1
|
Das N, Khan T, Halder B, Ghosh S, Sen P. Macromolecular crowding effects on protein dynamics. Int J Biol Macromol 2024; 281:136248. [PMID: 39374718 DOI: 10.1016/j.ijbiomac.2024.136248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Macromolecular crowding experiments bridge the gap between in-vivo and in-vitro studies by mimicking some of the cellular complexities like high viscosity and limited space, while still manageable for experiments and analysis. Macromolecular crowding impacts all biological processes and is a focus of contemporary research. Recent reviews have highlighted the effect of crowding on various protein properties. One of the essential characteristics of protein is its dynamic nature; however, how protein dynamics get modulated in the crowded milieu has been largely ignored. This article discusses how protein translational, rotational, conformational, and solvation dynamics change under crowded conditions, summarizing key observations in the literature. We emphasize our research on microsecond conformational and water dynamics in crowded milieus and their impact on enzymatic activity and stability. Lastly, we provided our outlook on how this field might move forward in the future.
Collapse
Affiliation(s)
- Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Bisal Halder
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Shreya Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India.
| |
Collapse
|
2
|
Magnan B, Chen XH, Rashid S, Minard A, Chau W, Uyesugi T, Edwards RA, Panigrahi R, Glover JNM, LaPointe P, Spyracopoulos L. Asymmetric Dynamics Drive Catalytic Activation of the Hsp90 Chaperone. J Phys Chem B 2024; 128:8388-8399. [PMID: 39186634 DOI: 10.1021/acs.jpcb.4c03363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The Hsp90 chaperone is an ATPase enzyme composed of two copies of a three-domain subunit. Hsp90 stabilizes and activates a diverse array of regulatory proteins. Substrates are bound and released by the middle domain through a clamping cycle involving conformational transitions between a dynamic open state and a compact conformationally restricted closed state. Intriguingly, the overall ATPase activity of dimeric Hsp90 can be asymmetrically enhanced through a single subunit when Hsp90 is bound to a cochaperone or when Hsp90 is composed of one active and one catalytically defunct subunit as a heterodimer. To explore the mechanism of asymmetric Hsp90 activation, we designed a subunit bearing N-terminal ATPase mutations that demonstrate increased intra- and interdomain dynamics. Using intact Hsp90 and various N-terminal and middle domain constructs, we blended 19F NMR spectroscopy, molecular dynamics (MD) simulations, and ATPase assays to show that within the context of heterodimeric Hsp90, the conformationally dynamic subunit stimulates the ATPase activity of the normal subunit. The contrasting dynamic properties of the subunits within heterodimeric Hsp90 provide a mechanistic framework to understand the molecular basis for asymmetric Hsp90 activation and its importance for the biological function of Hsp90.
Collapse
Affiliation(s)
- Breanna Magnan
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Xu Hong Chen
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Suad Rashid
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Alissa Minard
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - William Chau
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Toshi Uyesugi
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Rashmi Panigrahi
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Paul LaPointe
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
3
|
Babu N, Freeman BC. Establishing Order Through Disorder by the Hsp90 Molecular Chaperone. J Mol Biol 2024; 436:168460. [PMID: 38301804 PMCID: PMC11211062 DOI: 10.1016/j.jmb.2024.168460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
The Heat Shock Protein 90 (Hsp90) molecular chaperone is a key driver of protein homeostasis (proteostasis) under physiologically normal and stress conditions. In eukaryotes, Hsp90 is essential and is one of the most abundant proteins in a cell where the chaperone shuttles between the cytoplasm and nucleus to fold, stabilize, and regulate client proteins and protein complexes. Numerous high-throughput screens have mapped the Hsp90 interactome, building a vast network comprising ∼25% of the proteome in budding yeast. How Hsp90 is able to associate with this diverse and large cadre of targets is critical to comprehending how the proteostatic process works. Here, we review recent progress on our understanding of the molecular underpinnings driving Hsp90-client interactions from both the perspective of the targets and Hsp90. In addition to considering the available Hsp90-client structures, we also assessed recently identified Hsp90-client peptide complexes to build a model that justifies how Hsp90 might recognize a wide spectrum of target proteins. In brief, Hsp90 either directly recognizes a site within an intrinsically disordered region (IDR) of a client protein to transiently regulate that client or it associates with an unstructured polypeptide section created by the concerted efforts of multiple chaperones and cochaperones to stably associate with a client. Overall, Hsp90 exploits a common recognition property (i.e., IDR) within diverse clients to support chaperone-actionthereby enabling its central role in proteostasis.
Collapse
Affiliation(s)
- Neethu Babu
- University of Illinois, Urbana-Champaign Department of Cell and Developmental Biology, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Brian C Freeman
- University of Illinois, Urbana-Champaign Department of Cell and Developmental Biology, 601 S. Goodwin Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
4
|
Wickramaratne AC, Wickner S, Kravats AN. Hsp90, a team player in protein quality control and the stress response in bacteria. Microbiol Mol Biol Rev 2024; 88:e0017622. [PMID: 38534118 PMCID: PMC11332350 DOI: 10.1128/mmbr.00176-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
SUMMARYHeat shock protein 90 (Hsp90) participates in proteostasis by facilitating protein folding, activation, disaggregation, prevention of aggregation, degradation, and protection against degradation of various cellular proteins. It is highly conserved from bacteria to humans. In bacteria, protein remodeling by Hsp90 involves collaboration with the Hsp70 molecular chaperone and Hsp70 cochaperones. In eukaryotes, protein folding by Hsp90 is more complex and involves collaboration with many Hsp90 cochaperones as well as Hsp70 and Hsp70 cochaperones. This review focuses primarily on bacterial Hsp90 and highlights similarities and differences between bacterial and eukaryotic Hsp90. Seminal research findings that elucidate the structure and the mechanisms of protein folding, disaggregation, and reactivation promoted by Hsp90 are discussed. Understanding the mechanisms of bacterial Hsp90 will provide fundamental insight into the more complex eukaryotic chaperone systems.
Collapse
Affiliation(s)
- Anushka C. Wickramaratne
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrea N. Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| |
Collapse
|
5
|
Garg R, Manhas I, Chaturvedi D. Unveiling the orchestration: mycobacterial small RNAs as key mediators in host-pathogen interactions. Front Microbiol 2024; 15:1399280. [PMID: 38903780 PMCID: PMC11188477 DOI: 10.3389/fmicb.2024.1399280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Small RNA (sRNA) molecules, a class of non-coding RNAs, have emerged as pivotal players in the regulation of gene expression and cellular processes. Mycobacterium tuberculosis and other pathogenic mycobacteria produce diverse small RNA species that modulate bacterial physiology and pathogenesis. Recent advances in RNA sequencing have enabled identification of novel small RNAs and characterization of their regulatory functions. This review discusses the multifaceted roles of bacterial small RNAs, covering their biogenesis, classification, and functional diversity. Small RNAs (sRNAs) play pivotal roles in orchestrating diverse cellular processes, ranging from gene silencing to epigenetic modifications, across a broad spectrum of organisms. While traditionally associated with eukaryotic systems, recent research has unveiled their presence and significance within bacterial domains as well. Unlike their eukaryotic counterparts, which primarily function within the context of RNA interference (RNAi) pathways, bacterial sRNAs predominantly act through base-pairing interactions with target mRNAs, leading to post-transcriptional regulation. This fundamental distinction underscores the necessity of elucidating the unique roles and regulatory mechanisms of bacterial sRNAs in bacterial adaptation and survival. By doing these myriad functions, they regulate bacterial growth, metabolism, virulence, and drug resistance. In Mycobacterium tuberculosis, apart from having various roles in the bacillus itself, small RNA molecules have emerged as key regulators of gene expression and mediators of host-pathogen interactions. Understanding sRNA regulatory networks in mycobacteria can drive our understanding of significant role they play in regulating virulence and adaptation to the host environment. Detailed functional characterization of Mtb sRNAs at the host-pathogen interface is required to fully elucidate the complex sRNA-mediated gene regulatory networks deployed by Mtb, to manipulate the host. A deeper understanding of this aspect could pave the development of novel diagnostic and therapeutic strategies for tuberculosis.
Collapse
Affiliation(s)
- Rajni Garg
- Department of Human Genetics and Molecular Medicine, Amity School of Health Sciences, Amity University, Mohali, Punjab, India
| | - Ishali Manhas
- Department of Biotechnology, Amity School of Biological Sciences, Amity University, Mohali, Punjab, India
| | - Diksha Chaturvedi
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
6
|
Amankwah YS, Fleifil Y, Unruh E, Collins P, Wang Y, Vitou K, Bates A, Obaseki I, Sugoor M, Alao JP, McCarrick RM, Gewirth DT, Sahu ID, Li Z, Lorigan GA, Kravats AN. Structural transitions modulate the chaperone activities of Grp94. Proc Natl Acad Sci U S A 2024; 121:e2309326121. [PMID: 38483986 PMCID: PMC10962938 DOI: 10.1073/pnas.2309326121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024] Open
Abstract
Hsp90s are ATP-dependent chaperones that collaborate with co-chaperones and Hsp70s to remodel client proteins. Grp94 is the ER Hsp90 homolog essential for folding multiple secretory and membrane proteins. Grp94 interacts with the ER Hsp70, BiP, although the collaboration of the ER chaperones in protein remodeling is not well understood. Grp94 undergoes large-scale conformational changes that are coupled to chaperone activity. Within Grp94, a region called the pre-N domain suppresses ATP hydrolysis and conformational transitions to the active chaperone conformation. In this work, we combined in vivo and in vitro functional assays and structural studies to characterize the chaperone mechanism of Grp94. We show that Grp94 directly collaborates with the BiP chaperone system to fold clients. Grp94's pre-N domain is not necessary for Grp94-client interactions. The folding of some Grp94 clients does not require direct interactions between Grp94 and BiP in vivo, suggesting that the canonical collaboration may not be a general chaperone mechanism for Grp94. The BiP co-chaperone DnaJB11 promotes the interaction between Grp94 and BiP, relieving the pre-N domain suppression of Grp94's ATP hydrolysis activity. In structural studies, we find that ATP binding by Grp94 alters the ATP lid conformation, while BiP binding stabilizes a partially closed Grp94 intermediate. Together, BiP and ATP push Grp94 into the active closed conformation for client folding. We also find that nucleotide binding reduces Grp94's affinity for clients, which is important for productive client folding. Alteration of client affinity by nucleotide binding may be a conserved chaperone mechanism for a subset of ER chaperones.
Collapse
Affiliation(s)
- Yaa S. Amankwah
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH43210
| | - Yasmeen Fleifil
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
| | - Erin Unruh
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
- Cell, Molecular, and Structural Biology Graduate Program, Miami University, Oxford, OH45056
| | - Preston Collins
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
| | - Yi Wang
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH43210
| | - Katherine Vitou
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
| | - Alison Bates
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
| | - Ikponwmosa Obaseki
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
| | - Meghana Sugoor
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
| | - John Paul Alao
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
| | | | | | - Indra D. Sahu
- Natural Sciences Division, Campbellsville University, Campbellsville, KY42718
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH43210
| | - Gary. A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
- Cell, Molecular, and Structural Biology Graduate Program, Miami University, Oxford, OH45056
| | - Andrea N. Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH45056
- Cell, Molecular, and Structural Biology Graduate Program, Miami University, Oxford, OH45056
| |
Collapse
|
7
|
Vollmar L, Schimpf J, Hermann B, Hugel T. Cochaperones convey the energy of ATP hydrolysis for directional action of Hsp90. Nat Commun 2024; 15:569. [PMID: 38233436 PMCID: PMC10794413 DOI: 10.1038/s41467-024-44847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024] Open
Abstract
The molecular chaperone and heat shock protein Hsp90 is part of many protein complexes in eukaryotic cells. Together with its cochaperones, Hsp90 is responsible for the maturation of hundreds of clients. Although having been investigated for decades, it still is largely unknown which components are necessary for a functional complex and how the energy of ATP hydrolysis is used to enable cyclic operation. Here we use single-molecule FRET to show how cochaperones introduce directionality into Hsp90's conformational changes during its interaction with the client kinase Ste11. Three cochaperones are needed to couple ATP turnover to these conformational changes. All three are therefore essential for a functional cyclic operation, which requires coupling to an energy source. Finally, our findings show how the formation of sub-complexes in equilibrium followed by a directed selection of the functional complex can be the most energy efficient pathway for kinase maturation.
Collapse
Affiliation(s)
- Leonie Vollmar
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Julia Schimpf
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Bianca Hermann
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany.
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Mistry AC, Chowdhury D, Chakraborty S, Haldar S. Elucidating the novel mechanisms of molecular chaperones by single-molecule technologies. Trends Biochem Sci 2024; 49:38-51. [PMID: 37980187 DOI: 10.1016/j.tibs.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023]
Abstract
Molecular chaperones play central roles in sustaining protein homeostasis and preventing protein aggregation. Most studies of these systems have been performed in bulk, providing averaged measurements, though recent single-molecule approaches have provided an in-depth understanding of the molecular mechanisms of their activities and structural rearrangements during substrate recognition. Chaperone activities have been observed to be substrate specific, with some associated with ATP-dependent structural dynamics and others via interactions with co-chaperones. This Review aims to describe the novel mechanisms of molecular chaperones as revealed by single-molecule approaches, and to provide insights into their functioning and its implications for protein homeostasis and human diseases.
Collapse
Affiliation(s)
- Ayush Chandrakant Mistry
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Debojyoti Chowdhury
- Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal 700106, India
| | - Soham Chakraborty
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Shubhasis Haldar
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India; Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal 700106, India; Department of Chemistry, Ashoka University, Sonepat, Haryana 131029, India.
| |
Collapse
|
9
|
Sohmen B, Beck C, Frank V, Seydel T, Hoffmann I, Hermann B, Nüesch M, Grimaldo M, Schreiber F, Wolf S, Roosen‐Runge F, Hugel T. The Onset of Molecule-Spanning Dynamics in Heat Shock Protein Hsp90. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304262. [PMID: 37984887 PMCID: PMC10754087 DOI: 10.1002/advs.202304262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
Protein dynamics have been investigated on a wide range of time scales. Nano- and picosecond dynamics have been assigned to local fluctuations, while slower dynamics have been attributed to larger conformational changes. However, it is largely unknown how fast (local) fluctuations can lead to slow global (allosteric) changes. Here, fast molecule-spanning dynamics on the 100 to 200 ns time scale in the heat shock protein 90 (Hsp90) are shown. Global real-space movements are assigned to dynamic modes on this time scale, which is possible by a combination of single-molecule fluorescence, quasi-elastic neutron scattering and all-atom molecular dynamics (MD) simulations. The time scale of these dynamic modes depends on the conformational state of the Hsp90 dimer. In addition, the dynamic modes are affected to various degrees by Sba1, a co-chaperone of Hsp90, depending on the location within Hsp90, which is in very good agreement with MD simulations. Altogether, this data is best described by fast molecule-spanning dynamics, which precede larger conformational changes in Hsp90 and might be the molecular basis for allostery. This integrative approach provides comprehensive insights into molecule-spanning dynamics on the nanosecond time scale for a multi-domain protein.
Collapse
Affiliation(s)
- Benedikt Sohmen
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Christian Beck
- Institute of Applied PhysicsUniversity of TübingenAuf der Morgenstelle 1072076TübingenGermany
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Veronika Frank
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Tilo Seydel
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Ingo Hoffmann
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Bianca Hermann
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Mark Nüesch
- Department of BiochemistryUniversity of ZurichWinterthurerstrasse 190CH‐8057ZurichSwitzerland
| | - Marco Grimaldo
- Science DivisionInstitut Max von Laue ‐ Paul Langevin71 avenue des MartyrsGrenoble38042France
| | - Frank Schreiber
- Institute of Applied PhysicsUniversity of TübingenAuf der Morgenstelle 1072076TübingenGermany
| | - Steffen Wolf
- Biomolecular Dynamics, Institute of PhysicsUniversity of FreiburgHermann‐Herder‐Strasse 379104FreiburgGermany
| | - Felix Roosen‐Runge
- Department of Biomedical Sciences and Biofilms‐Research Center for Biointerfaces (BRCB)Malmö University20506MalmöSweden
- Division of Physical ChemistryLund UniversityNaturvetarvägen 1422100LundSweden
| | - Thorsten Hugel
- Institute of Physical ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
- Signalling Research Centers BIOSS and CIBSSUniversity of FreiburgSchänzlestrasse 1879104FreiburgGermany
| |
Collapse
|
10
|
Rat C, Heindl C, Neuweiler H. Domain swap facilitates structural transitions of spider silk protein C-terminal domains. Protein Sci 2023; 32:e4783. [PMID: 37712205 PMCID: PMC10578117 DOI: 10.1002/pro.4783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Domain swap is a mechanism of protein dimerization where the two interacting domains exchange parts of their structure. Web spiders make use of the process in the connection of C-terminal domains (CTDs) of spidroins, the soluble protein building blocks that form tough silk fibers. Besides providing connectivity and solubility, spidroin CTDs are responsible for inducing structural transitions during passage through an acidified assembly zone within spinning ducts. The underlying molecular mechanisms are elusive. Here, we studied the folding of five homologous spidroin CTDs from different spider species or glands. Four of these are domain-swapped dimers formed by five-helix bundles from spidroins of major and minor ampullate glands. The fifth is a dimer that lacks domain swap, formed by four-helix bundles from a spidroin of a flagelliform gland. Spidroins from this gland do not undergo structural transitions whereas the others do. We found a three-state mechanism of folding and dimerization that was conserved across homologues. In chemical denaturation experiments the native CTD dimer unfolded to a dimeric, partially structured intermediate, followed by full unfolding to denatured monomers. The energetics of the individual folding steps varied between homologues. Contrary to the common belief that domain swap stabilizes protein assemblies, the non-swapped homologue was most stable and folded four orders of magnitude faster than a swapped variant. Domain swap of spidroin CTDs induces an entropic penalty to the folding of peripheral helices, thus unfastening them for acid-induced unfolding within a spinning duct, which primes them for refolding into alternative structures during silk formation.
Collapse
Affiliation(s)
- Charlotte Rat
- Department of Biotechnology & BiophysicsJulius‐Maximilians‐University WürzburgWürzburgGermany
| | - Cedric Heindl
- Department of Biotechnology & BiophysicsJulius‐Maximilians‐University WürzburgWürzburgGermany
| | - Hannes Neuweiler
- Department of Biotechnology & BiophysicsJulius‐Maximilians‐University WürzburgWürzburgGermany
| |
Collapse
|
11
|
Yu DM, Wu CX, Sun JY, Xue H, Yuwen Z, Feng JX. Prediction model of stress ulcer after laparoscopic surgery for colorectal cancer established by machine learning algorithm. World J Gastrointest Surg 2023; 15:1978-1985. [PMID: 37901722 PMCID: PMC10600766 DOI: 10.4240/wjgs.v15.i9.1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 07/19/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Patients with colorectal cancer (CRC) are prone to stress ulcer after laparoscopic surgery. The analysis of risk factors for stress ulcer (SU) in patients with CRC is important to reduce mortality and improve patient prognosis. AIM To identify risk factors for SU after laparoscopic surgery for CRC, and develop a nomogram model to predict the risk of SU in these patients. METHODSThe clinical data of 135 patients with CRC who underwent laparoscopic surgery between November 2021 and June 2022 were reviewed retrospectively. They were divided into two categories depending on the presence of SUs: The SU group (n = 23) and the non-SU group (n = 112). Univariate analysis and multivariate logistic regression analysis were used to screen for factors associated with postoperative SU in patients undergoing laparoscopic surgery, and a risk factor-based nomogram model was built based on these risk factors. By plotting the model's receiver operating characteristic (ROC) curve and calibration curve, a Hosmer-Lemeshow goodness of fit test was performed. RESULTS Among the 135 patients with CRC, 23 patients had postoperative SU, with an incidence of 17.04%. The SU group had higher levels of heat shock protein (HSP) 70, HSP90, and gastrin (GAS) than the non-SU group. Age, lymph node metastasis, HSP70, HSP90, and GAS levels were statistically different between the two groups, but other indicators were not statistically different. Logistic regression analysis showed that age ≥ 65 years, lymph node metastasis, and increased levels of HSP70, HSP90 and GAS were all risk factors for postoperative SU in patients with CRC (P < 0.05). According to these five risk factors, the area under the ROC curve for the nomogram model was 0.988 (95%CI: 0.971-1.0); the calibration curve demonstrated excellent agreement between predicted and actual probabilities, and the Hosmer-Lemeshow goodness of fit test revealed that the difference was not statistically significant (χ2 = 0.753, P = 0.999), suggesting that the nomogram model had good discrimination, calibration, and stability. CONCLUSION Patients with CRC aged ≥ 65 years, with lymph node metastasis and elevated HSP70, HSP90, GAS levels, are prone to post-laparoscopic surgery SU. Our nomogram model shows good predictive value.
Collapse
Affiliation(s)
- Dong-Mei Yu
- School of Nursing, Hebei University of Traditional Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| | - Chun-Xiao Wu
- Department I of Anorectal, Hebei Traditional Chinese Medicine Hospital, Shijiazhuang 050000, Hebei Province, China
| | - Jun-Yi Sun
- Department of Inspection Center, Hebei Traditional Chinese Medicine Hospital, Shijiazhuang 050000, Hebei Province, China
| | - Hui Xue
- School of Nursing, Hebei University of Traditional Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| | - Zhe Yuwen
- Department of Perivascular, Hebei Traditional Chinese Medicine Hospital, Shijiazhuang 050000, Hebei Province, China
| | - Jiang-Xue Feng
- Department I of Anorectal, Hebei Traditional Chinese Medicine Hospital, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
12
|
Mondol T, Silbermann LM, Schimpf J, Vollmar L, Hermann B, Tych KK, Hugel T. Aha1 regulates Hsp90's conformation and function in a stoichiometry-dependent way. Biophys J 2023; 122:3458-3468. [PMID: 37515325 PMCID: PMC10502475 DOI: 10.1016/j.bpj.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 06/05/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
The heat shock protein 90 (Hsp90) is a molecular chaperone, which plays a key role in eukaryotic protein homeostasis. Co-chaperones assist Hsp90 in client maturation and in regulating essential cellular processes such as cell survival, signal transduction, gene regulation, hormone signaling, and neurodegeneration. Aha1 (activator of Hsp90 ATPase) is a unique co-chaperone known to stimulate the ATP hydrolysis of Hsp90, but the mechanism of their interaction is still unclear. In this report, we show that one or two Aha1 molecules can bind to one Hsp90 dimer and that the binding stoichiometry affects Hsp90's conformation, kinetics, ATPase activity, and stability. In particular, a coordination of two Aha1 molecules can be seen in stimulating the ATPase activity of Hsp90 and the unfolding of the middle domain, whereas the conformational equilibrium and kinetics are hardly affected by the stoichiometry of bound Aha1. Altogether, we show a regulation mechanism through the stoichiometry of Aha1 going far beyond a regulation of Hsp90's conformation.
Collapse
Affiliation(s)
- Tanumoy Mondol
- Institute of Physical Chemistry, University of Freiburg, Freiburg im Breisgau, Germany; Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Laura-Marie Silbermann
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Julia Schimpf
- Institute of Physical Chemistry, University of Freiburg, Freiburg im Breisgau, Germany; Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany; Speemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Leonie Vollmar
- Institute of Physical Chemistry, University of Freiburg, Freiburg im Breisgau, Germany; Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany; Speemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bianca Hermann
- Institute of Physical Chemistry, University of Freiburg, Freiburg im Breisgau, Germany; Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Katarzyna Kasia Tych
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Freiburg im Breisgau, Germany; Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
13
|
Reidy M, Garzillo K, Masison DC. Nucleotide exchange is sufficient for Hsp90 functions in vivo. Nat Commun 2023; 14:2489. [PMID: 37120429 PMCID: PMC10148809 DOI: 10.1038/s41467-023-38230-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Hsp90 is an essential eukaryotic chaperone that regulates the activity of many client proteins. Current models of Hsp90 function, which include many conformational rearrangements, specify a requirement of ATP hydrolysis. Here we confirm earlier findings that the Hsp82-E33A mutant, which binds ATP but does not hydrolyze it, supports viability of S. cerevisiae, although it displays conditional phenotypes. We find binding of ATP to Hsp82-E33A induces the conformational dynamics needed for Hsp90 function. Hsp90 orthologs with the analogous EA mutation from several eukaryotic species, including humans and disease organisms, support viability of both S. cerevisiae and Sz. pombe. We identify second-site suppressors of EA that rescue its conditional defects and allow EA versions of all Hsp90 orthologs tested to support nearly normal growth of both organisms, without restoring ATP hydrolysis. Thus, the requirement of ATP for Hsp90 to maintain viability of evolutionarily distant eukaryotic organisms does not appear to depend on energy from ATP hydrolysis. Our findings support earlier suggestions that exchange of ATP for ADP is critical for Hsp90 function. ATP hydrolysis is not necessary for this exchange but provides an important control point in the cycle responsive to regulation by co-chaperones.
Collapse
Affiliation(s)
- Michael Reidy
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0830, USA.
| | - Kevin Garzillo
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0830, USA
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, 18015, USA
| | - Daniel C Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0830, USA
| |
Collapse
|
14
|
p23 and Aha1: Distinct Functions Promote Client Maturation. Subcell Biochem 2023; 101:159-187. [PMID: 36520307 DOI: 10.1007/978-3-031-14740-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hsp90 is a conserved molecular chaperone regulating the folding and activation of a diverse array of several hundreds of client proteins. The function of Hsp90 in client processing is fine-tuned by a cohort of co-chaperones that modulate client activation in a client-specific manner. They affect the Hsp90 ATPase activity and the recruitment of client proteins and can in addition affect chaperoning in an Hsp90-independent way. p23 and Aha1 are central Hsp90 co-chaperones that regulate Hsp90 in opposing ways. While p23 inhibits the Hsp90 ATPase and stabilizes a client-bound Hsp90 state, Aha1 accelerates ATP hydrolysis and competes with client binding to Hsp90. Even though both proteins have been intensively studied for decades, research of the last few years has revealed intriguing new aspects of these co-chaperones that expanded our perception of how they regulate client activation. Here, we review the progress in understanding p23 and Aha1 as promoters of client processing. We highlight the structures of Aha1 and p23, their interaction with Hsp90, and how their association with Hsp90 affects the conformational cycle of Hsp90 in the context of client maturation.
Collapse
|
15
|
Prodromou C, Aran-Guiu X, Oberoi J, Perna L, Chapple JP, van der Spuy J. HSP70-HSP90 Chaperone Networking in Protein-Misfolding Disease. Subcell Biochem 2023; 101:389-425. [PMID: 36520314 DOI: 10.1007/978-3-031-14740-1_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein-folding, quality control and function. In particular, the heat-shock protein (HSP) 70 and HSP90 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein-folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and HSP90, plus their co-chaperones, have been recognised as potent modulators of misfolded protein toxicity, inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. Moreover, these chaperone machines function not only in folding but also in proteasome-mediated degradation of neurodegenerative disease proteins. This chapter gives an overview of the HSP70 and HSP90 chaperones, and their respective regulatory co-chaperones, and explores how the HSP70 and HSP90 chaperone systems form a larger functional network and its relevance to counteracting neurodegenerative disease associated with misfolded proteins and disruption of proteostasis.
Collapse
Affiliation(s)
| | - Xavi Aran-Guiu
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Laura Perna
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | |
Collapse
|
16
|
Henot F, Rioual E, Favier A, Macek P, Crublet E, Josso P, Brutscher B, Frech M, Gans P, Loison C, Boisbouvier J. Visualizing the transiently populated closed-state of human HSP90 ATP binding domain. Nat Commun 2022; 13:7601. [PMID: 36494347 PMCID: PMC9734131 DOI: 10.1038/s41467-022-35399-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
HSP90 are abundant molecular chaperones, assisting the folding of several hundred client proteins, including substrates involved in tumor growth or neurodegenerative diseases. A complex set of large ATP-driven structural changes occurs during HSP90 functional cycle. However, the existence of such structural rearrangements in apo HSP90 has remained unclear. Here, we identify a metastable excited state in the isolated human HSP90α ATP binding domain. We use solution NMR and mutagenesis to characterize structures of both ground and excited states. We demonstrate that in solution the HSP90α ATP binding domain transiently samples a functionally relevant ATP-lid closed state, distant by more than 30 Å from the ground state. NMR relaxation enables to derive information on the kinetics and thermodynamics of this interconversion, while molecular dynamics simulations establish that the ATP-lid in closed conformation is a metastable exited state. The precise description of the dynamics and structures sampled by human HSP90α ATP binding domain provides information for the future design of new therapeutic ligands.
Collapse
Affiliation(s)
- Faustine Henot
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France
| | - Elisa Rioual
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France ,grid.7849.20000 0001 2150 7757Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Adrien Favier
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France
| | - Pavel Macek
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France ,NMR-Bio, 5 place Robert Schuman, F-38025 Grenoble, France
| | - Elodie Crublet
- NMR-Bio, 5 place Robert Schuman, F-38025 Grenoble, France
| | - Pierre Josso
- grid.7849.20000 0001 2150 7757Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Bernhard Brutscher
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France
| | - Matthias Frech
- grid.39009.330000 0001 0672 7022Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Pierre Gans
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France
| | - Claire Loison
- grid.7849.20000 0001 2150 7757Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Jerome Boisbouvier
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France
| |
Collapse
|
17
|
Gohda K. Conformational Analysis of the Loop-to-Helix Transition of the α-Helix3 Plastic Region in the N-Terminal Domain of Human Hsp90α by a Computational Biochemistry Approach. J Chem Inf Model 2022; 62:5699-5714. [PMID: 36278922 DOI: 10.1021/acs.jcim.2c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hsp90 is a chaperone protein aiding in correct protein folding and attractive for drug discovery. The structure of human Hsp90α N-terminal domain (NTD) is intriguing since the α-helix3 region of the ATP-binding site in the NTD plastically changes its conformation, i.e., loop-out, loop-in, and helical conformations, according to the bound inhibitor type. The plastic region structure is known to influence the mode of inhibition-inhibitors bound to a helix have a longer residence time in the complex, which is a factor of in vivo-active drugs, compared with loop binders. In this study, we analyzed the loop-to-helix transition of the plastic region through binding of a helix binder by a computational biochemistry approach. To generate the helical transition from the loop, the resorcinol inhibitor C1 complexed with a loop-in structure was alchemically transformed to the C10 inhibitor, which is known as a helix binder. The loop in the C1 complex possesses Leu107 tightly binding to the hydrophobic subpocket, considered as a key residue for the plasticity. From 10 × 1 μs simulations after the alchemical transformation, the helical transition was observed with a 29% success rate. Conformational analysis of the simulations identified residues possibly associated with the helical transition. The implementation of additional simulations (dihedral-constrained and in silico mutant simulations) led to a statistically significant increase in the transition success rate to 78%, as observed in Asn105 psi-constrained simulation. Therefore, we concluded that the Asn105 psi dihedral angle is most likely involved in the helical transition by a change of the dihedral angle to gauche-negative.
Collapse
Affiliation(s)
- Keigo Gohda
- Computer-aided Molecular Modeling Research Center, Kansai (CAMM-Kansai), 3-32-302, Tsuto-Otsuka, Nishinomiya 663-8241, Japan
| |
Collapse
|
18
|
Yoodee S, Peerapen P, Plumworasawat S, Thongboonkerd V. Roles of heat-shock protein 90 and its four domains (N, LR, M and C) in calcium oxalate stone-forming processes. Cell Mol Life Sci 2022; 79:454. [PMID: 35900595 PMCID: PMC9330963 DOI: 10.1007/s00018-022-04483-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Human heat-shock protein 90 (HSP90) has four functional domains, including NH2-terminal (N), charged linker region (LR), middle (M) and COOH-terminal (C) domains. In kidney stone disease (or nephrolithiasis/urolithiasis), HSP90 serves as a receptor for calcium oxalate monohydrate (COM), which is the most common crystal to form kidney stones. Nevertheless, roles of HSP90 and its four domains in kidney stone formation remained unclear and under-investigated. We thus examined and compared their effects on COM crystals during physical (crystallization, growth and aggregation) and biological (crystal–cell adhesion and crystal invasion through extracellular matrix (ECM)) pathogenic processes of kidney stone formation. The analyses revealed that full-length (FL) HSP90 obviously increased COM crystal size and abundance during crystallization and markedly promoted crystal growth, aggregation, adhesion onto renal cells and ECM invasion. Comparing among four individual domains, N and C domains exhibited the strongest promoting effects, whereas LR domain had the weakest promoting effects on COM crystals. In summary, our findings indicate that FL-HSP90 and its four domains (N, LR, M and C) promote COM crystallization, crystal growth, aggregation, adhesion onto renal cells and invasion through the ECM, all of which are the important physical and biological pathogenic processes of kidney stone formation.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
19
|
Verkhivker GM. Conformational Dynamics and Mechanisms of Client Protein Integration into the Hsp90 Chaperone Controlled by Allosteric Interactions of Regulatory Switches: Perturbation-Based Network Approach for Mutational Profiling of the Hsp90 Binding and Allostery. J Phys Chem B 2022; 126:5421-5442. [PMID: 35853093 DOI: 10.1021/acs.jpcb.2c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the allosteric mechanisms of the Hsp90 chaperone interactions with cochaperones and client protein clientele is fundamental to dissect activation and regulation of many proteins. In this work, atomistic simulations are combined with perturbation-based approaches and dynamic network modeling for a comparative mutational profiling of the Hsp90 binding and allosteric interaction networks in the three Hsp90 maturation complexes with FKBP51 and P23 cochaperones and the glucocorticoid receptor (GR) client. The conformational dynamics signatures of the Hsp90 complexes and dynamics fluctuation analysis revealed how the intrinsic plasticity of the Hsp90 dimer can be modulated by cochaperones and client proteins to stabilize the closed dimer state required at the maturation stage of the ATPase cycle. In silico deep mutational scanning of the protein residues characterized the hot spots of protein stability and binding affinity in the Hsp90 complexes, showing that binding hot spots may often coincide with the regulatory centers that modulate dynamic allostery in the Hsp90 dimer. We introduce a perturbation-based network approach for mutational scanning of allosteric residue potentials and characterize allosteric switch clusters that control mechanism of cochaperone-dependent client recognition and remodeling by the Hsp90 chaperone. The results revealed a conserved network of allosteric switches in the Hsp90 complexes that allow cochaperones and GR protein to become integrated into the Hsp90 system by anchoring to the conformational switch points in the functional Hsp90 regions. This study suggests that the Hsp90 binding and allostery may operate under a regulatory mechanism in which activation or repression of the Hsp90 activity can be pre-encoded in the allosterically regulated Hsp90 dimer motions. By binding directly to the conformational switch centers on the Hsp90, cochaperones and interacting proteins can efficiently modulate the allosteric interactions and long-range communications required for client remodeling and activation.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
- Depatment of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
20
|
Advances towards Understanding the Mechanism of Action of the Hsp90 Complex. Biomolecules 2022; 12:biom12050600. [PMID: 35625528 PMCID: PMC9138868 DOI: 10.3390/biom12050600] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/24/2022] Open
Abstract
Hsp90 (Heat Shock Protein 90) is an ATP (Adenosine triphosphate) molecular chaperone responsible for the activation and maturation of client proteins. The mechanism by which Hsp90 achieves such activation, involving structurally diverse client proteins, has remained enigmatic. However, recent advances using structural techniques, together with advances in biochemical studies, have not only defined the chaperone cycle but have shed light on its mechanism of action. Hsp90 hydrolysis of ATP by each protomer may not be simultaneous and may be dependent on the specific client protein and co-chaperone complex involved. Surprisingly, Hsp90 appears to remodel client proteins, acting as a means by which the structure of the client protein is modified to allow its subsequent refolding to an active state, in the case of kinases, or by making the client protein competent for hormone binding, as in the case of the GR (glucocorticoid receptor). This review looks at selected examples of client proteins, such as CDK4 (cyclin-dependent kinase 4) and GR, which are activated according to the so-called ‘remodelling hypothesis’ for their activation. A detailed description of these activation mechanisms is paramount to understanding how Hsp90-associated diseases develop.
Collapse
|
21
|
Zhao S, Tang X, Miao Z, Chen Y, Cao J, Song T, You D, Zhong Y, Lin Z, Wang D, Shi Z, Tang X, Wang D, Chen S, Wang L, Gu A, Chen F, Xie L, Huang Z, Wang H, Ji Y. Hsp90 S-nitrosylation at Cys521, as a conformational switch, modulates cycling of Hsp90-AHA1-CDC37 chaperone machine to aggravate atherosclerosis. Redox Biol 2022; 52:102290. [PMID: 35334246 PMCID: PMC8942817 DOI: 10.1016/j.redox.2022.102290] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
Endothelial dysfunction is the initial process of atherosclerosis. Heat shock protein 90 (Hsp90), as a molecular chaperone, plays a crucial role in various cardiovascular diseases. Hsp90 function is regulated by S-nitrosylation (SNO). However, the precise role of SNO-Hsp90 in endothelial dysfunction during atherosclerosis remains unclear. We here identified Hsp90 as a highly S-nitrosylated target in endothelial cells (ECs) by biotin switch assay combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The elevation of SNO-Hsp90 was observed in atherosclerotic human and rodent aortas as well as in oxidized LDL (oxLDL)-treated ECs. Inhibition of inducible nitric oxide synthase (iNOS) or transfection with Hsp90 cysteine 521 (Cys521) mutation plasmid decreased the level of SNO-Hsp90 in oxLDL-cultured ECs. Coimmunoprecipitation and proximity ligation assay demonstrated that SNO-Hsp90 at Cys521 suppressed the interaction between Hsp90 and activator of Hsp90 ATPase activity 1 (AHA1), but promoted the association of Hsp90 and cell division cycle 37 (CDC37). Hsp90 Cys521 mutation increased endothelial nitric oxide synthase (eNOS) activity and inhibited nuclear factor kappa-B (NF-κB) signaling, thereby increasing nitric oxide (NO) bioavailability and alleviating endothelial adhesion, inflammation and oxidative stress in oxLDL-treated ECs. Also, administration of endothelial-specific adeno-associated viruses of Cys521-mutated Hsp90 significantly mitigated vascular oxidative stress, macrophage infiltration and atherosclerosis lesion areas in high fat diet-fed ApoE-/- mice. In conclusion, SNO-Hsp90 at Cys521, that serves as a conformational switch, disrupts Hsp90/AHA1 interaction but promotes recruitment of CDC37 to exacerbate atherosclerosis. Hsp90 S-nitrosylation at Cys521 acts as a conformational switch to modulate Hsp90/AHA1 and Hsp90/CDC37 interaction. SNO-Hsp90 induces endothelial adhesion, inflammation and oxidative stress. SNO-Hsp90 mediates endothelial dysfunction to exacerbate atherosclerosis.
Collapse
|
22
|
Giannoulis A, Feintuch A, Unger T, Amir S, Goldfarb D. Monitoring the Conformation of the Sba1/Hsp90 Complex in the Presence of Nucleotides with Mn(II)-Based Double Electron-Electron Resonance. J Phys Chem Lett 2021; 12:12235-12241. [PMID: 34928609 PMCID: PMC8724802 DOI: 10.1021/acs.jpclett.1c03641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Hsp90 is an important molecular chaperone that facilitates the maturation of client proteins. It is a homodimer, and its function depends on a conformational cycle controlled by ATP hydrolysis and co-chaperones binding. We explored the binding of co-chaperone Sba1 to yeast Hsp90 (yHsp90) and the associated conformational change of yHsp90 in the pre- and post-ATP hydrolysis states by double electron-electron resonance (DEER) distance measurements. We substituted the Mg(II) cofactor at the ATPase site with paramagnetic Mn(II) and established the binding of Sba1 by measuring the distance between Mn(II) and a nitroxide (NO) spin-label on Sba1. Then, Mn(II)-NO DEER measurements on yHsp90 labeled with NO at the N-terminal domain detected the shift toward the closed conformation for both hydrolysis states. Finally, Mn(II)-Mn(II) DEER showed that Sba1 induced a closed conformation different from those with just bound Mn(II)·nucleotides. Our results provide structural experimental evidence for the binding of Sba1 tuning the closed conformation of yHsp90.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Akiva Feintuch
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Tamar Unger
- Structural
Proteomics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shiran Amir
- Structural
Proteomics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniella Goldfarb
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
23
|
Two-colour single-molecule photoinduced electron transfer fluorescence imaging microscopy of chaperone dynamics. Nat Commun 2021; 12:6964. [PMID: 34845214 PMCID: PMC8630005 DOI: 10.1038/s41467-021-27286-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
Many proteins are molecular machines, whose function is dependent on multiple conformational changes that are initiated and tightly controlled through biochemical stimuli. Their mechanistic understanding calls for spectroscopy that can probe simultaneously such structural coordinates. Here we present two-colour fluorescence microscopy in combination with photoinduced electron transfer (PET) probes as a method that simultaneously detects two structural coordinates in single protein molecules, one colour per coordinate. This contrasts with the commonly applied resonance energy transfer (FRET) technique that requires two colours per coordinate. We demonstrate the technique by directly and simultaneously observing three critical structural changes within the Hsp90 molecular chaperone machinery. Our results reveal synchronicity of conformational motions at remote sites during ATPase-driven closure of the Hsp90 molecular clamp, providing evidence for a cooperativity mechanism in the chaperone’s catalytic cycle. Single-molecule PET fluorescence microscopy opens up avenues in the multi-dimensional exploration of protein dynamics and allosteric mechanisms. Revealing mechanisms of complex protein machines requires simultaneous exploration of multiple structural coordinates. Here the authors report two-colour fluorescence microscopy combined with photoinduced electron transfer probes to simultaneously detect two structural coordinates in single protein molecules.
Collapse
|
24
|
The Pathophysiological Role of Heat Shock Response in Autoimmunity: A Literature Review. Cells 2021; 10:cells10102626. [PMID: 34685607 PMCID: PMC8533860 DOI: 10.3390/cells10102626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Within the last two decades, there has been increasing evidence that heat-shock proteins can have a differential influence on the immune system. They can either provoke or ameliorate immune responses. This review focuses on outlining the stimulatory as well as the inhibitory effects of heat-shock proteins 27, 40, 70, 65, 60, and 90 in experimental and clinical autoimmune settings.
Collapse
|
25
|
Civera M, Moroni E, Sorrentino L, Vasile F, Sattin S. Chemical and Biophysical Approaches to Allosteric Modulation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Monica Civera
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Elisabetta Moroni
- Istituto di Scienze e Tecnologie Chimiche Giulio Natta, SCITEC Via Mario Bianco 9 20131 Milan Italy
| | - Luca Sorrentino
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Francesca Vasile
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Sara Sattin
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
26
|
Discovery of pseudolaric acid A as a new Hsp90 inhibitor uncovers its potential anticancer mechanism. Bioorg Chem 2021; 112:104963. [PMID: 33991836 DOI: 10.1016/j.bioorg.2021.104963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/22/2022]
Abstract
Pseudolaric acid A (PAA), one of the main bioactive ingredients in traditional medicine Pseudolarix cortex, exhibits remarkable anticancer activities. Yet its mechanism of action and molecular target have not been investigated and remain unclear. In this work, mechanistic study showed that PAA induced cell cycle arrest at G2/M phase and promoted cell death through caspase-8/caspase-3 pathway, demonstrating potent antiproliferation and anticancer activities. PAA was discovered to be a new Hsp90 inhibitor and multiple biophysical experiments confirmed that PAA directly bind to Hsp90. Active PAA-probe was designed, synthesized and biological evaluated. It was subsequently employed to verify the cellular interaction with Hsp90 in HeLa cells through photoaffinity labeling approach. Furthermore, NMR experiments showed that N-terminal domain of Hsp90 and essential groups in PAA are important for the protein-inhibitor recognition. Structure-activity relationship studies revealed the correlation between its Hsp90 inhibitory activity with anticancer activity. This work proposed a potential mechanism involved with the anticancer activity of PAA and will improve the appreciation of PAA as a potential cancer therapy candidate.
Collapse
|
27
|
Wolf S, Sohmen B, Hellenkamp B, Thurn J, Stock G, Hugel T. Hierarchical dynamics in allostery following ATP hydrolysis monitored by single molecule FRET measurements and MD simulations. Chem Sci 2021; 12:3350-3359. [PMID: 34164105 PMCID: PMC8179424 DOI: 10.1039/d0sc06134d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
We report on a study that combines advanced fluorescence methods with molecular dynamics (MD) simulations to cover timescales from nanoseconds to milliseconds for a large protein. This allows us to delineate how ATP hydrolysis in a protein causes allosteric changes at a distant protein binding site, using the chaperone Hsp90 as test system. The allosteric process occurs via hierarchical dynamics involving timescales from nano- to milliseconds and length scales from Ångstroms to several nanometers. We find that hydrolysis of one ATP is coupled to a conformational change of Arg380, which in turn passes structural information via the large M-domain α-helix to the whole protein. The resulting structural asymmetry in Hsp90 leads to the collapse of a central folding substrate binding site, causing the formation of a novel collapsed state (closed state B) that we characterise structurally. We presume that similar hierarchical mechanisms are fundamental for information transfer induced by ATP hydrolysis through many other proteins.
Collapse
Affiliation(s)
- Steffen Wolf
- Biomolecular Dynamics, Institute of Physics, University of Freiburg Freiburg Germany +49 761 203 5883 +49 761 203 5913
| | - Benedikt Sohmen
- Institute of Physical Chemistry, University of Freiburg Freiburg Germany +49 761 203 6192
| | - Björn Hellenkamp
- Engineering and Applied Sciences, Columbia University New York USA
| | - Johann Thurn
- Institute of Physical Chemistry, University of Freiburg Freiburg Germany +49 761 203 6192
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, University of Freiburg Freiburg Germany +49 761 203 5883 +49 761 203 5913
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg Freiburg Germany +49 761 203 6192
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg Freiburg Germany
| |
Collapse
|
28
|
Ferraro M, Moroni E, Ippoliti E, Rinaldi S, Sanchez-Martin C, Rasola A, Pavarino LF, Colombo G. Machine Learning of Allosteric Effects: The Analysis of Ligand-Induced Dynamics to Predict Functional Effects in TRAP1. J Phys Chem B 2020; 125:101-114. [PMID: 33369425 PMCID: PMC8016192 DOI: 10.1021/acs.jpcb.0c09742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Allosteric
molecules provide a powerful means to modulate protein
function. However, the effect of such ligands on distal orthosteric
sites cannot be easily described by classical docking methods. Here,
we applied machine learning (ML) approaches to expose the links between
local dynamic patterns and different degrees of allosteric inhibition
of the ATPase function in the molecular chaperone TRAP1. We focused
on 11 novel allosteric modulators with similar affinities to the target
but with inhibitory efficacy between the 26.3 and 76%. Using a set
of experimentally related local descriptors, ML enabled us to connect
the molecular dynamics (MD) accessible to ligand-bound (perturbed)
and unbound (unperturbed) systems to the degree of ATPase allosteric
inhibition. The ML analysis of the comparative perturbed ensembles
revealed a redistribution of dynamic states in the inhibitor-bound
versus inhibitor-free systems following allosteric binding. Linear
regression models were built to quantify the percentage of experimental
variance explained by the predicted inhibitor-bound TRAP1 states.
Our strategy provides a comparative MD–ML framework to infer
allosteric ligand functionality. Alleviating the time scale issues
which prevent the routine use of MD, a combination of MD and ML represents
a promising strategy to support in silico mechanistic
studies and drug design.
Collapse
Affiliation(s)
- Mariarosaria Ferraro
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC, Via Mario Bianco 9, 20131 Milano, Italy
| | - Elisabetta Moroni
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC, Via Mario Bianco 9, 20131 Milano, Italy
| | - Emiliano Ippoliti
- Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany.,JARA-HPC, Forschungszentrum Jülich, D-54245 Jülich, Germany
| | - Silvia Rinaldi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC, Via Mario Bianco 9, 20131 Milano, Italy
| | - Carlos Sanchez-Martin
- Dipartimento di Scienze Biomediche, Università di Padova, viale G. Colombo 3, 35131 Padova, Italy
| | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, viale G. Colombo 3, 35131 Padova, Italy
| | - Luca F Pavarino
- Dipartimento di Matematica "F. Casorati", Università di Pavia, Via Ferrata 5, 27100 Pavia Italy
| | - Giorgio Colombo
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC, Via Mario Bianco 9, 20131 Milano, Italy.,Dipartimento di Chimica, Università di Pavia, via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
29
|
Visualizing the Dynamics of a Protein Folding Machinery: The Mechanism of Asymmetric ATP Processing in Hsp90 and its Implications for Client Remodelling. J Mol Biol 2020; 433:166728. [PMID: 33275968 DOI: 10.1016/j.jmb.2020.166728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 01/22/2023]
Abstract
The Hsp90 chaperone system interacts with a wide spectrum of client proteins, forming variable and dynamic multiprotein complexes that involve the intervention of cochaperone partners. Recent results suggest that the role of Hsp90 complexes is to establish interactions that suppress unwanted client activities, allow clients to be protected from degradation and respond to biochemical signals. Cryo-electron microscopy (cryoEM) provided the first key molecular picture of Hsp90 in complex with a kinase, Cdk4, and a cochaperone, Cdc37. Here, we use a combination of molecular dynamics (MD) simulations and advanced comparative analysis methods to elucidate key aspects of the functional dynamics of the complex, with different nucleotides bound at the N-terminal Domain of Hsp90. The results reveal that nucleotide-dependent structural modulations reverberate in a striking asymmetry of the dynamics of Hsp90 and identify specific patterns of long-range coordination between the nucleotide binding site, the client binding pocket, the cochaperone and the client. Our model establishes a direct atomic-resolution cross-talk between the ATP-binding site, the client region that is to be remodeled and the surfaces of the Cdc37-cochaperone.
Collapse
|
30
|
Liutkute M, Maiti M, Samatova E, Enderlein J, Rodnina MV. Gradual compaction of the nascent peptide during cotranslational folding on the ribosome. eLife 2020; 9:60895. [PMID: 33112737 PMCID: PMC7593090 DOI: 10.7554/elife.60895] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
Nascent polypeptides begin to fold in the constrained space of the ribosomal peptide exit tunnel. Here we use force-profile analysis (FPA) and photo-induced energy-transfer fluorescence correlation spectroscopy (PET-FCS) to show how a small α-helical domain, the N-terminal domain of HemK, folds cotranslationally. Compaction starts vectorially as soon as the first α-helical segments are synthesized. As nascent chain grows, emerging helical segments dock onto each other and continue to rearrange at the vicinity of the ribosome. Inside or in the proximity of the ribosome, the nascent peptide undergoes structural fluctuations on the µs time scale. The fluctuations slow down as the domain moves away from the ribosome. Mutations that destabilize the packing of the domain's hydrophobic core have little effect on folding within the exit tunnel, but abolish the final domain stabilization. The results show the power of FPA and PET-FCS in solving the trajectory of cotranslational protein folding and in characterizing the dynamic properties of folding intermediates.
Collapse
Affiliation(s)
- Marija Liutkute
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Manisankar Maiti
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August University, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
31
|
Reidy M, Masison DC. Mutations in the Hsp90 N Domain Identify a Site that Controls Dimer Opening and Expand Human Hsp90α Function in Yeast. J Mol Biol 2020; 432:4673-4689. [PMID: 32565117 PMCID: PMC7437358 DOI: 10.1016/j.jmb.2020.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/27/2020] [Accepted: 06/13/2020] [Indexed: 11/21/2022]
Abstract
Hsp90 is a highly conserved molecular chaperone important for the activity of many client proteins. Hsp90 has an N-terminal ATPase domain (N), a middle domain (M) that interacts with clients and a C-terminal dimerization domain (C). "Closing" of dimers around clients is regulated by ATP binding, co-chaperones, and post-translational modifications. ATP hydrolysis coincides with release of mature client and resetting the reaction cycle. Humans have two Hsp90s: hHsp90α and hHsp90β. Although 85% identical, hHsp90β supports Hsp90 function in yeast much better than hHsp90α. Determining the basis of this difference would provide important insight into functional specificity of seemingly redundant Hsp90s, and the evolution of eukaryotic Hsp90 systems and clientele. Here, we found host co-chaperones Sba1, Cpr6 and Cpr7 inhibited hHsp90α function in yeast, and we identified mutations clustering in the N domain that considerably improved hHsp90α function in yeast. The strongest of these rescuer mutations accelerated nucleotide-dependent lid closing, N-M domain docking, and ATPase. It also disrupted binding to Sba1, which prolongs the closed state, and promoted N-M undocking and lid opening. Our data suggest the rescuer mutations improve function of hHsp90α in yeast by accelerating return to the open state. Our findings imply hHsp90α occupies the closed state too long to function effectively in yeast, and define an evolutionarily conserved region of the N domain involved in resetting the Hsp90 reaction cycle.
Collapse
Affiliation(s)
- Michael Reidy
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr, Room 324, Bethesda, MD 20892, USA.
| | - Daniel C Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr, Room 324, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Schmid S, Hugel T. Controlling protein function by fine-tuning conformational flexibility. eLife 2020; 9:57180. [PMID: 32697684 PMCID: PMC7375816 DOI: 10.7554/elife.57180] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/28/2020] [Indexed: 12/28/2022] Open
Abstract
In a living cell, protein function is regulated in several ways, including post-translational modifications (PTMs), protein-protein interaction, or by the global environment (e.g. crowding or phase separation). While site-specific PTMs act very locally on the protein, specific protein interactions typically affect larger (sub-)domains, and global changes affect the whole protein non-specifically. Herein, we directly observe protein regulation under three different degrees of localization, and present the effects on the Hsp90 chaperone system at the levels of conformational steady states, kinetics and protein function. Interestingly using single-molecule FRET, we find that similar functional and conformational steady states are caused by completely different underlying kinetics. We disentangle specific and non-specific effects that control Hsp90’s ATPase function, which has remained a puzzle up to now. Lastly, we introduce a new mechanistic concept: functional stimulation through conformational confinement. Our results demonstrate how cellular protein regulation works by fine-tuning the conformational state space of proteins. Proteins play a wide variety of roles in the cell and interact with many other molecules. The behavior of proteins depends on their structure; yet, proteins are often flexible and will change shape, much like a tree in the wind. Nevertheless, for some of the activities that it performs, a protein must adopt one specific shape. Therefore, the likelihood that the protein will take on this specific shape directly determines how efficiently that protein can perform a specific job. The shape of a protein can be regulated by changes at several levels; these could include modifying one of the amino acid building blocks that make up that protein, binding to another protein, or by placing the protein in a part of the cell that is crowded with other large molecules. Schmid and Hugel wanted to understand how these three different types of regulation affect the structure of a protein and how they relate to its activities. The protein Hsp90 was used as a test case. It typically exists with two copies of the protein bound together, either in a parallel or a V-shape. Hsp90 plays several important roles in metabolism and can break down molecules of ATP, the so-called energy currency of the cell. All three types of regulation favored the Hsp90 pairs taking the parallel structure and increased its breakdown of ATP. The results suggest that the Hsp90 pair has a flexible structure, and that reducing this flexibility can improve Hsp90’s efficiency in carrying out its role. It was particularly unexpected that the large-scale, unspecific effect of placing the protein in a crowded environment could have such similar results to a small-scale, precise change of a single amino acid within the protein. While all three forms of regulation help to stabilize the parallel structure for Hsp90, they do this through different mechanisms, which influence the speed and the way that the protein transitions between the two structures. Schmid and Hugel believe that these results offer a new perspective on how diversely the shape and function of proteins is controlled at the molecular level, which could have wider implications for medical diagnostics and treatment.
Collapse
Affiliation(s)
- Sonja Schmid
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany.,Signalling research centers BIOSS and CIBSS, Albert Ludwigs University, Freiburg, Germany
| |
Collapse
|
33
|
Rashid S, Lee BL, Wajda B, Spyracopoulos L. Nucleotide Binding and Active Site Gate Dynamics for the Hsp90 Chaperone ATPase Domain from Benchtop and High Field 19F NMR Spectroscopy. J Phys Chem B 2020; 124:2984-2993. [PMID: 32212608 DOI: 10.1021/acs.jpcb.0c00626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein turnover in cells is regulated by the ATP dependent activity of the Hsp90 chaperone. In concert with accessory proteins, ATP hydrolysis drives the obligate Hsp90 dimer through a cycle between open and closed states that is critical for assisting the folding and stability of hundreds of proteins. Cycling is initiated by ATP binding to the ATPase domain, with the chaperone and the active site gates in the dimer in open states. The chaperone then adopts a short-lived, ATP bound closed state with a closed active site gate. The structural and dynamic changes induced in the ATPase domain and active site gate upon nucleotide binding, and their impact on dimer closing are not well understood. We site-specifically 19F-labeled the ATPase domain at the active site gate to enable benchtop and high field 19F NMR spectroscopic studies. Combined with MD simulations, this allowed accurate characterization of pico- to nanosecond time scale motions of the active site gate, as well as slower micro- to millisecond time scale processes resulting from nucleotide binding. ATP binding induces increased flexibility at one of the hinges of the active site gate, a necessary prelude to release of the second hinge and eventual gate closure in the intact chaperone.
Collapse
Affiliation(s)
- Suad Rashid
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Brian L Lee
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Benjamin Wajda
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
34
|
Sanchez-Martin C, Moroni E, Ferraro M, Laquatra C, Cannino G, Masgras I, Negro A, Quadrelli P, Rasola A, Colombo G. Rational Design of Allosteric and Selective Inhibitors of the Molecular Chaperone TRAP1. Cell Rep 2020; 31:107531. [DOI: 10.1016/j.celrep.2020.107531] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/28/2020] [Accepted: 03/27/2020] [Indexed: 01/06/2023] Open
|
35
|
LaPointe P, Mercier R, Wolmarans A. Aha-type co-chaperones: the alpha or the omega of the Hsp90 ATPase cycle? Biol Chem 2020; 401:423-434. [DOI: 10.1515/hsz-2019-0341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/27/2019] [Indexed: 11/15/2022]
Abstract
AbstractHeat shock protein 90 (Hsp90) is a dimeric molecular chaperone that plays an essential role in cellular homeostasis. It functions in the context of a structurally dynamic ATP-dependent cycle to promote conformational changes in its clientele to aid stability, maturation, and activation. The client activation cycle is tightly regulated by a cohort of co-chaperone proteins that display specific binding preferences for certain conformations of Hsp90, guiding Hsp90 through its functional ATPase cycle. Aha-type co-chaperones are well-known to robustly stimulate the ATPase activity of Hsp90 but other roles in regulating the functional cycle are being revealed. In this review, we summarize the work done on the Aha-type co-chaperones since the 1990s and highlight recent discoveries with respect to the complexity of Hsp90 cycle regulation.
Collapse
Affiliation(s)
- Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - Annemarie Wolmarans
- Department of Biology, The King’s University, Edmonton T6B 2H3, Alberta, Canada
| |
Collapse
|
36
|
Jung S, Yoon NG, Yang S, Kim D, Lee WS, Hong KB, Lee C, Kang BH, Lee JH, Kang S. Discovery of 2-((4-resorcinolyl)-5-aryl-1,2,3-triazol-1-yl)acetates as potent Hsp90 inhibitors with selectivity over TRAP1. Bioorg Med Chem Lett 2020; 30:126809. [DOI: 10.1016/j.bmcl.2019.126809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
|
37
|
Two closed ATP- and ADP-dependent conformations in yeast Hsp90 chaperone detected by Mn(II) EPR spectroscopic techniques. Proc Natl Acad Sci U S A 2019; 117:395-404. [PMID: 31862713 DOI: 10.1073/pnas.1916030116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hsp90 plays a central role in cell homeostasis by assisting folding and maturation of a large variety of clients. It is a homo-dimer, which functions via hydrolysis of ATP-coupled to conformational changes. Hsp90's conformational cycle in the absence of cochaperones is currently postulated as apo-Hsp90 being an ensemble of "open"/"closed" conformations. Upon ATP binding, Hsp90 adopts an active ATP-bound closed conformation where the N-terminal domains, which comprise the ATP binding site, are in close contact. However, there is no consensus regarding the conformation of the ADP-bound Hsp90, which is considered important for client release. In this work, we tracked the conformational states of yeast Hsp90 at various stages of ATP hydrolysis in frozen solutions employing electron paramagnetic resonance (EPR) techniques, particularly double electron-electron resonance (DEER) distance measurements. Using rigid Gd(III) spin labels, we found the C domains to be dimerized with same distance distribution at all hydrolysis states. Then, we substituted the ATPase Mg(II) cofactor with paramagnetic Mn(II) and followed the hydrolysis state using hyperfine spectroscopy and measured the inter-N-domain distance distributions via Mn(II)-Mn(II) DEER. The point character of the Mn(II) spin label allowed us resolve 2 different closed states: The ATP-bound (prehydrolysis) characterized by a distance distribution having a maximum of 4.3 nm, which broadened and shortened, shifting the mean to 3.8 nm at the ADP-bound state (posthydrolysis). This provides experimental evidence to a second closed conformational state of Hsp90 in solution, referred to as "compact." Finally, the so-called high-energy state, trapped by addition of vanadate, was found structurally similar to the posthydrolysis state.
Collapse
|
38
|
Heiby JC, Goretzki B, Johnson CM, Hellmich UA, Neuweiler H. Methionine in a protein hydrophobic core drives tight interactions required for assembly of spider silk. Nat Commun 2019; 10:4378. [PMID: 31558722 PMCID: PMC6763431 DOI: 10.1038/s41467-019-12365-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/05/2019] [Indexed: 01/21/2023] Open
Abstract
Web spiders connect silk proteins, so-called spidroins, into fibers of extraordinary toughness. The spidroin N-terminal domain (NTD) plays a pivotal role in this process: it polymerizes spidroins through a complex mechanism of dimerization. Here we analyze sequences of spidroin NTDs and find an unusually high content of the amino acid methionine. We simultaneously mutate all methionines present in the hydrophobic core of a spidroin NTD from a nursery web spider’s dragline silk to leucine. The mutated NTD is strongly stabilized and folds at the theoretical speed limit. The structure of the mutant is preserved, yet its ability to dimerize is substantially impaired. We find that side chains of core methionines serve to mobilize the fold, which can thereby access various conformations and adapt the association interface for tight binding. Methionine in a hydrophobic core equips a protein with the capacity to dynamically change shape and thus to optimize its function. Spider silk is of interest in material science research. Here the authors show that the tight binding of a spider silk protein domain relies on the amino acid methionine, which is abundant in the domain core where it facilitates dynamic shape adaption of the binding interface.
Collapse
Affiliation(s)
- Julia C Heiby
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Benedikt Goretzki
- Institute for Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim Becherweg 30, 55128, Mainz, Germany.,Center for Biomolecular Magnetic Resonance, Goethe-University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Christopher M Johnson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ute A Hellmich
- Institute for Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim Becherweg 30, 55128, Mainz, Germany. .,Center for Biomolecular Magnetic Resonance, Goethe-University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany.
| | - Hannes Neuweiler
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
39
|
Hsp90 middle domain phosphorylation initiates a complex conformational program to recruit the ATPase-stimulating cochaperone Aha1. Nat Commun 2019; 10:2574. [PMID: 31189925 PMCID: PMC6561935 DOI: 10.1038/s41467-019-10463-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/09/2019] [Indexed: 11/09/2022] Open
Abstract
Complex conformational dynamics are essential for function of the dimeric molecular chaperone heat shock protein 90 (Hsp90), including transient, ATP-biased N-domain dimerization that is necessary to attain ATPase competence. The intrinsic, but weak, ATP hydrolyzing activity of human Hsp90 is markedly enhanced by the co-chaperone Aha1. However, the cellular concentration of Aha1 is substoichiometric relative to Hsp90. Here we report that initial recruitment of this cochaperone to Hsp90 is markedly enhanced by phosphorylation of a highly conserved tyrosine (Y313 in Hsp90α) in the Hsp90 middle domain. Importantly, phosphomimetic mutation of Y313 promotes formation of a transient complex in which both N- and C-domains of Aha1 bind to distinct surfaces of the middle domains of opposing Hsp90 protomers prior to ATP-directed N-domain dimerization. Thus, Y313 represents a phosphorylation-sensitive conformational switch, engaged early after client loading, that affects both local and long-range conformational dynamics to facilitate initial recruitment of Aha1 to Hsp90.
Collapse
|
40
|
Goluguri RR, Sen S, Udgaonkar J. Microsecond sub-domain motions and the folding and misfolding of the mouse prion protein. eLife 2019; 8:e44766. [PMID: 31025940 PMCID: PMC6516828 DOI: 10.7554/elife.44766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/25/2019] [Indexed: 12/29/2022] Open
Abstract
Protein aggregation appears to originate from partially unfolded conformations that are sampled through stochastic fluctuations of the native protein. It has been a challenge to characterize these fluctuations, under native like conditions. Here, the conformational dynamics of the full-length (23-231) mouse prion protein were studied under native conditions, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS). The slowest fluctuations could be associated with the folding of the unfolded state to an intermediate state, by the use of microsecond mixing experiments. The two faster fluctuations observed by PET-FCS, could be attributed to fluctuations within the native state ensemble. The addition of salt, which is known to initiate the aggregation of the protein, resulted in an enhancement in the time scale of fluctuations in the core of the protein. The results indicate the importance of native state dynamics in initiating the aggregation of proteins.
Collapse
Affiliation(s)
- Rama Reddy Goluguri
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Sreemantee Sen
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Jayant Udgaonkar
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
- Indian Institute of Science Education and ResearchPuneIndia
| |
Collapse
|
41
|
Lee BL, Rashid S, Wajda B, Wolmarans A, LaPointe P, Spyracopoulos L. The Hsp90 Chaperone: 1H and 19F Dynamic Nuclear Magnetic Resonance Spectroscopy Reveals a Perfect Enzyme. Biochemistry 2019; 58:1869-1877. [PMID: 30869872 DOI: 10.1021/acs.biochem.9b00144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hsp90 is a crucial chaperone whose ATPase activity is fundamental for stabilizing and activating a diverse array of client proteins. Binding and hydrolysis of ATP by dimeric Hsp90 drive a conformational cycle characterized by fluctuations between a compact, N- and C-terminally dimerized catalytically competent closed state and a less compact open state that is largely C-terminally dimerized. We used 19F and 1H dynamic nuclear magnetic resonance (NMR) spectroscopy to study the opening and closing kinetics of Hsp90 and to determine the kcat for ATP hydrolysis. We derived a set of coupled ordinary differential equations describing the rate laws for the Hsp90 kinetic cycle and used these to analyze the NMR data. We found that the kinetics of closing and opening for the chaperone are slow and that the lower limit for kcat of ATP hydrolysis is ∼1 s-1. Our results show that the chemical step is optimized and that Hsp90 is indeed a "perfect" enzyme.
Collapse
Affiliation(s)
- Brian L Lee
- Department of Biochemistry , University of Alberta , Edmonton , Alberta T6G 2H7 , Canada
| | - Suad Rashid
- Department of Biochemistry , University of Alberta , Edmonton , Alberta T6G 2H7 , Canada
| | - Benjamin Wajda
- Department of Biochemistry , University of Alberta , Edmonton , Alberta T6G 2H7 , Canada
| | - Annemarie Wolmarans
- Department of Cell Biology , University of Alberta , Edmonton , Alberta T6G 2H7 , Canada
| | - Paul LaPointe
- Department of Cell Biology , University of Alberta , Edmonton , Alberta T6G 2H7 , Canada
| | - Leo Spyracopoulos
- Department of Biochemistry , University of Alberta , Edmonton , Alberta T6G 2H7 , Canada
| |
Collapse
|
42
|
Mercier R, Wolmarans A, Schubert J, Neuweiler H, Johnson JL, LaPointe P. The conserved NxNNWHW motif in Aha-type co-chaperones modulates the kinetics of Hsp90 ATPase stimulation. Nat Commun 2019; 10:1273. [PMID: 30894538 PMCID: PMC6426937 DOI: 10.1038/s41467-019-09299-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 03/01/2019] [Indexed: 01/19/2023] Open
Abstract
Hsp90 is a dimeric molecular chaperone that is essential for the folding and activation of hundreds of client proteins. Co-chaperone proteins regulate the ATP-driven Hsp90 client activation cycle. Aha-type co-chaperones are the most potent stimulators of the Hsp90 ATPase activity but the relationship between ATPase regulation and in vivo activity is poorly understood. We report here that the most strongly conserved region of Aha-type co-chaperones, the N terminal NxNNWHW motif, modulates the apparent affinity of Hsp90 for nucleotide substrates. The ability of yeast Aha-type co-chaperones to act in vivo is ablated when the N terminal NxNNWHW motif is removed. This work suggests that nucleotide exchange during the Hsp90 functional cycle may be more important than rate of catalysis.
Collapse
Affiliation(s)
- Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Annemarie Wolmarans
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Jonathan Schubert
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, 97074, Germany
| | - Hannes Neuweiler
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, 97074, Germany
| | - Jill L Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844, USA
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
43
|
Modulation of Human Hsp90α Conformational Dynamics by Allosteric Ligand Interaction at the C-Terminal Domain. Sci Rep 2019; 9:1600. [PMID: 30733455 PMCID: PMC6367426 DOI: 10.1038/s41598-018-35835-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Recent years have seen heat shock protein 90 kDa (Hsp90) attract significant interest as a viable drug target, particularly for cancer. To date, designed inhibitors that target the ATPase domain demonstrate potent anti-proliferative effects, but have failed clinical trials due to high levels of associated toxicity. To circumvent this, the focus has shifted away from the ATPase domain. One option involves modulation of the protein through allosteric activation/inhibition. Here, we propose a novel approach: we use previously obtained information via residue perturbation scanning coupled with dynamic residue network analysis to identify allosteric drug targeting sites for inhibitor docking. We probe the open conformation of human Hsp90α for druggable sites that overlap with these allosteric control elements, and identify three putative natural compound allosteric modulators: Cephalostatin 17, 20(29)-Lupene-3β-isoferulate and 3'-Bromorubrolide F. We assess the allosteric potential of these ligands by examining their effect on the conformational dynamics of the protein. We find evidence for the selective allosteric activation and inhibition of Hsp90's conformational transition toward the closed state in response to ligand binding and shed valuable insight to further the understanding of allosteric drug design and Hsp90's complex allosteric mechanism of action.
Collapse
|
44
|
Kokkonen P, Sykora J, Prokop Z, Ghose A, Bednar D, Amaro M, Beerens K, Bidmanova S, Slanska M, Brezovsky J, Damborsky J, Hof M. Molecular Gating of an Engineered Enzyme Captured in Real Time. J Am Chem Soc 2018; 140:17999-18008. [DOI: 10.1021/jacs.8b09848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Piia Kokkonen
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jan Sykora
- J. Heyrovsky Institute of Physical Chemistry of the ASCR, v. v. i., Dolejskova 3, 182 23 Prague 8, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Avisek Ghose
- J. Heyrovsky Institute of Physical Chemistry of the ASCR, v. v. i., Dolejskova 3, 182 23 Prague 8, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Mariana Amaro
- J. Heyrovsky Institute of Physical Chemistry of the ASCR, v. v. i., Dolejskova 3, 182 23 Prague 8, Czech Republic
| | - Koen Beerens
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Sarka Bidmanova
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Michaela Slanska
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martin Hof
- J. Heyrovsky Institute of Physical Chemistry of the ASCR, v. v. i., Dolejskova 3, 182 23 Prague 8, Czech Republic
| |
Collapse
|
45
|
Schmid S, Hugel T. Efficient use of single molecule time traces to resolve kinetic rates, models and uncertainties. J Chem Phys 2018; 148:123312. [PMID: 29604821 DOI: 10.1063/1.5006604] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Single molecule time traces reveal the time evolution of unsynchronized kinetic systems. Especially single molecule Förster resonance energy transfer (smFRET) provides access to enzymatically important time scales, combined with molecular distance resolution and minimal interference with the sample. Yet the kinetic analysis of smFRET time traces is complicated by experimental shortcomings-such as photo-bleaching and noise. Here we recapitulate the fundamental limits of single molecule fluorescence that render the classic, dwell-time based kinetic analysis unsuitable. In contrast, our Single Molecule Analysis of Complex Kinetic Sequences (SMACKS) considers every data point and combines the information of many short traces in one global kinetic rate model. We demonstrate the potential of SMACKS by resolving the small kinetic effects caused by different ionic strengths in the chaperone protein Hsp90. These results show an unexpected interrelation between conformational dynamics and ATPase activity in Hsp90.
Collapse
Affiliation(s)
- Sonja Schmid
- Institute of Physical Chemistry II, University of Freiburg, Albertstr. 23 a, 79104 Freiburg, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry II, University of Freiburg, Albertstr. 23 a, 79104 Freiburg, Germany
| |
Collapse
|
46
|
Wang Z, Guo LM, Wang Y, Zhou HK, Wang SC, Chen D, Huang JF, Xiong K. Inhibition of HSP90α protects cultured neurons from oxygen-glucose deprivation induced necroptosis by decreasing RIP3 expression. J Cell Physiol 2018; 233:4864-4884. [PMID: 29334122 DOI: 10.1002/jcp.26294] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/14/2017] [Indexed: 01/03/2023]
Abstract
Heat shock protein 90α (HSP90α) maintains cell stabilization and regulates cell death, respectively. Recent studies have shown that HSP90α is involved in receptor interacting protein 3 (RIP3)-mediated necroptosis in HT29 cells. It is known that oxygen and glucose deprivation (OGD) can induce necroptosis, which is regulated by RIP3 in neurons. However, it is still unclear whether HSP90α participates in the process of OGD-induced necroptosis in cultured neurons via the regulation of RIP3. Our study found that necroptosis occurs in primary cultured cortical neurons and PC-12 cells following exposure to OGD insult. Additionally, the expression of RIP3/p-RIP3, MLKL/p-MLKL, and the RIP1/RIP3 complex (necrosome) significantly increased following OGD, as measured through immunofluorescence (IF) staining, Western blotting (WB), and immunoprecipitation (IP) assay. Additionally, data from computer simulations and IP assays showed that HSP90α interacts with RIP3. In addition, HSP90α was overexpressed following OGD in cultured neurons, as measured through WB and IF staining. Inhibition of HSP90α in cultured neurons, using the specific inhibitor, geldanamycin (GA), and siRNA/shRNA of HSP90α, protected cultured neurons from necrosis. Our study showed that the inhibitor of HSP90α, GA, rescued cultured neurons not only by decreasing the expression of total RIP3/MLKL, but also by decreasing the expression of p-RIP3/p-MLKL and the RIP1/RIP3 necrosome. In this study, we reveal that inhibition of HSP90α protects primary cultured cortical neurons and PC-12 cells from OGD-induced necroptosis through the modulation of RIP3 expression.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Li-Min Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Hong-Kang Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Shu-Chao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ju-Fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
47
|
Otosu T, Yamaguchi S. Total Internal Reflection Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy. J Phys Chem B 2018; 122:5758-5764. [DOI: 10.1021/acs.jpcb.8b01176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| |
Collapse
|
48
|
Johnston CL, Marzano NR, van Oijen AM, Ecroyd H. Using Single-Molecule Approaches to Understand the Molecular Mechanisms of Heat-Shock Protein Chaperone Function. J Mol Biol 2018; 430:4525-4546. [PMID: 29787765 DOI: 10.1016/j.jmb.2018.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 02/01/2023]
Abstract
The heat-shock proteins (Hsp) are a family of molecular chaperones, which collectively form a network that is critical for the maintenance of protein homeostasis. Traditional ensemble-based measurements have provided a wealth of knowledge on the function of individual Hsps and the Hsp network; however, such techniques are limited in their ability to resolve the heterogeneous, dynamic and transient interactions that molecular chaperones make with their client proteins. Single-molecule techniques have emerged as a powerful tool to study dynamic biological systems, as they enable rare and transient populations to be identified that would usually be masked in ensemble measurements. Thus, single-molecule techniques are particularly amenable for the study of Hsps and have begun to be used to reveal novel mechanistic details of their function. In this review, we discuss the current understanding of the chaperone action of Hsps and how gaps in the field can be addressed using single-molecule methods. Specifically, this review focuses on the ATP-independent small Hsps and the broader Hsp network and describes how these dynamic systems are amenable to single-molecule techniques.
Collapse
Affiliation(s)
- Caitlin L Johnston
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Nicholas R Marzano
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Antoine M van Oijen
- School of Chemistry, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| | - Heath Ecroyd
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
49
|
Penkler DL, Atilgan C, Tastan Bishop Ö. Allosteric Modulation of Human Hsp90α Conformational Dynamics. J Chem Inf Model 2018; 58:383-404. [PMID: 29378140 DOI: 10.1021/acs.jcim.7b00630] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Central to Hsp90's biological function is its ability to interconvert between various conformational states. Drug targeting of Hsp90's regulatory mechanisms, including its modulation by cochaperone association, presents as an attractive therapeutic strategy for Hsp90 associated pathologies. In this study, we utilized homology modeling techniques to calculate full-length structures of human Hsp90α in closed and partially open conformations and used these structures as a basis for several molecular dynamics based analyses aimed at elucidating allosteric mechanisms and modulation sites in human Hsp90α. Atomistic simulations demonstrated that bound adenosine triphosphate (ATP) stabilizes the dimer by "tensing" each protomer, while adenosine diphosphate (ADP) and apo configurations "relax" the complex by increasing global flexibility, the former case resulting in a fully open "v-like" conformation. Dynamic residue network analysis revealed regions of the protein involved in intraprotein communication and identified several key communication hubs that correlate with known functional sites. Pairwise comparison of betweenness centrality, shortest path, and residue fluctuations revealed that a proportional relationship exists between the latter two measurables and an inverse relationship between these two and betweenness centrality. This analysis showed how protein flexibility, degree of compactness, and the distance cutoff used for network construction influence the correlations between these metrics. These findings are novel and suggest shortest path and betweenness centrality to be more relevant quantities to follow for detecting functional residues in proteins compared to residue fluctuations. Perturbation response scanning analysis identified several potential residue sites capable of modulating conformational change in favor of interstate conversion. For the ATP-bound open conformation, these sites were found to overlap with known Aha1 and client binding sites, demonstrating how naturally occurring forces associated with cofactor binding could allosterically modulate conformational dynamics.
Collapse
Affiliation(s)
- David L Penkler
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University , Grahamstown, 6140, South Africa
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University , Tuzla 34956, Istanbul, Turkey
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University , Grahamstown, 6140, South Africa
| |
Collapse
|
50
|
Czemeres J, Buse K, Verkhivker GM. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains. PLoS One 2017; 12:e0190267. [PMID: 29267381 PMCID: PMC5739471 DOI: 10.1371/journal.pone.0190267] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
A fundamental role of the Hsp90 and Cdc37 chaperones in mediating conformational development and activation of diverse protein kinase clients is essential in signal transduction. There has been increasing evidence that the Hsp90-Cdc37 system executes its chaperoning duties by recognizing conformational instability of kinase clients and modulating their folding landscapes. The recent cryo-electron microscopy structure of the Hsp90-Cdc37-Cdk4 kinase complex has provided a framework for dissecting regulatory principles underlying differentiation and recruitment of protein kinase clients to the chaperone machinery. In this work, we have combined atomistic simulations with protein stability and network-based rigidity decomposition analyses to characterize dynamic factors underlying allosteric mechanism of the chaperone-kinase cycle and identify regulatory hotspots that control client recognition. Through comprehensive characterization of conformational dynamics and systematic identification of stabilization centers in the unbound and client- bound Hsp90 forms, we have simulated key stages of the allosteric mechanism, in which Hsp90 binding can induce instability and partial unfolding of Cdk4 client. Conformational landscapes of the Hsp90 and Cdk4 structures suggested that client binding can trigger coordinated dynamic changes and induce global rigidification of the Hsp90 inter-domain regions that is coupled with a concomitant increase in conformational flexibility of the kinase client. This process is allosteric in nature and can involve reciprocal dynamic exchanges that exert global effect on stability of the Hsp90 dimer, while promoting client instability. The network-based rigidity analysis and emulation of thermal unfolding of the Cdk4-cyclin D complex and Hsp90-Cdc37-Cdk4 complex revealed weak spots of kinase instability that are present in the native Cdk4 structure and are targeted by the chaperone during client recruitment. Our findings suggested that this mechanism may be exploited by the Hsp90-Cdc37 chaperone to recruit and protect intrinsically dynamic kinase clients from degradation. The results of this investigation are discussed and interpreted in the context of diverse experimental data, offering new insights into mechanisms of chaperone regulation and binding.
Collapse
Affiliation(s)
- Josh Czemeres
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Kurt Buse
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|