1
|
Estival A, Blancarte LE, Pinto L, Pointis R, Galas N, Sournia-Saquet A, Vendier L, Santillan R, Farfán N, Sortais JB, Grellier M, Simonneau A. Synthesis and characterization of heptacoordinated molybdenum(II) complexes supported with 2,6-bis(pyrazol-3-yl)pyridine (bpp) ligands. Dalton Trans 2025; 54:2860-2870. [PMID: 39792086 DOI: 10.1039/d4dt03264k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Functional pincer ligands that engage in metal-ligand cooperativity and/or are capable of redox non-innocence have found a great deal of success in catalysis. These two properties may be found in metal complexes of the 2,6-bis(pyrazol-3-yl)pyridine (bpp) ligands. With this goal in mind, we have attempted the coordination of 2,6-bis(5-trifluoromethylpyrazol-3-yl)pyridine (LCF3) and its tBu analogue 2,6-bis(5-tert-butylpyrazol-3-yl)pyridine (LtBu) to Mo(0) by reactions with mixed phosphine/carbonyl complexes [Mo(CO)2(MeCN)n-1(PMe3-nPhn)5-n] 1-3 (1 ≤ n ≤ 3). These afforded mixtures of several Mo compounds among which low yields of heptacoordinated Mo(II) complexes [Mo(CO)2(bpp)(PMe3-nPhn)2] 4a-c (LCF3-supported) and 5a-c (LtBu-supported) bearing a doubly deprotonated bpp ligand were systematically produced. More selective syntheses of 4a-c and 5a-c were achieved by repeating these experiments in the presence of an oxidant (AgOAc or Ag2O), with moderate to good yields. 4a-c and 5a-c were characterized by means of NMR, IR and UV-Vis spectroscopies, sc-XRD and cyclic and square-wave voltammetries for 4a, 4b and 5b. The deprotonated LtBu ligand in 5a-c is re-protonated with 2 equiv. of HOTf to afford the dicationic [Mo(CO)2(LtBu)(PMe3-nPhn)2][OTf]2 complexes 6a-c. Acidic treatment of 4a-c led to the decomposition of the complexes.
Collapse
Affiliation(s)
- Arno Estival
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099 F-31077 Toulouse cedex 4, France.
| | - Luis E Blancarte
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - Loïc Pinto
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099 F-31077 Toulouse cedex 4, France.
| | - Romane Pointis
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099 F-31077 Toulouse cedex 4, France.
| | - Nathan Galas
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099 F-31077 Toulouse cedex 4, France.
| | - Alix Sournia-Saquet
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099 F-31077 Toulouse cedex 4, France.
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099 F-31077 Toulouse cedex 4, France.
| | - Rosa Santillan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, México D.F. Apdo. Postal 14-740, 07000, Mexico
| | - Norberto Farfán
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - Jean-Baptiste Sortais
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099 F-31077 Toulouse cedex 4, France.
| | - Mary Grellier
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099 F-31077 Toulouse cedex 4, France.
| | - Antoine Simonneau
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099 F-31077 Toulouse cedex 4, France.
| |
Collapse
|
2
|
Gastearena X, Matxain JM, Ruipérez F. Exploring N 2 activation using novel Lewis acid/base pairs: computational insight into frustrated Lewis pair reactivity. Dalton Trans 2025. [PMID: 39927875 DOI: 10.1039/d4dt03425b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The activation of dinitrogen (N2) is a crucial step in synthesizing nitrogen-based compounds and remains a significant challenge due to its strong triple bond. Currently, industrial N2 conversion relies on the Haber-Bosch process, a highly energy-intensive method that utilizes transition metal-based catalysts. Frustrated Lewis pairs (FLPs) have emerged as a promising alternative for N2 activation without the need for transition metals. In this work, we employ density functional theory (DFT) to investigate the activation of N2 by transition metal-free Lewis acids (LAs) and bases (LBs). Our study demonstrates that LAs play a crucial role in capturing N2 and determining the thermodynamics of activation, while LBs play a complementary role by reducing the bond order of the N2 molecule, thereby promoting activation. The efficiency of N2 capture is directly linked to the electroaccepting characteristics of the LAs. A principal component analysis (PCA) reveals that the key factors influencing the electroaccepting power of LAs are the degree of pyramidalization and orbital occupation at the acidic site, as well as the local electrophilicity index. The LA-N2 interaction is found to be electrostatic with partially covalent character. Among the 21 LAs analyzed, triptycene-based systems exhibit the highest stability in forming LA-N2 complexes, highlighting their potential as effective N2-capturing agents. However, the N2 triple bond remains largely intact, necessitating the involvement of LBs in LA-N2-LB complexes for full activation, in a "push-pull" mechanism. Six LBs are analyzed in complexes with the most promising LAs. Bonding analysis indicates that the LB-N2 interaction can be regarded as a covalent bond, which may explain the main role of the LB in the reduction of the N2 bond order. Furthermore, the bond activation is significantly enhanced by increasing the nucleophilicity of the LB. Among all the LA-LB pair combinations, only three exhibit the defining characteristics of frustrated Lewis pairs (FLPs), with moderate interaction energies and substantial LA-LB distances. Our findings suggest that FLPs composed of triptycene-based LAs and tris-tert-butylphosphine represent the most promising candidates for N2 activation.
Collapse
Affiliation(s)
- Xuban Gastearena
- Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU and Donostia International Physics Center (DIPC), Paseo Manuel Lardizábal 4, 20018 Donostia, Euskadi, Spain
| | - Jon M Matxain
- Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU and Donostia International Physics Center (DIPC), Paseo Manuel Lardizábal 4, 20018 Donostia, Euskadi, Spain
| | - Fernando Ruipérez
- POLYMAT and Physical Chemistry Department, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria - Gasteiz, Euskadi, Spain.
| |
Collapse
|
3
|
Purkayastha SK, Guha AK. Side-On Bound Beryllium Dinitrogen Complex: A Precursor for Complete Conversion of Dinitrogen to Ammonia Mediated by N-Heterocyclic Carbene. J Phys Chem A 2025; 129:705-716. [PMID: 39778101 DOI: 10.1021/acs.jpca.4c06738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The complete conversion of dinitrogen to ammonia mediated by a side-on N2-bound carbene-beryllium complex, [NHC-Be(η2-N2)] has been studied considering both the symmetric and unsymmetric pathways. N-heterocyclic carbenes complexed with Be(η2-N2) moieties were considered substrates in our study. We found that two mechanistic pathways were possible for the reduction of dinitrogen to form ammonia. Our calculations revealed that the symmetric pathway is more favorable compared to the unsymmetric one. The interconversion of the complex from the symmetric product to the unsymmetric one involves a large activation energy barrier for the proton transfer pathway. Both of these pathways were associated with high exergonicity, and the N-N bond is observed to be elongated, which indicates that the NHC-Be(η2-N2) complex is a promising candidate for dinitrogen activation and subsequent reduction, resulting in the formation of ammonia. The bonding scenario of the NHC-Be(η2-N2) complex can be explained well by the famous Dewar-Chatt-Duncanson (DCD) model. Our calculations reveal that the symmetric pathway is found to be more suitable due to more negative values of change in Gibbs free energy. Solvent phase calculations have identified the viability of the NHC-Be(η2-N2) complex, indicating that the complex is sustainable in low-polar organic solvents, such as toluene and diethyl ether.
Collapse
Affiliation(s)
| | - Ankur K Guha
- Advanced Computational Chemistry Centre, Cotton University, Guwahati 781001, India
| |
Collapse
|
4
|
Weber JE, McMillion ND, Hegg AS, Wertz AE, Aliahmadi M, Mercado BQ, Crabtree RH, Shafaat HS, Miller AJM, Holland PL. Isocyanide Ligation Enables Electrochemical Ammonia Formation in a Synthetic Cycle for N 2 Fixation. J Am Chem Soc 2024; 146:33595-33607. [PMID: 39589758 DOI: 10.1021/jacs.4c11187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Transition-metal-mediated splitting of N2 to form metal nitride complexes could constitute a key step in electrocatalytic nitrogen fixation, if these nitrides can be electrochemically reduced to ammonia under mild conditions. The envisioned nitrogen fixation cycle involves several steps: N2 binding to form a dinuclear end-on bridging complex with appropriate electronic structure to cleave the N2 bridge followed by proton/electron transfer to release ammonia and bind another molecule of N2. The nitride reduction and N2 splitting steps in this cycle have differing electronic demands that a catalyst must satisfy. Rhenium systems have had limited success in meeting these demands, and studying them offers an opportunity to learn strategies for modulating reactivity. Here, we report a rhenium system in which the pincer supporting ligand is supplemented by an isocyanide ligand that can accept electron density, facilitating reduction and enabling the protonation/reduction of the nitride to ammonia under mild electrochemical conditions. The incorporation of isocyanide raises the N-H bond dissociation free energy of the first N-H bond by 10 kcal/mol, breaking the usual compensation between pKa and redox potential; this is attributed to the separation of the protonation site (nitride) and the reduction site (delocalized between Re and isocyanide). Ammonia evolution is accompanied by formation of a terminal N2 complex, which can be oxidized to yield bridging N2 complexes including a rare mixed-valent complex. These rhenium species define the steps in a synthetic cycle that converts N2 to NH3 through an electrochemical N2 splitting pathway, and show the utility of a second, tunable supporting ligand for enhancing nitride reactivity.
Collapse
Affiliation(s)
- Jeremy E Weber
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Noah D McMillion
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Alexander S Hegg
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ashlee E Wertz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mehrnaz Aliahmadi
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Robert H Crabtree
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
5
|
Ghosh B, Ahmed S, Phukan AK. Unravelling the potential of low-valent tunable vanadium complexes in the nitrogen reduction reaction (NRR). Dalton Trans 2024; 53:19179-19195. [PMID: 39502072 DOI: 10.1039/d4dt02217c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Density functional theory calculations have been carried out to investigate the potential of several hitherto unknown low-valent tripodal vanadium complexes towards conversion of dinitrogen to ammonia as a function of different equatorial (PiPr2 and SiPr) and bridgehead groups (B, C and Si). All the newly proposed vanadium complexes were probed towards understanding their efficiency in some of the key steps involved in the dinitrogen fixation process. They were found to be successful in preventing the release of hydrazine during the nitrogen reduction reaction. We have performed a comprehensive mechanistic study by considering all the possible pathways (distal, alternate and hybrid) to understand the efficiency of some of the proposed catalysts towards the dinitrogen reduction process. The exergonic reaction free energies obtained for some of the key steps and the presence of thermally surmountable barrier heights involved in the catalytic cycle indicate that these complexes may be considered as suitable platforms for the functionalization of dinitrogen.
Collapse
Affiliation(s)
- Bijoy Ghosh
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India.
| | - Sahtaz Ahmed
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India.
| | - Ashwini K Phukan
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India.
| |
Collapse
|
6
|
Krishnapriya VU, Suresh CH. Beyond the triple bond: unlocking dinitrogen activation with tailored superbase phosphines. Dalton Trans 2024; 53:19235-19245. [PMID: 39530230 DOI: 10.1039/d4dt02703e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Activating atmospheric dinitrogen (N2), a molecule with a remarkably strong triple bond, remains a major challenge in chemistry. This theoretical study explores the potential of superbase phosphines, specifically those decorated with imidazolin-2-imine ((ImN)3P) and imidazolin-2-methylidene ((ImCH)3P) to facilitate N2 activation and subsequent hydrazine (H2NNH2) formation. Using density functional theory (DFT) at the M06L/6-311++G(d,p) level, we investigated the interactions between these phosphines and N2. Mono-phosphine-N2 complexes exhibit weak, noncovalent interactions (-0.6 to -7.1 kcal mol-1). Notably, two superbasic phosphines also form high-energy hypervalent complexes with N2, albeit at significantly higher energies. The superbasic nature and potential for the hypervalency of these phosphines lead to substantial N2 activation in bis-phosphine-N2 complexes, where N2 is "sandwiched" between two phosphine moieties through hypervalent P-N bonds. Among the phosphines studied, only (ImN)3P forms an exothermic sandwich complex with N2, stabilized by hydrogen bonding between the ImN substituents and the central N2 molecule. A two-step, exothermic hydrogen transfer pathway from (ImN)3P to N2 results in the formation of a bis-phosphine-diimine (HNNH) sandwich complex. Subsequent hydrogen transfer leads to the formation of a bis-phosphine-hydrazine (H2NNH2) complex, a process that, although endothermic, exhibits surmountable activation barriers. The relatively low energy requirements for this overall transformation suggest its potential feasibility under the optimized conditions. This theoretical exploration highlights the promise of superbase phosphines as a strategy for metal-free N2 activation, opening doors for the development of more efficient and sustainable nitrogen fixation and utilization methods.
Collapse
Affiliation(s)
- Vilakkathala U Krishnapriya
- Chemical Science and Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram - 695019, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram, 695034, Kerala, India.
| | - Cherumuttathu H Suresh
- Research Centre, University of Kerala, Thiruvananthapuram, 695034, Kerala, India.
- Srinivasa Ramanujan Institute for Basic Sciences, Kerala State Council for Science Technology and Environment, Kottayam, 686501, Kerala, India
| |
Collapse
|
7
|
Bagger A, Tort R, Titirici MM, Walsh A, Stephens IEL. Electrochemical Nitrogen Reduction: The Energetic Distance to Lithium. ACS ENERGY LETTERS 2024; 9:4947-4952. [PMID: 39416676 PMCID: PMC11474955 DOI: 10.1021/acsenergylett.4c01638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024]
Abstract
Energy-efficient electrochemical reduction of nitrogen to ammonia could help in mitigating climate change. Today, only Li- and recently Ca-mediated systems can perform the reaction. These materials have a large intrinsic energy loss due to the need to electroplate the metal. In this work, we present a series of calculated energetics, formation energies, and binding energies as fundamental features to calculate the energetic distance between Li and Ca and potential new electrochemical nitrogen reduction systems. The featured energetic distance increases with the standard potential. However, dimensionality reduction using principal component analysis provides an encouraging picture; Li and Ca are not exceptional in this feature space, and other materials should be able to carry out the reaction. However, it becomes more challenging the more positive the plating potential is.
Collapse
Affiliation(s)
- Alexander Bagger
- Department
of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Romain Tort
- Department
of Chemical Engineering, Imperial College
London, SW7 2AZ London, United Kingdom
| | | | - Aron Walsh
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ifan E. L. Stephens
- Department
of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
8
|
Fan Q, Li Q, Sun H, Li X. Dinitrogen silylation catalyzed by silylene cobalt(I) and silylene iron(I) chlorides. Dalton Trans 2024; 53:16261-16270. [PMID: 39308194 DOI: 10.1039/d4dt02057j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
In this contribution, Co(PMe3)3Cl (1), bis(silylene) cobalt chlorides Co(LSi:)2(PMe3)2Cl (LSi: = {PhC(NtBu)2}SiCl (2); {p-CH3C6H4C(NtBu)2}SiCl (3); and {p-tBuC6H4C(NtBu)2}SiCl (4)) and bis(silylene) iron chlorides Fe(LSi:)2(PMe3)2Cl (LSi: = {PhC(NtBu)2}SiCl (5); {p-CH3C6H4C(NtBu)2}SiCl (6); {p-tBuC6H4C(NtBu)2}SiCl (7) and Fe(PMe3)2Cl2 (8)) were synthesized to study the effects of different metals and silylene ligands on the catalytic activity of complexes 1-8 in dinitrogen silylation reaction. The experimental results indicate that there is no substantial difference in catalytic activity between the phosphine cobalt complex 1 and the silylene cobalt chlorides 2-4 although the cobalt silylene complex 2 has slightly better catalytic activity than complexes 1, 3 and 4 in the dinitrogen silylation. Silylene iron complexes 5-7 are more active than the phosphine iron complex 8. Among the three silylene iron(I) chlorides 5-7, complex 5 is the most effective catalyst for dinitrogen silylation and 402 equiv. of N(SiMe3)3 could be obtained per Fe atom. In the dinitrogen silylation reaction catalyzed by iron complexes, the introduction of the silylene ligand made the silylene iron complexes 5-7 more active than the phosphine iron complex 8. In addition, iron chlorides 5-8 are more effective catalysts than cobalt(I) chlorides 1-4 for the dinitrogen silylation reaction. Complexes 3, 4, 6 and 7 were new complexes, and their molecular structures were determined by single crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Qingshuang Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| |
Collapse
|
9
|
Li WQ, Xu M, Chen JS, Ye TN. Enabling Sustainable Ammonia Synthesis: From Nitrogen Activation Strategies to Emerging Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408434. [PMID: 39194397 DOI: 10.1002/adma.202408434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Ammonia (NH3) is one of the most important precursors of various chemicals and fertilizers. Given that ammonia synthesis via the traditional Haber-Bosch process requires high temperatures and pressures, it is critical to explore effective strategies and catalysts for ammonia synthesis under mild reaction conditions. Although electrocatalysis and photocatalysis can convert N2 to NH3 under mild conditions, their efficiencies and production scales are still far from the requirements for industrialization. Thermal catalysis has been proven to be the most direct and effective approach for ammonia synthesis. Over the past few decades, significant efforts have been made to develop novel catalysts capable of nitrogen fixation and ammonia generation via thermal catalytic processes. In parallel with catalyst exploration, new strategies such as self-electron donation, hydride fixation, hydridic hydrogen reduction, and anionic vacancy promotion have also been explored to moderate the operating conditions and improve the catalytic efficiency of ammonia synthesis. In this review, the emergence of new materials and strategies for promoting N2 activation and NH3 formation during thermal catalysis is briefly summarized. Moreover, challenges and prospects are proposed for the future development of thermal catalytic ammonia synthesis.
Collapse
Affiliation(s)
- Wen-Qian Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Miao Xu
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources, Shanghai, 200245, China
| | - Jie-Sheng Chen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tian-Nan Ye
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
10
|
Masero F, Mougel V. Chemical and redox non-innocence in low-valent molybdenum β diketonate complexes: novel pathways for CO 2 and CS 2 activation. Chem Sci 2024:d4sc03496a. [PMID: 39345770 PMCID: PMC11429171 DOI: 10.1039/d4sc03496a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
The investigation of fundamental properties of low-valent molybdenum complexes bearing anionic ligands is crucial for elucidating the molybdenum's role in critical enzymatic systems involved in the transformation of small molecules, including the nitrogenase's iron molybdenum cofactor, FeMoco. The β-diketonate ligands in [Mo(acac)3] (acac = acetylacetonate), one of the earliest low-valent Mo complexes reported, provide a robust anionic platform to stabilize Mo in its +III oxidation state. This complex played a key role in demonstrating the potential of low-valent molybdenum for small molecule activation, serving as the starting material for the preparation of the first reported molybdenum dinitrogen complex. Surprisingly however, given this fact and the widespread use of β-diketonate ligands in coordination chemistry, only a very limited number of low-valent Mo β-diketonate complexes have been reported. To address this gap, we explored the redox behavior of homoleptic molybdenum tris-β-diketonate complexes, employing a tertiary butyl substituted diketonate ligand (dipivaloylmethanate, tBudiket) to isolate and fully characterize the corresponding Mo complexes across three consecutive oxidation states (+IV, +III, +II). We observed marked reactivity of the most reduced congener with heterocumulenes CE2 (E = O, S), yet with very distinct outcomes. Specifically, CO2 stoichiometrically carboxylates one of the β-diketonate ligands, while in the presence of excess CS2, catalytic reductive dimerization to tetrathiooxalate occurs. Through the isolation and characterization of reaction products and intermediates, we demonstrate that the observed reactivity results from the chemical non-innocence of the β-diketonate ligands, which facilitates the formation of a common ligand-bound intermediate, [Mo( tBudiket)2( tBudiket·CE2)]1- (E = O, S). The stability of this proposed intermediate dictates the specific reduction products observed, highlighting the relevance of the chemically non-innocent nature of β-diketonate ligands.
Collapse
Affiliation(s)
- Fabio Masero
- Laboratory of Inorganic Chemistry (LAC), Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich Vladimir-Prelog Weg 2 8093 Zurich Switzerland
| | - Victor Mougel
- Laboratory of Inorganic Chemistry (LAC), Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich Vladimir-Prelog Weg 2 8093 Zurich Switzerland
| |
Collapse
|
11
|
Tanabe Y, Nishibayashi Y. Catalytic Nitrogen Fixation Using Well-Defined Molecular Catalysts under Ambient or Mild Reaction Conditions. Angew Chem Int Ed Engl 2024; 63:e202406404. [PMID: 38781115 DOI: 10.1002/anie.202406404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Ammonia (NH3) is industrially produced from dinitrogen (N2) and dihydrogen (H2) by the Haber-Bosch process, although H2 is prepared from fossil fuels, and the reaction requires harsh conditions. On the other hand, microorganisms have fixed nitrogen under ambient reaction conditions. Recently, well-defined molecular transition metal complexes have been found to work as catalyst to convert N2 into NH3 by reactions with chemical reductants and proton sources under ambient reaction conditions. Among them, involvement of both N2-splitting pathway and proton-coupled electron transfer is found to be very effective for high catalytic activity. Furthermore, direct electrocatalytic and photocatalytic conversions of N2 into NH3 have been recently achieved. In addition to catalytic formation of NH3, selective catalytic conversion of N2 into hydrazine (NH2NH2) and catalytic silylation of N2 into silylamines have been reported. Catalytic C-N bond formation has been more recently established to afford cyanate anion (NCO-) under ambient reaction conditions. Further development of direct conversion of N2 into nitrogen-containing compounds as well as green ammonia synthesis leading to the use of ammonia as an energy carrier is expected.
Collapse
Affiliation(s)
- Yoshiaki Tanabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
12
|
Marron DP, Galvin CM, Dressel JM, Waymouth RM. Cobaltocene-Mediated Catalytic Hydride Transfer: Strategies for Electrocatalytic Hydrogenation. J Am Chem Soc 2024; 146:17075-17083. [PMID: 38864712 DOI: 10.1021/jacs.4c02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The selective electrocatalytic hydrogenation of organics with transition metal hydrides is a promising strategy for electrosynthesis and energy storage. We report the electrocatalytic hydrogenation of acetone with a cyclopentadienone-iridium complex in a tandem electrocatalytic cycle with a cobaltocene mediator. The reductive protonation of cobaltocenium with mild acids generates (C5H5)CoI(C5H6) (CpCoI(CpH)), which functions as an electrocatalytic hydride mediator to deliver a hydride to cationic Ir(III) without generating hydrogen. Electrocatalytic hydride transfer by CpCoI(CpH) to a cationic Ir species leads to the efficient (Faradaic efficiency > 90%) electrohydrogenation of acetone, a valuable hydrogenation target as a liquid organic hydrogen carrier (LOHC). Hydride-transfer mediation presents a powerful strategy to generate metal hydrides that are inaccessible by stepwise electron/proton transfer.
Collapse
Affiliation(s)
- Daniel P Marron
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| | - Conor M Galvin
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| | - Julia M Dressel
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| |
Collapse
|
13
|
Singh T, Chakraborty S. Molybdenum-catalyzed hydrogenation of carbon dioxide, bicarbonate, and inorganic carbonates to formates. Dalton Trans 2024; 53:10244-10249. [PMID: 38829152 DOI: 10.1039/d4dt00916a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Herein, we report the hydrogenation of carbon dioxide to sodium formate catalyzed by low-valent molybdenum phosphine complexes. The 1,3-bis(diphenylphosphino)propane (DPPP)-based Mo complex was found to be an efficient catalyst in the presence of NaOH affording formate with a TON of 975 at 130 °C in THF/H2O after 24 h utilizing 40 bar (CO2 : H2 = 10 : 30) pressure. The complex was also active in the hydrogenation of sodium bicarbonate and inorganic carbonates to the corresponding formates. Mechanistic investigation revealed that the reaction proceeded via an intermediate formato complex.
Collapse
Affiliation(s)
- Tushar Singh
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan, India.
| | - Subrata Chakraborty
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan, India.
| |
Collapse
|
14
|
Ostermann N, Rotthowe N, Stückl AC, Siewert I. (Electro)chemical N 2 Splitting by a Molybdenum Complex with an Anionic PNP Pincer-Type Ligand. ACS ORGANIC & INORGANIC AU 2024; 4:329-337. [PMID: 38855335 PMCID: PMC11157508 DOI: 10.1021/acsorginorgau.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 06/11/2024]
Abstract
Molybdenum(III) complexes bearing pincer-type ligands are well-known catalysts for N2-to-NH3 reduction. We investigated herein the impact of an anionic PNP pincer-type ligand in a Mo(III) complex on the (electro)chemical N2 splitting ([LMoCl3]-, 1 -, LH = 2,6-bis((di-tert-butylphosphaneyl)methyl)-pyridin-4-one). The increased electron-donating properties of the anionic ligand should lead to a stronger degree of N2 activation. The catalyst is indeed active in N2-to-NH3 conversion utilizing the proton-coupled electron transfer reagent SmI2/ethylene glycol. The corresponding Mo(V) nitrido complex 2H exhibits similar catalytic activity as 1H and thus could represent a viable intermediate. The Mo(IV) nitrido complex 3 - is also accessible by electrochemical reduction of 1 - under a N2 atmosphere. IR- and UV/vis-SEC measurements suggest that N2 splitting occurs via formation of an "overreduced" but more stable [(L(N2)2Mo0)2μ-N2]2- dimer. In line with this, the yield in the nitrido complex increases with lower applied potentials.
Collapse
Affiliation(s)
- Nils Ostermann
- Georg-August-Universität
Göttingen, Institut für
Anorganische Chemie, Tammannstr.
4, Göttingen 37077, Germany
| | - Nils Rotthowe
- Georg-August-Universität
Göttingen, Institut für
Anorganische Chemie, Tammannstr.
4, Göttingen 37077, Germany
| | - A. Claudia Stückl
- Georg-August-Universität
Göttingen, Institut für
Anorganische Chemie, Tammannstr.
4, Göttingen 37077, Germany
| | - Inke Siewert
- Georg-August-Universität
Göttingen, Institut für
Anorganische Chemie, Tammannstr.
4, Göttingen 37077, Germany
- Georg-August-Universität
Göttingen, International Center
for Advanced Studies of Energy Conversion, Tammannstr. 6, Göttingen 37077, Germany
| |
Collapse
|
15
|
Thangudu S, Wu CH, Hwang KC. Photocatalytic Dinitrogen Reduction to Ammonia over Biomimetic FeMoS x Nanosheets. ACS OMEGA 2024; 9:20629-20635. [PMID: 38737058 PMCID: PMC11080007 DOI: 10.1021/acsomega.4c03076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/07/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Reduction of atmospheric dinitrogen (N2) to ammonia (NH3) using water and sunlight in the absence of sacrificial reducing reagents at room temperature is very challenging and is considered an eco-friendly approach to meet the rapidly increasing demand for nitrogen storage, fertilizers, and a sustainable society. Currently, ammonia production via the energy-intensive Haber-Bosch process causes ∼350 million tons of carbon dioxide (CO2) emission per year. Interestingly, natural N2 fixation by the nitrogenase enzyme occurs under ambient conditions. Unfortunately, N2 fixation on biomimetic catalysts has rarely been studied. To mimic biological nitrogen fixation, herein, we synthesized the novel iron molybdenum sulfide (FeMoSx) micro-/nanosheets via a simple hydrothermal approach for the first time. Further, we successfully demonstrated the photochemical conversion of N2 to NH3 over a biomimetic FeMoSx photocatalyst. The estimated yield is around 99.79 ± 6.0 μmol/h/g photocatalyst with a quantum efficiency of ∼0.028% at 532 nm visible-light wavelength. Besides, we also systematically studied the influence of key factors to further improve NH3 yields. Overall, this study paves a new pathway to fabricate carbon-free, photochemical N2 fixation materials for future applications.
Collapse
Affiliation(s)
- Suresh Thangudu
- Department
of Chemistry, National Tsing
Hua University, Hsinchu 30013, Taiwan R.O.C
| | - Chein Hou Wu
- Department
of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C
| | - Kuo Chu Hwang
- Department
of Chemistry, National Tsing
Hua University, Hsinchu 30013, Taiwan R.O.C
| |
Collapse
|
16
|
Mondal T, Leitner W, Hölscher M. Computational design of cooperatively acting molecular catalyst systems: carbene based tungsten- or molybdenum-catalysts with rhodium- or iridium-complexes for the ionic hydrogenation of N 2 to NH 3. Dalton Trans 2024; 53:7890-7898. [PMID: 38634911 DOI: 10.1039/d4dt00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
This density functional theory (DFT) study explores the efficacy of cooperative catalytic systems in enabling the ionic hydrogenation of N2 with H2, leading to NH3 formation. A set of N-heterocyclic carbene-based pincer tungsten/molybdenum metal complexes of the form [(PCP)M1(H)2] (M1 = W/Mo) were chosen to bind N2 at the respective metal centres. Simultaneously, cationic rhodium/iridium complexes of type [Cp*M2{2-(2-pyridyl)phenyl}(CH3CN)]+ (Cp* = C5(CH3)5 and M2 = Rh/Ir), are employed as cooperative coordination partners for heterolytic H2 splitting. The stepwise transfer of protons and hydrides to the bound N2 and intermediate NxHy units results in the formation of NH3. Interestingly, the calculated results reveal an encouraging low range of energy spans ranging from ∼30 to 42 kcal mol-1 depending on different combinations of ligands and metal complexes. The optimal combination of pincer ligand and metal center allowed for an energy span of unprecedented 29.7 kcal mol-1 demonstrating significant potential for molecular catalysts for the N2/H2 reaction system. While exploring obvious potential off-cycle reactions leading to catalyst deactivation, the computed results indicate that no increase in energy span would need to be expected.
Collapse
Affiliation(s)
- Totan Mondal
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Markus Hölscher
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.
| |
Collapse
|
17
|
Zhang X, Tan Y, Zhao J, Cai Z, Zhang J, Madhusudan P. NiFeB-assisted adsorption and activation of nitrogen to improve the photooxidation activity of zinc porphyrin. Chem Commun (Camb) 2024; 60:4298-4301. [PMID: 38530709 DOI: 10.1039/d4cc00249k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
This study effectively addresses the challenge of nitrogen adsorption and activation in photocatalytic nitrogen fixation by introducing an oxidizing co-catalyst, NiFeB hydroxides. The NiFeB hydroxides could provide reactive active sites and significantly enhance the nitrogen oxidation activity, offering a novel pathway for co-catalysts in nitrogen fixation reactions.
Collapse
Affiliation(s)
- Xuan Zhang
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Yawen Tan
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Juntao Zhao
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Zixuan Cai
- Wuhan Jingkai Foreign Language School, Wuhan 430056, PR China
| | - Jun Zhang
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Puttaswamy Madhusudan
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea.
| |
Collapse
|
18
|
White MV, Claveau EE, Miliordos E, Vogiatzis KD. Electronic Structure and Ligand Effects on the Activation and Cleavage of N 2 on a Molybdenum Center. J Phys Chem A 2024; 128:2038-2048. [PMID: 38447072 DOI: 10.1021/acs.jpca.3c07801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Dinitrogen fixation under ambient conditions remains a challenge in the field of catalytic chemistry due to the inertness of N2. Nitrogenases and heterogeneous solid catalysts have displayed remarkable performance in the catalytic conversion of dinitrogen to ammonia. By introduction of molybdenum centers in molecular complexes, one of the most azophilic metals of the transitional metal series, moderate ammonia yields have been attained. Here, we present a combined multiconfigurational/density functional theory study that addresses how ligand fields of different strengths affect the binding and activation of dinitrogen on molybdenum atoms. First, we explored with MRCI computations the diatomic Mo-N and triatomic Mo-N2 molecular systems. Then, we performed a systematic examination on the stabilization effects introduced by external NH3 ligands, before we explore model neutral and charged complexes with different types of ligands (H2O, NH3, and PH3) and their consequences on the N2 binding and activation.
Collapse
Affiliation(s)
- Maria V White
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Emily E Claveau
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Konstantinos D Vogiatzis
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
19
|
Eberle L, Lindenthal S, Ballmann J. To Split or Not to Split: [AsCCAs]-Coordinated Mo, W, and Re Complexes and Their Reactivity toward Molecular Dinitrogen. Inorg Chem 2024; 63:3682-3691. [PMID: 38359784 DOI: 10.1021/acs.inorgchem.3c03244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Molybdenum, tungsten, and rhenium halides bearing a 2,2'-(iPr2As)2-substituted diphenylacetylene ([AsCCAs], 1-As) were prepared and reduced under an atmosphere of dinitrogen in order to activate the latter substrate. In the case of molybdenum, a diiodo (2-As) and a triiodo molybdenum precursor (5) were equally suited for reductive N2 splitting, which led to the isolation of [AsCCAs]Mo≡N(I) (3-As) in each case. For tungsten, [AsCCAs]WCl3 (6) was reduced under N2 to afford {[AsCCAs]WCl2}2(N2) (7), which is best described as a dinuclear π8δ4-configured μ-(η1: η1)-N2-bridged dimer. Attempts to reductively cleave the N2 unit in 7 did not lead to the expected tungsten nitride (8), which had to be prepared independently via the treatment of 7 with sodium azide. To arrive at a π10δ4-configured N2-bridged dimer in a tetragonally distorted ligand environment, [AsCCAs]ReCl3 (9) was reduced in the presence of N2. As expected, a μ-(η1: η1)-N2-bridged dirhenium species, namely, {[AsCCAs]ReCl2}2(N2) (10), was formed, but found to very quickly decompose (presumably via loss of N2), not only under reduced pressure, but also upon irradiation or heating. Hence, an alternative synthetic route to the originally envisioned nitride, [AsCCAs]Re≡N(Cl)2 (11), was developed. While all the aforementioned nitrides (3-As, 8, and 11) were found to be fairly robust, significantly different stabilities were noticed for {[AsCCAs]MCl2}2(N2) (7 for M = W, 10 for M = Re), which is ascribed to the electronically different MN2M cores (π8δ4 for 7 vs π10δ4 for 10) in these μ-(η1: η1)-N2-bridged dimers.
Collapse
Affiliation(s)
- Lukas Eberle
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, Heidelberg D-69120, Germany
| | - Sebastian Lindenthal
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 253, Heidelberg D-69120, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, Heidelberg D-69120, Germany
| |
Collapse
|
20
|
Kamiguchi S, Asakura K, Shibayama T, Yokaichiya T, Ikeda T, Nakayama A, Shimizu KI, Hou Z. Catalytic ammonia synthesis on HY-zeolite-supported angstrom-size molybdenum cluster. Chem Sci 2024; 15:2914-2922. [PMID: 38404367 PMCID: PMC10882513 DOI: 10.1039/d3sc05447k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 02/27/2024] Open
Abstract
The development of new catalysts with high N2 activation ability is an effective approach for low-temperature ammonia synthesis. Herein, we report a novel angstrom-size molybdenum metal cluster catalyst for efficient ammonia synthesis. This catalyst is prepared by the impregnation of a molybdenum halide cluster complex with an octahedral Mo6 metal core on HY zeolite, followed by the removal of all the halide ligands by activation with hydrogen. In this activation, the size of the Mo6 cluster (ca. 7 Å) is almost retained. The resulting angstrom-size cluster shows catalytic activity for ammonia synthesis from N2 and H2, and the reaction proceeds continuously even at 200 °C under 5.0 MPa. DFT calculations suggest that N[triple bond, length as m-dash]N bond cleavage is promoted by the cooperation of the multiple molybdenum sites.
Collapse
Affiliation(s)
- Satoshi Kamiguchi
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Kiyotaka Asakura
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| | - Tamaki Shibayama
- Center for Advanced Research of Energy Conversion Materials, Hokkaido University Sapporo 060-8628 Japan
| | - Tomoko Yokaichiya
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo Tokyo 113-8656 Japan
| | - Tatsushi Ikeda
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo Tokyo 113-8656 Japan
| | - Akira Nakayama
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo Tokyo 113-8656 Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| |
Collapse
|
21
|
Specklin D, Boegli MC, Coffinet A, Escomel L, Vendier L, Grellier M, Simonneau A. An orbitally adapted push-pull template for N 2 activation and reduction to diazene-diide. Chem Sci 2023; 14:14262-14270. [PMID: 38098710 PMCID: PMC10718075 DOI: 10.1039/d3sc04390h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023] Open
Abstract
A Lewis superacidic bis(borane) C6F4{B(C6F5)2}2 was reacted with tungsten N2-complexes [W(N2)2(R2PCH2CH2PR2)2] (R = Ph or Et), affording zwitterionic boryldiazenido W(ii) complexes trans-[W(L)(R2PCH2CH2PR2)2(N2{B(C6F5)2(C6F4B(C6F5)3})] (L = ø, N2 or THF). These compounds feature only one N-B linkage of the covalent type, as a result of intramolecular boron-to-boron C6F5 transfer. Complex trans-[W(THF)(Et2PCH2CH2PEt2)2(N2{B(C6F5)2C6F4B(C6F5)3})] (5) was shown to split H2, leading to a seven-coordinate complex [W(H)2(Et2PCH2CH2PEt2)2(N2{B(C6F5)2}2C6F4)] (7). Interestingly, hydride storage at the metal triggers backward C6F5 transfer. This reverts the bis(boron) moiety to its bis(borane) state, now doubly binding the distal N, with structural parameters and DFT computations pointing to dative N→B bonding. By comparison with an N2 complex [W(H)2(Et2PCH2CH2PEt2)2(N2{B(C6F5)3}] (10) differing only in the Lewis acid (LA), namely B(C6F5)3, coordinated to the distal N, we demonstrate that two-fold LA coordination imparts strong N2 activation up to the diazene-diide (N22-) state. To the best of our knowledge, this is the first example of a neutral LA coordination that induces reduction of N2.
Collapse
Affiliation(s)
- David Specklin
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| | - Marie-Christine Boegli
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| | - Anaïs Coffinet
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| | - Léon Escomel
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| | - Mary Grellier
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| | - Antoine Simonneau
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 route de Narbonne BP44099 F-31077 Toulouse Cedex 4 France
| |
Collapse
|
22
|
Singh T, Atreya V, Jalwal S, Anand A, Chakraborty S. Advances in Group VI Metal-Catalyzed Homogeneous Hydrogenation and Dehydrogenation Reactions. Chem Asian J 2023; 18:e202300758. [PMID: 37815164 DOI: 10.1002/asia.202300758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
Transition metal-catalyzed homogeneous hydrogenation and dehydrogenation reactions for attaining plethora of organic scaffolds have evolved as a key domain of research in academia and industry. These protocols are atom-economic, greener, in line with the goal of sustainability, eventually pave the way for numerous novel environmentally benign methodologies. Appealing progress has been achieved in the realm of homogeneous catalysis utilizing noble metals. Owing to their high cost, less abundance along with toxicity issues led the scientific community to search for sustainable alternatives. In this context, earth- abundant base metals have gained substantial attention culminating enormous progress in recent years, predominantly with pincer-type complexes of nickel, cobalt, iron, and manganese. In this regard, group VI chromium, molybdenum and tungsten complexes have been overlooked and remain underdeveloped despite their earth-abundance and bio-compatibility. This review delineates a comprehensive overview in the arena of homogeneously catalysed (de)hydrogenation reactions using group VI base metals chromium, molybdenum, and tungsten till date. Various reactions have been described; hydrogenation, transfer hydrogenation, dehydrogenation, acceptorless dehydrogenative coupling, hydrogen auto transfer, along with their scope and brief mechanistic insights.
Collapse
Affiliation(s)
- Tushar Singh
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| | - Vaishnavi Atreya
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| | - Sachin Jalwal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| | - Aman Anand
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| | - Subrata Chakraborty
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| |
Collapse
|
23
|
Wang GX, Yin ZB, Wei J, Xi Z. Dinitrogen Activation and Functionalization Affording Chromium Diazenido and Hydrazido Complexes. Acc Chem Res 2023; 56:3211-3222. [PMID: 37937752 PMCID: PMC10666292 DOI: 10.1021/acs.accounts.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023]
Abstract
ConspectusThe activation and functionalization of N2 to form nitrogen-element bonds have long posed challenges to industrial, biological, and synthetic chemists. The first transition-metal dinitrogen complex prepared by Allen and Senoff in 1965 provoked researchers to explore homogeneous N2 fixation. Despite intensive research in the last six decades, efficient and quantitative conversion of N2 to diazenido and hydrazido species remains problematic. Relative to a plethora of reactions to generate N2 complexes, their functionalization reactions are rather rare, and the yields are often unsatisfactory, emphasizing the need for systematic investigations of the reaction mechanisms.In this Account, we summarize our recent work on the synthesis, spectroscopic features, electronic structures, and reactivities of several Cr-N2 complexes. Initially, a series of dinuclear and trinuclear Cr(I)-N2 complexes bearing cyclopentadienyl-phosphine ligands were accessed. However, they cannot achieve N2 functionalization but undergo oxidative addition reactions with phenylsilane, azobenzene, and other unsaturated organic compounds at the low-valent Cr(I) centers rather than at the N2 unit. Further reduction of these Cr(I) complexes leads to the formation of more activated mononuclear Cr(0) bis-dinitrogen complexes. Remarkably, silylation of the cyclopentadienyl-phosphine Cr(0)-N2 complex with Me3SiCl afforded the first Cr hydrazido complex. This process follows the distal pathway to functionalize the Nβ atom twice, yielding an end-on η1-hydrazido complex, Cr(III)═N-N(SiMe3)2. In contrast, upon substitution of the phosphine ligand in the Cr(0)-N2 complex with a N-heterocyclic carbene (NHC) ligand, the corresponding reaction with Me3SiCl proceeds via the alternating pathway; the silylation occurs at both Nα and Nβ atoms and generates a side-on η2-hydrazido complex, Cr(III)(η2-Me3SiN-NSiMe3). Both silylation reactions are inevitably accompanied by the formation of Cr(III) hydrazido complexes and Cr(II) chlorides with a 2:1 ratio. These processes exhibit a peculiar '3-4-2-1' stoichiometry (i.e., treating 3 equiv of Cr(0)-N2 complexes with 4 equiv of Me3SiCl yields 2 equiv of Cr(III) disilyl-hydrazido complexes and 1 equiv of Cr(II) chloride). Upon replacing the monodentate phosphine and/or NHC ligand with a bisphosphine ligand, a monodinitrogen Cr(0) complex, instead of the bis-dinitrogen Cr(0) complexes, is obtained; consequently, the silylation reactions progress via the normal two-electron route, which passes through Cr(II)-N═N-R diazenido species as an intermediate and furnishes [Cr(IV)═N-NR2]+ hydrazido as the final products. More importantly, this type of Cr(0)-N2 complex can be not only silylated but also protonated and alkylated proficiently. All of the second-order reaction rates of the first and second transformations are determined along with the lifetimes of the intervening diazenido species. Based on these findings, we have successfully carried out nearly quantitative preparations of the Cr(IV) hydrazido species with unmixed or hybrid substituents.The studies of Cr-N2 systems provide effective approaches for the activation and functionalization of N2, deepening the understanding of N2 electrophilic attack. We hope that this Account will inspire more discoveries related to the transformation of gaseous N2 to high-value-added nitrogen-containing organic compounds.
Collapse
Affiliation(s)
- Gao-Xiang Wang
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhu-Bao Yin
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhenfeng Xi
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Mitsumoto T, Ashida Y, Arashiba K, Kuriyama S, Egi A, Tanaka H, Yoshizawa K, Nishibayashi Y. Catalytic Activity of Molybdenum Complexes Bearing PNP-Type Pincer Ligand toward Ammonia Formation. Angew Chem Int Ed Engl 2023; 62:e202306631. [PMID: 37382559 DOI: 10.1002/anie.202306631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 06/30/2023]
Abstract
We newly designed and prepared a novel molybdenum complex bearing a 4-[3,5-bis(trifluoromethyl)phenyl]pyridine-based PNP-type pincer ligand, based on the bond dissociation free energies (BDFEs) of the N-H bonds in molybdenum-imide complexes bearing various substituted pyridine-based PNP-type pincer ligands. The complex worked as an excellent catalyst toward ammonia formation from the reaction of an atmospheric pressure of dinitrogen with samarium diiodide as a reductant and water as a proton source under ambient reaction conditions, where up to 3580 equivalents of ammonia were formed based on the molybdenum atom of the catalyst. The catalytic activity was significantly improved by one order of magnitude larger than that observed when using the complex before modification.
Collapse
Affiliation(s)
- Taichi Mitsumoto
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yuya Ashida
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kazuya Arashiba
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Akihito Egi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Minami-ku, Nagoya, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
25
|
Eizawa A, Arashiba K, Tanaka H, Konomi A, Yoshizawa K, Nishibayashi Y. Design, synthesis and reactivity of dimolybdenum complex bearing quaterphenylene-bridged pyridine-based PNP-type pincer ligand. Dalton Trans 2023; 52:14012-14016. [PMID: 37740311 DOI: 10.1039/d3dt02887a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Dimolybdenum complexes bearing 3,3'''-(1,1':3',1'':3'',1'''-quaterphenylene)-bridged pyridine-based PNP-type pincer ligand are designed and prepared according to DFT calculations on the cleavage step of dinitrogen-bridged dimolybdenum complexes bearing polyphenylene-bridged pyridine-based PNP-type pincer ligands. The dimolybdenum complexes are found to work as effective catalysts toward ammonia formation from dinitrogen with samarium diiodide as a reductant and water as a proton source under ambient reaction conditions.
Collapse
Affiliation(s)
- Aya Eizawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Kazuya Arashiba
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Hiromasa Tanaka
- Daido University, Takiharu-cho, Minami-ku, Nagoya, 457-8530, Japan
| | - Asuka Konomi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
26
|
Tzaguy A, Masip-Sánchez A, Avram L, Solé-Daura A, López X, Poblet JM, Neumann R. Electrocatalytic Reduction of Dinitrogen to Ammonia with Water as Proton and Electron Donor Catalyzed by a Combination of a Tri-ironoxotungstate and an Alkali Metal Cation. J Am Chem Soc 2023; 145:19912-19924. [PMID: 37642197 PMCID: PMC10510311 DOI: 10.1021/jacs.3c06167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 08/31/2023]
Abstract
The electrification of ammonia synthesis is a key target for its decentralization and lowering impact on atmospheric CO2 concentrations. The lithium metal electrochemical reduction of nitrogen to ammonia using alcohols as proton/electron donors is an important advance, but requires rather negative potentials, and anhydrous conditions. Organometallic electrocatalysts using redox mediators have also been reported. Water as a proton and electron donor has not been demonstrated in these reactions. Here a N2 to NH3 electrocatalytic reduction using an inorganic molecular catalyst, a tri-iron substituted polyoxotungstate, {SiFe3W9}, is presented. The catalyst requires the presence of Li+ or Na+ cations as promoters through their binding to {SiFe3W9}. Experimental NMR, CV and UV-vis measurements, and MD simulations and DFT calculations show that the alkali metal cation enables the decrease of the redox potential of {SiFe3W9} allowing the activation of N2. Controlled potential electrolysis with highly purified 14N2 and 15N2 ruled out formation of NH3 from contaminants. Importantly, using Na+ cations and polyethylene glycol as solvent, the anodic oxidation of water can be used as a proton and electron donor for the formation of NH3. In an undivided cell electrolyzer under 1 bar N2, rates of NH3 formation of 1.15 nmol sec-1 cm-2, faradaic efficiencies of ∼25%, 5.1 equiv of NH3 per equivalent of {SiFe3W9} in 10 h, and a TOF of 64 s-1 were obtained. The future development of suitable high surface area cathodes and well solubilized N2 and the use of H2O as the reducing agent are important keys to the future deployment of an electrocatalytic ammonia synthesis.
Collapse
Affiliation(s)
- Avra Tzaguy
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Albert Masip-Sánchez
- Department
de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Liat Avram
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot, Israel 76100
| | - Albert Solé-Daura
- Department
de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Xavier López
- Department
de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Josep M. Poblet
- Department
de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Ronny Neumann
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel 76100
| |
Collapse
|
27
|
Zhao C, Wu R, Zhang S, Hong X. Benchmark Study of Density Functional Theory Methods in Geometry Optimization of Transition Metal-Dinitrogen Complexes. J Phys Chem A 2023; 127:6791-6803. [PMID: 37530446 DOI: 10.1021/acs.jpca.3c04215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The current benchmark study is focused on determining the most precise theoretical method for optimizing the geometry of transition metal-dinitrogen complexes. To accomplish this goal, seven density functional (DF) methods from five distinct classes of density functional theory (DFT) have been selected, including B3LYP-D3(BJ), BP86-D3(BJ), PBE0-D3(BJ), ωB97X-D, M06, M06-L, and TPSSh-D3(BJ). These DFs will be utilized with the Karlsruhe basis set (def2-SVP). To carry out this benchmark study, a total of forty-two structurally diverse transition metal-dinitrogen compounds with experimentally known X-ray data have been selected from the Cambridge Crystallographic Data Centre (CCDC). Based on a comparison of the theoretical data with experimental values (X-ray) of the selected transition metal-dinitrogen compounds, statistical parameters such as root-mean-square deviation (RMSD) and N-N and M-N bond lengths are obtained to evaluate the performance of the seven chosen DFs. According to the obtained results, among all DFT methods used in the study, Minnesota functionals (M06 and M06-L) and TPSSh-D3(BJ) show good performance, with lower RMSD values. This suggests that these three methods are the most reliable for optimizing the geometry of transition metal-dinitrogen complexes. Based on the absolute errors of the N-N and M-N bond lengths relative to the X-ray data, further analysis is conducted, and it is determined that M06-L is the best functional for optimizing the geometry of transition metal-dinitrogen compounds. Additionally, the influence of using a high-level basis set (def2-TZVP) compared to def2-SVP on the calculated RMSD among the seven chosen methods is found to be negligible.
Collapse
Affiliation(s)
- Chaoyue Zhao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Rongkai Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shuoqing Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
- Beijing National Laboratory for Molecular Sciences, No. 2, Zhongguancun North First Street, Beijing 100190, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, P. R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
- Beijing National Laboratory for Molecular Sciences, No. 2, Zhongguancun North First Street, Beijing 100190, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, P. R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
28
|
Peters JC. Advancing electrocatalytic nitrogen fixation: insights from molecular systems. Faraday Discuss 2023; 243:450-472. [PMID: 37021388 PMCID: PMC10524484 DOI: 10.1039/d3fd00017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Nitrogen fixation has a rich history within the inorganic chemistry community. In recent years attention has (re)focused on developing electrocatalytic systems capable of mediating the nitrogen reduction reaction (N2RR). Well-defined molecular catalyst systems have much to offer in this context. This personal perspective summarizes recent progress from our laboratory at Caltech, pulling together lessons learned from a number of studies we have conducted, placing them within the broader context of thermodynamic efficiency and selectivity for the N2RR. In particular, proton-coupled electron transfer (PCET) provides an attractive strategy to achieve enhanced efficiency for the multi-electron/proton reduction of N2 to produce NH3 (or NH4+), and electrocatalytic PCET (ePCET) via an ePCET mediator affords a promising means of mitigating HER such that the N2RR can be achieved in a catalytic fashion.
Collapse
Affiliation(s)
- Jonas C Peters
- California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
29
|
Boyd EA, Peters JC. Highly Selective Fe-Catalyzed Nitrogen Fixation to Hydrazine Enabled by Sm(II) Reagents with Tailored Redox Potential and p Ka. J Am Chem Soc 2023; 145:14784-14792. [PMID: 37376713 PMCID: PMC11668122 DOI: 10.1021/jacs.3c03352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Controlling product selectivity in multiproton, multielectron reductions of unsaturated small molecules is of fundamental interest in catalysis. For the N2 reduction reaction (N2RR) in particular, parameters that dictate selectivity for either the 6H+/6e- product ammonia (NH3) or the 4H+/4e- product hydrazine (N2H4) are poorly understood. To probe this issue, we have developed conditions to invert the selectivity of a tris(phosphino)borane iron catalyst (Fe), with which NH3 is typically the major product of N2R, to instead favor N2H4 as the sole observed fixed-N product (>99:1). This dramatic shift is achieved by replacing moderate reductants and strong acids with a very strongly reducing but weakly acidic SmII-(2-pyrrolidone) core supported by a hexadentate dianionic macrocyclic ligand (SmII-PH) as the net hydrogen-atom donor. The activity and efficiency of the catalyst with this reagent remain high (up to 69 equiv of N2H4 per Fe and 67% fixed-N yield per H+). However, by generating N2H4 as the kinetic product, the overpotential of this Sm-driven reaction is 700 mV lower than that of the mildest reported set of NH3-selective conditions with Fe. Mechanistic data support assignment of iron hydrazido(2-) species FeNNH2 as selectivity-determining: we infer that protonation of FeNNH2 at Nβ, favored by strong acids, releases NH3, whereas one-electron reduction to FeNNH2-, favored by strong reductants such as SmII-PH, produces N2H4 via reactivity initiated at Nα. Spectroscopic data also implicate a role for SmIII-binding to anionic FeN2- (via an Fe-N2- -SmIII species) with respect to catalytic efficacy.
Collapse
Affiliation(s)
- Emily A Boyd
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| |
Collapse
|
30
|
Leitner D, Wittwer B, Neururer FR, Seidl M, Wurst K, Tambornino F, Hohloch S. Expanding the Utility of β-Diketiminate Ligands in Heavy Group VI Chemistry of Molybdenum and Tungsten. Organometallics 2023; 42:1411-1424. [PMID: 37388273 PMCID: PMC10302891 DOI: 10.1021/acs.organomet.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Indexed: 07/01/2023]
Abstract
We report the synthesis of 17 molybdenum and tungsten complexes supported by the ubiquitous BDI ligand framework (BDI = β-diketiminate). The focal entry point is the synthesis of four molybdenum and tungsten(V) BDI complexes of the general formula [MO(BDIR)Cl2] [M = Mo, R = Dipp (1); M = W, R = Dipp (2); M = Mo, R = Mes (3); M = W, R = Mes (4)] synthesized by the reaction between MoOCl3(THF)2 or WOCl3(THF)2 and LiBDIR. Reactivity studies show that the BDIDipp complexes are excellent precursors toward adduct formation, reacting smoothly with dimethylaminopyridine (DMAP) and triethylphosphine oxide (OPEt3). No reaction with small phosphines has been observed, strongly contrasting the chemistry of previously reported rhenium(V) complexes. Additionally, the complexes 1 and 2 are good precursors for salt metathesis reactions. While 1 can be chemically reduced to the first stable example of a Mo(IV) BDI complex 15, reduction of 2 resulted in degradation of the BDI ligand via a nitrene transfer reaction, leading to MAD (4-((2,6-diisopropylphenyl)imino)pent-2-enide) supported tungsten(V) and tungsten(VI) complexes 16 and 17. All reported complexes have been thoroughly studied by VT-NMR and (heteronuclear) NMR spectroscopy, as well as UV-vis and EPR spectroscopy, IR spectroscopy, and X-ray diffraction analysis.
Collapse
Affiliation(s)
- Daniel Leitner
- Faculty
of Chemistry and Pharmacy, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80−82, Innsbruck 6020 Austria
| | - Benjamin Wittwer
- Faculty
of Chemistry and Pharmacy, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80−82, Innsbruck 6020 Austria
| | - Florian R. Neururer
- Faculty
of Chemistry and Pharmacy, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80−82, Innsbruck 6020 Austria
| | - Michael Seidl
- Faculty
of Chemistry and Pharmacy, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80−82, Innsbruck 6020 Austria
| | - Klaus Wurst
- Faculty
of Chemistry and Pharmacy, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80−82, Innsbruck 6020 Austria
| | - Frank Tambornino
- Fachbereich
Chemie and Wissenschaftlichen Zentrum für Materialwissenschaften
(WZMW), Phillips-University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Stephan Hohloch
- Faculty
of Chemistry and Pharmacy, Institute for General, Inorganic and Theoretical
Chemistry, University of Innsbruck, Innrain 80−82, Innsbruck 6020 Austria
| |
Collapse
|
31
|
VanderWeide A, Prokopchuk DE. Cyclopentadienyl ring activation in organometallic chemistry and catalysis. Nat Rev Chem 2023:10.1038/s41570-023-00501-1. [PMID: 37258685 DOI: 10.1038/s41570-023-00501-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
The cyclopentadienyl (Cp) ligand is a cornerstone of modern organometallic chemistry. Since the discovery of ferrocene, the Cp ligand and its various derivatives have become foundational motifs in catalysis, medicine and materials science. Although largely considered an ancillary ligand for altering the stereoelectronic properties of transition metal centres, there is mounting evidence that the core Cp ring structure also serves as a reservoir for reactive protons (H+), hydrides (H-) or radical hydrogen (H•) atoms. This Review chronicles the field of Cp ring activation, highlighting the pivotal role that Cp ligands can have in electrocatalytic H2 production, N2 reduction, hydride transfer reactions and proton-coupled electron transfer.
Collapse
|
32
|
Wang GX, Wang X, Jiang Y, Chen W, Shan C, Zhang P, Wei J, Ye S, Xi Z. Snapshots of Early-Stage Quantitative N 2 Electrophilic Functionalization. J Am Chem Soc 2023; 145:9746-9754. [PMID: 37067517 DOI: 10.1021/jacs.3c01497] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Electrophilic functionalization of N2 moieties in metal dinitrogen complexes typically initiates the catalytic synthesis of N-containing molecules directly from N2. Despite intensive research in the last six decades, how to efficiently and even quantitatively convert N2 into diazenido and hydrazido species still poses a great challenge. In this regard, systematic and comprehensive investigations to elucidate the reaction intricacies are of profound significance. Herein, we report a kinetic dissection on the first and second electrophilic functionalization steps of a new Cr0-N2 system with HOTf, MeOTf, and Me3SiOTf. All reactions pass through fleeting diazenido intermediates and furnish long-lived final hydrazido products, and both steps are quantitative conversions at low temperatures. All of the second-order reaction rates of the first and second transformations were determined as well as the lifetimes of the intervening diazenido species. Based on these findings, we succeeded in large-scale and near-quantitative preparation of all hydrazido species.
Collapse
Affiliation(s)
- Gao-Xiang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Xueli Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yang Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxiao Shan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Peng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
33
|
Kokubo Y, Tsuzuki K, Sugiura H, Yomura S, Wasada-Tsutsui Y, Ozawa T, Yanagisawa S, Kubo M, Takeyama T, Yamaguchi T, Shimazaki Y, Kugimiya S, Masuda H, Kajita Y. Syntheses, Characterizations, Crystal Structures, and Protonation Reactions of Dinitrogen Chromium Complexes Supported with Triamidoamine Ligands. Inorg Chem 2023; 62:5320-5333. [PMID: 36972224 DOI: 10.1021/acs.inorgchem.2c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
A novel dinitrogen-dichromium complex, [{Cr(LBn)}2(μ-N2)] (1), has been prepared from reaction of CrCl3 with a lithiated triamidoamine ligand (Li3LBn) under dinitrogen. The X-ray crystal structure analysis of 1 revealed that it is composed of two independent dimeric Cr complexes bridged by N2 in the unit cell. The bridged N-N bond lengths (1.188(4) and 1.185(7) Å) were longer than the free dinitrogen molecule. The elongations of N-N bonds in 1 were also supported by the fact that the ν(N-N) stretching vibration at 1772 cm-1 observed in toluene is smaller than the free N2. Complex 1 was identified to be a 5-coordinated high spin Cr(IV) complex by Cr K-edge XANES measurement. The 1H NMR spectrum and temperature dependent magnetic susceptibility of 1 indicated that complex 1 is in the S = 1 ground state, in which two Cr(IV) ions and unpaired electron spins of the bridging N22- ligand are strongly antiferromagnetically coupled. Reaction of complex 1 with 2.3 equiv of Na or K gave chromium complexes with N2 between the Cr ion and the respective alkali metal ion, [{CrNa(LBn)(N2)(Et2O)}2] (2) and [{CrK(LBn)(N2)}4(Et2O)2] (3), respectively. Furthermore, the complexes 2 and 3 reacted with 15-crown-5 and 18-crown-6 to form the respective crown-ether adducts, [CrNa(LBn)(N2)(15-crown-5)] (4) and [CrK(LBn)(N2)(18-crown-6)] (5). The XANES measurements of complexes 2, 3, 4, and 5 revealed that they are high spin Cr(IV) complexes like complex 1. All complexes reacted with a reducing agent and a proton source to form NH3 and/or N2H4. The yields of these products in the presence of K+ were higher than those in the presence of Na+. The electronic structures and binding properties of 1, 2, 3, 4, and 5 were evaluated and discussed based on their DFT calculations.
Collapse
|
34
|
Junge J, Engesser TA, Tuczek F. N 2 Reduction versus H 2 Evolution in a Molybdenum- or Tungsten-Based Small-Molecule Model System of Nitrogenase. Chemistry 2023; 29:e202202629. [PMID: 36458957 DOI: 10.1002/chem.202202629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/04/2022]
Abstract
Molybdenum dinitrogen complexes have played a major role as catalytic model systems of nitrogenase. In comparison, analogous tungsten complexes have in most cases found to be catalytically inactive. Herein, a tungsten complex was shown to be supported by a pentadentate tetrapodal (pentaPod) phosphine ligand, under conditions of N2 fixation, primarily catalyzes the hydrogen evolution reaction (HER), in contrast to its Mo analogue, which catalytically mediates the nitrogen-reduction reaction (N2 RR). DFT calculations were employed to evaluate possible mechanisms and identify the most likely pathways of N2 RR and HER activities exhibited by Mo- and W-pentaPod complexes. Two mechanisms for N2 RR by PCET are considered, starting from neutral (M(0) cycle) and cationic (M(I) cycle) dinitrogen complexes (M=Mo, W). The latter was found to be energetically more favorable. For HER three scenarios are treated; that is, through bimolecular reactions of early M-Nx Hy intermediates, pure hydride intermediates or mixed M(H)(Nx Hy ) species.
Collapse
Affiliation(s)
- Jannik Junge
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118, Kiel, Germany
| | - Tobias A Engesser
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118, Kiel, Germany
| | - Felix Tuczek
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118, Kiel, Germany
| |
Collapse
|
35
|
Zeng J, Qiu R, Zhu J. Screening Carbon-Boron Frustrated Lewis Pairs for Small-Molecule Activation including N 2 , O 2 , CO, CO 2 , CS 2 , H 2 O and CH 4 : A Computational Study. Chem Asian J 2023; 18:e202201236. [PMID: 36647683 DOI: 10.1002/asia.202201236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Dinitrogen (N2 ) activation is particularly challenging under ambient conditions because of its large highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap (10.8 eV) and high bond dissociation energy (945 kJ mol-1 ) of the N≡N triple bond, attracting considerable attention from both experimental and theoretical chemists. However, most effort has focused on metallic systems. In contrast, nitrogen activation by frustrated Lewis pairs (FLPs) has been initiated recently via theoretical calculations. Here we perform density functional theory (DFT) calculations to screen a series of experimentally viable FLPs for small-molecule activation including N2 , O2 , CO, CO2 , CS2 , H2 O and CH4 . In addition, aromaticity is found to play an important role in most of these small-molecule activation. The particularly thermodynamic stabilities of the activation products and low reaction barriers could be a step forward for the development of FLP towards small-molecule activation including N2 , inviting experimental chemists' verification.
Collapse
Affiliation(s)
- Jie Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China.,Pharmaceutical Research Institute, Wuhan Institute of Technology, No. 206, Guanggu 1st road, 430205, Wuhan, P. R. China
| | - Rulin Qiu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| |
Collapse
|
36
|
Near ambient N2 fixation on solid electrodes versus enzymes and homogeneous catalysts. Nat Rev Chem 2023; 7:184-201. [PMID: 37117902 DOI: 10.1038/s41570-023-00462-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2022] [Indexed: 02/04/2023]
Abstract
The Mo/Fe nitrogenase enzyme is unique in its ability to efficiently reduce dinitrogen to ammonia at atmospheric pressures and room temperature. Should an artificial electrolytic device achieve the same feat, it would revolutionize fertilizer production and even provide an energy-dense, truly carbon-free fuel. This Review provides a coherent comparison of recent progress made in dinitrogen fixation on solid electrodes, homogeneous catalysts and nitrogenases. Specific emphasis is placed on systems for which there is unequivocal evidence that dinitrogen reduction has taken place. By establishing the cross-cutting themes and synergies between these systems, we identify viable avenues for future research.
Collapse
|
37
|
Photocatalytic nitrogen fixation under an ambient atmosphere using a porous coordination polymer with bridging dinitrogen anions. Nat Chem 2023; 15:286-293. [PMID: 36522581 DOI: 10.1038/s41557-022-01088-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/14/2022] [Indexed: 12/23/2022]
Abstract
The design of highly electron-active and stable heterogeneous catalysts for the ambient nitrogen reduction reaction is challenging due to the inertness of the N2 molecule. Here, we report the synthesis of a zinc-based coordination polymer that features bridging dinitrogen anionic ligands, {[Zn(L)(N2)0.5(TCNQ-TCNQ)0.5]·(TCNQ)0.5}n (L is tetra(isoquinolin-6-yl)tetrathiafulvalene and TCNQ is tetracyanoquinodimethane), and show that it is an efficient photocatalyst for nitrogen fixation under an ambient atmosphere. It exhibits an ammonia conversion rate of 140 μmol g-1 h-1 and functions well also with unpurified air as the feeding gas. Experimental and theoretical studies show that the active [Zn2+-(N≡N)--Zn2+] sites can promote the formation of NH3 and the detachment of the NH3 formed creates unsaturated [Zn2+···Zn+] intermediates, which in turn can be refilled by external N2 sequestration and fast intermolecular electron migration. The [Zn2+···Zn+] intermediates stabilized by the sandwiched cage-like donor-acceptor-donor framework can sustain continuous catalytic cycles. This work presents an example of a molecular active site embedded within a coordination polymer for nitrogen fixation under mild conditions.
Collapse
|
38
|
Xin X, Douair I, Zhao Y, Wang S, Maron L, Zhu C. Dinitrogen cleavage and hydrogenation to ammonia with a uranium complex. Natl Sci Rev 2023; 10:nwac144. [PMID: 36950222 PMCID: PMC10026940 DOI: 10.1093/nsr/nwac144] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/14/2022] Open
Abstract
The Haber-Bosch process produces ammonia (NH3) from dinitrogen (N2) and dihydrogen (H2), but requires high temperature and pressure. Before iron-based catalysts were exploited in the current industrial Haber-Bosch process, uranium-based materials served as effective catalysts for production of NH3 from N2. Although some molecular uranium complexes are known to be capable of combining with N2, further hydrogenation with H2 forming NH3 has not been reported to date. Here, we describe the first example of N2 cleavage and hydrogenation with H2 to NH3 with a molecular uranium complex. The N2 cleavage product contains three uranium centers that are bridged by three imido μ 2-NH ligands and one nitrido μ 3-N ligand. Labeling experiments with 15N demonstrate that the nitrido ligand in the product originates from N2. Reaction of the N2-cleaved complex with H2 or H+ forms NH3 under mild conditions. A synthetic cycle has been established by the reaction of the N2-cleaved complex with trimethylsilyl chloride. The isolation of this trinuclear imido-nitrido product implies that a multi-metallic uranium assembly plays an important role in the activation of N2.
Collapse
Affiliation(s)
- Xiaoqing Xin
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Iskander Douair
- LPCNO, CNRS and INSA, Université Paul Sabatier, Toulouse 31077, France
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | | | | |
Collapse
|
39
|
Huang W, Peng LY, Zhang J, Liu C, Song G, Su JH, Fang WH, Cui G, Hu S. Vanadium-Catalyzed Dinitrogen Reduction to Ammonia via a [V]═NNH 2 Intermediate. J Am Chem Soc 2023; 145:811-821. [PMID: 36596224 DOI: 10.1021/jacs.2c08000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The catalytic transformation of N2 to NH3 by transition metal complexes is of great interest and importance but has remained a challenge to date. Despite the essential role of vanadium in biological N2 fixation, well-defined vanadium complexes that can catalyze the conversion of N2 to NH3 are scarce. In particular, a V(NxHy) intermediate derived from proton/electron transfer reactions of coordinated N2 remains unknown. Here, we report a dinitrogen-bridged divanadium complex bearing POCOP (2,6-(tBu2PO)2-C6H3) pincer and aryloxy ligands, which can serve as a catalyst for the reduction of N2 to NH3 and N2H4. Low-temperature protonation and reduction of the dinitrogen complex afforded the first structurally characterized neutral metal hydrazido(2-) species ([V]═NNH2), which mediated 15N2 conversion to 15NH3, indicating that it is a plausible intermediate of the catalysis. DFT calculations showed that the vanadium hydrazido complex [V]═NNH2 possessed a N-H bond dissociation free energy (BDFEN-H) of as high as 59.1 kcal/mol. The protonation of a vanadium amide complex ([V]-NH2) with [Ph2NH2][OTf] resulted in the release of NH3 and the formation of a vanadium triflate complex, which upon reduction under N2 afforded the vanadium dinitrogen complex. These transformations model the final steps of a vanadium-catalyzed N2 reduction cycle. Both experimental and theoretical studies suggest that the catalytic reaction may proceed via a distal pathway to liberate NH3. These findings provide unprecedented insights into the mechanism of N2 reduction related to FeV nitrogenase.
Collapse
Affiliation(s)
- Wenshuang Huang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jiayu Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Chenrui Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Ji-Hu Su
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Shaowei Hu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
40
|
Hierlmeier G, Tosatti P, Puentener K, Chirik PJ. Identification of Cyclohexadienyl Hydrides as Intermediates in Molybdenum-Catalyzed Arene Hydrogenation. Angew Chem Int Ed Engl 2023; 62:e202216026. [PMID: 36351208 DOI: 10.1002/anie.202216026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
Treatment of phosphino(imino)pyridine (PIP) molybdenum cyclooctadiene (COD) complexes [(PIP)Mo(COD)] with dihydrogen in the presence of benzene selectively furnished the molybdenum cyclohexadienyl hydrides [(PIP)MoH(η5 -C6 H7 )], which are precatalysts for the hydrogenation of benzene to cyclohexane. [(PIP)MoH(η5 -C6 H7 )] arises from a rarely observed insertion of benzene into a molybdenum-hydride bond, a key step in the molybdenum-catalyzed homogeneous hydrogenation of arenes. The reaction with toluene afforded a single isomer of the corresponding molybdenum cyclohexadienyl hydride while para-xylene predominantly formed the molybdenum η6 -arene complex with the insertion product being a minor component. Addition of carbon monoxide to a cyclohexane-d12 solution of [(PIP)MoH(η5 -C6 H7 )] liberated cyclohexadiene, providing experimental support for a higher kinetic barrier for the subsequent steps en route to cycloalkanes.
Collapse
Affiliation(s)
| | - Paolo Tosatti
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd., 4070, Basel, Switzerland
| | - Kurt Puentener
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd., 4070, Basel, Switzerland
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
41
|
Du S, Liu X, Ju B, Zhang J, Zou J, Li G, Fan H, Xie H, Jiang L. Spectroscopic Identification of the Dinitrogen Fixation and Activation by Metal Carbide Cluster Anions PtC n- ( n = 4-6). Inorg Chem 2023; 62:170-177. [PMID: 36573891 DOI: 10.1021/acs.inorgchem.2c03150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nitrogen fixation is confronted with great challenges in the field of chemistry. Herein, we report that single metal carbides PtCn- and PtCnN2- (n = 4-6) are indispensable intermediates in the process of nitrogen fixation by mass spectrometry coupled with anionic photoelectron spectroscopy, quantum chemical calculations, and simulated density-of-state spectra. The most stable isomers of these cluster anions are characterized to have linear chain structures. The fixation and activation of dinitrogen are facilitated by the charge transfer from Pt and Cn to N2. The significance of π back-donation of the 5d orbital of the Pt atom to the antibonding π orbits of N2 for dinitrogen fixation and activation is discussed in detail. This study not only provides a theoretical basis at the molecular level for the activation of dinitrogen by mononuclear metal carbide clusters but also provides a new paradigm for dinitrogen fixation.
Collapse
Affiliation(s)
- Shihu Du
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China.,School of Mathematics and Physics, Hebei University of Engineering, Handan056038, China
| | - Xuegang Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Bangmin Ju
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Jumei Zhang
- School of Life Science, Ludong University, Yantai, Shandong264025, China
| | - Jinghan Zou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| |
Collapse
|
42
|
Ibrahim AF, Garrido-Barros P, Peters JC. Electrocatalytic Nitrogen Reduction on a Molybdenum Complex Bearing a PNP Pincer Ligand. ACS Catal 2023; 13:72-78. [PMID: 38487038 PMCID: PMC10939127 DOI: 10.1021/acscatal.2c04769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrocatalytic nitrogen reduction (N2R) mediated by well-defined molecular catalysts is poorly developed by comparison with other reductive electrocatalytic transformations. Herein, we explore the viability of electrocatalytic N2R mediated by a molecular Mo-PNP complex. A careful choice of acid, electrode material, and electrolyte mitigates electrode-mediated HER under direct electrolysis and affords up to 11.7 equiv of NH3 (Faradaic efficiency < 43%) at -1.89 V versus Fc+/Fc. The addition of a proton-coupled electron transfer (PCET) mediator has no effect. The data presented are rationalized by an initial electron transfer (ET) that sets the applied bias needed and further reveal an important impact of [Mo] concentration, thereby pointing to potential bimolecular steps (e.g., N2 splitting) as previously proposed during chemically driven N2R catalysis. Finally, facile reductive protonation of [Mo(N)Br(HPNP)] with pyridinium acids is demonstrated.
Collapse
Affiliation(s)
- Ammar F Ibrahim
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Pablo Garrido-Barros
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| |
Collapse
|
43
|
Kireev NV, Filippov OA, Epstein LM, Shubina ES, Belkova NV. Activation of dinitrogen by group 6 metal complexes. Russ Chem Bull 2023. [DOI: 10.1007/s11172-023-3716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
44
|
Shima T, Zhuo Q, Hou Z. Dinitrogen activation and transformation by multimetallic polyhydride complexes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Tanabe Y, Nishibayashi Y. Recent advances in catalytic nitrogen fixation using transition metal–dinitrogen complexes under mild reaction conditions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Bora D, Gayen FR, Saha B. Ammonia from dinitrogen at ambient conditions by organometallic catalysts. RSC Adv 2022; 12:33567-33583. [PMID: 36505716 PMCID: PMC9682445 DOI: 10.1039/d2ra06156b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Fixation of atmospheric dinitrogen in plants by [Mo-Fe] cofactor of nitrogenase enzyme takes place efficiently under atmospheric pressure and normal temperature. In search for an alternative methodology for the highly energy intensive Haber-Bosch process, design and synthesis of highly efficient inorganic and organometallic complexes by mimicking the structure and function of [Mo-Fe] cofactor system is highly desirable for ammonia synthesis from dinitrogen. An ideal catalyst for ammonia synthesis should effectively catalyse the reduction of dinitrogen in the presence of a proton source under mild to moderate conditions, and thereby, significantly reducing the cost of ammonia production and increasing the energy efficacy of the process. In the light of current research, it is evident that there is a plenty of scope for the development and enhanced performance of the inorganic and organometallic catalysts for ammonia synthesis under ambient temperature and pressure. The review furnishes a comprehensive outlook of numerous organometallic catalysts used in the synthesis of ammonia from dinitrogen in the past few decades.
Collapse
Affiliation(s)
- Debashree Bora
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and TechnologyJorhatAssam-785006India,Academy of Scientific and Innovative Research (AcSIR)Ghaziabad-201002India
| | - Firdaus Rahaman Gayen
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and TechnologyJorhatAssam-785006India,Academy of Scientific and Innovative Research (AcSIR)Ghaziabad-201002India
| | - Biswajit Saha
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and TechnologyJorhatAssam-785006India,Academy of Scientific and Innovative Research (AcSIR)Ghaziabad-201002India
| |
Collapse
|
47
|
Bedbur K, Stucke N, Liehrs L, Krahmer J, Tuczek F. Catalytic Ammonia Synthesis Mediated by Molybdenum Complexes with PN 3P Pincer Ligands: Influence of P/N Substituents and Molecular Mechanism. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227843. [PMID: 36431964 PMCID: PMC9692791 DOI: 10.3390/molecules27227843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Three molybdenum trihalogenido complexes supported by different PN3P pincer ligands were synthesized and investigated regarding their activity towards catalytic N2-to-NH3 conversion. The highest yields were obtained with the H-PN3PtBu ligand. The corresponding Mo(V)-nitrido complex also shows good catalytic activity. Experiments regarding the formation of the analogous Mo(IV)-nitrido complex lead to the conclusion that the mechanism of catalytic ammonia formation mediated by the title systems does not involve N-N cleavage of a dinuclear Mo-dinitrogen complex, but follows the classic Chatt cycle.
Collapse
|
48
|
Lai Q, Cai T, Tsang SCE, Chen X, Ye R, Xu Z, Argyle MD, Ding D, Chen Y, Wang J, Russell AG, Wu Y, Liu J, Fan M. Chemical looping based ammonia production-A promising pathway for production of the noncarbon fuel. Sci Bull (Beijing) 2022; 67:2124-2138. [PMID: 36546112 DOI: 10.1016/j.scib.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 01/07/2023]
Abstract
Ammonia, primarily made with Haber-Bosch process developed in 1909 and winning two Nobel prizes, is a promising noncarbon fuel for preventing global warming of 1.5 °C above pre-industrial levels. However, the undesired characteristics of the process, including high carbon footprint, necessitate alternative ammonia synthesis methods, and among them is chemical looping ammonia production (CLAP) that uses nitrogen carrier materials and operates at atmospheric pressure with high product selectivity and energy efficiency. To date, neither a systematic review nor a perspective in nitrogen carriers and CLAP has been reported in the critical area. Thus, this work not only assesses the previous results of CLAP but also provides perspectives towards the future of CLAP. It classifies, characterizes, and holistically analyzes the fundamentally different CLAP pathways and discusses the ways of further improving the CLAP performance with the assistance of plasma technology and artificial intelligence (AI).
Collapse
Affiliation(s)
- Qinghua Lai
- College of Engineering and Applied Science, University of Wyoming, Laramie WY 82071, USA
| | - Tianyi Cai
- School of Energy and Power Engineering, Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shik Chi Edman Tsang
- Wolfson Catalysis, Department of Chemistry, University of Oxford, Oxford OX1 3QR, UK
| | - Xia Chen
- College of Engineering and Applied Science, University of Wyoming, Laramie WY 82071, USA; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Runping Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhenghe Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton Alberta T6G 1H9, Canada
| | - Morris D Argyle
- Department of Chemical Engineering, Brigham Young University, Provo UT 84602, USA
| | - Dong Ding
- Idaho National Laboratory, Idaho Falls ID 83415, USA
| | - Yongmei Chen
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianji Wang
- School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, China
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta GA 30332, USA
| | - Ye Wu
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Power Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford Surrey GU2 7XH, UK.
| | - Maohong Fan
- College of Engineering and Applied Science, University of Wyoming, Laramie WY 82071, USA; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta GA 30332, USA.
| |
Collapse
|
49
|
Merakeb L, Bennaamane S, De Freitas J, Clot E, Mézailles N, Robert M. Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex. Angew Chem Int Ed Engl 2022; 61:e202209899. [PMID: 35941077 PMCID: PMC9804441 DOI: 10.1002/anie.202209899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 01/05/2023]
Abstract
Nitrogen reduction under mild conditions (room T and atmospheric P), using a non-fossil source of hydrogen remains a challenge. Molecular metal complexes, notably Mo based, have recently been shown to be active for such nitrogen fixation. We report electrochemical N2 splitting with a MoIII triphosphino complex [(PPP)MoI3 ], at room temperature and a moderately negative potential. A MoIV nitride species was generated, which is confirmed by electrochemistry and NMR studies. The reaction goes through two successive one electron reductions of the starting Mo species, coordination of a N2 molecule, and further splitting to a MoIV nitride complex. Preliminary DFT studies support the formation of a bridging MoI N2 MoI dinitrogen dimer evolving to the Mo nitride via a low energy transition state. This example joins a short list of molecular complexes for N2 electrochemical reductive cleavage. It opens a door to electrochemical proton-coupled electron transfer (PCET) conversion studies of N2 to NH3 .
Collapse
Affiliation(s)
- Lydia Merakeb
- Laboratoire d'Electrochimie Moléculaire—UMR 7591Université Paris Cité15, rue Jean Antoine de Baïf75013ParisFrance
| | - Soukaina Bennaamane
- Laboratoire Hétérochimie Fondamentale et Appliquée—UMR 5069Université Toulouse III—Paul Sabatier118, route de Narbonne, Bât 2R131062ToulouseFrance
| | - Jérémy De Freitas
- Laboratoire d'Electrochimie Moléculaire—UMR 7591Université Paris Cité15, rue Jean Antoine de Baïf75013ParisFrance
| | - Eric Clot
- ICGMUniv MontpellierCNRSENSCM34000MontpellierFrance
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée—UMR 5069Université Toulouse III—Paul Sabatier118, route de Narbonne, Bât 2R131062ToulouseFrance
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire—UMR 7591Université Paris Cité15, rue Jean Antoine de Baïf75013ParisFrance
- Institut Universitaire de France (IUF)75005ParisFrance
| |
Collapse
|
50
|
Banerjee S, Kobayashi T, Takai K, Asako S, Ilies L. Molybdenum-Quinone-Catalyzed Deoxygenative Coupling of Aromatic Carbonyl Compounds. Org Lett 2022; 24:7242-7246. [PMID: 36166349 DOI: 10.1021/acs.orglett.2c03143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the presence of triphenylphosphine as a mild reductant, the use of catalytic amounts of Mo(CO)6 and an ortho-quinone ligand enables the intermolecular reductive coupling of aromatic aldehydes and the intramolecular coupling of aromatic ketones to produce functionalized alkenes. Diaryl- and diheteroaryl alkenes are synthesized with high (E)-selectivity and a tolerance toward bromide, iodide, and steric hindrance. Intramolecular coupling of dicarbonyl compounds under similar conditions affords mono- and disubstituted phenanthrenes.
Collapse
Affiliation(s)
- Somsuvra Banerjee
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takafumi Kobayashi
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, Okayama 700-8530, Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, Okayama 700-8530, Japan
| | - Sobi Asako
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, Okayama 700-8530, Japan
| | - Laurean Ilies
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|