1
|
Joerger AC, Stiewe T, Soussi T. TP53: the unluckiest of genes? Cell Death Differ 2024:10.1038/s41418-024-01391-6. [PMID: 39443700 DOI: 10.1038/s41418-024-01391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
The transcription factor p53 plays a key role in the cellular defense against cancer development. It is inactivated in virtually every tumor, and in every second tumor this inactivation is due to a mutation in the TP53 gene. In this perspective, we show that this diverse mutational spectrum is unique among all other cancer-associated proteins and discuss what drives the selection of TP53 mutations in cancer. We highlight that several factors conspire to make the p53 protein particularly vulnerable to inactivation by the mutations that constantly plague our genome. It appears that the TP53 gene has emerged as a victim of its own evolutionary past that shaped its structure and function towards a pluripotent tumor suppressor, but came with an increased structural fragility of its DNA-binding domain. TP53 loss of function - with associated dominant-negative effects - is the main mechanism that will impair TP53 tumor suppressive function, regardless of whether a neomorphic phenotype is associated with some of these variants.
Collapse
Affiliation(s)
- Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany.
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany.
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps University, Marburg, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.
| | - Thierry Soussi
- Equipe « Hematopoietic and Leukemic Development », Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, SIRIC CURAMUS, Paris, France.
- Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden.
| |
Collapse
|
2
|
Krishnan RP, Pandiar D, Ramani P, Jayaraman S. Molecular profiling of oral epithelial dysplasia and oral squamous cell carcinoma using next generation sequencing. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024:102120. [PMID: 39424062 DOI: 10.1016/j.jormas.2024.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Next generation sequencing (NGS) is a massive, high-throughput sequencing technology used to analyze various mutations and genetic changes in cancer. Oral squamous cell carcinoma (OSCC) is the most common malignancy of the head and neck region. OSCC usually arises from oral potentially malignant disorders, like oral leukoplakia, oral submucous fibrosis and erythroplakia, and shows mutation of tumor suppressor genes, and several other critical genes involved in apoptotic pathways, cell migration, and cell growth. AIM To analyze the molecular profiles of oral epithelial dysplasia and different grades of oral squamous cell carcinoma using NGS in the Indian subpopulation. METHODOLOGY 21 patients (5 patients each of well differentiated, moderately differentiated, poorly differentiated squamous cell carcinoma, severe epithelial dysplasia, and 1 normal appearing mucosal tissue from apparently healthy individuals) were included in the study. Next generation sequencing was carried out using 50 hotspot gene panel. Protein-protein analysis was carried out using STRING Consortium 2023 and the methylation profile of the expressed genes was evaluated using the UALCAN portal. RESULTS Severe epithelial dysplasia showed TP53 (c.743G>A, p.R248Q) pathogenic mutations (SNV) in suboptimal QC parameters. Well differentiated squamous cell carcinoma showed TP53 (c.328delC, p.Arg110fs*13), APC (c.4135G>T, p.Glu1379*), and FBXW7 (c.832C>T, p.Arg278*) mutations. CTNNB1 (c.134C>T, p.Ser45PheS45F), TP53 (c.637C>T, Arg213TerR213*), NRAS (c.183A>C, p.Gln61HisQ61H) and PDGFRA (c.1672C>T, p.Arg558Cys) mutations were seen in moderately differentiated squamous cell carcinoma. No pathogenic mutations were evident in poorly differentiated squamous cell carcinoma. STRING analysis showed that all the expressed proteins in each group were interrelated to each other. No significant difference was evident in the methylation profile of all the expressed genes when compared to the normal controls. CONCLUSION The results obtained in this study explain the diverse genetic mutations in various grades of oral squamous cell carcinoma. Identification of these mutations would help in providing better treatment, designing a proper treatment plan for the patients with OSCC and support minimal intervention medicine.
Collapse
Affiliation(s)
- Reshma Poothakulath Krishnan
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Deepak Pandiar
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
3
|
Sartini S, Omholt L, Moatamed NA, Soragni A. Mutant p53 Misfolding and Aggregation Precedes Transformation into High-Grade Serous Ovarian Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.612958. [PMID: 39345467 PMCID: PMC11430093 DOI: 10.1101/2024.09.17.612958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
High Grade Serous Ovarian Cancer (HG-SOC), the most prevalent and aggressive gynecological malignancy, is marked by ubiquitous loss of functional p53, largely due to point mutations that arise very early in carcinogenesis. These mutations often lead to p53 protein misfolding and subsequent aggregation, yet the alterations in intracellular p53 dynamics throughout ovarian cancer progression remain poorly understood. HG-SOC originates from the fallopian tube epithelium, with a well-documented stepwise progression beginning with early pre-malignant p53 signatures. These signatures represent largely normal cells that express and accumulate mutant p53, which then transform into benign serous tubal intraepithelial lesions (STIL), progress into late pre-malignant serous tubal intraepithelial carcinoma (STIC), and ultimately lead to HGSOC. Here, we show that the transition from folded, soluble to aggregated mutant p53 occurs during the malignant transformation of benign precursor lesions into HGSOC. We analyzed fallopian tube tissue collected from ten salpingo-oophorectomy cases and determined the proportion of cells carrying soluble versus mis-folded/mutant p53 through conformation-sensitive staining and quantification. Misfolded p53 protein, prone to aggregation, is present in STICs and HG-SOCs, but notably absent from preneoplastic lesions and surrounding healthy tissue. Overall, our results indicate that aggregation of mutant p53 is a structural defect that distinguishes preneoplastic early lesions from late premalignant and malignant ones, offering a potential treatment window for targeting p53 aggregation and halting ovarian cancer progression.
Collapse
|
4
|
Pan Y, Chen H, Fu J, Zhang J, Wang P, Chen R, Geng S, Che J, Dong X, Zhou Y, Huang W. Discovery of N-Benzylpiperidinol derivatives as USP7 inhibitors against Hematology. Bioorg Chem 2024; 153:107807. [PMID: 39293304 DOI: 10.1016/j.bioorg.2024.107807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
USP7 has been recognized as a potential target for the treatment of hematologic malignancies by stabilizing multiple cancer-relevant proteins. Nevertheless, drug-like USP7 inhibitors are still lacking. Herein, compound J21 (USP7 IC50: 41.35 ± 2.16 nM) was discovered based on the structure of L55 and its co-crystal complex with USP7. Additionally, J21 exhibited greater metabolic stability (T1/2: 1.25 h, Cmax: 394.1 ± 48.3 ng/mL, and AUC0-t: 597.8 ± 44.8 ng/mL∙h) compared to L55. These findings may further pave the way for the development of USP7 inhibitors for the treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Youlu Pan
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, China
| | - Haifeng Chen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingfeng Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medical, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
| | - Jingyu Zhang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Peipei Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medical, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
| | - Runmei Chen
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, China
| | - Shuangshuang Geng
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yubo Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medical, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China.
| | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, China.
| |
Collapse
|
5
|
Nishitsuji K, Mito R, Ikezaki M, Yano H, Fujiwara Y, Matsubara E, Nishikawa T, Ihara Y, Uchimura K, Iwahashi N, Sakagami T, Suzuki M, Komohara Y. Impacts of cytoplasmic p53 aggregates on the prognosis and the transcriptome in lung squamous cell carcinoma. Cancer Sci 2024; 115:2947-2960. [PMID: 39031627 PMCID: PMC11462941 DOI: 10.1111/cas.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/22/2024] Open
Abstract
The tumor suppressor TP53 gene, the most frequently mutated gene in human cancers, produces the product tumor protein p53, which plays an essential role in DNA damage. p53 protein mutations may contribute to tumorigenesis by loss of tumor suppressive functions and malignancy of cancer cells via gain-of-oncogenic functions. We previously reported that mutant p53 proteins form aggregates and that cytoplasmic p53 aggregates were associated with poor prognosis in human ovarian cancer. However, the prognostic impact of p53 aggregation in other tumors including lung squamous cell carcinoma (SCC) is poorly understood. Here, we demonstrated that lung SCC cases with cytoplasmic p53 aggregates had a significantly poor clinical prognosis. Analysis via patient-derived tumor organoids (PDOs) established from lung SCC patients and possessing cytoplasmic p53 aggregates showed that eliminating cytoplasmic p53 aggregates suppressed cell proliferation. RNA sequencing and transcriptome analysis of p53 aggregate-harboring PDOs indicated multiple candidate pathways involved in p53 aggregate oncogenic functions. With lung SCC-derived cell lines, we found that cytoplasmic p53 aggregates contributed to cisplatin resistance. This study thus shows that p53 aggregates are a predictor of poor prognosis in lung SCC and suggests that detecting p53 aggregates via p53 conventional immunohistochemical analysis may aid patient selection for platinum-based therapy.
Collapse
Affiliation(s)
- Kazuchika Nishitsuji
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
- Unité de Glycobiologie Structurale et FonctionnelleUMR 8576 CNRS, Université de LilleVilleneuve d'AscqFrance
| | - Remi Mito
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Respiratory Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Midori Ikezaki
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Eri Matsubara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Thoracic and Breast Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Taro Nishikawa
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yoshito Ihara
- Department of Biochemistry, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kenji Uchimura
- Unité de Glycobiologie Structurale et FonctionnelleUMR 8576 CNRS, Université de LilleVilleneuve d'AscqFrance
| | - Naoyuki Iwahashi
- Department of Obstetrics and Gynecology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Makoto Suzuki
- Department of Thoracic and Breast Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy AgingKumamoto UniversityKumamotoJapan
| |
Collapse
|
6
|
Mahat DB, Kumra H, Castro SA, Metcalf E, Nguyen K, Morisue R, Ho WW, Chen I, Sullivan B, Yim LK, Singh A, Fu J, Waterton SK, Cheng YC, Roberge S, Moiso E, Chauhan VP, Silva HM, Spranger S, Jain RK, Sharp PA. Mutant p53 Exploits Enhancers to Elevate Immunosuppressive Chemokine Expression and Impair Immune Checkpoint Inhibitors in Pancreatic Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609802. [PMID: 39257788 PMCID: PMC11383995 DOI: 10.1101/2024.08.28.609802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer without effective treatments. It is characterized by activating KRAS mutations and p53 alterations. However, how these mutations dysregulate cancer-cell-intrinsic gene programs to influence the immune landscape of the tumor microenvironment (TME) remains poorly understood. Here, we show that p53R172H establishes an immunosuppressive TME, diminishes the efficacy of immune checkpoint inhibitors (ICIs), and enhances tumor growth. Our findings reveal that the upregulation of the immunosuppressive chemokine Cxcl1 mediates these pro-tumorigenic functions of p53R172H. Mechanistically, we show that p53R172H associates with the distal enhancers of the Cxcl1 gene, increasing enhancer activity and Cxcl1 expression. p53R172H occupies these enhancers in an NF-κB-pathway-dependent manner, suggesting NF-κB's role in recruiting p53R172H to the Cxcl1 enhancers. Our work uncovers how a common mutation in a tumor-suppressor transcription factor appropriates enhancers, stimulating chemokine expression and establishing an immunosuppressive TME that diminishes ICI efficacy in PDAC.
Collapse
Affiliation(s)
- Dig B Mahat
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Heena Kumra
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Sarah A Castro
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Emily Metcalf
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kim Nguyen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ryo Morisue
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - William W Ho
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ivy Chen
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Brandon Sullivan
- Ragon Institute of Mass General, MIT, and Harvard, MA, 02139, USA
| | - Leon K Yim
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Arundeep Singh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiayu Fu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sean K Waterton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yu-Chi Cheng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sylvie Roberge
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Enrico Moiso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vikash P Chauhan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hernandez Moura Silva
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA,02139, USA
- Ragon Institute of Mass General, MIT, and Harvard, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA,02139, USA
- Ragon Institute of Mass General, MIT, and Harvard, MA, 02139, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Phillip A Sharp
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA,02139, USA
| |
Collapse
|
7
|
Weng J, Xiao Y, Liu J, Liu X, He Y, Wu F, Ni X, Yang C. Exploring the MRI and Clinical Features of P53-Mutated Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1653-1674. [PMID: 39224117 PMCID: PMC11368099 DOI: 10.2147/jhc.s462979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose To study the MRI features (based on LI-RADS) and clinical characteristics of P53-mutated hepatocellular carcinoma (HCC) patients. Patients and Methods This study enrolled 344 patients with histopathologically confirmed HCC (P53-mutated group [n = 196], non-P53-mutated group [n = 148]). We retrospectively evaluated the preoperative MRI features, clinical and pathologic features of the lesions and assigned each lesion according to the LI-RADS. MRI findings, clinical features, and pathologic findings were compared using the Student's t test, χ2 test, and multivariable regression analysis. Results Most HCC patients were categorized as LR-5. On multivariate analysis, the Edmondson-Steiner grade (odds ratio, 2.280; 95% CI: 1.268, 4.101; p = 0.006) and rim enhancement (odds ratio, 2.517; 95% CI: 1.095, 5.784; p = 0.030) were found to be independent variables associated with P53-mutated HCC. In the group of HCC lesions with the largest tumor diameter (LTD) greater than or equal to 10mm and less than or equal to 20mm, enhancing capsule was an independent predictor of P53-mutated HCC (odds ratio, 6.200; 95% CI: 1.116, 34.449; p = 0.037). Among the HCC lesions (20 mm ˂ LTD ≤ 50 mm), corona enhancement (odds ratio, 2.102; 95% CI: 1.022, 4.322; p = 0.043) and nodule-in-nodule architecture (odds ratio, 2.157; 95% CI: 1.033, 4.504; p = 0.041) were found to be independent risk factors for P53 mutation. Among the HCC lesions (50 mm ˂ LTD ≤ 100 mm), diameter (odds ratio, 1.035; 95% CI: 1.001, 1.069; p = 0.044) and AFP ≥ 400 (ng/mL) (odds ratio, 3.336; 95% CI: 1.052, 10.577; p = 0.041) were found to be independent variables associated with P53-mutated HCC. Conclusion Poor differentiation and rim enhancement are potential predictive biomarkers for P53-mutated HCC, while HCCs of different diameters have different risk factors for predicting P53 mutations.
Collapse
Affiliation(s)
- Jingfei Weng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Department of Radiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yuyao Xiao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jing Liu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| | - Xiaohua Liu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Yuqing He
- Department of Radiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Fei Wu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xiaoyan Ni
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
8
|
Yu Y, Liu Q, Zeng J, Tan Y, Tang Y, Wei G. Multiscale simulations reveal the driving forces of p53C phase separation accelerated by oncogenic mutations. Chem Sci 2024; 15:12806-12818. [PMID: 39148776 PMCID: PMC11323318 DOI: 10.1039/d4sc03645j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024] Open
Abstract
Liquid-Liquid phase separation (LLPS) of p53 to form liquid condensates has been implicated in cellular functions and dysfunctions. The p53 condensates may serve as amyloid fibril precursors to initiate p53 aggregation, which is associated with oncogenic gain-of-function and various human cancers. M237I and R249S mutations located in p53 core domain (p53C) have been detected respectively in glioblastomas and hepatocellular carcinoma. Interestingly, these p53C mutants can also undergo LLPS and liquid-to-solid phase transition, which are faster than wild type p53C. However, the underlying molecular basis governing the accelerated LLPS and liquid-to-solid transition of p53C remain poorly understood. Herein, we explore the M237I/R249S mutation-induced structural alterations and phase separation behavior of p53C by employing multiscale molecular dynamics simulations. All-atom simulations revealed conformational disruptions in the zinc-binding domain of the M237I mutant and in both loop3 and zinc-binding domain of the R249S mutant. The two mutations enhance hydrophobic exposure of those regions and attenuate intramolecular interactions, which may hasten the LLPS and aggregation of p53C. Martini 3 coarse-grained simulations demonstrated spontaneous phase separation of p53C and accelerated effects of M237I/R249S mutations on the phase separation of p53C. Importantly, we find that the regions with enhanced intermolecular interactions observed in coarse-grained simulations coincide with the disrupted regions with weakened intramolecular interactions observed in all-atom simulations, indicating that M237I/R249S mutation-induced local structural disruptions expedite the LLPS of p53C. This study unveils the molecular mechanisms underlying the two cancer-associated mutation-accelerated LLPS and aggregation of p53C, providing avenues for anticancer therapy by targeting the phase separation process.
Collapse
Affiliation(s)
- Yawei Yu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Qian Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Jiyuan Zeng
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Yuan Tan
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| |
Collapse
|
9
|
Liu Q, Yu Y, Wei G. Oncogenic R248W mutation induced conformational perturbation of the p53 core domain and the structural protection by proteomimetic amyloid inhibitor ADH-6. Phys Chem Chem Phys 2024; 26:20068-20086. [PMID: 39007865 DOI: 10.1039/d4cp02046d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The involvement of p53 aggregation in cancer pathogenesis emphasizes the importance of unraveling the mechanisms underlying mutation-induced p53 destabilization. And understanding how small molecule inhibitors prevent the conversion of p53 into aggregation-primed conformations is pivotal for the development of therapeutics targeting p53-aggregation-associated cancers. A recent experimental study highlights the efficacy of the proteomimetic amyloid inhibitor ADH-6 in stabilizing R248W p53 and inhibiting its aggregation in cancer cells by interacting with the p53 core domain (p53C). However, it remains mostly unclear how R248W mutation induces destabilization of p53C and how ADH-6 stabilizes this p53C mutant and inhibits its aggregation. Herein, we conducted all-atom molecular dynamics simulations of R248W p53C in the absence and presence of ADH-6, as well as that of wild-type (WT) p53C. Our simulations reveal that the R248W mutation results in a shift of helix H2 and β-hairpin S2-S2' towards the mutation site, leading to the destruction of their neighboring β-sheet structure. This further facilitates the formation of a cavity in the hydrophobic core, and reduces the stability of the β-sandwich. Importantly, two crucial aggregation-prone regions (APRs) S9 and S10 are disturbed and more exposed to solvent in R248W p53C, which is conducive to p53C aggregation. Intriguingly, ADH-6 dynamically binds to the mutation site and multiple destabilized regions in R248W p53C, partially inhibiting the shift of helix H2 and β-hairpin S2-S2', thus preventing the disruption of the β-sheets and the formation of the cavity. ADH-6 also reduces the solvent exposure of APRs S9 and S10, which disfavors the aggregation of R248W p53C. Moreover, ADH-6 can preserve the WT-like dynamical network of R248W p53C. Our study elucidates the mechanisms underlying the oncogenic R248W mutation induced p53C destabilization and the structural protection of p53C by ADH-6.
Collapse
Affiliation(s)
- Qian Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yawei Yu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
10
|
Kong L, Meng F, Zhou P, Ge R, Geng X, Yang Z, Li G, Zhang L, Wang J, Ma J, Dong C, Zhou J, Wu S, Zhong D, Xie S. An engineered DNA aptamer-based PROTAC for precise therapy of p53-R175H hotspot mutant-driven cancer. Sci Bull (Beijing) 2024; 69:2122-2135. [PMID: 38811338 DOI: 10.1016/j.scib.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 05/31/2024]
Abstract
Targeting oncogenic mutant p53 represents an attractive strategy for cancer treatment due to the high frequency of gain-of-function mutations and ectopic expression in various cancer types. Despite extensive efforts, the absence of a druggable active site for small molecules has rendered these mutants therapeutically non-actionable. Here we develop a selective and effective proteolysis-targeting chimera (PROTAC) for p53-R175H, a common hotspot mutant with dominant-negative and oncogenic activity. Using a novel iterative molecular docking-guided post-SELEX (systematic evolution of ligands by exponential enrichment) approach, we rationally engineer a high-performance DNA aptamer with improved affinity and specificity for p53-R175H. Leveraging this resulting aptamer as a binder for PROTACs, we successfully developed a selective p53-R175H degrader, named dp53m. dp53m induces the ubiquitin-proteasome-dependent degradation of p53-R175H while sparing wildtype p53. Importantly, dp53m demonstrates significant antitumor efficacy in p53-R175H-driven cancer cells both in vitro and in vivo, without toxicity. Moreover, dp53m significantly and synergistically improves the sensitivity of these cells to cisplatin, a commonly used chemotherapy drug. These findings provide evidence of the potential therapeutic value of dp53m in p53-R175H-driven cancers.
Collapse
Affiliation(s)
- Lingping Kong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fanlu Meng
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ping Zhou
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ruixin Ge
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xiaoshan Geng
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhihao Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Guo Li
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Linlin Zhang
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jing Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jinfeng Ma
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Cheng Dong
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jun Zhou
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Sijin Wu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215028, China.
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Songbo Xie
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University, Tianjin 300052, China.
| |
Collapse
|
11
|
Butera A, Amelio I. Deciphering the significance of p53 mutant proteins. Trends Cell Biol 2024:S0962-8924(24)00117-X. [PMID: 38960851 DOI: 10.1016/j.tcb.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Mutations in the p53 gene compromise its role as guardian of genomic integrity, yielding predominantly missense p53 mutant proteins. The gain-of-function hypothesis has long suggested that these mutant proteins acquire new oncogenic properties; however, recent studies challenge this notion, indicating that targeting these mutants may not impact the fitness of cancer cells. Mounting evidence indicates that tumorigenesis involves a cooperative interplay between driver mutations and cellular state, influenced by developmental stage, external insults, and tissue damage. Consistently, the behavior and properties of p53 mutants are altered by the context. This article aims to provide a balanced summary of the evolving evidence regarding the contribution of p53 mutants in the biology of cancer while contemplating alternative frameworks to decipher the complexity of p53 mutants within their physiological contexts.
Collapse
Affiliation(s)
- Alessio Butera
- Chair of Systems Toxicology, University of Konstanz, Konstanz, Germany
| | - Ivano Amelio
- Chair of Systems Toxicology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
12
|
Scatolini M, Grisanti S, Tomaiuolo P, Grosso E, Basile V, Cosentini D, Puglisi S, Laganà M, Perotti P, Saba L, Rossini E, Palermo F, Sigala S, Volante M, Berruti A, Terzolo M. Germline NGS targeted analysis in adult patients with sporadic adrenocortical carcinoma. Eur J Cancer 2024; 205:114088. [PMID: 38714106 DOI: 10.1016/j.ejca.2024.114088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND Adrenocortical carcinoma (ACC) is a rare cancer that arises sporadically or due to hereditary syndromes. Data on germline variants (GVs) in sporadic ACC are limited. Our aim was to characterize GVs of genes potentially related to adrenal diseases in 150 adult patients with sporadic ACC. METHODS This was a retrospective analysis of stage I-IV ACC patients with sporadic ACC from two reference centers for ACC in Italy. Patients were included in the analysis if they had confirmed diagnosis of ACC, a frozen peripheral blood sample and complete clinical and follow-up data. Next generation sequencing technology was used to analyze the prevalence of GVs in a custom panel of 17 genes belonging to either cancer-predisposition genes or adrenocortical-differentiation genes categories. RESULTS We identified 18 GVs based on their frequency, enrichment and predicted functional characteristics. We found six pathogenic (P) or likely pathogenic (LP) variants in ARMC5, CTNNB1, MSH2, PDE11A and TP53 genes; and twelve variants lacking evidence of pathogenicity. New unique P/LP variants were identified in TP53 (p.G105D) and, for the first time, in ARMC5 (p.P731R). The presence of P/LP GVs was associated with reduced survival outcomes and had a significant and independent impact on both progression-free survival and overall survival. CONCLUSIONS GVs were present in 6.7 % of patients with sporadic ACC, and we identified novel variants of ARMC5 and TP53. These findings may improve understanding of ACC pathogenesis and enable genetic counseling of patients and their families.
Collapse
Affiliation(s)
- Maria Scatolini
- Molecular Oncology Laboratory, Fondazione Edo ed Elvo Tempia, 13875 Ponderano, BI, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, 25123 Brescia, Italy
| | - Pasquale Tomaiuolo
- Molecular Oncology Laboratory, Fondazione Edo ed Elvo Tempia, 13875 Ponderano, BI, Italy; Internal Medicine, Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy
| | - Enrico Grosso
- Molecular Oncology Laboratory, Fondazione Edo ed Elvo Tempia, 13875 Ponderano, BI, Italy
| | - Vittoria Basile
- Internal Medicine, Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy
| | - Deborah Cosentini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, 25123 Brescia, Italy
| | - Soraya Puglisi
- Internal Medicine, Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy.
| | - Marta Laganà
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, 25123 Brescia, Italy
| | - Paola Perotti
- Internal Medicine, Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy
| | - Laura Saba
- Internal Medicine, Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy
| | - Elisa Rossini
- Department of Molecular & Translational Medicine, Section of Pharmacology, University of Brescia, 25123 Brescia, Italy
| | - Flavia Palermo
- Molecular Oncology Laboratory, Fondazione Edo ed Elvo Tempia, 13875 Ponderano, BI, Italy
| | - Sandra Sigala
- Department of Molecular & Translational Medicine, Section of Pharmacology, University of Brescia, 25123 Brescia, Italy
| | - Marco Volante
- Pathology Unit, Oncology department, University of Turin, San Luigi Gonzaga University Hospital, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, 25123 Brescia, Italy
| | - Massimo Terzolo
- Internal Medicine, Department of Clinical and Biological Sciences, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
13
|
Liu Y, Su Z, Tavana O, Gu W. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell 2024; 42:946-967. [PMID: 38729160 PMCID: PMC11190820 DOI: 10.1016/j.ccell.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
p53 was discovered 45 years ago as an SV40 large T antigen binding protein, coded by the most frequently mutated TP53 gene in human cancers. As a transcription factor, p53 is tightly regulated by a rich network of post-translational modifications to execute its diverse functions in tumor suppression. Although early studies established p53-mediated cell-cycle arrest, apoptosis, and senescence as the classic barriers in cancer development, a growing number of new functions of p53 have been discovered and the scope of p53-mediated anti-tumor activity is largely expanded. Here, we review the complexity of different layers of p53 regulation, and the recent advance of the p53 pathway in metabolism, ferroptosis, immunity, and others that contribute to tumor suppression. We also discuss the challenge regarding how to activate p53 function specifically effective in inhibiting tumor growth without harming normal homeostasis for cancer therapy.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhenyi Su
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Omid Tavana
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Datta Darshan VM, Arumugam N, Almansour AI, Sivaramakrishnan V, Kanchi S. In silico energetic and molecular dynamic simulations studies demonstrate potential effect of the point mutations with implications for protein engineering in BDNF. Int J Biol Macromol 2024; 271:132247. [PMID: 38750847 DOI: 10.1016/j.ijbiomac.2024.132247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Protein engineering by directed evolution is time-consuming. Hence, in silico techniques like FoldX-Yasara for ∆∆G calculation, and SNPeffect for predicting propensity for aggregation, amyloid formation, and chaperone binding are employed to design proteins. Here, we used in silico techniques to engineer BDNF-NTF3 interaction and validated it using mutations with known functional implications for NGF dimer. The structures of three mutants representing a positive, negative, or neutral ∆∆G involving two interface residues in BDNF and two mutations representing a neutral and positive ∆∆G in NGF, which is aligned with BDNF, were selected for molecular dynamics (MD) simulation. Our MD results conclude that the secondary structure of individual protomers of the positive and negative mutants displayed a similar or different conformation from the NTF3 monomer, respectively. The positive mutants showed fewer hydrophobic interactions and higher hydrogen bonds compared to the wild-type, negative, and neutral mutants with similar SASA, suggesting solvent-mediated disruption of hydrogen-bonded interactions. Similar results were obtained for mutations with known functional implications for NGF and BDNF. The results suggest that mutations with known effects in homologous proteins could help in validation, and in silico directed evolution experiments could be a viable alternative to the experimental technique used for protein engineering.
Collapse
Affiliation(s)
- V M Datta Darshan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh 515134, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh 515134, India.
| | - Subbarao Kanchi
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh 515134, India.
| |
Collapse
|
15
|
Fernandez-Muñoz JM, Guerrero-Gimenez ME, Ciocca LA, Germanó MJ, Zoppino FCM. Mutational landscape of HSP family on human breast cancer. Sci Rep 2024; 14:12471. [PMID: 38816397 PMCID: PMC11139924 DOI: 10.1038/s41598-024-61807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
Breast cancer (BRCA) is a prevalent malignancy with the highest incidence among females. BRCA can be categorized into five intrinsic molecular subtypes (LumA, LumB, HER2, Basal, and Normal), each characterized by varying molecular and clinical features determined by the expression of intrinsic genes (PAM50). The Heat Shock Protein (HSP) family is composed of 95 genes evolutionary conservated, they have critical roles in proteostasis in both normal and cancerous processes. Many studies have linked HSP to the development and spread of cancer. They modulate the activity of multiple proteins expressed by oncogenes and anti-oncogenes through a range of interactions. In this study, we evaluate the mutational changes that HSP undergoes in BRCA mainly from the TCGA database. We observe that Copy Number Variations (CNV) are the more frequent events analyzed surpassing the occurrence of point mutations, indels, and translation start site mutations. The Basal subtype showcased the highest count of amplified CNV, including subtype-specific changes, whereas the Luminals tumors accumulated the greatest number of deletion CNV. Meanwhile, the HER2 subtype exhibited a comparatively lower frequency of CNV alterations when compared to the other subtypes. This study integrates CNV and expression data, finding associations between these two variables and the influence of CNV on the deregulation of HSP expression. To enhance the role of HSP as a risk predictor in BRCA, we succeeded in identifying CNV profiles as a prognostic marker. We included Artificial Intelligence to improve the clustering of patients, and we achieved a molecular CNV signature as a significant risk factor independent of known classic markers, including molecular subtypes PAM50. This research enhances the comprehension of HSP DNA alterations in BRCA and its relation with predicting the risk of affected individuals providing insights to develop guide personalized treatment strategies.
Collapse
Affiliation(s)
- Juan Manuel Fernandez-Muñoz
- Laboratory of Data Science and Genomics, IMBECU CONICET UNCuyo, 5500, Mendoza, Argentina
- Medicine School, National University of Cuyo, 5500, Mendoza, Argentina
| | - Martin Eduardo Guerrero-Gimenez
- Laboratory of Data Science and Genomics, IMBECU CONICET UNCuyo, 5500, Mendoza, Argentina
- Medicine School, National University of Cuyo, 5500, Mendoza, Argentina
| | | | - María José Germanó
- Laboratory of Data Science and Genomics, IMBECU CONICET UNCuyo, 5500, Mendoza, Argentina
- Medicine School, National University of Cuyo, 5500, Mendoza, Argentina
| | - Felipe Carlos Martin Zoppino
- Laboratory of Data Science and Genomics, IMBECU CONICET UNCuyo, 5500, Mendoza, Argentina.
- Medicine School, National University of Cuyo, 5500, Mendoza, Argentina.
| |
Collapse
|
16
|
Chasov V, Davletshin D, Gilyazova E, Mirgayazova R, Kudriaeva A, Khadiullina R, Yuan Y, Bulatov E. Anticancer therapeutic strategies for targeting mutant p53-Y220C. J Biomed Res 2024; 38:222-232. [PMID: 38738269 PMCID: PMC11144932 DOI: 10.7555/jbr.37.20230093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 05/14/2024] Open
Abstract
The tumor suppressor p53 is a transcription factor with a powerful antitumor activity that is controlled by its negative regulator murine double minute 2 (MDM2, also termed HDM2 in humans) through a feedback mechanism. At the same time, TP53 is the most frequently mutated gene in human cancers. Mutant p53 proteins lose wild-type p53 tumor suppression functions but acquire new oncogenic properties, among which are deregulating cell proliferation, increasing chemoresistance, disrupting tissue architecture, and promoting migration, invasion and metastasis as well as several other pro-oncogenic activities. The oncogenic p53 mutation Y220C creates an extended surface crevice in the DNA-binding domain destabilizing p53 and causing its denaturation and aggregation. This cavity accommodates stabilizing small molecules that have therapeutic values. The development of suitable small-molecule stabilizers is one of the therapeutic strategies for reactivating the Y220C mutant protein. In this review, we summarize approaches that target p53-Y220C, including reactivating this mutation with small molecules that bind Y220C to the hydrophobic pocket and developing immunotherapies as the goal for the near future, which target tumor cells that express the p53-Y220C neoantigen.
Collapse
Affiliation(s)
- Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Damir Davletshin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Elvina Gilyazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Regina Mirgayazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Raniya Khadiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Youyong Yuan
- Institute of Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
17
|
Zoltsman G, Dang TL, Kuchersky M, Faust O, Silva MS, Ilani T, Wentink AS, Bukau B, Rosenzweig R. A unique chaperoning mechanism in class A JDPs recognizes and stabilizes mutant p53. Mol Cell 2024; 84:1512-1526.e9. [PMID: 38508184 DOI: 10.1016/j.molcel.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/14/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
J-domain proteins (JDPs) constitute a large family of molecular chaperones that bind a broad spectrum of substrates, targeting them to Hsp70, thus determining the specificity of and activating the entire chaperone functional cycle. The malfunction of JDPs is therefore inextricably linked to myriad human disorders. Here, we uncover a unique mechanism by which chaperones recognize misfolded clients, present in human class A JDPs. Through a newly identified β-hairpin site, these chaperones detect changes in protein dynamics at the initial stages of misfolding, prior to exposure of hydrophobic regions or large structural rearrangements. The JDPs then sequester misfolding-prone proteins into large oligomeric assemblies, protecting them from aggregation. Through this mechanism, class A JDPs bind destabilized p53 mutants, preventing clearance of these oncoproteins by Hsp70-mediated degradation, thus promoting cancer progression. Removal of the β-hairpin abrogates this protective activity while minimally affecting other chaperoning functions. This suggests the class A JDP β-hairpin as a highly specific target for cancer therapeutics.
Collapse
Affiliation(s)
- Guy Zoltsman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Thi Lieu Dang
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany
| | - Miriam Kuchersky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Ofrah Faust
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Micael S Silva
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Tal Ilani
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Anne S Wentink
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany; Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH-Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany.
| | - Rina Rosenzweig
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 761000, Israel.
| |
Collapse
|
18
|
Ibusuki R, Iwama E, Shimauchi A, Tsutsumi H, Yoneshima Y, Tanaka K, Okamoto I. TP53 gain-of-function mutations promote osimertinib resistance via TNF-α-NF-κB signaling in EGFR-mutated lung cancer. NPJ Precis Oncol 2024; 8:60. [PMID: 38431700 PMCID: PMC10908812 DOI: 10.1038/s41698-024-00557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
EGFR tyrosine kinase inhibitors (TKIs) are effective against EGFR-mutated lung cancer, but tumors eventually develop resistance to these drugs. Although TP53 gain-of-function (GOF) mutations promote carcinogenesis, their effect on EGFR-TKI efficacy has remained unclear. We here established EGFR-mutated lung cancer cell lines that express wild-type (WT) or various mutant p53 proteins with CRISPR-Cas9 technology and found that TP53-GOF mutations promote early development of resistance to the EGFR-TKI osimertinib associated with sustained activation of ERK and expression of c-Myc. Gene expression analysis revealed that osimertinib activates TNF-α-NF-κB signaling specifically in TP53-GOF mutant cells. In such cells, osimertinib promoted interaction of p53 with the NF-κB subunit p65, translocation of the resulting complex to the nucleus and its binding to the TNF promoter, and TNF-α production. Concurrent treatment of TP53-GOF mutant cells with the TNF-α inhibitor infliximab suppressed acquisition of osimertinib resistance as well as restored osimertinib sensitivity in resistant cells in association with attenuation of ERK activation and c-Myc expression. Our findings indicate that induction of TNF-α expression by osimertinib in TP53-GOF mutant cells contributes to the early development of osimertinib resistance, and that TNF-α inhibition may therefore be an effective strategy to overcome such resistance in EGFR-mutant lung cancer with TP53-GOF mutations.
Collapse
Affiliation(s)
- Ritsu Ibusuki
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Iwama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Atsushi Shimauchi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirono Tsutsumi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuto Yoneshima
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Tanaka
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
20
|
Naeimzadeh Y, Tajbakhsh A, Fallahi J. Understanding the prion-like behavior of mutant p53 proteins in triple-negative breast cancer pathogenesis: The current therapeutic strategies and future directions. Heliyon 2024; 10:e26260. [PMID: 38390040 PMCID: PMC10881377 DOI: 10.1016/j.heliyon.2024.e26260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Breast cancer (BC) is viewed as a significant public health issue and is the primary cause of cancer-related deaths among women worldwide. Triple-negative breast cancer (TNBC) is a particularly aggressive subtype that predominantly affects young premenopausal women. The tumor suppressor p53 playsa vital role in the cellular response to DNA damage, and its loss or mutations are commonly present in many cancers, including BC. Recent evidence suggests that mutant p53 proteins can aggregate and form prion-like structures, which may contribute to the pathogenesis of different types of malignancies, such as BC. This review provides an overview of BC molecular subtypes, the epidemiology of TNBC, and the role of p53 in BC development. We also discuss the potential implications of prion-like aggregation in BC and highlight future research directions. Moreover, a comprehensive analysis of the current therapeutic approaches targeting p53 aggregates in BC treatment is presented. Strategies including small molecules, chaperone inhibitors, immunotherapy, CRISPR-Cas9, and siRNA are discussed, along with their potential benefits and drawbacks. The use of these approaches to inhibit p53 aggregation and degradation represents a promising target for cancer therapy. Future investigations into the efficacy of these approaches against various p53 mutations or binding to non-p53 proteins should be conducted to develop more effective and personalized therapies for BC treatment.
Collapse
Affiliation(s)
- Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| |
Collapse
|
21
|
Garg A, Kumar G, Singh V, Sinha S. Doxorubicin catalyses self-assembly of p53 by phase separation. Curr Res Struct Biol 2024; 7:100133. [PMID: 38435052 PMCID: PMC10906149 DOI: 10.1016/j.crstbi.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Liquid-liquid phase separation plays a crucial role in cellular physiology, as it leads to the formation of membrane-less organelles in response to various internal stimuli, contributing to various cellular functions. However, the influence of exogenous stimuli on this process in the context of disease intervention remains unexplored. In this current investigation, we explore the impact of doxorubicin on the abnormal self-assembly of p53 using a combination of biophysical and imaging techniques. Additionally, we shed light on the potential mechanisms behind chemoresistance in cancer cells carrying mutant p53. Our findings reveal that doxorubicin co-localizes with both wild-type p53 (WTp53) and its mutant variants. Our in vitro experiments indicate that doxorubicin interacts with the N-terminal-deleted form of WTp53 (WTp53ΔNterm), inducing liquid-liquid phase separation, ultimately leading to protein aggregation. Notably, the p53 variants at the R273 position exhibit a propensity for phase separation even in the absence of doxorubicin, highlighting the destabilizing effects of point mutations at this position. The strong interaction between doxorubicin and p53 variants, along with its localization within the protein condensates, provides a potential explanation for the development of chemotherapy resistance. Collectively, our cellular and in vitro studies emphasize the role of exogenous agents in driving phase separation-mediated p53 aggregation.
Collapse
Affiliation(s)
- Ankush Garg
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector- 81, Mohali (SAS Nagar), Punjab, 140306, India
| | - Gaurav Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector- 81, Mohali (SAS Nagar), Punjab, 140306, India
| | - Varinder Singh
- Indian Institute of Science Education and Research, Sector- 81, Mohali (SAS Nagar), Punjab, 140306, India
| | - Sharmistha Sinha
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector- 81, Mohali (SAS Nagar), Punjab, 140306, India
| |
Collapse
|
22
|
Grcic L, Leech G, Kwan K, Storr T. Targeting misfolding and aggregation of the amyloid-β peptide and mutant p53 protein using multifunctional molecules. Chem Commun (Camb) 2024; 60:1372-1388. [PMID: 38204416 DOI: 10.1039/d3cc05834d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Biomolecule misfolding and aggregation play a major role in human disease, spanning from neurodegeneration to cancer. Inhibition of these processes is of considerable interest, and due to the multifactorial nature of these diseases, the development of drugs that act on multiple pathways simultaneously is a promising approach. This Feature Article focuses on the development of multifunctional molecules designed to inhibit the misfolding and aggregation of the amyloid-β (Aβ) peptide in Alzheimer's disease (AD), and the mutant p53 protein in cancer. While for the former, the goal is to accelerate the removal of the Aβ peptide and associated aggregates, for the latter, the goal is reactivation via stabilization of the active folded form of mutant p53 protein and/or aggregation inhibition. Due to the similar aggregation pathway of the Aβ peptide and mutant p53 protein, a common therapeutic approach may be applicable.
Collapse
Affiliation(s)
- Lauryn Grcic
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Grace Leech
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Kalvin Kwan
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
23
|
Li J, Guo M, Chen L, Chen Z, Fu Y, Chen Y. Amyloid aggregates induced by the p53-R280T mutation lead to loss of p53 function in nasopharyngeal carcinoma. Cell Death Dis 2024; 15:35. [PMID: 38212344 PMCID: PMC10784298 DOI: 10.1038/s41419-024-06429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor that is highly prevalent in Southeast Asia, especially in South China. The pathogenesis of NPC is complex, and genetic alterations of tumor suppressors and proto-oncogenes play important roles in NPC carcinogenesis. p53 is unexpectedly highly expressed in NPC and possesses an uncommon mutation of R280T, which is different from a high frequency of hotspot mutations or low expression in other tumors. However, the mechanism of p53 loss of function and its correlation with R280T in NPC are still unclear. In this study, p53 amyloid aggregates were found to be widespread in NPC and can be mainly induced by the R280T mutation. Aggregated p53-R280T impeded its entry into the nucleus and was unable to initiate the transcription of downstream target genes, resulting in decreased NPC cell cycle arrest and apoptosis. In addition, NPC cells with p53-R280T amyloid aggregates also contributed aggressively to tumor growth in vivo. Transcriptome analysis suggested that p53 amyloid aggregation dysregulated major signaling pathways associated with the cell cycle, proliferation, apoptosis, and unfolded protein response (UPR). Further studies revealed that Hsp90, as a key molecular chaperone in p53 folding, was upregulated in NPC cells with p53-R280T aggregation, and the upregulated Hsp90 facilitated p53 aggregation in turn, forming positive feedback. Therefore, Hsp90 inhibitors could dissociate p53-R280T aggregation and restore the suppressor function of p53 in vitro and in vivo. In conclusion, our study demonstrated that p53-R280T may misfold to form aggregates with the help of Hsp90, resulting in the inability of sequestered p53 to initiate the transcription of downstream target genes. These results revealed a new mechanism for the loss of p53 function in NPC and provided novel mechanistic insight into NPC pathogenesis.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lin Chen
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California, Los Angeles, CAL, 90089, USA
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
24
|
Zheng LW, Liu CC, Yu KD. Phase separations in oncogenesis, tumor progressions and metastasis: a glance from hallmarks of cancer. J Hematol Oncol 2023; 16:123. [PMID: 38110976 PMCID: PMC10726551 DOI: 10.1186/s13045-023-01522-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a novel principle for interpreting precise spatiotemporal coordination in living cells through biomolecular condensate (BMC) formation via dynamic aggregation. LLPS changes individual molecules into membrane-free, droplet-like BMCs with specific functions, which coordinate various cellular activities. The formation and regulation of LLPS are closely associated with oncogenesis, tumor progressions and metastasis, the specific roles and mechanisms of LLPS in tumors still need to be further investigated at present. In this review, we comprehensively summarize the conditions of LLPS and identify mechanisms involved in abnormal LLPS in cancer processes, including tumor growth, metastasis, and angiogenesis from the perspective of cancer hallmarks. We have also reviewed the clinical applications of LLPS in oncologic areas. This systematic summary of dysregulated LLPS from the different dimensions of cancer hallmarks will build a bridge for determining its specific functions to further guide basic research, finding strategies to intervene in LLPS, and developing relevant therapeutic approaches.
Collapse
Affiliation(s)
- Le-Wei Zheng
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cui-Cui Liu
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ke-Da Yu
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Tjader NP, Beer AJ, Ramroop J, Tai MC, Ping J, Gandhi T, Dauch C, Neuhausen SL, Ziv E, Sotelo N, Ghanekar S, Meadows O, Paredes M, Gillespie J, Aeilts A, Hampel H, Zheng W, Jia G, Hu Q, Wei L, Liu S, Ambrosone CB, Palmer JR, Carpten JD, Yao S, Stevens P, Ho WK, Pan JW, Fadda P, Huo D, Teo SH, McElroy JP, Toland AE. Association of ESR1 germline variants with TP53 somatic variants in breast tumors in a genome-wide study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.06.23299442. [PMID: 38106140 PMCID: PMC10723566 DOI: 10.1101/2023.12.06.23299442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background In breast tumors, somatic mutation frequencies in TP53 and PIK3CA vary by tumor subtype and ancestry. HER2 positive and triple negative breast cancers (TNBC) have a higher frequency of TP53 somatic mutations than other subtypes. PIK3CA mutations are more frequently observed in hormone receptor positive tumors. Emerging data suggest tumor mutation status is associated with germline variants and genetic ancestry. We aimed to identify germline variants that are associated with somatic TP53 or PIK3CA mutation status in breast tumors. Methods A genome-wide association study was conducted using breast cancer mutation status of TP53 and PIK3CA and functional mutation categories including TP53 gain of function (GOF) and loss of function mutations and PIK3CA activating/hotspot mutations. The discovery analysis consisted of 2850 European ancestry women from three datasets. Germline variants showing evidence of association with somatic mutations were selected for validation analyses based on predicted function, allele frequency, and proximity to known cancer genes or risk loci. Candidate variants were assessed for association with mutation status in a multi-ancestry validation study, a Malaysian study, and a study of African American/Black women with TNBC. Results The discovery Germline x Mutation (GxM) association study found five variants associated with one or more TP53 phenotypes with P values <1×10-6, 33 variants associated with one or more TP53 phenotypes with P values <1×10-5, and 44 variants associated with one or more PIK3CA phenotypes with P values <1×10-5. In the multi-ancestry and Malaysian validation studies, germline ESR1 locus variant, rs9383938, was associated with the presence of TP53 mutations overall (P values 6.8×10-5 and 9.8×10-8, respectively) and TP53 GOF mutations (P value 8.4×10-6). Multiple variants showed suggestive evidence of association with PIK3CA mutation status in the validation studies, but none were significant after correction for multiple comparisons. Conclusions We found evidence that germline variants were associated with TP53 and PIK3CA mutation status in breast cancers. Variants near the estrogen receptor alpha gene, ESR1, were significantly associated with overall TP53 mutations and GOF mutations. Larger multi-ancestry studies are needed to confirm these findings and determine if these variants contribute to ancestry-specific differences in mutation frequency.
Collapse
Affiliation(s)
- Nijole P. Tjader
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Abigail J. Beer
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Johnny Ramroop
- The City College of New York, City University of New York, New York, NY, USA
| | - Mei-Chee Tai
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Jie Ping
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Tanish Gandhi
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Medical School, Columbus, OH, 43210, USA
| | - Cara Dauch
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Wexner Medical Center, Clinical Trials Office, Columbus, OH 43210, USA
| | - Susan L. Neuhausen
- Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA, USA
| | - Elad Ziv
- University of California, Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA, USA
- University of California, Department of Medicine, San Francisco, San Francisco, CA, USA
- University of California San Francisco, Institute for Human Genetics, San Francisco, CA, USA
| | - Nereida Sotelo
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Shreya Ghanekar
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Owen Meadows
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Monica Paredes
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jessica Gillespie
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Amber Aeilts
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Heather Hampel
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Guochong Jia
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B. Ambrosone
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - John D. Carpten
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Integrative Translational Sciences, City of Hope, Duarte, CA
| | - Song Yao
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Patrick Stevens
- The Ohio State University Comprehensive Cancer Center, Bioinformatics Shared Resource, Columbus, OH, USA
| | - Weang-Kee Ho
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - Jia Wern Pan
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Paolo Fadda
- The Ohio State University Comprehensive Cancer Center, Genomics Shared Resource, Columbus, OH, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
- Faculty of Medicine, University Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Joseph Paul McElroy
- The Ohio State University Center for Biostatistics, Department of Biomedical Informatics, Columbus, OH, USA
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
26
|
Hutchings DA, Salimian KJ, Waters KM, Birkness-Gartman JE, Voltaggio L, Assarzadegan N, Huang J, Lin MT, Singhi AD, Montgomery EA. Aberrant p53 Expression in Gastric Biopsies and Resection Specimens Following Neoadjuvant Chemoradiation: A Diagnostic Pitfall. Int J Surg Pathol 2023; 31:1458-1465. [PMID: 36843539 PMCID: PMC10460459 DOI: 10.1177/10668969231157304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Gastric mucosal biopsies and resections from patients treated with neoadjuvant radiation and/or chemotherapy are frequently encountered. These samples may show histologic features related to therapy including inflammation, ulceration, and epithelial atypia. In some cases, epithelial atypia may be marked, prompting the use of adjunct p53 immunohistochemistry. We examined p53 expression by immunohistochemistry in gastric mucosa following therapy. We evaluated the histology and p53 immunohistochemical expression in gastric mucosa from 57 resections and 3 mucosal biopsies, from 60 patients treated with radiation and/or chemotherapy for gastroesophageal carcinoma (n = 33) or pancreatic carcinoma (n = 27). We identified histomorphologic features of therapy-related epithelial changes in 50 of 60 cases (83%). Abnormal p53 expression was present at least focally in nearly half the cases (27 of 60 cases; 45%), all of which showed morphologic evidence of therapy-related epithelial changes. Neuroendocrine cell micronests were present in 37 of 60 cases (62%). Next-generation sequencing (NGS) of foci with therapy-related epithelial changes showing abnormal p53 expression and carcinoma from the same patient was attempted and yielded results in 1 patient. Interestingly, differing TP53 alterations in the patient's adenocarcinoma and in a histologically benign esophageal submucosal gland with therapy-related epithelial changes and abnormal p53 expression were identified. Our results demonstrate that abnormal p53 expression is relatively common in gastric mucosal samples following radiation and/or chemotherapy and suggest that p53 expression should be avoided when distinguishing therapy-related changes from dysplasia or carcinoma. Furthermore, our NGS results raise interesting biological questions, which may warrant further investigation.
Collapse
Affiliation(s)
- Danielle A. Hutchings
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kevan J. Salimian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin M. Waters
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Lysandra Voltaggio
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Jialing Huang
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ming-Tseh Lin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aatur D. Singhi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
27
|
Jiang F, Lai J, Zhuo X, Liu L, Yang Y, Zhang J, Zhao J, Xu W, Wang J, Wang C, Fu G. HER2-positive breast cancer progresses rapidly after pyrotinib resistance: acquired RET gene fusion and TP53 gene mutation are potential reasons. Anticancer Drugs 2023; 34:1196-1201. [PMID: 36689646 DOI: 10.1097/cad.0000000000001506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Approximately 15-20% of the patients with breast cancer overexpress human epidermal growth factor receptor 2 ( HER2 ). HER2 -positive breast cancer is highly aggressive and has a high relapse rate, suggesting that it is prone to and progresses rapidly after drug resistance. Pyrotinib resistance and changes in patients' conditions after drug resistance are challenging clinical issues and require medical attention. Recently, there are few clinical reports on changes in patients' conditions after pyrotinib resistance. We report a case of a 46-year-old patient with HER2 -positive breast cancer who developed resistance to pyrotinib and rapidly progressed to uncontrolled liver failure in less than a week. To elucidate the cause of the rapid progression, we collected samples of the patient's ascites and performed next-generation sequencing (NGS). On the basis of the NGS results, we speculated that the rapid progression after pyrotinib resistance might be due to RET gene fusion and TP53 gene mutations. Therefore, this case report aims to alert oncologists that patients with HER2 -positive breast cancer, who are resistant to pyrotinib or other targeted drugs, could experience rapid or even flare-up progression and that RET gene fusion and TP53 gene mutations might be potential causes.
Collapse
Affiliation(s)
- Fengxian Jiang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine
| | - Jingjiang Lai
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine
| | - Xiaoli Zhuo
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- The Clinical Medical College, Shandong First Medical University (Shandong Academy of Medicine)
| | - Lei Liu
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- The Clinical Medical College, Shandong First Medical University (Shandong Academy of Medicine)
| | - Yucheng Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | | | - Jing Zhao
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- The Clinical Medical College, Shandong First Medical University (Shandong Academy of Medicine)
| | - Wei Xu
- Department of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China
| | - Jingliang Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine
| | - Cuiyan Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Guobin Fu
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- Department of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
28
|
Singh S, Joshi V, Upadhyay A. Amyloids and brain cancer: molecular linkages and crossovers. Biosci Rep 2023; 43:BSR20230489. [PMID: 37335084 PMCID: PMC10548166 DOI: 10.1042/bsr20230489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023] Open
Abstract
Amyloids are high-order proteinaceous formations deposited in both intra- and extracellular spaces. These aggregates have tendencies to deregulate cellular physiology in multiple ways; for example, altered metabolism, mitochondrial dysfunctions, immune modulation, etc. When amyloids are formed in brain tissues, the endpoint often is death of neurons. However, interesting but least understood is a close connection of amyloids with another set of conditions in which brain cells proliferate at an extraordinary rate and form tumor inside brain. Glioblastoma is one such condition. Increasing number of evidence indicate a possible link between amyloid formation and depositions in brain tumors. Several proteins associated with cell cycle regulation and apoptotic pathways themselves have shown to possess high tendencies to form amyloids. Tumor suppressor protein p53 is one prominent example that mutate, oligomerize and form amyloids leading to loss- or gain-of-functions and cause increased cell proliferation and malignancies. In this review article, we present available examples, genetic links and common pathways that indicate that possibly the two distantly placed pathways: amyloid formation and developing cancers in the brain have similarities and are mechanistically intertwined together.
Collapse
Affiliation(s)
- Shalini Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, Jodhpur, Rajasthan 342001, India
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, U.S.A
| | - Vibhuti Joshi
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, Jodhpur, Rajasthan 342001, India
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh 201310, India
| | - Arun Upadhyay
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, Jodhpur, Rajasthan 342001, India
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, U.S.A
| |
Collapse
|
29
|
Fischer NW, Ma YHV, Gariépy J. Emerging insights into ethnic-specific TP53 germline variants. J Natl Cancer Inst 2023; 115:1145-1156. [PMID: 37352403 PMCID: PMC10560603 DOI: 10.1093/jnci/djad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/25/2023] Open
Abstract
The recent expansion of human genomics repositories has facilitated the discovery of novel TP53 variants in populations of different ethnic origins. Interpreting TP53 variants is a major clinical challenge because they are functionally diverse, confer highly variable predisposition to cancer (including elusive low-penetrance alleles), and interact with genetic modifiers that alter tumor susceptibility. Here, we discuss how a cancer risk continuum may relate to germline TP53 mutations on the basis of our current review of genotype-phenotype studies and an integrative analysis combining functional and sequencing datasets. Our study reveals that each ancestry contains a distinct TP53 variant landscape defined by enriched ethnic-specific alleles. In particular, the discovery and characterization of suspected low-penetrance ethnic-specific variants with unique functional consequences, including P47S (African), G334R (Ashkenazi Jewish), and rs78378222 (Icelandic), may provide new insights in terms of managing cancer risk and the efficacy of therapy. Additionally, our analysis highlights infrequent variants linked to milder cancer phenotypes in various published reports that may be underdiagnosed and require further investigation, including D49H in East Asians and R181H in Europeans. Overall, the sequencing and projected functions of TP53 variants arising within ethnic populations and their interplay with modifiers, as well as the emergence of CRISPR screens and AI tools, are now rapidly improving our understanding of the cancer susceptibility spectrum, leading toward more accurate and personalized cancer risk assessments.
Collapse
Affiliation(s)
- Nicholas W Fischer
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yu-Heng Vivian Ma
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jean Gariépy
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Guzman BB, Son A, Litberg TJ, Huang Z, Dominguez D, Horowitz S. Emerging roles for G-quadruplexes in proteostasis. FEBS J 2023; 290:4614-4625. [PMID: 36017725 PMCID: PMC10071977 DOI: 10.1111/febs.16608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/22/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022]
Abstract
How nucleic acids interact with proteins, and how they affect protein folding, aggregation, and misfolding is a still-evolving area of research. Considerable effort is now focusing on a particular structure of RNA and DNA, G-quadruplexes, and their role in protein homeostasis and disease. In this state-of-the-art review, we track recent reports on how G-quadruplexes influence protein aggregation, proteolysis, phase separation, and protein misfolding diseases, and pose currently unanswered questions in the advance of this scientific field.
Collapse
Affiliation(s)
- Bryan B Guzman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ahyun Son
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Theodore J Litberg
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Zijue Huang
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott Horowitz
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| |
Collapse
|
31
|
Liu Q, Li L, Yu Y, Wei G. Elucidating the Mechanisms of R248Q Mutation-Enhanced p53 Aggregation and Its Inhibition by Resveratrol. J Phys Chem B 2023; 127:7708-7720. [PMID: 37665658 DOI: 10.1021/acs.jpcb.3c04700] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Aggregation of p53 mutants can result in loss-of-function, gain-of-function, and dominant-negative effects that contribute to tumor growth. Revealing the mechanisms underlying mutation-enhanced p53 aggregation and dissecting how small molecule inhibitors prevent the conversion of p53 into aggregation-primed conformations are fundamentally important for the development of novel therapeutics for p53 aggregation-associated cancers. A recent experimental study shows that resveratrol (RSV) has an inhibitory effect on the aggregation of hot-spot R248Q mutant of the p53 core domain (p53C), while pterostilbene (PT) exhibits a relatively poor inhibitory efficacy. However, the conformational properties of the R248Q mutant leading to its enhanced aggregation propensity and the inhibitory mechanism of RSV against p53C aggregation are not well understood. Herein, we performed extensive all-atom molecular dynamics simulations on R248Q p53C in the absence and presence of RSV/PT, as well as wild-type (WT) p53C. Our simulations reveal that loop L3, where the mutation resides, remains compact in WT p53C, while it becomes extended in the R248Q mutant. The extension of loop L3 weakens the interactions between loop L3 and two crucial aggregation-prone regions (APRs) of p53C, leading to impaired interactions within the APRs and their structural destabilization as well as p53C. The destabilized APRs in the R248Q mutant are more exposed than in WT p53C, which is conducive to p53C aggregation. RSV has a higher preference to bind to R248Q p53C than PT. This binding not only stabilizes loop L3 of R248Q mutant to its WT-like conformation, preventing L3-extension-caused APRs' destabilization but also reduces APRs' solvent exposure, thereby inhibiting R248Q p53C aggregation. However, PT exhibits a lower hydrogen-bonding capability and a higher self-association propensity, which would lead to a reduced p53C binding and a weakened inhibitory effect on R248Q mutant aggregation. Our study provides mechanistic insights into the R248Q mutation-enhanced aggregation propensity and RSV's potent inhibition against R248Q p53C aggregation.
Collapse
Affiliation(s)
- Qian Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Le Li
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Yawei Yu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| |
Collapse
|
32
|
Lam YK, Yu J, Huang H, Ding X, Wong AM, Leung HH, Chan AW, Ng KK, Xu M, Wang X, Wong N. TP53 R249S mutation in hepatic organoids captures the predisposing cancer risk. Hepatology 2023; 78:727-740. [PMID: 36221953 PMCID: PMC10086078 DOI: 10.1002/hep.32802] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Major genomic drivers of hepatocellular carcinoma (HCC) are nowadays well recognized, although models to establish their roles in human HCC initiation remain scarce. Here, we used human liver organoids in experimental systems to mimic the early stages of human liver carcinogenesis from the genetic lesions of TP53 loss and L3 loop R249S mutation. In addition, chromatin immunoprecipitation sequencing (ChIP-seq) of HCC cell lines shed important functional insights into the initiation of HCC consequential to the loss of tumor-suppressive function from TP53 deficiency and gain-of-function activities from mutant p53. APPROACH AND RESULTS Human liver organoids were generated from surgical nontumor liver tissues. CRISPR knockout of TP53 in liver organoids consistently demonstrated tumor-like morphological changes, increased in stemness and unrestricted in vitro propagation. To recapitulate TP53 status in human HCC, we overexpressed mutant R249S in TP53 knockout organoids. A spontaneous increase in tumorigenic potentials and bona fide HCC histology in xenotransplantations were observed. ChIP-seq analysis of HCC cell lines underscored gain-of-function properties from L3 loop p53 mutants in chromatin remodeling and overcoming extrinsic stress. More importantly, direct transcriptional activation of PSMF1 by mutant R249S could increase organoid resistance to endoplasmic reticulum stress, which was readily abrogated by PSMF1 knockdown in rescue experiments. In a patient cohort of primary HCC tumors and genome-edited liver organoids, quantitative polymerase chain reaction corroborated ChIP-seq findings and verified preferential genes modulated by L3 mutants, especially those enriched by R249S. CONCLUSIONS We showed differential tumorigenic effects from TP53 loss and L3 mutations, which together confer normal hepatocytes with early clonal advantages and prosurvival functions.
Collapse
Affiliation(s)
- Yin Kau Lam
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianqing Yu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xiaofan Ding
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Alissa M. Wong
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Howard H. Leung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Anthony W. Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kelvin K. Ng
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingjing Xu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Nathalie Wong
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
33
|
Sengupta S, Singh N, Paul A, Datta D, Chatterjee D, Mukherjee S, Gadhe L, Devi J, Mahesh Y, Jolly MK, Maji SK. p53 amyloid pathology is correlated with higher cancer grade irrespective of the mutant or wild-type form. J Cell Sci 2023; 136:jcs261017. [PMID: 37622400 PMCID: PMC7615089 DOI: 10.1242/jcs.261017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
p53 (also known as TP53) mutation and amyloid formation are long associated with cancer pathogenesis; however, the direct demonstration of the link between p53 amyloid load and cancer progression is lacking. Using multi-disciplinary techniques and 59 tissues (53 oral and stomach cancer tumor tissue samples from Indian individuals with cancer and six non-cancer oral and stomach tissue samples), we showed that p53 amyloid load and cancer grades are highly correlated. Furthermore, next-generation sequencing (NGS) data suggest that not only mutant p53 (e.g. single-nucleotide variants, deletions, and insertions) but wild-type p53 also formed amyloids either in the nucleus (50%) and/or in the cytoplasm in most cancer tissues. Interestingly, in all these cancer tissues, p53 displays a loss of DNA-binding and transcriptional activities, suggesting that the level of amyloid load correlates with the degree of loss and an increase in cancer grades. The p53 amyloids also sequester higher amounts of the related p63 and p73 (also known as TP63 and TP73, respectively) protein in higher-grade tumor tissues. The data suggest p53 misfolding and/or aggregation, and subsequent amyloid formation, lead to loss of the tumor-suppressive function and the gain of oncogenic function, aggravation of which might determine the cancer grade.
Collapse
Affiliation(s)
- Shinjinee Sengupta
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Noida, Uttar Pradesh, 201303, India
| | - Namrata Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ajoy Paul
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Debalina Datta
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Debdeep Chatterjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Semanti Mukherjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Laxmikant Gadhe
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Jyoti Devi
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Yeshwanth Mahesh
- Centre for BioSystems Science and Engineering, Indian Institute of Science Bengaluru, Bengaluru, Karnataka 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science Bengaluru, Bengaluru, Karnataka 560012, India
| | - Samir K. Maji
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
34
|
Xu C, Kim A, Corbin JM, Wang GG. Onco-condensates: formation, multi-component organization, and biological functions. Trends Cancer 2023; 9:738-751. [PMID: 37349246 PMCID: PMC10524369 DOI: 10.1016/j.trecan.2023.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
Numerous cellular processes occur in the context of condensates, a type of large, membrane-less biomolecular assembly generated through phase separation. These condensates function as a hub of diversified cellular events by concentrating the required components. Cancer frequently coopts biomolecular condensation mechanisms to promote survival and/or proliferation. Onco-condensates, which refer to those that have causal roles or are critically involved in tumorigenicity, operate to abnormally elevate biological output of a proliferative process, or to suppress a tumor-suppressive pathway, thereby promoting oncogenesis. Here, we summarize advances regarding how multi-component onco-condensates are established and organized to promote oncogenesis, with those related to chromatin and transcription deregulation used as showcases. A better understanding should enable development of new means of targeting onco-condensates as potential therapeutics.
Collapse
Affiliation(s)
- Chenxi Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Arum Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Joshua M Corbin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Heinzl N, Maritschnegg E, Koziel K, Schilhart-Wallisch C, Heinze G, Yang WL, Bast RC, Sehouli J, Braicu EI, Vergote I, Van Gorp T, Mahner S, Paspalj V, Grimm C, Obermayr E, Schuster E, Holzer B, Rousseau F, Schymkowitz J, Concin N, Zeillinger R. Amyloid-like p53 as prognostic biomarker in serous ovarian cancer-a study of the OVCAD consortium. Oncogene 2023; 42:2473-2484. [PMID: 37402882 DOI: 10.1038/s41388-023-02758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
TP53 is the most commonly mutated gene in cancer and has been shown to form amyloid-like aggregates, similar to key proteins in neurodegenerative diseases. Nonetheless, the clinical implications of p53 aggregation remain unclear. Here, we investigated the presence and clinical relevance of p53 aggregates in serous ovarian cancer (OC). Using the p53-Seprion-ELISA, p53 aggregates were detected in 46 out of 81 patients, with a detection rate of 84.3% in patients with missense mutations. High p53 aggregation was associated with prolonged progression-free survival. We found associations of overall survival with p53 aggregates, but they did not reach statistical significance. Interestingly, p53 aggregation was significantly associated with elevated levels of p53 autoantibodies and increased apoptosis, suggesting that high levels of p53 aggregates may trigger an immune response and/or exert a cytotoxic effect. To conclude, for the first time, we demonstrated that p53 aggregates are an independent prognostic marker in serous OC. P53-targeted therapies based on the amount of these aggregates may improve the patient's prognosis.
Collapse
Affiliation(s)
- Nicole Heinzl
- Department of Obstetrics and Gynaecology, Molecular Oncology Group, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Maritschnegg
- Department of Obstetrics and Gynaecology, Molecular Oncology Group, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 802, 3000, Leuven, Belgium
| | - Katarzyna Koziel
- Department of Gynaecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | | | - Georg Heinze
- Section for Clinical Biometrics, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Wei-Lei Yang
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Robert C Bast
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jalid Sehouli
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum, Berlin, Germany
| | - Elena I Braicu
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum, Berlin, Germany
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Ignace Vergote
- Division of Gynaecologic Oncology, University Hospital Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Toon Van Gorp
- Division of Gynaecologic Oncology, University Hospital Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sven Mahner
- Department of Gynaecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Obstetrics and Gynaecology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Valentina Paspalj
- Department of Obstetrics and Gynaecology, Division of General Gynaecology and Gynaecologic Oncology, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Christoph Grimm
- Department of Obstetrics and Gynaecology, Division of General Gynaecology and Gynaecologic Oncology, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Eva Obermayr
- Department of Obstetrics and Gynaecology, Molecular Oncology Group, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Eva Schuster
- Department of Obstetrics and Gynaecology, Molecular Oncology Group, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Barbara Holzer
- Department of Obstetrics and Gynaecology, Molecular Oncology Group, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 802, 3000, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 802, 3000, Leuven, Belgium
| | - Nicole Concin
- Department of Gynaecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Robert Zeillinger
- Department of Obstetrics and Gynaecology, Molecular Oncology Group, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
36
|
Wang J, Liu W, Zhang L, Zhang J. Targeting mutant p53 stabilization for cancer therapy. Front Pharmacol 2023; 14:1215995. [PMID: 37502209 PMCID: PMC10369794 DOI: 10.3389/fphar.2023.1215995] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Over 50% cancer bears TP53 mutation, the highly stabilized mutant p53 protein drives the tumorigenesis and progression. Mutation of p53 not only cause loss-of-function and dominant-negative effects (DNE), but also results in the abnormal stability by the regulation of the ubiquitin-proteasome system and molecular chaperones that promote tumorigenesis through gain-of-function effects. The accumulation of mutant p53 is mainly regulated by molecular chaperones, including Hsp40, Hsp70, Hsp90 and other biomolecules such as TRIM21, BAG2 and Stat3. In addition, mutant p53 forms prion-like aggregates or complexes with other protein molecules and result in the accumulation of mutant p53 in tumor cells. Depleting mutant p53 has become one of the strategies to target mutant p53. This review will focus on the mechanism of mutant p53 stabilization and discuss how the strategies to manipulate these interconnected processes for cancer therapy.
Collapse
Affiliation(s)
- Jiajian Wang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Wenjun Liu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Lanqing Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jihong Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, Kunming, China
| |
Collapse
|
37
|
Lu Y, Wu M, Xu Y, Yu L. The Development of p53-Targeted Therapies for Human Cancers. Cancers (Basel) 2023; 15:3560. [PMID: 37509223 PMCID: PMC10377496 DOI: 10.3390/cancers15143560] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
p53 plays a critical role in tumor suppression and is the most frequently mutated gene in human cancers. Most p53 mutants (mutp53) are missense mutations and are thus expressed in human cancers. In human cancers that retain wtp53, the wtp53 activities are downregulated through multiple mechanisms. For example, the overexpression of the negative regulators of p53, MDM2/MDMX, can also efficiently destabilize and inactivate wtp53. Therefore, both wtp53 and mutp53 have become promising and intensively explored therapeutic targets for cancer treatment. Current efforts include the development of small molecule compounds to disrupt the interaction between wtp53 and MDM2/MDMX in human cancers expressing wtp53 and to restore wtp53-like activity to p53 mutants in human cancers expressing mutp53. In addition, a synthetic lethality approach has been applied to identify signaling pathways affected by p53 dysfunction, which, when targeted, can lead to cell death. While an intensive search for p53-targeted cancer therapy has produced potential candidates with encouraging preclinical efficacy data, it remains challenging to develop such drugs with good efficacy and safety profiles. A more in-depth understanding of the mechanisms of action of these p53-targeting drugs will help to overcome these challenges.
Collapse
Affiliation(s)
- Yier Lu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Meng Wu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yang Xu
- Department of Cardiology, The Second Affiliated Hospital, Cardiovascular Key Lab of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lili Yu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
38
|
Hnath B, Chen J, Reynolds J, Choi E, Wang J, Zhang D, Sha CM, Dokholyan NV. Big versus small: The impact of aggregate size in disease. Protein Sci 2023; 32:e4686. [PMID: 37243896 PMCID: PMC10273386 DOI: 10.1002/pro.4686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Protein aggregation results in an array of different size soluble oligomers and larger insoluble fibrils. Insoluble fibrils were originally thought to cause neuronal cell deaths in neurodegenerative diseases due to their prevalence in tissue samples and disease models. Despite recent studies demonstrating the toxicity associated with soluble oligomers, many therapeutic strategies still focus on fibrils or consider all types of aggregates as one group. Oligomers and fibrils require different modeling and therapeutic strategies, targeting the toxic species is crucial for successful study and therapeutic development. Here, we review the role of different-size aggregates in disease, and how factors contributing to aggregation (mutations, metals, post-translational modifications, and lipid interactions) may promote oligomers opposed to fibrils. We review two different computational modeling strategies (molecular dynamics and kinetic modeling) and how they are used to model both oligomers and fibrils. Finally, we outline the current therapeutic strategies targeting aggregating proteins and their strengths and weaknesses for targeting oligomers versus fibrils. Altogether, we aim to highlight the importance of distinguishing the difference between oligomers and fibrils and determining which species is toxic when modeling and creating therapeutics for protein aggregation in disease.
Collapse
Affiliation(s)
- Brianna Hnath
- Department of Biomedical EngineeringPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Jiaxing Chen
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Joshua Reynolds
- Department of Biomedical EngineeringPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Esther Choi
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Medical Scientist Training ProgramPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Jian Wang
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Dongyan Zhang
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Congzhou M. Sha
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Medical Scientist Training ProgramPenn State College of MedicineHersheyPennsylvaniaUSA
- Department of Engineering Science and MechanicsPenn State UniversityUniversity ParkPennsylvaniaUSA
| | - Nikolay V. Dokholyan
- Department of Biomedical EngineeringPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Department of Engineering Science and MechanicsPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of Biochemistry & Molecular BiologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Department of ChemistryPenn State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
39
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
40
|
Zhao D, Zarif M, Zhou Q, Capo-Chichi JM, Schuh A, Minden MD, Atenafu EG, Kumar R, Chang H. TP53 Mutations in AML Patients Are Associated with Dismal Clinical Outcome Irrespective of Frontline Induction Regimen and Allogeneic Hematopoietic Cell Transplantation. Cancers (Basel) 2023; 15:3210. [PMID: 37370821 DOI: 10.3390/cancers15123210] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
TP53 mutations are associated with extremely poor outcomes in acute myeloid leukemia (AML). The outcomes of patients with TP53-mutated (TP53MUT) AML after different frontline treatment modalities are not well established. Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative procedure for AML; however, long-term outcomes among patients with TP53MUT AML after allo-HCT are dismal, and the benefit of allo-HCT remains controversial. We sought to evaluate the outcomes of patients with TP53MUT AML after treatment with different frontline induction therapies and allo-HCT. A total of 113 patients with TP53MUT AML were retrospectively evaluated. Patients with TP53MUT AML who received intensive or azacitidine-venetoclax induction had higher complete remission rates compared to patients treated with other hypomethylating-agent-based induction regimens. However, OS and EFS were not significantly different among the induction regimen groups. Allo-HCT was associated with improved OS and EFS among patients with TP53MUT AML; however, allo-HCT was not significantly associated with improved OS or EFS in time-dependent or landmark analysis. While the outcomes of all patients were generally poor irrespective of therapeutic strategy, transplanted patients with lower TP53MUT variant allele frequency (VAF) at the time of diagnosis had superior outcomes compared to transplanted patients with higher TP53 VAF. Our study provides further evidence that the current standards of care for AML confer limited therapeutic benefit to patients with TP53 mutations.
Collapse
Affiliation(s)
- Davidson Zhao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Mojgan Zarif
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Qianghua Zhou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| | - José-Mario Capo-Chichi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Andre Schuh
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Mark D Minden
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Rajat Kumar
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
41
|
Hong JY, Wang JY, Yue HW, Zhang XL, Zhang SX, Jiang LL, Hu HY. Coaggregation of polyglutamine (polyQ) proteins is mediated by polyQ-tract interactions and impairs cellular proteostasis. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37171184 DOI: 10.3724/abbs.2023081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Nine polyglutamine (polyQ) proteins have already been identified that are considered to be associated with the pathologies of neurodegenerative disorders called polyQ diseases, but whether these polyQ proteins mutually interact and synergize in proteinopathies remains to be elucidated. In this study, 4 polyQ-containing proteins, androgen receptor (AR), ataxin-7 (Atx7), huntingtin (Htt) and ataxin-3 (Atx3), are used as model molecules to investigate their heterologous coaggregation and consequent impact on cellular proteostasis. Our data indicate that the N-terminal fragment of polyQ-expanded (PQE) Atx7 or Htt can coaggregate with and sequester AR and Atx3 into insoluble aggregates or inclusions through their respective polyQ tracts. In vitro coprecipitation and NMR titration experiments suggest that this specific coaggregation depends on polyQ lengths and is probably mediated by polyQ-tract interactions. Luciferase reporter assay shows that these coaggregation and sequestration effects can deplete the cellular availability of AR and consequently impair its transactivation function. This study provides valid evidence supporting the viewpoint that coaggregation of polyQ proteins is mediated by polyQ-tract interactions and benefits our understanding of the molecular mechanism underlying the accumulation of different polyQ proteins in inclusions and their copathological causes of polyQ diseases.
Collapse
Affiliation(s)
- Jun-Ye Hong
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Yang Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Wei Yue
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Le Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-Xian Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei-Lei Jiang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
42
|
Song B, Wang J, Ren Y, Su Y, Geng X, Yang F, Wang H, Zhang J. Butein inhibits cancer cell growth by rescuing the wild-type thermal stability of mutant p53. Biomed Pharmacother 2023; 163:114773. [PMID: 37156116 DOI: 10.1016/j.biopha.2023.114773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/15/2023] [Accepted: 04/22/2023] [Indexed: 05/10/2023] Open
Abstract
p53 is a transcription factor that activates the expression of various genes involved in the maintenance of genomic stability, and more than 50% of cancers harbor inactivating p53 mutations, which are indicative of highly aggressive cancer and poor prognosis. Pharmacological targeting of mutant p53 to restore the wild-type p53 tumor-suppressing function is a promising strategy for cancer therapy. In this study, we identified a small molecule, Butein, that reactivates mutant p53 activity in tumor cells harboring the R175H or R273H mutation. Butein restored wild-type-like conformation and DNA-binding ability in HT29 and SK-BR-3 cells harboring mutant p53-R175H and mutant p53-R273H, respectively. Moreover, Butein enabled the transactivation of p53 target genes and decreased the interactions of Hsp90 with mutant p53-R175H and mutant p53-R273H proteins, while Hsp90 overexpression reversed targeted p53 gene activation. In addition, Butein induced thermal stabilization of wild-type p53, mutant p53-R273H and mutant p53-R175H, as determined via CETSA. From docking study, we further proved that Butein binding to p53 stabilized the DNA-binding loop-sheet-helix motif of mutant p53-R175H and regulated its DNA-binding activity via an allosteric mechanism, conferring wild-type-like the DNA-binding activity of mutant p53. Collectively, the data suggest that Butein is a potential antitumor agent that restores p53 function in cancers harboring mutant p53-R273H or mutant p53-R175H. SIGNIFICANCE: Butein restores the ability of mutant p53 to bind DNA by reversing its transition to the Loop3 (L3) state, endows p53 mutants with thermal stability and re-establishes their transcriptional activity to induce cancer cell death.
Collapse
Affiliation(s)
- Bin Song
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jiajian Wang
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yixin Ren
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yongnan Su
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Xueye Geng
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Fan Yang
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Hao Wang
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Jihong Zhang
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Province Clinical Research Center for Hematologic Disease, Kunming 650032, China.
| |
Collapse
|
43
|
Kanellis DC, Zisi A, Skrott Z, Lemmens B, Espinoza JA, Kosar M, Björkman A, Li X, Arampatzis S, Bartkova J, Andújar-Sánchez M, Fernandez-Capetillo O, Mistrik M, Lindström MS, Bartek J. Actionable cancer vulnerability due to translational arrest, p53 aggregation and ribosome biogenesis stress evoked by the disulfiram metabolite CuET. Cell Death Differ 2023:10.1038/s41418-023-01167-4. [PMID: 37142656 DOI: 10.1038/s41418-023-01167-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
Drug repurposing is a versatile strategy to improve current therapies. Disulfiram has long been used in the treatment of alcohol dependency and multiple clinical trials to evaluate its clinical value in oncology are ongoing. We have recently reported that the disulfiram metabolite diethyldithiocarbamate, when combined with copper (CuET), targets the NPL4 adapter of the p97VCP segregase to suppress the growth of a spectrum of cancer cell lines and xenograft models in vivo. CuET induces proteotoxic stress and genotoxic effects, however important issues concerning the full range of the CuET-evoked tumor cell phenotypes, their temporal order, and mechanistic basis have remained largely unexplored. Here, we have addressed these outstanding questions and show that in diverse human cancer cell models, CuET causes a very early translational arrest through the integrated stress response (ISR), later followed by features of nucleolar stress. Furthermore, we report that CuET entraps p53 in NPL4-rich aggregates leading to elevated p53 protein and its functional inhibition, consistent with the possibility of CuET-triggered cell death being p53-independent. Our transcriptomics profiling revealed activation of pro-survival adaptive pathways of ribosomal biogenesis (RiBi) and autophagy upon prolonged exposure to CuET, indicating potential feedback responses to CuET treatment. The latter concept was validated here by simultaneous pharmacological inhibition of RiBi and/or autophagy that further enhanced CuET's tumor cytotoxicity, using both cell culture and zebrafish in vivo preclinical models. Overall, these findings expand the mechanistic repertoire of CuET's anti-cancer activity, inform about the temporal order of responses and identify an unorthodox new mechanism of targeting p53. Our results are discussed in light of cancer-associated endogenous stresses as exploitable tumor vulnerabilities and may inspire future clinical applications of CuET in oncology, including combinatorial treatments and focus on potential advantages of using certain validated drug metabolites, rather than old, approved drugs with their, often complex, metabolic profiles.
Collapse
Affiliation(s)
- Dimitris C Kanellis
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21, Stockholm, Sweden.
| | - Asimina Zisi
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21, Stockholm, Sweden
| | - Zdenek Skrott
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Bennie Lemmens
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21, Stockholm, Sweden
| | - Jaime A Espinoza
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21, Stockholm, Sweden
| | - Martin Kosar
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21, Stockholm, Sweden
| | - Andrea Björkman
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21, Stockholm, Sweden
| | - Xuexin Li
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21, Stockholm, Sweden
| | | | - Jirina Bartkova
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21, Stockholm, Sweden
- Danish Cancer Society Research Center, DK-2100, Copenhagen, Denmark
| | - Miguel Andújar-Sánchez
- Pathology Department, Complejo Hospitalario Universitario Insular, Las Palmas, Gran Canaria, Spain
| | - Oscar Fernandez-Capetillo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21, Stockholm, Sweden
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Mikael S Lindström
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21, Stockholm, Sweden
| | - Jiri Bartek
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21, Stockholm, Sweden.
- Danish Cancer Society Research Center, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
44
|
Cai BH, Sung YT, Chen CC, Shaw JF, Hsin IL. The Competition of Yin and Yang: Exploring the Role of Wild-Type and Mutant p53 in Tumor Progression. Biomedicines 2023; 11:biomedicines11041192. [PMID: 37189810 DOI: 10.3390/biomedicines11041192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The protein p53 is a well-known tumor suppressor that plays a crucial role in preventing cancer development [...].
Collapse
Affiliation(s)
- Bi-He Cai
- School of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Yu-Te Sung
- Department of Plastic Surgery, E-Da Hospital, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Chia-Chi Chen
- School of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
- Department of Physical Therapy, I-Shou University, Kaohsiung City 82445, Taiwan
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung City 82445, Taiwan
- Department of Pathology, E-Da Hospital, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Jei-Fu Shaw
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City 82445, Taiwan
| | - I-Lun Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan
| |
Collapse
|
45
|
Sun X, Chintakunta PK, Badachhape AA, Bhavane R, Lee H, Yang DS, Starosolski Z, Ghaghada KB, Vekilov PG, Annapragada AV, Tanifum EA. Rational Design of a Self-Assembling High Performance Organic Nanofluorophore for Intraoperative NIR-II Image-Guided Tumor Resection of Oral Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206435. [PMID: 36721029 PMCID: PMC10074073 DOI: 10.1002/advs.202206435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 12/30/2022] [Indexed: 06/18/2023]
Abstract
The first line of treatment for most solid tumors is surgical resection of the primary tumor with adequate negative margins. Incomplete tumor resections with positive margins account for over 75% of local recurrences and the development of distant metastases. In cases of oral cavity squamous cell carcinoma (OSCC), the rate of successful tumor removal with adequate margins is just 50-75%. Advanced real-time imaging methods that improve the detection of tumor margins can help improve success rates,overall safety, and reduce the cost. Fluorescence imaging in the second near-infrared (NIR-II) window has the potential to revolutionize the field due to its high spatial resolution, low background signal, and deep tissue penetration properties, but NIR-II dyes with adequate in vivo performance and safety profiles are scarce. A novel NIR-II fluorophore, XW-03-66, with a fluorescence quantum yield (QY) of 6.0% in aqueous media is reported. XW-03-66 self-assembles into nanoparticles (≈80 nm) and has a systemic circulation half-life (t1/2 ) of 11.3 h. In mouse models of human papillomavirus (HPV)+ and HPV- OSCC, XW-03-66 outperformed indocyanine green (ICG), a clinically available NIR dye, and enabled intraoperative NIR-II image-guided resection of the tumor and adjacent draining lymph node with negative margins. In vitro and in vivo toxicity assessments revealed minimal safety concerns for in vivo applications.
Collapse
Affiliation(s)
- Xianwei Sun
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
| | - Praveen Kumar Chintakunta
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
- Present address:
Sai Life Sciences LtdTurakapallyTelanganaIndia
| | | | - Rohan Bhavane
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
- Department of RadiologyTexas Children's HospitalHoustonTX77030USA
| | - Huan‐Jui Lee
- Department of Chemical and Biomolecular EngineeringUniversity of HoustonHoustonTX77204USA
| | - David S. Yang
- Department of Chemical and Biomolecular EngineeringUniversity of HoustonHoustonTX77204USA
| | - Zbigniew Starosolski
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
- Department of RadiologyTexas Children's HospitalHoustonTX77030USA
| | - Ketan B. Ghaghada
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
- Department of RadiologyTexas Children's HospitalHoustonTX77030USA
| | - Peter G. Vekilov
- Department of Chemical and Biomolecular EngineeringUniversity of HoustonHoustonTX77204USA
- Department of ChemistryUniversity of HoustonHoustonTX77204USA
| | - Ananth V. Annapragada
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
- Department of RadiologyTexas Children's HospitalHoustonTX77030USA
| | - Eric A. Tanifum
- Department of RadiologyBaylor College of MedicineHoustonTX77030USA
- Department of RadiologyTexas Children's HospitalHoustonTX77030USA
| |
Collapse
|
46
|
Nasi GI, Georgakopoulou KI, Theodoropoulou MK, Papandreou NC, Chrysina ED, Tsiolaki PL, Iconomidou VA. Bacterial Lectin FimH and Its Aggregation Hot-Spots: An Alternative Strategy against Uropathogenic Escherichia coli. Pharmaceutics 2023; 15:pharmaceutics15031018. [PMID: 36986878 PMCID: PMC10058141 DOI: 10.3390/pharmaceutics15031018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Type I fimbriae are the main adhesive organelles of uropathogenic Escherichia coli (UPEC), consisting of four different subunits. Their component with the most important role in establishing bacterial infections is the FimH adhesin located at the fimbrial tip. This two-domain protein mediates adhesion to host epithelial cells through interaction with terminal mannoses on epithelial glycoproteins. Here, we propose that the amyloidogenic potential of FimH can be exploited for the development of therapeutic agents against Urinary Tract Infections (UTIs). Aggregation-prone regions (APRs) were identified via computational methods, and peptide-analogues corresponding to FimH lectin domain APRs were chemically synthesized and studied with the aid of both biophysical experimental techniques and molecular dynamic simulations. Our findings indicate that these peptide-analogues offer a promising set of antimicrobial candidate molecules since they can either interfere with the folding process of FimH or compete for the mannose-binding pocket.
Collapse
Affiliation(s)
- Georgia I Nasi
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Konstantina I Georgakopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Marilena K Theodoropoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Nikos C Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Evangelia D Chrysina
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Paraskevi L Tsiolaki
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Vassiliki A Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
47
|
Naus E, Derweduwe M, Lampi Y, Claeys A, Pauwels J, Langenberg T, Claes F, Xu J, Haemels V, Atak ZK, van der Kant R, Van Durme J, De Baets G, Ligon KL, Fiers M, Gevaert K, Aerts S, Rousseau F, Schymkowitz J, De Smet F. Reduced Levels of Misfolded and Aggregated Mutant p53 by Proteostatic Activation. Cells 2023; 12:cells12060960. [PMID: 36980299 PMCID: PMC10047295 DOI: 10.3390/cells12060960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
In malignant cancer, excessive amounts of mutant p53 often lead to its aggregation, a feature that was recently identified as druggable. Here, we describe that induction of a heat shock-related stress response mediated by Foldlin, a small-molecule tool compound, reduces the protein levels of misfolded/aggregated mutant p53, while contact mutants or wild-type p53 remain largely unaffected. Foldlin also prevented the formation of stress-induced p53 nuclear inclusion bodies. Despite our inability to identify a specific molecular target, Foldlin also reduced protein levels of aggregating SOD1 variants. Finally, by screening a library of 778 FDA-approved compounds for their ability to reduce misfolded mutant p53, we identified the proteasome inhibitor Bortezomib with similar cellular effects as Foldlin. Overall, the induction of a cellular heat shock response seems to be an effective strategy to deal with pathological protein aggregation. It remains to be seen however, how this strategy can be translated to a clinical setting.
Collapse
Affiliation(s)
- Evelyne Naus
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Marleen Derweduwe
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium (V.H.); (K.G.)
| | - Youlia Lampi
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Annelies Claeys
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium (V.H.); (K.G.)
| | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Tobias Langenberg
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Filip Claes
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Jie Xu
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Veerle Haemels
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium (V.H.); (K.G.)
| | - Zeynep Kalender Atak
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Laboratory of Computational Biology, Center for Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Rob van der Kant
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Joost Van Durme
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Greet De Baets
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Keith L. Ligon
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- The Broad Institute, Cambridge, MA 02142, USA
- Department of Pathology, Division of Neuropathology, Brigham and Women’s Hospital and Children’s Hospital Boston, Boston, MA 02215, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02215, USA
| | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| | - Kris Gevaert
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium (V.H.); (K.G.)
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium;
| | - Stein Aerts
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Laboratory of Computational Biology, Center for Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; (E.N.); (Y.L.); (T.L.); (F.C.); (J.X.); (Z.K.A.); (R.v.d.K.); (J.V.D.); (G.D.B.); (M.F.); (S.A.); (F.R.); (J.S.)
- Switch Laboratory, Department for Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Frederik De Smet
- The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium (V.H.); (K.G.)
- Correspondence:
| |
Collapse
|
48
|
Chen Q, Wu Y, Dai Z, Zhang Z, Yang X. Phosphorylation and specific DNA improved the incorporation ability of p53 into functional condensates. Int J Biol Macromol 2023; 230:123221. [PMID: 36634798 DOI: 10.1016/j.ijbiomac.2023.123221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/26/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
The transcription factor p53 acted as a critical tumor suppressor by activating the expression of various target genes to regulate diverse cellular responses. The phosphorylation of p53 influenced the binding of p53 to promotor-specific DNA and the choice of cell fate. In this study, we found that full-length wild-type p53 and pol II CTD could form heterotypic phase separation condensates in vitro. The heterotypic condensates of p53 and pol II CTD were mediated by electrostatic and hydrophobic interactions between pol II CTD and multiple domains of p53. The mobility of heterotypic p53 and pol II CTD droplets was significantly higher than that of p53 droplet. The phosphorylation promoted p53 to be recruited into pol II CTD droplets and transcription condensates. The specific DNA could further enhance the incorporation ability of p53 into functional condensates. Therefore, we proposed that the p53 droplet might be in a mediate state, the mutations resulting in p53 mutants with gain-of-function impelled the aggregate of p53, while the phosphorylation promoted p53 to be recruited into functional condensates as a client molecule to exert its function. This study might provide insights into the regulation mechanism that the phosphorylation and nuclei acid affected the phase behavior of p53.
Collapse
Affiliation(s)
- Qunyang Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China
| | - Yiping Wu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China
| | - Zhuojun Dai
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China
| | - Zhuqing Zhang
- College of life sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaorong Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| |
Collapse
|
49
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 154.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
50
|
Inhibition of p53 protein aggregation as a cancer treatment strategy. Curr Opin Chem Biol 2023; 72:102230. [PMID: 36436275 DOI: 10.1016/j.cbpa.2022.102230] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
Abstract
The p53 protein plays a critical role in the prevention of genome mutations in the body, however, this protein is frequently mutated in cancer and almost all cancers exhibit malfunction along the p53 pathway. In addition to a loss of activity, mutant p53 protein is prone to unfolding and aggregation, eventually forming amyloid aggregates. There continues to be a considerable effort to develop strategies to restore normal p53 expression and activity and this review details recent advances in small-molecule stabilization of mutant p53 protein and the design of p53 aggregation inhibitors.
Collapse
|