 243002 P. R. China
| | - Xiang Gao
- State Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Yue‐Jian Lin
- State Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Guo‐Xin Jin
- State Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of ChemistryFudan University 220 Handan Road Shanghai 200433 P. R. China
| |
Collapse
|
31
|
Caprice K, Aster A, Cougnon FBL, Kumpulainen T. Untying the Photophysics of Quinolinium-Based Molecular Knots and Links. Chemistry 2020; 26:1576-1587. [PMID: 31670851 DOI: 10.1002/chem.201904456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Indexed: 01/08/2023]
Abstract
Complex molecular knots and links are still difficult to synthesize and the properties arising from their topology are mostly unknown. Here, we report on a comparative photophysical study carried out on a family of closely related quinolinium-based knots and links to determine the impact exerted by topology on the molecular backbone. Our results indicate that topology has a negligible influence on the behavior of loosely braided molecules, which mostly behave like their unbraided equivalents. On the other hand, tightly braided molecules display distinct features. Their higher packing density results in a pronounced ability to resist deformation, a significant reduction in the solvent-accessible surface area and favors close-range π-π interactions between the quinolinium units and neighboring aromatics. Finally, the sharp alteration in behavior between loosely and tightly braided molecules sheds light on the factors contributing to braiding tightness.
Collapse
Affiliation(s)
- Kenji Caprice
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, Geneva, Switzerland
| | - Alexander Aster
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest Ansermet, Geneva, Switzerland
| | - Fabien B L Cougnon
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, Geneva, Switzerland
| | - Tatu Kumpulainen
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest Ansermet, Geneva, Switzerland
| |
Collapse
|
32
|
Dang LL, Gao X, Lin YJ, Jin GX. s-Block metal ions induce structural transformations between figure-eight and double trefoil knots. Chem Sci 2020. [DOI: 10.1039/c9sc05796j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The presence or absence of s-block metal ions induces reversible structural transformation of molecular knots.
Collapse
Affiliation(s)
- Li-Long Dang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Chemistry
- Fudan University
- Shanghai 200438
| | - Xiang Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Chemistry
- Fudan University
- Shanghai 200438
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Chemistry
- Fudan University
- Shanghai 200438
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Chemistry
- Fudan University
- Shanghai 200438
| |
Collapse
|
33
|
Celaya CA, Salcedo R, Sansores LE. Molecular knot with nine crossings: Structure and electronic properties from density functional theory computation. J Mol Graph Model 2019; 94:107481. [PMID: 31671365 DOI: 10.1016/j.jmgm.2019.107481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/27/2022]
Abstract
The electronic structure of a molecule with nine-crossing composite knots 973 link denoted by the Alexander-Briggs notation (complex-1) are studied by means of theoretical methods (DFT). The most interesting feature of this kind of molecules is their capability to capture anion spices inside the cage. Stability and chemical reactivity were evaluated taking advantage of the criteria chemical hardness and chemical potential. The simulation of the infrared spectra is also included and shows the characteristic signal of the molecule in a range 1000-1600 cm-1. The frontier molecular orbitals were also analyzed. Whereas the capability to capture chlorine ion into the cavity of the complex-1 is explored by means the analysis of bond energy. Also, the electron density distribution of the chlorine complex was studied by means the quantum theory of atoms in molecules (QTAIM) formalism in order to stablish its bonding properties as well as the electron transfer between chlorine ion and complex-1 which was approached by the natural bonding orbital (NBO) and Hirshfeld charge. Ours results revels semiconductor behaviors for both compounds.
Collapse
Affiliation(s)
- Christian A Celaya
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/n, Ciudad Universitaria, CP 04510, Coyoacán, Ciudad de México, Mexico.
| | - Roberto Salcedo
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/n, Ciudad Universitaria, CP 04510, Coyoacán, Ciudad de México, Mexico
| | - Luis Enrique Sansores
- Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/n, Ciudad Universitaria, CP 04510, Coyoacán, Ciudad de México, Mexico
| |
Collapse
|
34
|
Zhong J, Zhang L, August DP, Whitehead GFS, Leigh DA. Self-Sorting Assembly of Molecular Trefoil Knots of Single Handedness. J Am Chem Soc 2019; 141:14249-14256. [PMID: 31389229 DOI: 10.1021/jacs.9b06127] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on the stereoselective synthesis of trefoil knots of single topological handedness in up to 90% yield (over two steps) through the formation of trimeric circular helicates from ligand strands containing either imine or, unexpectedly, amide chelating units and metal ion templates of the appropriate coordination character (zinc(II) for imines; cobalt(III) for amides). The coordination stereochemistry of the octahedral metal complexes is determined by asymmetric carbon centers in the strands, ultimately translating into trefoil knots that are a single enantiomer, both physically and in terms of their fundamental topology. Both the imine-zinc and amide-cobalt systems display self-sorting behavior, with racemic ligands forming knots that individually contain only building blocks of the same chirality. The knots and the corresponding trimeric circular helicate intermediates (Zn(II)3 complex for the imine ligands; Co(III)3 complex for the amide ligands) were characterized by nuclear magnetic resonance spectroscopy, mass spectrometry, and X-ray crystallography. The latter confirms the trefoil knots as 84-membered macrocycles, with each of the metal ions sited at a crossing point for three regions of the strand. The stereochemistry of the octahedral coordination centers imparts alternating crossings of the same handedness within each circular helicate. The expression of chirality of the knotted molecules was probed by circular dichroism: The topological handedness of the demetalated knots was found to have a greater effect on the CD response than the Euclidean chirality of an individual chiral center.
Collapse
Affiliation(s)
- Jiankang Zhong
- School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Liang Zhang
- School of Chemistry and Molecular Engineering , East China Normal University , 200062 Shanghai , China.,School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | - David P August
- School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | - George F S Whitehead
- School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | - David A Leigh
- School of Chemistry and Molecular Engineering , East China Normal University , 200062 Shanghai , China.,School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| |
Collapse
|
35
|
Wang H, Li Y, Yu H, Song B, Lu S, Hao XQ, Zhang Y, Wang M, Hla SW, Li X. Combining Synthesis and Self-Assembly in One Pot To Construct Complex 2D Metallo-Supramolecules Using Terpyridine and Pyrylium Salts. J Am Chem Soc 2019; 141:13187-13195. [PMID: 31345024 DOI: 10.1021/jacs.9b05682] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multicomponent self-assembly in one pot provides an efficient way for constructing complex architectures using multiple types of building blocks with different levels of interactions orthogonally. The preparation of multiple types of building blocks typically includes tedious synthesis. Here, we developed a multicomponent synthesis/self-assembly strategy, which combined covalent interaction (C-N bond, formed through condensation of pyrylium salt with primary amine) and metal-ligand interaction (N → Zn bond, formed through 2,2':6',2″-terpyridine-Zn coordination) in one pot. The high compatibility of this pair of interactions smoothly and efficiently converted three and four types of components into the desired complex structures, which are supramolecular Kandinsky Circles and spiderwebs, respectively.
Collapse
Affiliation(s)
- Heng Wang
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Yiming Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Bo Song
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Shuai Lu
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States.,College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Xin-Qi Hao
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Yuan Zhang
- Nanoscience and Technology Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Saw-Wai Hla
- Nanoscience and Technology Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| |
Collapse
|
36
|
Chen M, Liu D, Huang J, Li Y, Wang M, Li K, Wang J, Jiang Z, Li X, Wang P. Trefoiled Propeller-Shaped Spiral Terpyridyl Metal-Organic Architectures. Inorg Chem 2019; 58:11146-11154. [PMID: 31361129 DOI: 10.1021/acs.inorgchem.9b01701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Constructing exquisite and intricate molecular architectures is always the pursuit of chemists. In this report, the propeller-shaped trefoil structures S1 and S2 were successfully prepared by the stepwise self-assembly of predesigned tripodal metal-organic ligands, which consist of bis(terpyridine)s-Ru2+-tris(terpyridine)s connectivities for the following complexation with Fe2+. The complexes can be described as racemic spiral assemblies with three-fold spiralism. These unique discrete metal-organic architectures were fully characterized by 1H NMR, 2D NMR spectroscopy (COSY and NOESY), diffusion-ordered NMR spectroscopy (DOSY), ESI-MS, TWIM-MS, and TEM, and their photophysical and electrochemical properties were also investigated. Further, hybrid trefoiled structure [Fe3L1L2] was detected by taking advantage of the flexibility of metal-organic ligands.
Collapse
Affiliation(s)
- Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education , Guangzhou University , Guangzhou , 510006 , China
| | - Die Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education , Guangzhou University , Guangzhou , 510006 , China
| | - Jian Huang
- College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan , 410083 , China
| | - Yiming Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33640 , United States
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin , 130012 , China
| | - Kaixiu Li
- College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan , 410083 , China
| | - Jun Wang
- College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan , 410083 , China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education , Guangzhou University , Guangzhou , 510006 , China
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33640 , United States
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education , Guangzhou University , Guangzhou , 510006 , China.,College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan , 410083 , China
| |
Collapse
|
37
|
Katoono R, Kusaka K, Saito Y, Sakamoto K, Suzuki T. Chiral diversification through the assembly of achiral phenylacetylene macrocycles with a two-fold bridge. Chem Sci 2019; 10:4782-4791. [PMID: 31160955 PMCID: PMC6510063 DOI: 10.1039/c9sc00972h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/30/2019] [Indexed: 12/15/2022] Open
Abstract
We demonstrate so-called "chiral diversification", which is a design strategy to create multiple chiral molecules through the assembly and double-bridging of achiral components. We used phenylacetylene macrocycles (PAMs) as an achiral element. In a molecule, two achiral rings of [6]PAM are stacked one above the other, or bound to each other mechanically. As an alternative, a single enlarged ring of [12]PAM was also assumed to be a doubled form of [6]PAM. In any case, one or two ring(s) are doubly-bridged by covalent bonds to exert chirality. Through intramolecular two-bond formation, these multiple chiral molecules were obtained as a set of products in one reaction. The dynamic chirality generated in molecules with either two helically-stacked rings of [6]PAM or a single helically-folded ring of [12]PAM was characterized by induced Cotton effects with the aid of an external chiral source. Thus, a chiral structure based on [12]PAM could be demonstrated as the first success. Alternatively, enantiomeric separation was achieved for molecules with two interlocked rings of [6]PAM to show remarkable chiroptical properties.
Collapse
Affiliation(s)
- Ryo Katoono
- Department of Chemistry , Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan . ; ; Tel: +81 11 706-3396
| | - Keiichi Kusaka
- Department of Chemistry , Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan . ; ; Tel: +81 11 706-3396
| | - Yuki Saito
- Department of Chemistry , Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan . ; ; Tel: +81 11 706-3396
| | - Kazuki Sakamoto
- Department of Chemistry , Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan . ; ; Tel: +81 11 706-3396
| | - Takanori Suzuki
- Department of Chemistry , Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan . ; ; Tel: +81 11 706-3396
| |
Collapse
|
38
|
Coordination-driven self-assembly of a molecular figure-eight knot and other topologically complex architectures. Nat Commun 2019; 10:2057. [PMID: 31053709 PMCID: PMC6499799 DOI: 10.1038/s41467-019-10075-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/08/2019] [Indexed: 11/10/2022] Open
Abstract
Over the past decades, molecular knots and links have captivated the chemical community due to their promising mimicry properties in molecular machines and biomolecules and are being realized with increasing frequency with small molecules. Herein, we describe how to utilize stacking interactions and hydrogen-bonding patterns to form trefoil knots, figure-eight knots and [2]catenanes. A transformation can occur between the unique trefoil knot and its isomeric boat-shaped tetranuclear macrocycle by the complementary concentration effect. Remarkably, the realization and authentication of the molecular figure-eight knot with four crossings fills the blank about 41 knot in knot tables. The [2]catenane topology is obtained because the selective naphthalenediimide (NDI)-based ligand, which can engender favorable aromatic donor-acceptor π interactions due to its planar, electron-deficient aromatic surface. The stacking interactions and hydrogen-bond interactions play important roles in these self-assembly processes. The advantages provide an avenue for the generation of structurally and topologically complex supramolecular architectures. Molecular knots and links continue to fascinate synthetic chemists. Here, the authors use stacking and hydrogen-bonding interactions between a set of similar building blocks to construct several complex molecular topologies, including a figure-eight knot and a trefoil knot.
Collapse
|
39
|
Leigh DA, Pirvu L, Schaufelberger F. Stereoselective Synthesis of Molecular Square and Granny Knots. J Am Chem Soc 2019; 141:6054-6059. [PMID: 30892025 PMCID: PMC6492950 DOI: 10.1021/jacs.9b01819] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
We
report on the stereoselective synthesis of both molecular granny
and square knots through the use of lanthanide-complexed overhand
knots of specific handedness as three-crossing “entanglement
synthons”. The composite knots are assembled by combining two
entanglement synthons (of the same chirality for a granny knot; of
opposite handedness for a square knot) in three synthetic steps: first,
a CuAAC reaction joins together one end of each overhand knot. Ring-closing
olefin metathesis (RCM) then affords the closed-loop knot, locking
the topology. This allows the lanthanide ions necessary for stabilizing
the entangled conformation of the synthons to subsequently be removed.
The composite knots were characterized by 1H and 13C NMR spectroscopy and mass spectrometry and the chirality of the
knot stereoisomers compared by circular dichroism. The synthetic strategy
of combining building blocks of defined stereochemistry (here overhand
knots of Λ- or Δ-handed entanglement) is reminiscent of
the chiron approach of using minimalist chiral synthons in the stereoselective
synthesis of molecules with multiple asymmetric centers.
Collapse
Affiliation(s)
- David A Leigh
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Lucian Pirvu
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | | |
Collapse
|
40
|
Tateishi T, Yasutake Y, Kojima T, Takahashi S, Hiraoka S. Self-assembly process of a quadruply interlocked palladium cage. Commun Chem 2019. [DOI: 10.1038/s42004-019-0123-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
41
|
Zhang L, Stephens AJ, Lemonnier JF, Pirvu L, Vitorica-Yrezabal IJ, Robinson CJ, Leigh DA. Coordination Chemistry of a Molecular Pentafoil Knot. J Am Chem Soc 2019; 141:3952-3958. [PMID: 30742430 PMCID: PMC6438588 DOI: 10.1021/jacs.8b12548] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The binding of Zn(II) cations to
a pentafoil (51) knotted
ligand allows the synthesis of otherwise inaccessible metalated molecular
pentafoil knots via transmetalation, affording the corresponding “first-sphere”
coordination Co(II), Ni(II), and Cu(II) pentanuclear knots in good
yields (≥85%). Each of the knot complexes was characterized
by mass spectrometry, the diamagnetic (zinc) knot complex was characterized
by 1H and 13C NMR spectroscopy, and the zinc,
cobalt, and nickel pentafoil knots afforded single crystals whose
structures were determined by X-ray crystallography. Lehn-type circular
helicates generally only form with tris-bipy ligand strands and Fe(II)
(and, in some cases, Ni(II) and Zn(II)) salts, so such architectures
become accessible for other metal cations only through the use of
knotted ligands. The different metalated knots all exhibit “second-sphere”
coordination of a single chloride ion within the central cavity of
the knot through CH···Cl– hydrogen
bonding and electrostatic interactions. The chloride binding affinities
were determined in MeCN by isothermal titration calorimetry, and the
strength of binding was shown to vary over 3 orders of magnitude for
the different metal-ion–knotted-ligand second-sphere coordination
complexes.
Collapse
Affiliation(s)
- Liang Zhang
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China.,School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Alexander J Stephens
- School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | | | - Lucian Pirvu
- School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | | | - Christopher J Robinson
- SYNBIOCHEM, Manchester Institute of Biotechnology , University of Manchester , Manchester M1 7DN , United Kingdom
| | - David A Leigh
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China.,School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| |
Collapse
|
42
|
Komine S, Tateishi T, Kojima T, Nakagawa H, Hayashi Y, Takahashi S, Hiraoka S. Self-assembly processes of octahedron-shaped Pd6L12 cages. Dalton Trans 2019; 48:4139-4148. [DOI: 10.1039/c8dt04931a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly processes of three octahedron-shaped [Pd6L12]12+ cages were investigated by an NMR-based quantitative approach (QASAP).
Collapse
Affiliation(s)
- Shohei Komine
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Tomoki Tateishi
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Tatsuo Kojima
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Haruna Nakagawa
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Yasuhiro Hayashi
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Satoshi Takahashi
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| | - Shuichi Hiraoka
- Department of Basic Science
- Graduate School of Arts and Sciences
- The University of Tokyo
- Tokyo 153-8902
- Japan
| |
Collapse
|
43
|
Song B, Kandapal S, Gu J, Zhang K, Reese A, Ying Y, Wang L, Wang H, Li Y, Wang M, Lu S, Hao XQ, Li X, Xu B, Li X. Self-assembly of polycyclic supramolecules using linear metal-organic ligands. Nat Commun 2018; 9:4575. [PMID: 30385754 PMCID: PMC6212524 DOI: 10.1038/s41467-018-07045-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023] Open
Abstract
Coordination-driven self-assembly as a bottom-up approach has witnessed a rapid growth in building giant structures in the past few decades. Challenges still remain, however, within the construction of giant architectures in terms of high efficiency and complexity from simple building blocks. Inspired by the features of DNA and protein, which both have specific sequences, we herein design a series of linear building blocks with specific sequences through the coordination between terpyridine ligands and Ru(II). Different generations of polycyclic supramolecules (C1 to C5) with increasing complexity are obtained through the self-assembly with Cd(II), Fe(II) or Zn(II). The assembled structures are characterized via multi-dimensional mass spectrometry analysis as well as multi-dimensional and multinuclear NMR (1H, COSY, NOESY) analysis. Moreover, the largest two cycles C4 and C5 hierarchically assemble into ordered nanoscale structures on a graphite based on their precisely-controlled shapes and sizes with high shape-persistence.
Collapse
Affiliation(s)
- Bo Song
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Sneha Kandapal
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, 30602, USA
| | - Jiali Gu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Keren Zhang
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, 30602, USA
| | - Alex Reese
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, 30602, USA
| | - Yuanfang Ying
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Lei Wang
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Heng Wang
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Yiming Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Shuai Lu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xin-Qi Hao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Xiaohong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, 30602, USA.
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
44
|
Abstract
This Account is about templates as construction tools: molecules for making molecules. A template organizes the reactants and provides information to promote formation of a specific product, but it is not part of the final product. We have developed many different strategies for using oligopyridines as templates for the synthesis of alkyne-linked π-conjugated metalloporphyrin oligomers. These compounds include some of the largest macrocycles ever synthesized, such as a 50-porphyrin ring with a diameter of 21 nm containing a ring of 750 C-C bonds. Metalloporphyrins are excellent models for exploring template directed synthesis, as they can be functionalized in many different positions and the central metal (typically Zn or Mg) provides a handle for coordination to templates. Classical template-directed macrocyclization reactions have a 1:1 complementarity between the template and the product. This strategy works well for preparing nanorings of 5-7 porphyrin units, but larger templates are laborious to synthesize. Rings of 8 or more porphyrin units are most easily prepared using "nonclassical" strategies, in which several small templates work together to direct the formation of a large ring. In the Vernier approach, a mismatch between the number of binding sites on the template and the building block leads to a mathematical amplification of the length scale: the number of binding sites in the product is the lowest common multiple of those in the template and the building block. For example, a 40-porphyrin ring can be prepared by coupling a linear decamer in the presence of an octadentate template. Linear Vernier templating opens up intriguing possibilities for self-replication. When several small radial oligopyridine templates bind inside a large nanoring they can form complexes with some vacant coordination sites that display correlated motion like the caterpillar tracks of a bulldozer. These caterpillar track complexes can be used in template-directed synthesis and they provide the most convenient route to 8- and 10-porphyrin rings. Russian doll complexes provide another strategy for template-directed synthesis: a number of specifically designed ligands bind to a central nanoring to form a template for constructing a larger concentric nanoring. The same oligopyridine templates that are used to prepare nanorings can also be used to synthesize three-dimensional nanotubes and nanoballs. Again, nonclassical approaches, in which several small templates work together cooperatively, are much simpler than creating a single large template with sufficient binding sites to define the whole geometry of the product. Oligopyridine ligands can also be used as shadow mask templates to control the demetalation of magnesium porphyrin nanorings, because metal centers that are not coordinated by the template can be selectively demetalated with acid. Thus, the template forms a permanent shadow on the porphyrin nanostructure that remains after the template has been removed. Shadow mask templates provide a simple route to heterometalated molecular architectures. The insights emerging from these studies are widely applicable, and there are many opportunities for inventing new ways of using templates to control reactions.
Collapse
Affiliation(s)
- Pernille S. Bols
- Chemistry Research Laboratory, Department of Chemistry, Oxford University, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Harry L. Anderson
- Chemistry Research Laboratory, Department of Chemistry, Oxford University, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
45
|
Hiraoka S. Self‐Assembly Processes of Pd(II)‐ and Pt(II)‐Linked Discrete Self‐Assemblies Revealed by QASAP. Isr J Chem 2018. [DOI: 10.1002/ijch.201800073] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and SciencesThe University of Tokyo 3-8-1 Komaba, Meguro-ku Tokyo 153-8902 Japan
| |
Collapse
|
46
|
Zhang L, Stephens AJ, Nussbaumer AL, Lemonnier JF, Jurček P, Vitorica-Yrezabal IJ, Leigh DA. Stereoselective synthesis of a composite knot with nine crossings. Nat Chem 2018; 10:1083-1088. [DOI: 10.1038/s41557-018-0124-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/20/2018] [Indexed: 01/10/2023]
|
47
|
Cougnon FBL, Caprice K, Pupier M, Bauzá A, Frontera A. A Strategy to Synthesize Molecular Knots and Links Using the Hydrophobic Effect. J Am Chem Soc 2018; 140:12442-12450. [DOI: 10.1021/jacs.8b05220] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fabien B. L. Cougnon
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Kenji Caprice
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Marion Pupier
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Antonio Bauzá
- Department de Química, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Department de Química, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| |
Collapse
|
48
|
Leigh DA, Pirvu L, Schaufelberger F, Tetlow DJ, Zhang L. Securing a Supramolecular Architecture by Tying a Stopper Knot. Angew Chem Int Ed Engl 2018; 57:10484-10488. [PMID: 29708636 PMCID: PMC6099318 DOI: 10.1002/anie.201803871] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Indexed: 11/11/2022]
Abstract
We report on a rotaxane-like architecture secured by the in situ tying of an overhand knot in the tris(2,6-pyridyldicarboxamide) region of the axle through complexation with a lanthanide ion (Lu3+ ). The increase in steric bulk caused by the knotting locks a crown ether onto the thread. Removal of the lutetium ion unties the knot, and when the axle binding site for the ring is deactivated, the macrocycle spontaneously dethreads. When the binding interaction is switched on again, the crown ether rethreads over the 10 nm length of the untangled strand. The overhand knot can be retied, relocking the threaded structure, by once again adding lutetium ions.
Collapse
Affiliation(s)
- David A. Leigh
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Lucian Pirvu
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | | | - Daniel J. Tetlow
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Liang Zhang
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
49
|
Leigh DA, Pirvu L, Schaufelberger F, Tetlow DJ, Zhang L. Securing a Supramolecular Architecture by Tying a Stopper Knot. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- David A. Leigh
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| | - Lucian Pirvu
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| | | | - Daniel J. Tetlow
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| | - Liang Zhang
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
50
|
Jamieson EMG, Modicom F, Goldup SM. Chirality in rotaxanes and catenanes. Chem Soc Rev 2018; 47:5266-5311. [PMID: 29796501 PMCID: PMC6049620 DOI: 10.1039/c8cs00097b] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Indexed: 12/20/2022]
Abstract
Although chiral mechanically interlocked molecules (MIMs) have been synthesised and studied, enantiopure examples are relatively under-represented in the pantheon of reported catenanes and rotaxanes and the underlying chirality of the system is often even overlooked. This is changing with the advent of new applications of MIMs in catalysis, sensing and materials and the appearance of new methods to access unusual stereogenic units unique to the mechanical bond. Here we discuss the different stereogenic units that have been investigated in catenanes and rotaxanes, examples of their application, methods for assigning absolute stereochemistry and provide a perspective on future developments.
Collapse
Affiliation(s)
- E. M. G. Jamieson
- Chemistry
, University of Southampton
,
University Road, Highfield
, Southampton
, SO17 1BJ
, UK
.
| | - F. Modicom
- Chemistry
, University of Southampton
,
University Road, Highfield
, Southampton
, SO17 1BJ
, UK
.
| | - S. M. Goldup
- Chemistry
, University of Southampton
,
University Road, Highfield
, Southampton
, SO17 1BJ
, UK
.
| |
Collapse
|