1
|
Wiedermannová J, Babu R, Yuzenkova Y. Stochastic nature and physiological implications of 5'-NAD RNA cap in bacteria. Nucleic Acids Res 2024; 52:11838-11852. [PMID: 39325642 PMCID: PMC11514452 DOI: 10.1093/nar/gkae813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
RNA 5'-modification with NAD+/NADH (oxidized/reduced nicotinamide adenine dinucleotide) has been found in bacteria, eukaryotes and viruses. 5'-NAD is incorporated into RNA by RNA polymerases (RNAPs) during the initiation of synthesis. It is unknown (i) which factors and physiological conditions permit substantial NAD incorporation into RNA in vivo and (ii) how 5'-NAD impacts gene expression and the fate of RNA in bacteria. Here we show in Escherichia coli that RNA NADylation is stimulated by low cellular concentration of the competing substrate ATP, and by weakening ATP contacts with RNAP active site. Additionally, RNA NADylation may be influenced by DNA supercoiling. RNA NADylation does not interfere with posttranscriptional RNA processing by major ribonuclease RNase E. It does not impact the base-pairing between RNAI, the repressor of plasmid replication, and its antisense target, RNAII. Leaderless NADylated model mRNA cI-lacZ is recognized by the 70S ribosome and is translated with the same efficiency as triphosphorylated cI-lacZ mRNA. Translation exposes the 5'-NAD of this mRNA to de-capping by NudC enzyme. We suggest that NADylated mRNAs are rapidly degraded, consistent with their low abundance in published datasets. Furthermore, we observed that ppGpp inhibits NudC de-capping activity, contributing to the growth phase-dependency of NADylated RNA levels.
Collapse
Affiliation(s)
- Jana Wiedermannová
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Ravishankar Babu
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| |
Collapse
|
2
|
Mancini F, Cahova H. The Mysterious World of Non-Canonical Caps - What We Know and Why We Need New Sequencing Techniques. Chembiochem 2024:e202400604. [PMID: 39248054 DOI: 10.1002/cbic.202400604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
It was long believed that viral and eukaryotic mRNA molecules are capped at their 5' end solely by the N7-methylguanosine cap, which regulates various aspects of the RNA life cycle, from its biogenesis to its decay. However, the recent discovery of a variety of non-canonical RNA caps derived from metabolites and cofactors - such as NAD, FAD, CoA, UDP-glucose, UDP-N-acetylglucosamine, and dinucleoside polyphosphates - has expanded the known repertoire of RNA modifications. These non-canonical caps are found across all domains of life and can impact multiple aspects of RNA metabolism, including stability, translation initiation, and cellular stress responses. The study of these modifications has been facilitated by sophisticated methodologies such as liquid chromatography-mass spectrometry, which have unveiled their presence in both prokaryotic and eukaryotic organisms. The identification of these novel RNA caps highlights the need for advanced sequencing techniques to characterize the specific RNA types bearing these modifications and understand their roles in cellular processes. Unravelling the biological role of non-canonical RNA caps will provide insights into their contributions to gene expression, cellular adaptation, and evolutionary diversity. This review emphasizes the importance of these technological advancements in uncovering the complete spectrum of RNA modifications and their implications for living systems.
Collapse
Affiliation(s)
- Flaminia Mancini
- Chemical Biology of Nucleic Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, Prague 6, Czech Republic
- Charles University, Faculty of Science, Department of Cell Biology, Vinicna 7, Prague 2, Czech Republic
| | - Hana Cahova
- Chemical Biology of Nucleic Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, Prague 6, Czech Republic
| |
Collapse
|
3
|
Weber F, Motzkus NA, Brandl L, Möhler M, Alempijevic A, Jäschke A. Identification and in vitro characterization of UDP-GlcNAc-RNA cap-modifying and decapping enzymes. Nucleic Acids Res 2024; 52:5438-5450. [PMID: 38716860 PMCID: PMC11162767 DOI: 10.1093/nar/gkae353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024] Open
Abstract
In recent years, several noncanonical RNA caps derived from cofactors and metabolites have been identified. Purine-containing RNA caps have been extensively studied, with multiple decapping enzymes identified and efficient capture and sequencing protocols developed for nicotinamide adenine dinucleotide (NAD)-RNA, which allowed for a stepwise elucidation of capping functions. Despite being identified as an abundant noncanonical RNA-cap, UDP-sugar-capped RNA remains poorly understood, which is partly due to its complex in vitro preparation. Here, we describe a scalable synthesis of sugar-capped uridine-guanosine dinucleotides from readily available protected building blocks and their enzymatic conversion into several cell wall precursor-capped dinucleotides. We employed these capped dinucleotides in T7 RNA polymerase-catalyzed in vitro transcription reactions to efficiently generate RNAs capped with uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), its N-azidoacetyl derivative UDP-GlcNAz, and various cell wall precursors. We furthermore identified four enzymes capable of processing UDP-GlcNAc-capped RNA in vitro: MurA, MurB and MurC from Escherichia coli can sequentially modify the sugar-cap structure and were used to introduce a bioorthogonal, clickable moiety, and the human Nudix hydrolase Nudt5 was shown to efficiently decap UDP-GlcNAc-RNA. Our findings underscore the importance of efficient synthetic methods for capped model RNAs. Additionally, we provide useful enzymatic tools that could be utilized in the development and application of UDP-GlcNAc capture and sequencing protocols. Such protocols are essential for deepening our understanding of the widespread yet enigmatic GlcNAc modification of RNA and its physiological significance.
Collapse
Affiliation(s)
- Frederik Weber
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Nikolas Alexander Motzkus
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Leona Brandl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Marvin Möhler
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Andrijana Alempijevic
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| |
Collapse
|
4
|
Rathnayaka-Mudiyanselage IW, Nandana V, Schrader JM. Proteomic composition of eukaryotic and bacterial RNA decay condensates suggests convergent evolution. Curr Opin Microbiol 2024; 79:102467. [PMID: 38569418 PMCID: PMC11162941 DOI: 10.1016/j.mib.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Bacterial cells have a unique challenge to organize their cytoplasm without the use of membrane-bound organelles. Biomolecular condensates (henceforth BMCs) are a class of nonmembrane-bound organelles, which, through the physical process of phase separation, can form liquid-like droplets with proteins/nucleic acids. BMCs have been broadly characterized in eukaryotic cells, and BMCs have been recently identified in bacteria, with the first and best studied example being bacterial ribonucleoprotein bodies (BR-bodies). BR-bodies contain the RNA decay machinery and show functional parallels to eukaryotic P-bodies (PBs) and stress granules (SGs). Due to the finding that mRNA decay machinery is compartmentalized in BR-bodies and in eukaryotic PBs/SGs, we will explore the functional similarities in the proteins, which are known to enrich in these structures based on recent proteomic studies. Interestingly, despite the use of different mRNA decay and post-transcriptional regulatory machinery, this analysis has revealed evolutionary convergence in the classes of enriched enzymes in these structures.
Collapse
Affiliation(s)
- I W Rathnayaka-Mudiyanselage
- Wayne State University, Department of Biological Sciences, Detroit, MI, USA; Wayne State University, Department of Chemistry, Detroit, MI, USA
| | - V Nandana
- Wayne State University, Department of Biological Sciences, Detroit, MI, USA
| | - J M Schrader
- Wayne State University, Department of Biological Sciences, Detroit, MI, USA.
| |
Collapse
|
5
|
Pozhydaieva N, Wolfram-Schauerte M, Keuthen H, Höfer K. The enigmatic epitranscriptome of bacteriophages: putative RNA modifications in viral infections. Curr Opin Microbiol 2024; 77:102417. [PMID: 38217927 DOI: 10.1016/j.mib.2023.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/15/2024]
Abstract
RNA modifications play essential roles in modulating RNA function, stability, and fate across all kingdoms of life. The entirety of the RNA modifications within a cell is defined as the epitranscriptome. While eukaryotic RNA modifications are intensively studied, understanding bacterial RNA modifications remains limited, and knowledge about bacteriophage RNA modifications is almost nonexistent. In this review, we shed light on known mechanisms of bacterial RNA modifications and propose how this knowledge might be extended to bacteriophages. We build hypotheses on enzymes potentially responsible for regulating the epitranscriptome of bacteriophages and their host. This review highlights the exciting prospects of uncovering the unexplored field of bacteriophage epitranscriptomics and its potential role to shape bacteriophage-host interactions.
Collapse
Affiliation(s)
| | | | - Helene Keuthen
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katharina Höfer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
6
|
Helm M, Bohnsack MT, Carell T, Dalpke A, Entian KD, Ehrenhofer-Murray A, Ficner R, Hammann C, Höbartner C, Jäschke A, Jeltsch A, Kaiser S, Klassen R, Leidel SA, Marx A, Mörl M, Meier JC, Meister G, Rentmeister A, Rodnina M, Roignant JY, Schaffrath R, Stadler P, Stafforst T. Experience with German Research Consortia in the Field of Chemical Biology of Native Nucleic Acid Modifications. ACS Chem Biol 2023; 18:2441-2449. [PMID: 37962075 DOI: 10.1021/acschembio.3c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The chemical biology of native nucleic acid modifications has seen an intense upswing, first concerning DNA modifications in the field of epigenetics and then concerning RNA modifications in a field that was correspondingly rebaptized epitranscriptomics by analogy. The German Research Foundation (DFG) has funded several consortia with a scientific focus in these fields, strengthening the traditionally well-developed nucleic acid chemistry community and inciting it to team up with colleagues from the life sciences and data science to tackle interdisciplinary challenges. This Perspective focuses on the genesis, scientific outcome, and downstream impact of the DFG priority program SPP1784 and offers insight into how it fecundated further consortia in the field. Pertinent research was funded from mid-2015 to 2022, including an extension related to the coronavirus pandemic. Despite being a detriment to research activity in general, the pandemic has resulted in tremendously boosted interest in the field of RNA and RNA modifications as a consequence of their widespread and successful use in vaccination campaigns against SARS-CoV-2. Funded principal investigators published over 250 pertinent papers with a very substantial impact on the field. The program also helped to redirect numerous laboratories toward this dynamic field. Finally, SPP1784 spawned initiatives for several funded consortia that continue to drive the fields of nucleic acid modification.
Collapse
Affiliation(s)
- Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Alexander Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Karl-Dieter Entian
- Institute for Molecular Biosciences, Goethe-University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | | | - Ralf Ficner
- Institute for Microbiology and Genetics, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Christian Hammann
- Department of Medicine, HMU Health and Medical University, 14471 Potsdam, Germany
| | - Claudia Höbartner
- Institute for Organic Chemistry, Julius-Maximilians-University of Würzburg, 97074 Würzburg, Germany
| | - Andres Jäschke
- Institute for Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Stefanie Kaiser
- Institute for Pharmaceutical Chemistry, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Roland Klassen
- Institute for Biology - Microbiology, University of Kassel, 34132 Kassel, Germany
| | - Sebastian A Leidel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Andreas Marx
- Department of Chemistry - Organic/Cellular Chemistry, University of Constance, 78457 Constance, Germany
| | - Mario Mörl
- Institute of Biochemistry, University of Leipzig, 04103 Leipzig, Germany
| | - Jochen C Meier
- Department of Cell Physiology, Technical University of Braunschweig, 38106 Brunswick, Germany
| | - Gunter Meister
- Institute of Biochemistry, Genetics and Microbiology - Biochemistry I, University of Regensburg, 93053 Regensburg, Germany
| | - Andrea Rentmeister
- Institute for Biochemistry, Westphalian Wilhelms University Münster, 48149 Münster, Germany
| | - Marina Rodnina
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Jean-Yves Roignant
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Raffael Schaffrath
- Institute for Biology - Microbiology, University of Kassel, 34132 Kassel, Germany
| | - Peter Stadler
- Institute for Computer Science - Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Thorsten Stafforst
- Interfaculty Institute for Biochemistry, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
7
|
Gomes-Filho JV, Breuer R, Morales-Filloy HG, Pozhydaieva N, Borst A, Paczia N, Soppa J, Höfer K, Jäschke A, Randau L. Identification of NAD-RNA species and ADPR-RNA decapping in Archaea. Nat Commun 2023; 14:7597. [PMID: 37989750 PMCID: PMC10663502 DOI: 10.1038/s41467-023-43377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
NAD is a coenzyme central to metabolism that also serves as a 5'-terminal cap for bacterial and eukaryotic transcripts. Thermal degradation of NAD can generate nicotinamide and ADP-ribose (ADPR). Here, we use LC-MS/MS and NAD captureSeq to detect and identify NAD-RNAs in the thermophilic model archaeon Sulfolobus acidocaldarius and in the halophilic mesophile Haloferax volcanii. None of the four Nudix proteins of S. acidocaldarius catalyze NAD-RNA decapping in vitro, but one of the proteins (Saci_NudT5) promotes ADPR-RNA decapping. NAD-RNAs are converted into ADPR-RNAs, which we detect in S. acidocaldarius total RNA. Deletion of the gene encoding the 5'-3' exonuclease Saci-aCPSF2 leads to a 4.5-fold increase in NAD-RNA levels. We propose that the incorporation of NAD into RNA acts as a degradation marker for Saci-aCPSF2. In contrast, ADPR-RNA is processed by Saci_NudT5 into 5'-p-RNAs, providing another layer of regulation for RNA turnover in archaeal cells.
Collapse
Affiliation(s)
| | - Ruth Breuer
- Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | | | | | - Andreas Borst
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt am Main, Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jörg Soppa
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt am Main, Germany
| | - Katharina Höfer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Lennart Randau
- Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany.
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
8
|
Möhler M, Jäschke A. Future Perspectives for the Identification and Sequencing of Nicotinamide Adenine Dinucleotide-Capped RNAs. Acc Chem Res 2023; 56:3000-3009. [PMID: 37852615 PMCID: PMC10634297 DOI: 10.1021/acs.accounts.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Indexed: 10/20/2023]
Abstract
Ribonucleic acid (RNA) is composed primarily of four canonical building blocks. In addition, more than 170 modifications contribute to its stability and function. Metabolites like nicotinamide adenine dinucleotide (NAD) were found to function as 5'-cap structures of RNA, just like 7-methylguanosine (m7G). The identification of NAD-capped RNA sequences was first made possible by NAD captureSeq, a multistep protocol for the specific targeting, purification, and sequencing of NAD-capped RNAs, developed in the authors' laboratory in the year 2015. In recent years, a number of NAD-RNA identification protocols have been developed by researchers around the world. They have enabled the discovery and identification of NAD-RNAs in bacteria, archaea, yeast, plants, mice, and human cells, and they play a key role in studying the biological functions of NAD capping. We introduce the four parameters of yield, specificity, evaluability, and throughput and describe to the reader how an ideal NAD-RNA identification protocol would perform in each of these disciplines. These parameters are further used to describe and analyze existing protocols that follow two general methodologies: the capture approach and the decapping approach. Capture protocols introduce an exogenous moiety into the NAD-cap structure in order to either specifically purify or sequence NAD-capped RNAs. In decapping protocols, the NAD cap is digested to 5'-monophosphate RNA, which is then specifically targeted and sequenced. Both approaches, as well as the different protocols within them, have advantages and challenges that we evaluate based on the aforementioned parameters. In addition, we suggest improvements in order to meet the future needs of research on NAD-modified RNAs, which is beginning to emerge in the area of cell-type specific samples. A limiting factor of the capture approach is the need for large amounts of input RNA. Here we see a high potential for innovation within the key targeting step: The enzymatic modification reaction of the NAD-cap structure catalyzed by ADP-ribosyl cyclase (ADPRC) is a major contributor to the parameters of yield and specificity but has mostly seen minor changes since the pioneering protocol of NAD captureSeq and needs to be more stringently analyzed. The major challenge of the decapping approach remains the specificity of the decapping enzymes, many of which act on a variety of 5'-cap structures. Exploration of new decapping enzymes or engineering of already known enzymes could lead to improvements in NAD-specific protocols. The use of a curated set of decapping enzymes in a combinatorial approach could allow for the simultaneous detection of multiple 5'-caps. The throughput of both approaches could be greatly improved by early sample pooling. We propose that this could be achieved by introducing a barcode RNA sequence before or immediately after the NAD-RNA targeting steps. With increased processing capacity and a potential decrease in the cost per sample, protocols will gain the potential to analyze large numbers of samples from different growth conditions and treatments. This will support the search for biological roles of NAD-capped RNAs in all types of organisms.
Collapse
Affiliation(s)
- Marvin Möhler
- Institute of Pharmacy and
Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and
Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Mickutė M, Krasauskas R, Kvederavičiūtė K, Tupikaitė G, Osipenko A, Kaupinis A, Jazdauskaitė M, Mineikaitė R, Valius M, Masevičius V, Vilkaitis G. Interplay between bacterial 5'-NAD-RNA decapping hydrolase NudC and DEAD-box RNA helicase CsdA in stress responses. mSystems 2023; 8:e0071823. [PMID: 37706681 PMCID: PMC10654059 DOI: 10.1128/msystems.00718-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE Non-canonical 5'-caps removing RNA hydrolase NudC, along with stress-responsive RNA helicase CsdA, is crucial for 5'-NAD-RNA decapping and bacterial movement.
Collapse
Affiliation(s)
- Milda Mickutė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Renatas Krasauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kotryna Kvederavičiūtė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Gytė Tupikaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aleksandr Osipenko
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Algirdas Kaupinis
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Monika Jazdauskaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Thermo Fisher Scientific Baltics, Vilnius, Lithuania
| | - Raminta Mineikaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mindaugas Valius
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Viktoras Masevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| | - Giedrius Vilkaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
10
|
Shao X, Zhang H, Zhu Z, Ji F, He Z, Yang Z, Xia Y, Cai Z. DpCoA tagSeq: Barcoding dpCoA-Capped RNA for Direct Nanopore Sequencing via Maleimide-Thiol Reaction. Anal Chem 2023; 95:11124-11131. [PMID: 37439785 PMCID: PMC10372868 DOI: 10.1021/acs.analchem.3c02063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
Recent discoveries of noncanonical RNA caps, such as nicotinamide adenine dinucleotide (NAD+) and 3'-dephospho-coenzyme A (dpCoA), have expanded our knowledge of RNA caps. Although dpCoA has been known to cap RNAs in various species, the identities of its capped RNAs (dpCoA-RNAs) remained unknown. To fill this gap, we developed a method called dpCoA tagSeq, which utilized a thiol-reactive maleimide group to label dpCoA cap with a tag RNA serving as the 5' barcode. The barcoded RNAs were isolated using a complementary DNA strand of the tag RNA prior to direct sequencing by nanopore technology. Our validation experiments with model RNAs showed that dpCoA-RNA was efficiently tagged and captured using this protocol. To confirm that the tagged RNAs are capped by dpCoA and no other thiol-containing molecules, we used a pyrophosphatase NudC to degrade the dpCoA cap to adenosine monophosphate (AMP) moiety before performing the tagSeq protocol. We identified 44 genes that transcribe dpCoA-RNAs in mouse liver, demonstrating the method's effectiveness in identifying and characterizing the capped RNAs. This strategy provides a viable approach to identifying dpCoA-RNAs that allows for further functional investigations of the cap.
Collapse
Affiliation(s)
- Xiaojian Shao
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hailei Zhang
- Department
of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zhou Zhu
- School
of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Fenfen Ji
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhao He
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhu Yang
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yiji Xia
- Department
of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State
Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
11
|
McCombe CL, Catanzariti AM, Greenwood JR, Desai AM, Outram MA, Yu DS, Ericsson DJ, Brenner SE, Dodds PN, Kobe B, Jones DA, Williams SJ. A rust-fungus Nudix hydrolase effector decaps mRNA in vitro and interferes with plant immune pathways. THE NEW PHYTOLOGIST 2023; 239:222-239. [PMID: 36631975 DOI: 10.1111/nph.18727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/02/2023] [Indexed: 06/02/2023]
Abstract
To infect plants, pathogenic fungi secrete small proteins called effectors. Here, we describe the catalytic activity and potential virulence function of the Nudix hydrolase effector AvrM14 from the flax rust fungus (Melampsora lini). We completed extensive in vitro assays to characterise the enzymatic activity of the AvrM14 effector. Additionally, we used in planta transient expression of wild-type and catalytically dead AvrM14 versions followed by biochemical assays, phenotypic analysis and RNA sequencing to unravel how the catalytic activity of AvrM14 impacts plant immunity. AvrM14 is an extremely selective enzyme capable of removing the protective 5' cap from mRNA transcripts in vitro. Homodimerisation of AvrM14 promoted biologically relevant mRNA cap cleavage in vitro and this activity was conserved in related effectors from other Melampsora spp. In planta expression of wild-type AvrM14, but not the catalytically dead version, suppressed immune-related reactive oxygen species production, altered the abundance of some circadian-rhythm-associated mRNA transcripts and reduced the hypersensitive cell-death response triggered by the flax disease resistance protein M1. To date, the decapping of host mRNA as a virulence strategy has not been described beyond viruses. Our results indicate that some fungal pathogens produce Nudix hydrolase effectors with in vitro mRNA-decapping activity capable of interfering with plant immunity.
Collapse
Affiliation(s)
- Carl L McCombe
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ann-Maree Catanzariti
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Julian R Greenwood
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Anna M Desai
- Plant and Microbial Biology Department, University of California, Berkeley, CA, 94720, USA
| | - Megan A Outram
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Daniel S Yu
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Daniel J Ericsson
- Australian Synchrotron, Macromolecular Crystallography, Clayton, Vic., 3168, Australia
| | - Steven E Brenner
- Plant and Microbial Biology Department, University of California, Berkeley, CA, 94720, USA
| | - Peter N Dodds
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld, 4072, Australia
| | - David A Jones
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Simon J Williams
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
12
|
Breuer R, Gomes-Filho JV, Yuan J, Randau L. Transcriptome profiling of Nudix hydrolase gene deletions in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Front Microbiol 2023; 14:1197877. [PMID: 37396357 PMCID: PMC10311068 DOI: 10.3389/fmicb.2023.1197877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Nudix hydrolases comprise a large and ubiquitous protein superfamily that catalyzes the hydrolysis of a nucleoside diphosphate linked to another moiety X (Nudix). Sulfolobus acidocaldarius possesses four Nudix domain-containing proteins (SACI_RS00730/Saci_0153, SACI_RS02625/Saci_0550, SACI_RS00060/Saci_0013/Saci_NudT5, and SACI_RS00575/Saci_0121). Deletion strains were generated for the four individual Nudix genes and for both Nudix genes annotated to encode ADP-ribose pyrophosphatases (SACI_RS00730, SACI_RS00060) and did not reveal a distinct phenotype compared to the wild-type strain under standard growth conditions, nutrient stress or heat stress conditions. We employed RNA-seq to establish the transcriptome profiles of the Nudix deletion strains, revealing a large number of differentially regulated genes, most notably in the ΔSACI_RS00730/SACI_RS00060 double knock-out strain and the ΔSACI_RS00575 single deletion strain. The absence of Nudix hydrolases is suggested to impact transcription via differentially regulated transcriptional regulators. We observed downregulation of the lysine biosynthesis and the archaellum formation iModulons in stationary phase cells, as well as upregulation of two genes involved in the de novo NAD+ biosynthesis pathway. Furthermore, the deletion strains exhibited upregulation of two thermosome subunits (α, β) and the toxin-antitoxin system VapBC, which are implicated in the archaeal heat shock response. These results uncover a defined set of pathways that involve archaeal Nudix protein activities and assist in their functional characterization.
Collapse
Affiliation(s)
- Ruth Breuer
- Prokaryotic RNA Biology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | | | - Jing Yuan
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany
| | - Lennart Randau
- Prokaryotic RNA Biology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany
| |
Collapse
|
13
|
Wolfram-Schauerte M, Höfer K. NAD-capped RNAs - a redox cofactor meets RNA. Trends Biochem Sci 2023; 48:142-155. [PMID: 36068130 DOI: 10.1016/j.tibs.2022.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 01/25/2023]
Abstract
RNA modifications immensely expand the diversity of the transcriptome, thereby influencing the function, localization, and stability of RNA. One prominent example of an RNA modification is the eukaryotic cap located at the 5' terminus of mRNAs. Interestingly, the redox cofactor NAD can be incorporated into RNA by RNA polymerase in vitro. The existence of NAD-modified RNAs in vivo was confirmed using liquid chromatography and mass spectrometry (LC-MS). In the past few years novel technologies and methods have characterized NAD as a cap-like RNA structure and enabled the investigation of NAD-capped RNAs (NAD-RNAs) in a physiological context. We highlight the identification of NAD-RNAs as well as the regulation and functions of this epitranscriptomic mark in all domains of life.
Collapse
Affiliation(s)
| | - Katharina Höfer
- Max-Planck-Institute for Terrestrial Microbiology, Marburg, 35043, Hessen, Germany.
| |
Collapse
|
14
|
Bonar CD, Han J, Wang R, Panchapakesan SSS, Unrau PJ. E. coli 6S RNA complexed to RNA polymerase maintains product RNA synthesis at low cellular ATP levels by initiation with noncanonical initiator nucleotides. RNA (NEW YORK, N.Y.) 2022; 28:1643-1658. [PMID: 36198425 PMCID: PMC9670815 DOI: 10.1261/rna.079356.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The E. coli 6S RNA is an RNA polymerase (RNAP) inhibitor that competes with σ70-dependent DNA promoters for binding to RNAP holoenzyme (RNAP:σ70). The 6S RNA when bound is then used as a template to synthesize a short product RNA (pRNA; usually 13-nt-long). This pRNA changes the 6S RNA structure, triggering the 6S RNA:pRNA complex to release and allowing DNA-dependent housekeeping gene expression to resume. In high nutrient conditions, 6S RNA turnover is extremely rapid but becomes very slow in low nutrient environments. This leads to a large accumulation of inhibited RNAP:σ70 in stationary phase. As pRNA initiates synthesis with ATP, we and others have proposed that the 6S RNA release rate strongly depends on ATP levels as a proxy for sensing the cellular metabolic state. By purifying endogenous 6S RNA:pRNA complexes using RNA Mango and using reverse transcriptase to generate pRNA-cDNA chimeras, we demonstrate that 6S RNA:pRNA formation can be simultaneous with 6S RNA 5' maturation. More importantly, we find a dramatic accumulation of capped pRNAs during stationary phase. This indicates that ATP levels in stationary phase are low enough for noncanonical initiator nucleotides (NCINs) such as NAD+ and NADH to initiate pRNA synthesis. In vitro, mutation of the conserved 6S RNA template sequence immediately upstream of the pRNA transcriptional start site can increase or decrease the pRNA capping efficiency, suggesting that evolution has tuned the biological 6S RNA sequence for an optimal capping rate. NCIN-initiated pRNA synthesis may therefore be essential for cell viability in low nutrient conditions.
Collapse
Affiliation(s)
- Christopher D Bonar
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Jonathan Han
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Robert Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Shanker Shyam Sundhar Panchapakesan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada
| |
Collapse
|
15
|
Mattay J. Noncanonical metabolite RNA caps: Classification, quantification, (de)capping, and function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1730. [PMID: 35675554 DOI: 10.1002/wrna.1730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The 5' cap of eukaryotic mRNA is a hallmark for cellular functions from mRNA stability to translation. However, the discovery of novel 5'-terminal RNA caps derived from cellular metabolites has challenged this long-standing singularity in both eukaryotes and prokaryotes. Reminiscent of the 7-methylguanosine (m7G) cap structure, these noncanonical caps originate from abundant coenzymes such as NAD, FAD, or CoA and from metabolites like dinucleoside polyphosphates (NpnN). As of now, the significance of noncanonical RNA caps is elusive: they differ for individual transcripts, occur in distinct types of RNA, and change in response to environmental stimuli. A thorough comparison of their prevalence, quantity, and characteristics is indispensable to define the distinct classes of metabolite-capped RNAs. This is achieved by a structured analysis of all present studies covering functional, quantitative, and sequencing data which help to uncover their biological impact. The biosynthetic strategies of noncanonical RNA capping and the elaborate decapping machinery reveal the regulation and turnover of metabolite-capped RNAs. With noncanonical capping being a universal and ancient phenomenon, organisms have developed diverging strategies to adapt metabolite-derived caps to their metabolic needs, but ultimately to establish noncanonical RNA caps as another intriguing layer of RNA regulation. This article is categorized under: RNA Processing > Capping and 5' End Modifications RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Johanna Mattay
- Institute of Biochemistry, University of Münster, Münster, Germany
| |
Collapse
|
16
|
Staphylococcus aureus Small RNAs Possess Dephospho-CoA 5′-Caps, but No CoAlation Marks. Noncoding RNA 2022; 8:ncrna8040046. [PMID: 35893229 PMCID: PMC9326634 DOI: 10.3390/ncrna8040046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Novel features of coenzyme A (CoA) and its precursor, 3′-dephospho-CoA (dpCoA), recently became evident. dpCoA was found to attach to 5′-ends of small ribonucleic acids (dpCoA-RNAs) in two bacterial species (Escherichia coli and Streptomyces venezuelae). Furthermore, CoA serves, in addition to its well-established coenzymatic roles, as a ubiquitous posttranslational protein modification (‘CoAlation’), thought to prevent the irreversible oxidation of cysteines. Here, we first identified and quantified dpCoA-RNAs in the small RNA fraction of the human pathogen Staphylococcus aureus, using a newly developed enzymatic assay. We found that the amount of dpCoA caps was similar to that of the other two bacteria. We furthermore tested the hypothesis that, in the environment of a cell, the free thiol of the dpCoA-RNAs, as well as other sulfur-containing RNA modifications, may be oxidized by disulfide bond formation, e.g., with CoA. While we could not find evidence for such an ‘RNA CoAlation’, we observed that CoA disulfide reductase, the enzyme responsible for reducing CoA homodisulfides in S. aureus, did efficiently reduce several synthetic dpCoA-RNA disulfides to dpCoA-RNAs in vitro. This activity may imply a role in reversing RNA CoAlation.
Collapse
|
17
|
Doamekpor SK, Sharma S, Kiledjian M, Tong L. Recent insights into noncanonical 5' capping and decapping of RNA. J Biol Chem 2022; 298:102171. [PMID: 35750211 PMCID: PMC9283932 DOI: 10.1016/j.jbc.2022.102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
The 5' N7-methylguanosine cap is a critical modification for mRNAs and many other RNAs in eukaryotic cells. Recent studies have uncovered an RNA 5' capping quality surveillance mechanism, with DXO/Rai1 decapping enzymes removing incomplete caps and enabling the degradation of the RNAs, in a process we also refer to as "no-cap decay." It has also been discovered recently that RNAs in eukaryotes, bacteria, and archaea can have noncanonical caps (NCCs), which are mostly derived from metabolites and cofactors such as NAD, FAD, dephospho-CoA, UDP-glucose, UDP-N-acetylglucosamine, and dinucleotide polyphosphates. These NCCs can affect RNA stability, mitochondrial functions, and possibly mRNA translation. The DXO/Rai1 enzymes and selected Nudix (nucleotide diphosphate linked to X) hydrolases have been shown to remove NCCs from RNAs through their deNADding, deFADding, deCoAping, and related activities, permitting the degradation of the RNAs. In this review, we summarize the recent discoveries made in this exciting new area of RNA biology.
Collapse
Affiliation(s)
- Selom K. Doamekpor
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Sunny Sharma
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York, USA.
| |
Collapse
|
18
|
Sharma S, Yang J, Grudzien-Nogalska E, Shivas J, Kwan KY, Kiledjian M. Xrn1 is a deNADding enzyme modulating mitochondrial NAD-capped RNA. Nat Commun 2022; 13:889. [PMID: 35173156 PMCID: PMC8850482 DOI: 10.1038/s41467-022-28555-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The existence of non-canonical nicotinamide adenine diphosphate (NAD) 5′-end capped RNAs is now well established. Nevertheless, the biological function of this nucleotide metabolite cap remains elusive. Here, we show that the yeast Saccharomyces cerevisiae cytoplasmic 5′-end exoribonuclease Xrn1 is also a NAD cap decapping (deNADding) enzyme that releases intact NAD and subsequently degrades the RNA. The significance of Xrn1 deNADding is evident in a deNADding deficient Xrn1 mutant that predominantly still retains its 5′-monophosphate exonuclease activity. This mutant reveals Xrn1 deNADding is necessary for normal growth on non-fermenting sugar and is involved in modulating mitochondrial NAD-capped RNA levels and may influence intramitochondrial NAD levels. Our findings uncover a contribution of mitochondrial NAD-capped RNAs in overall NAD regulation with the deNADding activity of Xrn1 fulfilling a central role. The cytoplasmic Xrn1 protein has long been established as the predominate 5′ to 3′ exoribonuclease that cleaves RNAs with an unprotected 5′ monophosphate end. Here the authors demonstrate Xrn1 can also degrade RNAs harboring the noncanonical nicotinamide adenine diphosphate (NAD) 5′ cap by removing the NAD cap and degrading the RNA.
Collapse
Affiliation(s)
- Sunny Sharma
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jun Yang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ewa Grudzien-Nogalska
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jessica Shivas
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Kelvin Y Kwan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
19
|
Singh Y, Bird JG. A gel electrophoresis-based assay for measuring enzymatic RNA decapping activity. Methods Enzymol 2022; 675:323-350. [DOI: 10.1016/bs.mie.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Zhou W, Guan Z, Zhao F, Ye Y, Yang F, Yin P, Zhang D. Structural insights into dpCoA-RNA decapping by NudC. RNA Biol 2021; 18:244-253. [PMID: 34074215 PMCID: PMC8677037 DOI: 10.1080/15476286.2021.1936837] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022] Open
Abstract
Various kinds of cap structures, such as m7G, triphosphate groups, NAD and dpCoA, protect the 5' terminus of RNA. The cap structures bond covalently to RNA and affect its stability, translation, and transport. The removal of the caps is mainly executed by Nudix hydrolase family proteins, including Dcp2, RppH and NudC. Numerous efforts have been made to elucidate the mechanism underlying the removal of m7G, triphosphate group, and NAD caps. In contrast, few studies related to the cleavage of the RNA dpCoA cap have been conducted. Here, we report the hydrolytic activity of Escherichia coli NudC towards dpCoA and dpCoA-capped RNA in vitro. We also determined the crystal structure of dimeric NudC in complex with dpCoA at 2.0 Å resolution. Structural analysis revealed that dpCoA is recognized and hydrolysed in a manner similar to NAD. In addition, NudC may also remove other dinucleotide derivative caps of RNA, which comprise the AMP moieties. NudC homologs in Saccharomyces cerevisiae and Arabidopsis thaliana exhibited similar dpCoA decapping (deCoAping) activity. These results together indicate a conserved mechanism underpinning the hydrolysis of dpCoA-capped RNA in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Wei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fen Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yage Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fang Yang
- State Key Laboratory of Hybid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
21
|
Schauerte M, Pozhydaieva N, Höfer K. Shaping the Bacterial Epitranscriptome-5'-Terminal and Internal RNA Modifications. Adv Biol (Weinh) 2021; 5:e2100834. [PMID: 34121369 DOI: 10.1002/adbi.202100834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Indexed: 11/11/2022]
Abstract
All domains of life utilize a diverse set of modified ribonucleotides that can impact the sequence, structure, function, stability, and the fate of RNAs, as well as their interactions with other molecules. Today, more than 160 different RNA modifications are known that decorate the RNA at the 5'-terminus or internal RNA positions. The boost of next-generation sequencing technologies sets the foundation to identify and study the functional role of RNA modifications. The recent advances in the field of RNA modifications reveal a novel regulatory layer between RNA modifications and proteins, which is central to developing a novel concept called "epitranscriptomics." The majority of RNA modifications studies focus on the eukaryotic epitranscriptome. In contrast, RNA modifications in prokaryotes are poorly characterized. This review outlines the current knowledge of the prokaryotic epitranscriptome focusing on mRNA modifications. Here, it is described that several internal and 5'-terminal RNA modifications either present or likely present in prokaryotic mRNA. Thereby, the individual techniques to identify these epitranscriptomic modifications, their writers, readers and erasers, and their proposed functions are explored. Besides that, still unanswered questions in the field of prokaryotic epitranscriptomics are pointed out, and its future perspectives in the dawn of next-generation sequencing technologies are outlined.
Collapse
Affiliation(s)
- Maik Schauerte
- Max-Planck-Institute for terrestrial Microbiology, Marburg, Hessen, 35043, Germany
| | - Nadiia Pozhydaieva
- Max-Planck-Institute for terrestrial Microbiology, Marburg, Hessen, 35043, Germany
| | - Katharina Höfer
- Max-Planck-Institute for terrestrial Microbiology, Marburg, Hessen, 35043, Germany
| |
Collapse
|
22
|
Zhang Y, Kuster D, Schmidt T, Kirrmaier D, Nübel G, Ibberson D, Benes V, Hombauer H, Knop M, Jäschke A. Extensive 5'-surveillance guards against non-canonical NAD-caps of nuclear mRNAs in yeast. Nat Commun 2020; 11:5508. [PMID: 33139726 PMCID: PMC7606564 DOI: 10.1038/s41467-020-19326-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
The ubiquitous redox coenzyme nicotinamide adenine dinucleotide (NAD) acts as a non-canonical cap structure on prokaryotic and eukaryotic ribonucleic acids. Here we find that in budding yeast, NAD-RNAs are abundant (>1400 species), short (<170 nt), and mostly correspond to mRNA 5′-ends. The modification percentage of transcripts is low (<5%). NAD incorporation occurs mainly during transcription initiation by RNA polymerase II, which uses distinct promoters with a YAAG core motif for this purpose. Most NAD-RNAs are 3′-truncated. At least three decapping enzymes, Rai1, Dxo1, and Npy1, guard against NAD-RNA at different cellular locations, targeting overlapping transcript populations. NAD-mRNAs are not translatable in vitro. Our work indicates that in budding yeast, most of the NAD incorporation into RNA seems to be disadvantageous to the cell, which has evolved a diverse surveillance machinery to prematurely terminate, decap and reject NAD-RNAs. NAD (nicotinamide adenine dinucleotide) acts as a non-canonical RNA cap structure in bacteria and eukaryotes. Here the authors demonstrate the whole landscape of budding yeast NAD-RNAs which are subject to diverse surveillance pathways, suggesting that NAD caps in budding yeast are mostly dysfunctional.
Collapse
Affiliation(s)
- Yaqing Zhang
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120, Heidelberg, Germany
| | - David Kuster
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120, Heidelberg, Germany
| | - Tobias Schmidt
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Daniel Kirrmaier
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120, Heidelberg, Germany.,Cell Morphogenesis and Signal Transduction, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Gabriele Nübel
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120, Heidelberg, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, CellNetworks, Heidelberg University, 69120, Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Hans Hombauer
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120, Heidelberg, Germany
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120, Heidelberg, Germany.,Cell Morphogenesis and Signal Transduction, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Wu H, Li L, Chen KM, Homolka D, Gos P, Fleury-Olela F, McCarthy AA, Pillai RS. Decapping Enzyme NUDT12 Partners with BLMH for Cytoplasmic Surveillance of NAD-Capped RNAs. Cell Rep 2020; 29:4422-4434.e13. [PMID: 31875550 DOI: 10.1016/j.celrep.2019.11.108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/23/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
RNA polymerase II transcripts receive a protective 5',5'-triphosphate-linked 7-methylguanosine (m7G) cap, and its removal by decapping enzymes like DCP2 is critical for initiation of RNA decay. Alternative RNA caps can be acquired when transcription initiation uses metabolites like nicotinamide adenine dinucleotide (NAD), generating NAD-RNAs. Here, we identify human NUDT12 as a cytosolic NAD-RNA decapping enzyme. NUDT12 is active only as homodimers, with each monomer contributing to creation of the two functional catalytic pockets. We identify an ∼600-kDa dodecamer complex between bleomycin hydrolase (BLMH) and NUDT12, with BLMH being required for localization of NUDT12 to a few discrete cytoplasmic granules that are distinct from P-bodies. Both proteins downregulate gene expression when artificially tethered to a reporter RNA in vivo. Furthermore, loss of Nudt12 results in a significant upregulation of circadian clock transcripts in mouse liver. Overall, our study points to a physiological role for NUDT12 in the cytosolic surveillance of NAD-RNAs.
Collapse
Affiliation(s)
- Hao Wu
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Lingyun Li
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Kuan-Ming Chen
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - David Homolka
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Pascal Gos
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Fabienne Fleury-Olela
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Andrew A McCarthy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Ramesh S Pillai
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
24
|
Julius C, Salgado PS, Yuzenkova Y. Metabolic cofactors NADH and FAD act as non-canonical initiating substrates for a primase and affect replication primer processing in vitro. Nucleic Acids Res 2020; 48:7298-7306. [PMID: 32463447 PMCID: PMC7367122 DOI: 10.1093/nar/gkaa447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/17/2022] Open
Abstract
To initiate replication on a double-stranded DNA de novo, all organisms require primase, an RNA polymerase making short RNA primers which are then extended by DNA polymerases. Here, we show that primase can use metabolic cofactors as initiating substrates, instead of its canonical substrate ATP. DnaG primase of Escherichia coli initiates synthesis of RNA with NADH (the reduced form of nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide) in vitro. These cofactors consist of an ADP core covalently bound to extra moieties. The ADP component of these metabolites base-pairs with the DNA template and provides a 3′-OH group for RNA extension. The additional cofactors moieties apparently contact the ‘basic ridge’ domain of DnaG, but not the DNA template base at the –1 position. ppGpp, the starvation response regulator, strongly inhibits the initiation with cofactors, hypothetically due to competition for overlapping binding sites. Efficient RNA primer processing is a prerequisite for Okazaki fragments maturation, and we find that the efficiency of primer processing by DNA polymerase I in vitro is specifically affected by the cofactors on its 5′-end. Together these results indicate that utilization of cofactors as substrates by primase may influence regulation of replication initiation and Okazaki fragments processing.
Collapse
Affiliation(s)
- Christina Julius
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle upon Tyne, NE2 4AX, UK
| | - Paula S Salgado
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle upon Tyne, NE2 4AX, UK
| | - Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle upon Tyne, NE2 4AX, UK
| |
Collapse
|
25
|
Vargas-Blanco DA, Shell SS. Regulation of mRNA Stability During Bacterial Stress Responses. Front Microbiol 2020; 11:2111. [PMID: 33013770 PMCID: PMC7509114 DOI: 10.3389/fmicb.2020.02111] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bacteria have a remarkable ability to sense environmental changes, swiftly regulating their transcriptional and posttranscriptional machinery as a response. Under conditions that cause growth to slow or stop, bacteria typically stabilize their transcriptomes in what has been shown to be a conserved stress response. In recent years, diverse studies have elucidated many of the mechanisms underlying mRNA degradation, yet an understanding of the regulation of mRNA degradation under stress conditions remains elusive. In this review we discuss the diverse mechanisms that have been shown to affect mRNA stability in bacteria. While many of these mechanisms are transcript-specific, they provide insight into possible mechanisms of global mRNA stabilization. To that end, we have compiled information on how mRNA fate is affected by RNA secondary structures; interaction with ribosomes, RNA binding proteins, and small RNAs; RNA base modifications; the chemical nature of 5' ends; activity and concentration of RNases and other degradation proteins; mRNA and RNase localization; and the stringent response. We also provide an analysis of reported relationships between mRNA abundance and mRNA stability, and discuss the importance of stress-associated mRNA stabilization as a potential target for therapeutic development.
Collapse
Affiliation(s)
- Diego A Vargas-Blanco
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.,Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
26
|
Doamekpor SK, Grudzien-Nogalska E, Mlynarska-Cieslak A, Kowalska J, Kiledjian M, Tong L. DXO/Rai1 enzymes remove 5'-end FAD and dephospho-CoA caps on RNAs. Nucleic Acids Res 2020; 48:6136-6148. [PMID: 32374864 PMCID: PMC7293010 DOI: 10.1093/nar/gkaa297] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 01/03/2023] Open
Abstract
In eukaryotes, the DXO/Rai1 enzymes can eliminate most of the incomplete and non-canonical NAD caps through their decapping, deNADding and pyrophosphohydrolase activities. Here, we report that these enzymes can also remove FAD and dephospho-CoA (dpCoA) non-canonical caps from RNA, and we have named these activities deFADding and deCoAping. The crystal structures of mammalian DXO with 3′-FADP or CoA and fission yeast Rai1 with 3′-FADP provide elegant insight to these activities. FAD and CoA are accommodated in the DXO/Rai1 active site by adopting folded conformations. The flavin of FAD and the pantetheine group of CoA contact the same region at the bottom of the active site tunnel, which undergoes conformational changes to accommodate the different cap moieties. We have developed FAD-capQ to detect and quantify FAD-capped RNAs and determined that FAD caps are present on short RNAs (with less than ∼200 nucleotides) in human cells and that these RNAs are stabilized in the absence of DXO.
Collapse
Affiliation(s)
- Selom K Doamekpor
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Agnieszka Mlynarska-Cieslak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Megerditch Kiledjian
- Dept. Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
27
|
Vvedenskaya IO, Nickels BE. CapZyme-Seq: A 5'-RNA-Seq Method for Differential Detection and Quantitation of NAD-Capped and Uncapped 5'-Triphosphate RNA. STAR Protoc 2020; 1. [PMID: 32719830 PMCID: PMC7384699 DOI: 10.1016/j.xpro.2019.100002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nucleoside-containing metabolites such as the oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD+ and NADH), 3′-desphospho-coenzyme A (dpCoA), and flavin adenine dinucleotide (FAD) can be incorporated as RNA 5′ end caps by serving as non-canonical initiating nucleotides (NCINs) for transcription initiation by RNA polymerase. We recently reported “CapZyme-seq,” a 5′-RNA-seq method that enables the differential detection and quantitation of relative yields of NCIN-capped RNA and uncapped 5′-triphosphate RNA. Here we provide the protocol for constructing cDNA libraries for CapZyme-seq. For complete information on the generation and use of this protocol, please refer to Vvedenskaya et al. (2018a). Protocol for high-throughput detection and quantitation of NAD+-capped RNA Method enables analysis of capping for RNA generated both in vitro and in vitro Analysis of relative efficiency of NAD+- versus NTP-mediated transcription initiation
Collapse
Affiliation(s)
- Irina O Vvedenskaya
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.,Technical Contact
| | - Bryce E Nickels
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.,Lead Contact
| |
Collapse
|
28
|
Ray A, Frick DN. Fluorescent probe displacement assays reveal unique nucleic acid binding properties of human nudix enzymes. Anal Biochem 2020; 595:113622. [PMID: 32059949 PMCID: PMC7087442 DOI: 10.1016/j.ab.2020.113622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Nudix proteins are members of a large family of homologous enzymes that hydrolyze nucleoside diphosphates linked to other compounds. The substrates for a subset of Nudix enzymes are all nucleotides linked to RNA, like the m7G mRNA caps and the more recently discovered NAD(H) RNA caps. However, the RNA affinity and nucleic acid specificity of Nudix proteins has not yet been explored in depth. In this study we designed new fluorescence-based assays to examine the interaction of purified recombinant E. coli NudC and human Nudt1 (aka MTH1) Nudt3, Nudt12, Nudt16, and Nudt20 (aka Dcp2). All Nudix proteins except Nudt1 and Nudt12 bound both RNA and DNA stoichiometrically with high affinity (dissociation constants in the nanomolar range) and no clear sequence specificity. In stark contrast, Nudt12 binds RNA but not similar DNA oligonucleotides. Nudt12 also bound RNAs with 5' NAD+ caps more tightly than those with NADH or m7G cap. NudC was similarly selective against m7G caps but did not differentiate between NAD+ and NADH capped RNA. Nudt3, Nudt16, and Nudt20 bound m7G capped RNA more tightly than RNA with NADH caps.
Collapse
Affiliation(s)
- Atreyei Ray
- Department of Chemistry & Biochemistry, The University of Wisconsin- Milwaukee, Milwaukee, WI, 53217, USA
| | - David N Frick
- Department of Chemistry & Biochemistry, The University of Wisconsin- Milwaukee, Milwaukee, WI, 53217, USA.
| |
Collapse
|
29
|
A Novel NAD-RNA Decapping Pathway Discovered by Synthetic Light-Up NAD-RNAs. Biomolecules 2020; 10:biom10040513. [PMID: 32231086 PMCID: PMC7226252 DOI: 10.3390/biom10040513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
The complexity of the transcriptome is governed by the intricate interplay of transcription, RNA processing, translocation, and decay. In eukaryotes, the removal of the 5’-RNA cap is essential for the initiation of RNA degradation. In addition to the canonical 5’-N7-methyl guanosine cap in eukaryotes, the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD) was identified as a new 5’-RNA cap structure in prokaryotic and eukaryotic organisms. So far, two classes of NAD-RNA decapping enzymes have been identified, namely Nudix enzymes that liberate nicotinamide mononucleotide (NMN) and DXO-enzymes that remove the entire NAD cap. Herein, we introduce 8-(furan-2-yl)-substituted NAD-capped-RNA (FurNAD-RNA) as a new research tool for the identification and characterization of novel NAD-RNA decapping enzymes. These compounds are found to be suitable for various enzymatic reactions that result in the release of a fluorescence quencher, either nicotinamide (NAM) or nicotinamide mononucleotide (NMN), from the RNA which causes a fluorescence turn-on. FurNAD-RNAs allow for real-time quantification of decapping activity, parallelization, high-throughput screening and identification of novel decapping enzymes in vitro. Using FurNAD-RNAs, we discovered that the eukaryotic glycohydrolase CD38 processes NAD-capped RNA in vitro into ADP-ribose-modified-RNA and nicotinamide and therefore might act as a decapping enzyme in vivo. The existence of multiple pathways suggests that the decapping of NAD-RNA is an important and regulated process in eukaryotes.
Collapse
|
30
|
Hudeček O, Benoni R, Reyes-Gutierrez PE, Culka M, Šanderová H, Hubálek M, Rulíšek L, Cvačka J, Krásný L, Cahová H. Dinucleoside polyphosphates act as 5'-RNA caps in bacteria. Nat Commun 2020; 11:1052. [PMID: 32103016 PMCID: PMC7044304 DOI: 10.1038/s41467-020-14896-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
It has been more than 50 years since the discovery of dinucleoside polyphosphates (NpnNs) and yet their roles and mechanisms of action remain unclear. Here, we show that both methylated and non-methylated NpnNs serve as RNA caps in Escherichia coli. NpnNs are excellent substrates for T7 and E. coli RNA polymerases (RNAPs) and efficiently initiate transcription. We demonstrate, that the E. coli enzymes RNA 5′-pyrophosphohydrolase (RppH) and bis(5′-nucleosyl)-tetraphosphatase (ApaH) are able to remove the NpnN-caps from RNA. ApaH is able to cleave all NpnN-caps, while RppH is unable to cleave the methylated forms suggesting that the methylation adds an additional layer to RNA stability regulation. Our work introduces a different perspective on the chemical structure of RNA in prokaryotes and on the role of RNA caps. We bring evidence that small molecules, such as NpnNs are incorporated into RNA and may thus influence the cellular metabolism and RNA turnover. Nicotinamide adenine dinucleotide and coenzyme A serve as a 5′-cap of prokaryotic RNA. Here the authors report that methylated and non-methylated dinucleoside polyphosphates (NpnNs) exist as Escherichia coli RNA caps which can be cleaved by 5′-pyrophosphohydrolase (RppH) and bis(5′-nucleosyl)-tetraphosphatase (ApaH).
Collapse
Affiliation(s)
- Oldřich Hudeček
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Roberto Benoni
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Paul E Reyes-Gutierrez
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Martin Culka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Hana Šanderová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Libor Krásný
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Hana Cahová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.
| |
Collapse
|
31
|
Frindert J, Zhang Y, Nübel G, Kahloon M, Kolmar L, Hotz-Wagenblatt A, Burhenne J, Haefeli WE, Jäschke A. Identification, Biosynthesis, and Decapping of NAD-Capped RNAs in B. subtilis. Cell Rep 2019; 24:1890-1901.e8. [PMID: 30110644 DOI: 10.1016/j.celrep.2018.07.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/02/2018] [Accepted: 07/13/2018] [Indexed: 11/30/2022] Open
Abstract
The ubiquitous coenzyme nicotinamide adenine dinucleotide (NAD) decorates various RNAs in different organisms. In the proteobacterium Escherichia coli, the NAD-cap confers stability against RNA degradation. To date, NAD-RNAs have not been identified in any other bacterial microorganism. Here, we report the identification of NAD-RNA in the firmicute Bacillus subtilis. In the late exponential growth phase, predominantly mRNAs are NAD modified. NAD is incorporated de novo into RNA by the cellular RNA polymerase using non-canonical transcription initiation. The incorporation efficiency depends on the -1 position of the promoter but is independent of sigma factors or mutations in the rifampicin binding pocket. RNA pyrophosphohydrolase BsRppH is found to decap NAD-RNA. In vitro, the decapping activity is facilitated by manganese ions and single-stranded RNA 5' ends. Depletion of BsRppH influences the gene expression of ∼13% of transcripts in B. subtilis. The NAD-cap stabilizes RNA against 5'-to-3'-exonucleolytic decay by RNase J1.
Collapse
Affiliation(s)
- Jens Frindert
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120 Heidelberg, Germany
| | - Yaqing Zhang
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120 Heidelberg, Germany
| | - Gabriele Nübel
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120 Heidelberg, Germany
| | - Masroor Kahloon
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120 Heidelberg, Germany
| | - Leonie Kolmar
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120 Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Bioinformatics Group, Core Facility Genomics and Proteomics, German Cancer Research Center (DKFZ), DKFZ-Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Alliance, 69120 Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
32
|
Depaix A, Kowalska J. NAD Analogs in Aid of Chemical Biology and Medicinal Chemistry. Molecules 2019; 24:molecules24224187. [PMID: 31752261 PMCID: PMC6891637 DOI: 10.3390/molecules24224187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) serves as an essential redox co-factor and mediator of multiple biological processes. Besides its well-established role in electron transfer reactions, NAD serves as a substrate for other biotransformations, which, at the molecular level, can be classified as protein post-translational modifications (protein deacylation, mono-, and polyADP-ribosylation) and formation of signaling molecules (e.g., cyclic ADP ribose). These biochemical reactions control many crucial biological processes, such as cellular signaling and recognition, DNA repair and epigenetic modifications, stress response, immune response, aging and senescence, and many others. However, the links between the biological effects and underlying molecular processes are often poorly understood. Moreover, NAD has recently been found to tag the 5′-ends of some cellular RNAs, but the function of these NAD-capped RNAs remains largely unrevealed. Synthetic NAD analogs are invaluable molecular tools to detect, monitor, structurally investigate, and modulate activity of NAD-related enzymes and biological processes in order to aid their deeper understanding. Here, we review the recent advances in the design and development of NAD analogs as probes for various cellular NAD-related enzymes, enzymatic inhibitors with anticancer or antimicrobial therapeutic potential, and other NAD-related chemical biology tools. We focus on research papers published within the last 10 years.
Collapse
|
33
|
Frindert J, Kahloon MA, Zhang Y, Ahmed YL, Sinning I, Jäschke A. YvcI from Bacillus subtilis has in vitro RNA pyrophosphohydrolase activity. J Biol Chem 2019; 294:19967-19977. [PMID: 31740579 DOI: 10.1074/jbc.ra119.011485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/15/2019] [Indexed: 12/23/2022] Open
Abstract
RNA degradation is one of several ways for organisms to regulate gene expression. In bacteria, the removal of two terminal phosphate moieties as orthophosphate (Bacillus subtilis) or pyrophosphate (Escherichia coli) triggers ribonucleolytic decay of primary transcripts by 5'-monophosphate-dependent ribonucleases. In the soil-dwelling firmicute species B. subtilis, the RNA pyrophosphohydrolase BsRppH, a member of the Nudix family, triggers RNA turnover by converting primary transcripts to 5'-monophospate RNA. In addition to BsRppH, a source of redundant activity in B. subtilis has been proposed. Here, using recombinant protein expression and in vitro enzyme assays, we provide evidence for several additional RNA pyrophosphohydrolases, among them MutT, NudF, YmaB, and YvcI in B. subtilis We found that in vitro, YvcI converts RNA 5'-di- and triphosphates into monophosphates in the presence of manganese at neutral to slightly acidic pH. It preferred G-initiating RNAs and required at least one unpaired nucleotide at the 5'-end of its substrates, with the 5'-terminal nucleotide determining whether primarily ortho- or pyrophosphate is released. Exchanges of catalytically important glutamate residues in the Nudix motif impaired or abolished the enzymatic activity of YvcI. In summary, the results of our extensive in vitro biochemical characterization raise the possibility that YvcI is an additional RNA pyrophosphohydrolase in B. subtilis.
Collapse
Affiliation(s)
- Jens Frindert
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, D-69120 Heidelberg, Germany
| | - Masroor Ahmad Kahloon
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, D-69120 Heidelberg, Germany
| | - Yaqing Zhang
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, D-69120 Heidelberg, Germany
| | - Yasar Luqman Ahmed
- Heidelberg University Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
34
|
The first comprehensive phylogenetic and biochemical analysis of NADH diphosphatases reveals that the enzyme from Tuber melanosporum is highly active towards NAD .. Sci Rep 2019; 9:16753. [PMID: 31728067 PMCID: PMC6856373 DOI: 10.1038/s41598-019-53138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/29/2019] [Indexed: 11/23/2022] Open
Abstract
Nudix (for nucleoside diphosphatases linked to other moieties, X) hydrolases are a diverse family of proteins capable of cleaving an enormous variety of substrates, ranging from nucleotide sugars to NAD+-capped RNAs. Although all the members of this superfamily share a common conserved catalytic motif, the Nudix box, their substrate specificity lies in specific sequence traits, which give rise to different subfamilies. Among them, NADH pyrophosphatases or diphosphatases (NADDs) are poorly studied and nothing is known about their distribution. To address this, we designed a Prosite-compatible pattern to identify new NADDs sequences. In silico scanning of the UniProtKB database showed that 3% of Nudix proteins were NADDs and displayed 21 different domain architectures, the canonical architecture (NUDIX-like_zf-NADH-PPase_NUDIX) being the most abundant (53%). Interestingly, NADD fungal sequences were prominent among eukaryotes, and were distributed over several Classes, including Pezizomycetes. Unexpectedly, in this last fungal Class, NADDs were found to be present from the most common recent ancestor to Tuberaceae, following a molecular phylogeny distribution similar to that previously described using two thousand single concatenated genes. Finally, when truffle-forming ectomycorrhizal Tuber melanosporum NADD was biochemically characterized, it showed the highest NAD+/NADH catalytic efficiency ratio ever described.
Collapse
|
35
|
Kwasnik A, Wang VYF, Krzyszton M, Gozdek A, Zakrzewska-Placzek M, Stepniak K, Poznanski J, Tong L, Kufel J. Arabidopsis DXO1 links RNA turnover and chloroplast function independently of its enzymatic activity. Nucleic Acids Res 2019; 47:4751-4764. [PMID: 30949699 PMCID: PMC6511851 DOI: 10.1093/nar/gkz100] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 01/07/2023] Open
Abstract
The DXO family of proteins participates in eukaryotic mRNA 5'-end quality control, removal of non-canonical NAD+ cap and maturation of fungal rRNA precursors. In this work, we characterize the Arabidopsis thaliana DXO homolog, DXO1. We demonstrate that the plant-specific modification within the active site negatively affects 5'-end capping surveillance properties of DXO1, but has only a minor impact on its strong deNADding activity. Unexpectedly, catalytic activity does not contribute to striking morphological and molecular aberrations observed upon DXO1 knockout in plants, which include growth and pigmentation deficiency, global transcriptomic changes and accumulation of RNA quality control siRNAs. Conversely, these phenotypes depend on the plant-specific N-terminal extension of DXO1. Pale-green coloration of DXO1-deficient plants and our RNA-seq data reveal that DXO1 affects chloroplast-localized processes. We propose that DXO1 mediates the connection between RNA turnover and retrograde chloroplast-to-nucleus signaling independently of its deNADding properties.
Collapse
Affiliation(s)
- Aleksandra Kwasnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland,Correspondence may also be addressed to Aleksandra Kwasnik. Tel: +48 22 5922245; Fax: +48 22 6584176;
| | - Vivien Ya-Fan Wang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Michal Krzyszton
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Agnieszka Gozdek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Monika Zakrzewska-Placzek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Karolina Stepniak
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Jaroslaw Poznanski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA,Correspondence may also be addressed to Liang Tong. Tel: +1 212 854 5203; Fax: +1 212 865 8246;
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland,To whom correspondence should be addressed. Tel: +48 22 5922245; Fax: +48 22 6584176;
| |
Collapse
|
36
|
Grudzien-Nogalska E, Wu Y, Jiao X, Cui H, Mateyak MK, Hart RP, Tong L, Kiledjian M. Structural and mechanistic basis of mammalian Nudt12 RNA deNADding. Nat Chem Biol 2019; 15:575-582. [PMID: 31101919 PMCID: PMC6527130 DOI: 10.1038/s41589-019-0293-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 03/18/2019] [Indexed: 11/21/2022]
Abstract
We recently demonstrated mammalian cells harbor NAD-capped mRNAs that are hydrolyzed by the DXO deNADding enzyme. Here we report the Nudix protein Nudt12 is a second mammalian deNADding enzyme structurally and mechanistically distinct from DXO and targeting different RNAs. Crystal structure of mouse Nudt12 in complex with the deNADding product AMP and three Mg2+ ions at 1.6 Å resolution provides exquisite insights into the molecular basis of the deNADding activity within the NAD pyrophosphate. Disruption of the Nudt12 gene stabilizes transfected NAD-capped RNA in cells and its endogenous NAD-capped mRNA targets are enriched in those encoding proteins involved in cellular energetics. Furthermore, exposure of cells to nutrient or environmental stress manifests changes in NAD-capped RNA levels that are selectively responsive to Nudt12 or DXO respectively, indicating an association of deNADding to cellular metabolism.
Collapse
Affiliation(s)
| | - Yixuan Wu
- Department Biological Sciences, Columbia University, New York, NY, USA
| | - Xinfu Jiao
- Department Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Huijuan Cui
- Department Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Maria K Mateyak
- Department Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Ronald P Hart
- Department Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Liang Tong
- Department Biological Sciences, Columbia University, New York, NY, USA.
| | - Megerditch Kiledjian
- Department Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
37
|
Gomes‐Filho JV, Randau L. RNA stabilization in hyperthermophilic archaea. Ann N Y Acad Sci 2019; 1447:88-96. [DOI: 10.1111/nyas.14060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 12/23/2022]
Affiliation(s)
| | - Lennart Randau
- Prokaryotic Small RNA BiologyMax Planck Institute for Terrestrial Microbiology Marburg Germany
| |
Collapse
|
38
|
Vasilyev N, Gao A, Serganov A. Noncanonical features and modifications on the 5'-end of bacterial sRNAs and mRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1509. [PMID: 30276982 PMCID: PMC6657780 DOI: 10.1002/wrna.1509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022]
Abstract
Although many eukaryotic transcripts contain cap structures, it has been long thought that bacterial RNAs do not carry any special modifications on their 5'-ends. In bacteria, primary transcripts are produced by transcription initiated with a nucleoside triphosphate and are therefore triphosphorylated on 5'-ends. Some transcripts are then processed by nucleases that yield monophosphorylated RNAs for specific cellular activities. Many primary transcripts are also converted to monophosphorylated species by removal of the terminal pyrophosphate for 5'-end-dependent degradation. Recent studies surprisingly revealed an expanded repertoire of chemical groups on 5'-ends of bacterial RNAs. In addition to mono- and triphosphorylated moieties, some mRNAs and sRNAs contain cap-like structures and diphosphates on their 5'-ends. Although incorporation and removal of these groups have become better understood in recent years, the physiological significance of these modifications remain obscure. This review highlights recent studies aimed at identification and elucidation of novel modifications on the 5'-ends of bacterial RNAs and discusses possible physiological applications of the modified RNAs. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Ang Gao
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
39
|
Abstract
The increasingly complex functionality of RNA is contrasted by its simple chemical composition. RNA is generally built from only four different nucleotides (adenine, guanine, cytosine, and uracil). To date, >160 chemical modifications are known to decorate RNA molecules and thereby alter their function or stability. Many RNA modifications are conserved throughout bacteria, archaea, and eukaryotes, while some are unique to each branch of life. Most known modifications occur at internal positions, while there is limited diversity at the termini. The dynamic nature of RNA modifications and newly discovered regulatory functions of some of these RNA modifications gave birth to a new field, now often referred to as "epitranscriptomics." This review highlights the major developments in this field and summarizes detection principles for internal as well as 5'-terminal mRNA modifications in prokaryotes and archaea to investigate their biological significance.
Collapse
|
40
|
Kramer S, McLennan AG. The complex enzymology of mRNA decapping: Enzymes of four classes cleave pyrophosphate bonds. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1511. [PMID: 30345629 DOI: 10.1002/wrna.1511] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022]
Abstract
The 5' ends of most RNAs are chemically modified to enable protection from nucleases. In bacteria, this is often achieved by keeping the triphosphate terminus originating from transcriptional initiation, while most eukaryotic mRNAs and small nuclear RNAs have a 5'→5' linked N7 -methyl guanosine (m7 G) cap added. Several other chemical modifications have been described at RNA 5' ends. Common to all modifications is the presence of at least one pyrophosphate bond. To enable RNA turnover, these chemical modifications at the RNA 5' end need to be reversible. Dependent on the direction of the RNA decay pathway (5'→3' or 3'→5'), some enzymes cleave the 5'→5' cap linkage of intact RNAs to initiate decay, while others act as scavengers and hydrolyse the cap element of the remnants of the 3'→5' decay pathway. In eukaryotes, there is also a cap quality control pathway. Most enzymes involved in the cleavage of the RNA 5' ends are pyrophosphohydrolases, with only a few having (additional) 5' triphosphonucleotide hydrolase activities. Despite the identity of their enzyme activities, the enzymes belong to four different enzyme classes. Nudix hydrolases decap intact RNAs as part of the 5'→3' decay pathway, DXO family members mainly degrade faulty RNAs, members of the histidine triad (HIT) family are scavenger proteins, while an ApaH-like phosphatase is the major mRNA decay enzyme of trypanosomes, whose RNAs have a unique cap structure. Many novel cap structures and decapping enzymes have only recently been discovered, indicating that we are only beginning to understand the mechanisms of RNA decapping. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Susanne Kramer
- Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alexander G McLennan
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
41
|
Bird JG, Basu U, Kuster D, Ramachandran A, Grudzien-Nogalska E, Towheed A, Wallace DC, Kiledjian M, Temiakov D, Patel SS, Ebright RH, Nickels BE. Highly efficient 5' capping of mitochondrial RNA with NAD + and NADH by yeast and human mitochondrial RNA polymerase. eLife 2018; 7:42179. [PMID: 30526856 PMCID: PMC6298784 DOI: 10.7554/elife.42179] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
Bacterial and eukaryotic nuclear RNA polymerases (RNAPs) cap RNA with the oxidized and reduced forms of the metabolic effector nicotinamide adenine dinucleotide, NAD+ and NADH, using NAD+ and NADH as non-canonical initiating nucleotides for transcription initiation. Here, we show that mitochondrial RNAPs (mtRNAPs) cap RNA with NAD+ and NADH, and do so more efficiently than nuclear RNAPs. Direct quantitation of NAD+- and NADH-capped RNA demonstrates remarkably high levels of capping in vivo: up to ~60% NAD+ and NADH capping of yeast mitochondrial transcripts, and up to ~15% NAD+ capping of human mitochondrial transcripts. The capping efficiency is determined by promoter sequence at, and upstream of, the transcription start site and, in yeast and human cells, by intracellular NAD+ and NADH levels. Our findings indicate mtRNAPs serve as both sensors and actuators in coupling cellular metabolism to mitochondrial transcriptional outputs, sensing NAD+ and NADH levels and adjusting transcriptional outputs accordingly.
Collapse
Affiliation(s)
- Jeremy G Bird
- Department of Genetics and Waksman Institute, Rutgers University, United States.,Department of Chemistry and Waksman Institute, Rutgers University, United States
| | - Urmimala Basu
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, United States.,Biochemistry PhD Program, School of Graduate Studies, Rutgers University, United States
| | - David Kuster
- Department of Genetics and Waksman Institute, Rutgers University, United States.,Department of Chemistry and Waksman Institute, Rutgers University, United States.,Biochemistry Center Heidelberg, Heidelberg University, Germany
| | - Aparna Ramachandran
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, United States
| | | | - Atif Towheed
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, United States
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, United States.,Department of Pediatrics, Division of Human Genetics, The Children's Hospital of Philadelphia, Perelman School of Medicine, United States
| | | | - Dmitry Temiakov
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, United States
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, United States
| | - Richard H Ebright
- Department of Chemistry and Waksman Institute, Rutgers University, United States
| | - Bryce E Nickels
- Department of Genetics and Waksman Institute, Rutgers University, United States
| |
Collapse
|
42
|
Mlynarska-Cieslak A, Depaix A, Grudzien-Nogalska E, Sikorski PJ, Warminski M, Kiledjian M, Jemielity J, Kowalska J. Nicotinamide-Containing Di- and Trinucleotides as Chemical Tools for Studies of NAD-Capped RNAs. Org Lett 2018; 20:7650-7655. [PMID: 30479128 DOI: 10.1021/acs.orglett.8b03386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the chemical synthesis of a set of nicotinamide adenine dinucleotide (NAD) cap analogues containing chemical modifications that reduce their susceptibility to NAD-RNA-degrading enzymes. These analogues can be incorporated into transcripts in a similar way as NAD. Biochemical characterization of RNAs carrying these caps with DXO, NudC, and Nudt12 enzymes led to the identification of compounds that can be instrumental in unraveling so far unaddressed biological aspects of NAD-RNAs.
Collapse
Affiliation(s)
- Agnieszka Mlynarska-Cieslak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Pasteura 5 , 02-093 Warsaw , Poland
| | - Anais Depaix
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Pasteura 5 , 02-093 Warsaw , Poland
| | - Ewa Grudzien-Nogalska
- Department of Cell Biology and Neuroscience , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Pawel J Sikorski
- Centre of New Technologies , University of Warsaw , Banacha 2c , 02-097 Warsaw , Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Pasteura 5 , 02-093 Warsaw , Poland
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Jacek Jemielity
- Centre of New Technologies , University of Warsaw , Banacha 2c , 02-097 Warsaw , Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Pasteura 5 , 02-093 Warsaw , Poland
| |
Collapse
|
43
|
Julius C, Yuzenkova Y. Noncanonical RNA-capping: Discovery, mechanism, and physiological role debate. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1512. [PMID: 30353673 DOI: 10.1002/wrna.1512] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 11/12/2022]
Abstract
Recently a new type of 5'-RNA cap was discovered. In contrast to the specialized eukaryotic m7 G cap, the novel caps are abundant cellular cofactors like NAD+ . RNAs capped with cofactors are found in prokaryotes and eukaryotes. Unlike m7 G cap, installed by specialized enzymes, cofactors are attached by main enzyme of transcription, RNA polymerase (RNAP). Cofactors act as noncanonical initiating substrates, provided cofactor's nucleoside base-pairs with template DNA at the transcription start site. Adenosine-containing NAD(H), flavin adenine dinucleotide (FAD), and CoA modify transcripts on promoters starting with +1A. Similarly, uridine-containing cell wall precursors, for example, uridine diphosphate-N-acetylglucosamine were shown to cap RNA in vitro on +1U promoters. Noncanonical capping is a universal feature of evolutionary unrelated RNAPs-multisubunit bacterial and eukaryotic RNAPs, and single-subunit mitochondrial RNAP. Cellular concentrations of cofactors, for example, NAD(H) are significantly higher than their Km in transcription. Yet, only a small proportion of a given cellular RNA is noncanonically capped (if at all). This proportion is a net balance between capping, seemingly stochastic, and decapping, possibly determined by RNA folding, protein binding and transcription rate. NUDIX hydrolases in bacteria and eukaryotes, and DXO family proteins eukaryotes act as decapping enzymes for noncanonical caps. The physiological role of noncanonical RNA capping is only starting to emerge. It was demonstrated to affect RNA stability in vivo in bacteria and eukaryotes and to stimulate RNAP promoter escape in vitro in Escherichia coli. NAD+ /NADH capping ratio may connect transcription to cellular redox state. Potentially, noncanonical capping affects mRNA translation, RNA-protein binding and RNA localization. This article is categorized under: RNA Processing > Capping and 5' End Modifications RNA Export and Localization > RNA Localization RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry.
Collapse
Affiliation(s)
- Christina Julius
- Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
44
|
Vvedenskaya IO, Goldman SR, Nickels BE. Analysis of Bacterial Transcription by "Massively Systematic Transcript End Readout," MASTER. Methods Enzymol 2018; 612:269-302. [PMID: 30502946 DOI: 10.1016/bs.mie.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
A systems-level view of cellular gene expression requires understanding the mechanistic principles governing each step of transcription. In this chapter, we describe a massively multiplexed method for the analysis of the relationship between nucleic acid sequence and transcription termed "MASTER," for massively systematic transcript end readout. MASTER enables parallel measurements of transcription output from at least 410 (~1,000,000) individual template sequences in vitro and in vivo. MASTER involves constructing a DNA template library of barcoded sequences, generating RNA transcripts from the library during transcription in vitro or in vivo, and analyzing the relative abundance and 5'-end sequences of the RNA transcripts by high-throughput sequencing. MASTER provides a powerful, rapid, and versatile method to identify sequence determinants of each step of transcription and to define the mechanistic basis by which these sequence determinants dictate transcription output.
Collapse
Affiliation(s)
- Irina O Vvedenskaya
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | - Seth R Goldman
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | - Bryce E Nickels
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, NJ, United States.
| |
Collapse
|
45
|
Singh A, Mohammad Arif S, Biak Sang P, Varshney U, Vijayan M. Structural insights into the specificity and catalytic mechanism of mycobacterial nucleotide pool sanitizing enzyme MutT2. J Struct Biol 2018; 204:449-456. [PMID: 30312643 DOI: 10.1016/j.jsb.2018.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/29/2022]
Abstract
Mis-incorporation of modified nucleotides, such as 5-methyl-dCTP or 8-oxo-dGTP, in DNA can be detrimental to genomic integrity. MutT proteins are sanitization enzymes which function by hydrolyzing such nucleotides and regulating the pool of free nucleotides in the cytoplasm. Mycobacterial genomes have a set of four MutT homologs, namely, MutT1, MutT2, MutT3 and MutT4. Mycobacterial MutT2 hydrolyzes 5 m-dCTP and 8-oxo-dGTP to their respective monophosphate products. Additionally, it can hydrolyze canonical nucleotides dCTP and CTP, with a suggested role in sustaining their optimal levels in the nucleotide pool. The structures of M. smegmatis MutT2 and its complexes with cytosine derivatives have been determined at resolutions ranging from 1.10 Å to 1.73 Å. The apo enzyme and its complexes with products (dCMP, CMP and 5 m-dCMP) crystallize in space group P21212, while those involving substrates (dCTP, CTP and 5 m-dCTP) crystallize in space group P21. The molecule takes an α/β/α sandwich fold arrangement, as observed in other MutT homologs. The nucleoside moiety of the ligands is similarly located in all the complexes, while the location of the remaining tail exhibits variability. This is the first report of a MutT2-type protein in complex with ligands. A critical interaction involving Asp116 confers the specificity of the enzyme towards cytosine moieties. A conserved set of enzyme-ligand interactions along with concerted movements of important water molecules provide insights into the mechanism of action.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | - Pau Biak Sang
- Dept. of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- Dept. of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - M Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
46
|
Microbial cell factories for the sustainable manufacturing of B vitamins. Curr Opin Biotechnol 2018; 56:18-29. [PMID: 30138794 DOI: 10.1016/j.copbio.2018.07.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022]
Abstract
Vitamins are essential compounds in human and animal diets. Their demand is increasing globally in food, feed, cosmetics, chemical and pharmaceutical industries. Most current production methods are unsustainable because they use non-renewable sources and often generate hazardous waste. Many microorganisms produce vitamins naturally, but their corresponding metabolic pathways are tightly regulated since vitamins are needed only in catalytic amounts. Metabolic engineering is accelerating the development of microbial cell factories for vitamins that could compete with chemical methods that have been optimized over decades, but scientific hurdles remain. Additional technological and regulatory issues need to be overcome for innovative bioprocesses to reach the market. Here, we review the current state of development and challenges for fermentative processes for the B vitamin group.
Collapse
|
47
|
Julius C, Riaz-Bradley A, Yuzenkova Y. RNA capping by mitochondrial and multi-subunit RNA polymerases. Transcription 2018; 9:292-297. [PMID: 29624107 PMCID: PMC6150613 DOI: 10.1080/21541264.2018.1456258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
Recently, it was found that bacterial and eukaryotic transcripts are capped with cellular cofactors installed by their respective RNA polymerases (RNAPs) during transcription initiation. We now show that mitochondrial RNAP efficiently caps transcripts with ADP - containing cofactors. However, a functional role of universal RNAP - catalysed capping is not yet clear.
Collapse
Affiliation(s)
- Christina Julius
- a Centre for Bacterial Cell Biology , Institute for Cell and Molecular Biosciences , Newcastle University , Newcastle upon Tyne , NE2 4AX , UK
| | - Amber Riaz-Bradley
- a Centre for Bacterial Cell Biology , Institute for Cell and Molecular Biosciences , Newcastle University , Newcastle upon Tyne , NE2 4AX , UK
| | - Yulia Yuzenkova
- a Centre for Bacterial Cell Biology , Institute for Cell and Molecular Biosciences , Newcastle University , Newcastle upon Tyne , NE2 4AX , UK
| |
Collapse
|
48
|
Vvedenskaya IO, Bird JG, Zhang Y, Zhang Y, Jiao X, Barvík I, Krásný L, Kiledjian M, Taylor DM, Ebright RH, Nickels BE. CapZyme-Seq Comprehensively Defines Promoter-Sequence Determinants for RNA 5' Capping with NAD<sup/>. Mol Cell 2018; 70:553-564.e9. [PMID: 29681497 DOI: 10.1016/j.molcel.2018.03.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/23/2017] [Accepted: 03/12/2018] [Indexed: 01/07/2023]
Abstract
Nucleoside-containing metabolites such as NAD+ can be incorporated as 5' caps on RNA by serving as non-canonical initiating nucleotides (NCINs) for transcription initiation by RNA polymerase (RNAP). Here, we report CapZyme-seq, a high-throughput-sequencing method that employs NCIN-decapping enzymes NudC and Rai1 to detect and quantify NCIN-capped RNA. By combining CapZyme-seq with multiplexed transcriptomics, we determine efficiencies of NAD+ capping by Escherichia coli RNAP for ∼16,000 promoter sequences. The results define preferred transcription start site (TSS) positions for NAD+ capping and define a consensus promoter sequence for NAD+ capping: HRRASWW (TSS underlined). By applying CapZyme-seq to E. coli total cellular RNA, we establish that sequence determinants for NCIN capping in vivo match the NAD+-capping consensus defined in vitro, and we identify and quantify NCIN-capped small RNAs (sRNAs). Our findings define the promoter-sequence determinants for NCIN capping with NAD+ and provide a general method for analysis of NCIN capping in vitro and in vivo.
Collapse
Affiliation(s)
- Irina O Vvedenskaya
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeremy G Bird
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Chemistry and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Yuanchao Zhang
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Biomedical and Health Informatics, Children's Hospital, Philadelphia, PA 19041, USA
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xinfu Jiao
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Ivan Barvík
- Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague 2, Czech Republic
| | - Libor Krásný
- Institute of Microbiology, Czech Academy of Sciences, v.v.i., Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Deanne M Taylor
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Biomedical and Health Informatics, Children's Hospital, Philadelphia, PA 19041, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Richard H Ebright
- Department of Chemistry and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.
| | - Bryce E Nickels
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
49
|
Mugridge JS, Tibble RW, Ziemniak M, Jemielity J, Gross JD. Structure of the activated Edc1-Dcp1-Dcp2-Edc3 mRNA decapping complex with substrate analog poised for catalysis. Nat Commun 2018; 9:1152. [PMID: 29559651 PMCID: PMC5861098 DOI: 10.1038/s41467-018-03536-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/22/2018] [Indexed: 11/17/2022] Open
Abstract
The conserved decapping enzyme Dcp2 recognizes and removes the 5′ eukaryotic cap from mRNA transcripts in a critical step of many cellular RNA decay pathways. Dcp2 is a dynamic enzyme that functions in concert with the essential activator Dcp1 and a diverse set of coactivators to selectively and efficiently decap target mRNAs in the cell. Here we present a 2.84 Å crystal structure of K. lactis Dcp1–Dcp2 in complex with coactivators Edc1 and Edc3, and with substrate analog bound to the Dcp2 active site. Our structure shows how Dcp2 recognizes cap substrate in the catalytically active conformation of the enzyme, and how coactivator Edc1 forms a three-way interface that bridges the domains of Dcp2 to consolidate the active conformation. Kinetic data reveal Dcp2 has selectivity for the first transcribed nucleotide during the catalytic step. The heterotetrameric Edc1–Dcp1–Dcp2–Edc3 structure shows how coactivators Edc1 and Edc3 can act simultaneously to activate decapping catalysis. The decapping enzyme Dcp2 removes the 5′ eukaryotic cap from mRNA transcripts and acts in concert with its essential activator Dcp1 and various coactivators. Here the authors present the structure of the fully-activated mRNA decapping complex, which reveals how Dcp2 recognizes the cap substrate and coactivators Edc1 and Edc3 activate catalysis.
Collapse
Affiliation(s)
- Jeffrey S Mugridge
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Ryan W Tibble
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA.,Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Marcin Ziemniak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland.,Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland.,Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, 02-089, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA. .,Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
50
|
He H, Dai J, Wang X, Qian X, Zhao J, Wang H, Xu D. NudCD1 affects renal cell carcinoma through regulating LIS1/Dynein signaling pathway. Am J Transl Res 2018; 10:519-524. [PMID: 29511446 PMCID: PMC5835817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Renal cell carcinoma (RCC) is one of the most common malignant tumors in urogenital system with an incidence accounting for about 3% of the whole body malignant tumor. NudC domain containing 1 (NudCD1), a new member of NudC family distributed in nucleus, is found to be upregulated in multiple tumors. However, its expression and role in RCC tissue has not been elucidated. NudCD1 expression in RCC tissue was measured by western blot and immunohistochemistry (IHC). NudCD1 level was elevated by overexpression vector to investigate its regulatory role on LIS1/Dynein signaling pathway. Cell morphology, intracellular localization, and cell division were observed by immunofluorescence together with delayed microscope photograph. The impact of NudCD1 overexpression on cell migration was assessed by Transwell assay. NudCD1 expression was significantly increased in RCC tissue compared with that in adjacent normal control. NudCD1/LIS1/Dynein signaling pathway was obviously upregulated in RCC tissue. Overexpression of NudCD1 level in A498 cell line markedly elevated NudCD1/LIS1/Dynein signaling pathway, suggesting they might be involved in RCC process. NudCD1 upregulation also caused abnormal microtubule fasciculus structure with multinuclear morphology, and promoted cell migration. NudCD1 expression was obviously increased in RCC and affected RCC cell division and migration possibly through activating NudCD1/LIS1/Dynein signaling pathway, indicating therapeutic targeting NudCD1 might be a new approach to inhibit RCC cell migration.
Collapse
Affiliation(s)
- Hongchao He
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghai 200025, China
| | - Jun Dai
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghai 200025, China
| | - Xiaojing Wang
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghai 200025, China
| | - Xiaoqiang Qian
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghai 200025, China
| | - Juping Zhao
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghai 200025, China
| | - Haofei Wang
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghai 200025, China
| | - Danfeng Xu
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghai 200025, China
| |
Collapse
|