1
|
Dyguda-Kazimierowicz E, Jedwabny W. Organophosphate Hydrolysis by a Designed Metalloenzyme: Impact of Mutations Explained. J Phys Chem B 2024; 128:12456-12470. [PMID: 39648809 DOI: 10.1021/acs.jpcb.4c06809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The efficient design of novel enzymes has been attainable only by a combination of theoretical approaches and experimental refinement, suggesting inadequate performance of de novo design protocols. Based on the analysis of the evolutionary trajectory of a designed organophosphate hydrolase, this work aimed at developing and validating the improved theoretical models describing the catalytic activity of five enzyme variants (including wild-type as well as theoretically derived and experimentally refined enzymes) performing the hydrolysis of diethyl 7-hydroxycoumarinyl phosphate. The following aspects possibly important for enzyme design were addressed: the level of theory sufficient for a reliable description of enzyme-reactant interactions, the issue of ground state (GS) destabilization versus transition state (TS) stabilization, and the derivation of the proper side chain rotamers of amino acid residues. For enzyme variants analyzed herein, differential transition state stabilization (DTSS, i.e., preferential TS binding by an enzyme over the GS binding) calculated with a non-empirical model of the interaction energy (i.e., multipole electrostatic plus approximate dispersion terms, MED) displayed a superior performance in ranking the enzyme catalytic activity. The MED DTSS-based systematic rotamer refinement performed with an efficient scanning procedure and accounting for long-range interaction energy terms is an important step capable of unlocking the full potential impact of the given residue that could be otherwise overlooked with a conventional static approach featuring optimization to the nearby minimum. While TS stabilization is the main factor contributing to the increased catalytic activity of the de novo-designed variant studied in this work, directed evolution refinement appears to impact the catalytic activity of another enzyme variant analyzed herein via GS destabilization.
Collapse
Affiliation(s)
- Edyta Dyguda-Kazimierowicz
- Department of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wiktoria Jedwabny
- Department of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
2
|
Miller AH, Martins IBS, Blagova EV, Wilson KS, Duhme-Klair AK. Kinetic and structural analysis of redox-reversible artificial imine reductases. J Inorg Biochem 2024; 260:112691. [PMID: 39126757 DOI: 10.1016/j.jinorgbio.2024.112691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Three artificial imine reductases, constructed via supramolecular anchoring utilising FeIII-azotochelin, a natural siderophore, to bind an iridium-containing catalyst to periplasmic siderophore-binding protein (PBP) scaffolds, have previously been synthesised and subjected to catalytic testing. Despite exhibiting high homology and possessing conserved siderophore anchor coordinating residues, the three artificial metalloenzymes (ArMs) displayed significant variability in turnover frequencies (TOFs). To further understand the catalytic properties of these ArMs, their kinetic behaviour was evaluated with respect to the reduction of three cyclic imines: dihydroisoquinoline, harmaline, and papaverine. Kinetic analyses revealed that all examined ArMs adhere to Michaelis-Menten kinetics, with the most pronounced saturation profile observed for the substrate harmaline. Additionally, molecular docking studies suggested varied hydrogen-bonding interactions between substrates and residues within the artificial binding pocket. Pi-stacking and pi-cation interactions were identified for harmaline and papaverine, corroborating the higher affinity of these substrates for the ArMs in comparison to dihydroisoquinoline. Furthermore, it was demonstrated that multiple cavities are capable of accommodating substrates in close proximity to the catalytic centre, thereby rationalising the moderate enantioselectivity conferred by the unmodified scaffolds.
Collapse
Affiliation(s)
- Alex H Miller
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Ingrid B S Martins
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, SP 15054-000, Brazil; Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Elena V Blagova
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Keith S Wilson
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Anne-K Duhme-Klair
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom.
| |
Collapse
|
3
|
Imai K, Muguruma K, Nakamura A, Kusakari Y, Chang TC, Pradipta AR, Tanaka K. In Vivo Synthetic Anticancer Approach by Resourcing Mouse Blood Albumin as a Biocompatible Artificial Metalloenzyme. Angew Chem Int Ed Engl 2024; 63:e202411225. [PMID: 38989662 DOI: 10.1002/anie.202411225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
Methods for producing drugs directly at the cancer site, particularly using bioorthogonal metal catalysts, are being explored to mitigate the side effects of therapy. Albumin-based artificial metalloenzymes (ArMs) catalyze reactions in living mice while protecting the catalyst in the hydrophobic pocket. Here, we describe the in situ preparation and application of biocompatible tumor-targeting ArMs using circulating albumin, which is abundant in the bloodstream. The ArM was formed using blood albumin through the intravenous injection of ruthenium conjugated with an albumin-binding ligand; the tumor-targeting unit was conjugated to the ArM using its catalytic activity, and the ArM was transported to the cancer site. The delivered ArM catalyzed a second tagging reaction of the proapoptotic peptide on the cancer surface, successfully suppressing cancer proliferation. This approach, which efficiently leveraged the persisting reactivity twice in vivo, holds promise for future in vivo metal-catalyzed drug synthesis utilizing endogenous albumin.
Collapse
Affiliation(s)
- Kyosuke Imai
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Kyohei Muguruma
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Akiko Nakamura
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuriko Kusakari
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tsung-Che Chang
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Ambara R Pradipta
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8552, Japan
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
4
|
Varghese A, Waheed SO, Gorantla K, DiCastri I, LaRouche C, Kaski B, Fields GB, Karabencheva-Christova TG. Catalytic Mechanism of Collagen Hydrolysis by Zinc(II)-Dependent Matrix Metalloproteinase-1. J Phys Chem B 2023; 127:9697-9709. [PMID: 37931179 PMCID: PMC10659029 DOI: 10.1021/acs.jpcb.3c04293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Human matrix metalloproteinase-1 (MMP-1) is a zinc(II)-dependent enzyme that catalyzes collagenolysis. Despite the availability of extensive experimental data, the mechanism of MMP-1-catalyzed collagenolysis remains poorly understood due to the lack of experimental structure of a catalytically productive enzyme-substrate complex of MMP-1. In this study, we apply molecular dynamics and combined quantum mechanics/molecular mechanics to reveal the reaction mechanism of MMP-1 based on a computationally modeled structure of the catalytically competent complex of MMP-1 that contains a large triple-helical peptide substrate. Our proposed mechanism involves the participation of an auxiliary (second) water molecule (wat2) in addition to the zinc(II)-coordinated water (wat1). The reaction initiates through a proton transfer to Glu219, followed by a nucleophilic attack by a zinc(II)-coordinated hydroxide anion nucleophile at the carbonyl carbon of the scissile bond, leading to the formation of a tetrahedral intermediate (IM2). The process continues with a hydrogen-bond rearrangement to facilitate proton transfer from wat2 to the amide nitrogen of the scissile bond and, finally, C-N bond cleavage. The calculations indicate that the rate-determining step is the water-mediated nucleophilic attack with an activation energy barrier of 22.3 kcal/mol. Furthermore, the calculations show that the hydrogen-bond rearrangement/proton-transfer step can proceed in a consecutive or concerted manner, depending on the conformation of the tetrahedral intermediate, with the consecutive mechanism being energetically preferable. Overall, the study reveals the crucial role of a second water molecule and the dynamics for effective MMP-1-catalyzed collagenolysis.
Collapse
Affiliation(s)
- Ann Varghese
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sodiq O. Waheed
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Koteswararao Gorantla
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Isabella DiCastri
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Ciara LaRouche
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Brendan Kaski
- Department
of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Gregg B. Fields
- Department
of Chemistry and Biochemistry and I-HEALTH, Florida Atlantic University, Jupiter, Florida 33458, United States
| | | |
Collapse
|
5
|
Jayasinghe-Arachchige VM, Serafim LF, Hu Q, Ozen C, Moorkkannur SN, Schenk G, Prabhakar R. Elucidating the Roles of Distinct Chemical Factors in the Hydrolytic Activities of Hetero- and Homonuclear Synthetic Analogues of Binuclear Metalloenzymes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
| | - Leonardo F. Serafim
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Qiaoyu Hu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Cihan Ozen
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Sreerag N. Moorkkannur
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
6
|
Choi TS, Tezcan FA. Design of a Flexible, Zn-Selective Protein Scaffold that Displays Anti-Irving-Williams Behavior. J Am Chem Soc 2022; 144:18090-18100. [PMID: 36154053 PMCID: PMC9949983 DOI: 10.1021/jacs.2c08050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Selective metal binding is a key requirement not only for the functions of natural metalloproteins but also for the potential applications of artificial metalloproteins in heterogeneous environments such as cells and environmental samples. The selection of transition-metal ions through protein design can, in principle, be achieved through the appropriate choice and the precise positioning of amino acids that comprise the primary metal coordination sphere. However, this task is made difficult by the intrinsic flexibility of proteins and the fact that protein design approaches generally lack the sub-Å precision required for the steric selection of metal ions. We recently introduced a flexible/probabilistic protein design strategy (MASCoT) that allows metal ions to search for optimal coordination geometry within a flexible, yet covalently constrained dimer interface. In an earlier proof-of-principle study, we used MASCoT to generate an artificial metalloprotein dimer, (AB)2, which selectively bound CoII and NiII over CuII (as well as other first-row transition-metal ions) through the imposition of a rigid octahedral coordination geometry, thus countering the Irving-Williams trend. In this study, we set out to redesign (AB)2 to examine the applicability of MASCoT to the selective binding of other metal ions. We report here the design and characterization of a new flexible protein dimer, B2, which displays ZnII selectivity over all other tested metal ions including CuII both in vitro and in cellulo. Selective, anti-Irving-Williams ZnII binding by B2 is achieved through the formation of a unique trinuclear Zn coordination motif in which His and Glu residues are rigidly placed in a tetrahedral geometry. These results highlight the utility of protein flexibility in the design and discovery of selective binding motifs.
Collapse
|
7
|
Tang CD, Zhang X, Shi HL, Liu XX, Wang HY, Lu YF, Zhang SP, Kan YC, Yao LG. Improving catalytic activity of Lactobacillus harbinensis -mandelate dehydrogenase toward -o-chloromandelic acid by laboratory evolution. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Matsumura I, Patrick WM. Dan Tawfik's Lessons for Protein Engineers about Enzymes Adapting to New Substrates. Biochemistry 2022; 62:158-162. [PMID: 35820168 PMCID: PMC9851151 DOI: 10.1021/acs.biochem.2c00230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Natural evolution has been creating new complex systems for billions of years. The process is spontaneous and requires neither intelligence nor moral purpose but is nevertheless difficult to understand. The late Dan Tawfik spent years studying enzymes as they adapted to recognize new substrates. Much of his work focused on gaining fundamental insights, so the practical utility of his experiments may not be obvious even to accomplished protein engineers. Here we focus on two questions fundamental to any directed evolution experiment. Which proteins are the best starting points for such experiments? Which trait(s) of the chosen parental protein should be evolved to achieve the desired outcome? We summarize Tawfik's contributions to our understanding of these problems, to honor his memory and encourage those unfamiliar with his ideas to read his publications.
Collapse
Affiliation(s)
- Ichiro Matsumura
- O.
Wayne Rollins Research Center, 1510 Clifton Road NE, Room 4001, Atlanta, Georgia 30322, United States,E-mail:
| | - Wayne M. Patrick
- Centre
for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand,E-mail:
| |
Collapse
|
9
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Aggarwal T, Hansen WA, Hong J, Ganguly A, York DM, Khare SD, Izgu EC. Introducing a New Bond-Forming Activity in an Archaeal DNA Polymerase by Structure-Guided Enzyme Redesign. ACS Chem Biol 2022; 17:1924-1936. [PMID: 35776893 DOI: 10.1021/acschembio.2c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA polymerases have evolved to feature a highly conserved activity across the tree of life: formation of, without exception, internucleotidyl O-P linkages. Can this linkage selectivity be overcome by design to produce xenonucleic acids? Here, we report that the structure-guided redesign of an archaeal DNA polymerase, 9°N, exhibits a new activity undetectable in the wild-type enzyme: catalyzing the formation of internucleotidyl N-P linkages using 3'-NH2-ddNTPs. Replacing a metal-binding aspartate in the 9°N active site with asparagine was key to the emergence of this unnatural enzyme activity. MD simulations provided insights into how a single substitution enhances the productive positioning of a 3'-amino nucleophile in the active site. Further remodeling of the protein-nucleic acid interface in the finger subdomain yielded a quadruple-mutant variant (9°N-NRQS) displaying DNA-dependent NP-DNA polymerase activity. In addition, the engineered promiscuity of 9°N-NRQS was leveraged for one-pot synthesis of DNA─NP-DNA copolymers. This work sheds light on the molecular basis of substrate fidelity and latent promiscuity in enzymes.
Collapse
Affiliation(s)
- Tushar Aggarwal
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - William A Hansen
- Institute for Quantitative Biomedicine, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Jonathan Hong
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Abir Ganguly
- Institute for Quantitative Biomedicine, Rutgers University, New Brunswick, New Jersey 08854, United States.,Laboratory for Biomolecular Simulation Research, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Darrin M York
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States.,Institute for Quantitative Biomedicine, Rutgers University, New Brunswick, New Jersey 08854, United States.,Laboratory for Biomolecular Simulation Research, Rutgers University, New Brunswick, New Jersey 08854, United States.,Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Sagar D Khare
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States.,Institute for Quantitative Biomedicine, Rutgers University, New Brunswick, New Jersey 08854, United States.,Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Enver Cagri Izgu
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, United States.,Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08901, United States.,Rutgers Center for Lipid Research and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
11
|
Yang Y, Hao S, Lei X, Chen J, Fang G, Liu J, Wang S, He X. Design of metalloenzyme mimics based on self-assembled peptides for organophosphorus pesticides detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128262. [PMID: 35051771 DOI: 10.1016/j.jhazmat.2022.128262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Organophosphorus pesticides (OPs) detection has attracted considerable attention because of the extensive application of OPs. In this research, non-toxic and high-performance metalloenzyme mimics of Zn2+-bonding peptides were developed by obtaining inspiration from phosphotriesterase (PTE) and nanofiber formation. Furthermore, based on the electrochemical activity of p-nitrophenol (PNP), the electrochemical sensor of metalloenzyme mimics was developed. By examining the effect of the active sites of peptides and fibril formation on the degradation of OPs, the optimal metalloenzyme mimic was selected. Furthermore, optimal metalloenzyme mimics were combined with NiCo2O4 to develop an electrochemical sensor of OPs. By monitoring square wave voltammetry (SWV) signals of PNP degraded from OPs, the amounts of OPs in actual samples could be determined in 15 min. We discovered that both the active sites of α metal and β metal were required for metalloenzyme mimics; Zn2+ promoted peptide fibrosis and especially acted as a cofactor for degrading OPs. Compared to traditional methods, the electrochemical sensor of metalloenzyme mimics was sensitive, reliable, and non-toxic; furthermore, the detection limit of methyl paraoxon was as low as 0.08 µM. The metalloenzyme mimics will be a promising material for detecting OPs in the food industry and environment fields.
Collapse
Affiliation(s)
- Yayu Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Sijia Hao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiangmin Lei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jianan Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China; Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin 300071, PR China.
| | - Xingxing He
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR China
| |
Collapse
|
12
|
Choi TS, Tezcan FA. Overcoming universal restrictions on metal selectivity by protein design. Nature 2022; 603:522-527. [PMID: 35236987 PMCID: PMC9157509 DOI: 10.1038/s41586-022-04469-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022]
Abstract
Selective metal coordination is central to the functions of metalloproteins:1,2 each metalloprotein must pair with its cognate metallocofactor to fulfil its biological role3. However, achieving metal selectivity solely through a three-dimensional protein structure is a great challenge, because there is a limited set of metal-coordinating amino acid functionalities and proteins are inherently flexible, which impedes steric selection of metals3,4. Metal-binding affinities of natural proteins are primarily dictated by the electronic properties of metal ions and follow the Irving-Williams series5 (Mn2+ < Fe2+ < Co2+ < Ni2+ < Cu2+ > Zn2+) with few exceptions6,7. Accordingly, metalloproteins overwhelmingly bind Cu2+ and Zn2+ in isolation, regardless of the nature of their active sites and their cognate metal ions1,3,8. This led organisms to evolve complex homeostatic machinery and non-equilibrium strategies to achieve correct metal speciation1,3,8-10. Here we report an artificial dimeric protein, (AB)2, that thermodynamically overcomes the Irving-Williams restrictions in vitro and in cells, favouring the binding of lower-Irving-Williams transition metals over Cu2+, the most dominant ion in the Irving-Williams series. Counter to the convention in molecular design of achieving specificity through structural preorganization, (AB)2 was deliberately designed to be flexible. This flexibility enabled (AB)2 to adopt mutually exclusive, metal-dependent conformational states, which led to the discovery of structurally coupled coordination sites that disfavour Cu2+ ions by enforcing an unfavourable coordination geometry. Aside from highlighting flexibility as a valuable element in protein design, our results illustrate design principles for constructing selective metal sequestration agents.
Collapse
Affiliation(s)
- Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Martins FL, Pordea A, Jäger CM. Computationally driven design of an artificial metalloenzyme using supramolecular anchoring strategies of iridium complexes to alcohol dehydrogenase. Faraday Discuss 2022; 234:315-335. [PMID: 35156975 DOI: 10.1039/d1fd00070e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artificial metalloenzymes (ArMs) confer non-biological reactivities to biomolecules, whilst taking advantage of the biomolecular architecture in terms of their selectivity and renewable origin. In particular, the design of ArMs by the supramolecular anchoring of metal catalysts to protein hosts provides flexible and easy to optimise systems. The use of cofactor dependent enzymes as hosts gives the advantage of both a (hydrophobic) binding site for the substrate and a cofactor pocket to accommodate the catalyst. Here, we present a computationally driven design approach of ArMs for the transfer hydrogenation reaction of cyclic imines, starting from the NADP+-dependent alcohol dehydrogenase from Thermoanaerobacter brockii (TbADH). We tested and developed a molecular docking workflow to define and optimize iridium catalysts with high affinity for the cofactor binding site of TbADH. The workflow uses high throughput docking of compound libraries to identify key structural motifs for high affinity, followed by higher accuracy docking methods on smaller, focused ligand and catalyst libraries. Iridium sulfonamide catalysts were selected and synthesised, containing either a triol, a furane, or a carboxylic acid to provide the interaction with the cofactor binding pocket. IC50 values of the resulting complexes during TbADH-catalysed alcohol oxidation were determined by competition experiments and were between 4.410 mM and 0.052 mM, demonstrating the affinity of the iridium complexes for either the substrate or the cofactor binding pocket of TbADH. The catalytic activity of the free iridium complexes in solution showed a maximal turnover number (TON) of 90 for the reduction of salsolidine by the triol-functionalised iridium catalyst, whilst in the presence of TbADH, only the iridium catalyst with the triol anchoring functionality showed activity for the same reaction (TON of 36 after 24 h). The observation that the artificial metalloenzymes developed here lacked stereoselectivity demonstrates the need for the further investigation and optimisation of the ArM. Our results serve as a starting point for the design of robust artificial metalloenzymes, exploiting supramolecular anchoring to natural NAD(P)H binding pockets.
Collapse
Affiliation(s)
- Floriane L Martins
- Sustainable Process Technologies, Faculty of Engineering, University of Nottingham, Nottingham, UK.
| | - Anca Pordea
- Sustainable Process Technologies, Faculty of Engineering, University of Nottingham, Nottingham, UK.
| | - Christof M Jäger
- Sustainable Process Technologies, Faculty of Engineering, University of Nottingham, Nottingham, UK.
| |
Collapse
|
14
|
Chu HY, Wong ASL. Facilitating Machine Learning-Guided Protein Engineering with Smart Library Design and Massively Parallel Assays. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:2100038. [PMID: 36619853 PMCID: PMC9744531 DOI: 10.1002/ggn2.202100038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Indexed: 01/11/2023]
Abstract
Protein design plays an important role in recent medical advances from antibody therapy to vaccine design. Typically, exhaustive mutational screens or directed evolution experiments are used for the identification of the best design or for improvements to the wild-type variant. Even with a high-throughput screening on pooled libraries and Next-Generation Sequencing to boost the scale of read-outs, surveying all the variants with combinatorial mutations for their empirical fitness scores is still of magnitudes beyond the capacity of existing experimental settings. To tackle this challenge, in-silico approaches using machine learning to predict the fitness of novel variants based on a subset of empirical measurements are now employed. These machine learning models turn out to be useful in many cases, with the premise that the experimentally determined fitness scores and the amino-acid descriptors of the models are informative. The machine learning models can guide the search for the highest fitness variants, resolve complex epistatic relationships, and highlight bio-physical rules for protein folding. Using machine learning-guided approaches, researchers can build more focused libraries, thus relieving themselves from labor-intensive screens and fast-tracking the optimization process. Here, we describe the current advances in massive-scale variant screens, and how machine learning and mutagenesis strategies can be integrated to accelerate protein engineering. More specifically, we examine strategies to make screens more economical, informative, and effective in discovery of useful variants.
Collapse
Affiliation(s)
- Hoi Yee Chu
- Laboratory of Combinatorial Genetics and Synthetic BiologySchool of Biomedical SciencesThe University of Hong KongHong Kong852China
| | - Alan S. L. Wong
- Laboratory of Combinatorial Genetics and Synthetic BiologySchool of Biomedical SciencesThe University of Hong KongHong Kong852China
- Electrical and Electronic EngineeringThe University of Hong KongPokfulamHong Kong852China
| |
Collapse
|
15
|
Zhang X, Luo W, Yao Y, Luo X, Han C, Zhong Y, Zhang B, Li D, Han L, Huang S, Greisen P, Shang Y. Enhanced chemoselectivity of a plant cytochrome P450 through protein engineering of surface and catalytic residues. ABIOTECH 2021; 2:215-225. [PMID: 36303887 PMCID: PMC9590459 DOI: 10.1007/s42994-021-00056-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/07/2021] [Indexed: 10/31/2022]
Abstract
Cytochrome P450s (P450s) are the most versatile catalysts utilized by plants to produce structurally and functionally diverse metabolites. Given the high degree of gene redundancy and challenge to functionally characterize plant P450s, protein engineering is used as a complementary strategy to study the mechanisms of P450-mediated reactions, or to alter their functions. We previously proposed an approach of engineering plant P450s based on combining high-accuracy homology models generated by Rosetta combined with data-driven design using evolutionary information of these enzymes. With this strategy, we repurposed a multi-functional P450 (CYP87D20) into a monooxygenase after redesigning its active site. Since most plant P450s are membrane-anchored proteins that are adapted to the micro-environments of plant cells, expressing them in heterologous hosts usually results in problems of expression or activity. Here, we applied computational design to tackle these issues by simultaneous optimization of the protein surface and active site. After screening 17 variants, effective substitutions of surface residues were observed to improve both expression and activity of CYP87D20. In addition, the identified substitutions were additive and by combining them a highly efficient C11 hydroxylase of cucurbitadienol was created to participate in the mogrol biosynthesis. This study shows the importance of considering the interplay between surface and active site residues for P450 engineering. Our integrated strategy also opens an avenue to create more tailoring enzymes with desired functions for the metabolic engineering of high-valued compounds like mogrol, the precursor of natural sweetener mogrosides. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00056-z.
Collapse
Affiliation(s)
- Xiaopeng Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116 China
| | - Wei Luo
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650500 China
| | - Yinying Yao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116 China
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xuming Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116 China
| | - Chao Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yang Zhong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116 China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Bo Zhang
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650500 China
| | - Dawei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116 China
| | - Lida Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116 China
| | - Per Greisen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116 China
- Novo Nordisk Research Center Seattle Inc, Seattle, WA 98109 USA
| | - Yi Shang
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, 650500 China
| |
Collapse
|
16
|
Schenkmayerova A, Pinto GP, Toul M, Marek M, Hernychova L, Planas-Iglesias J, Daniel Liskova V, Pluskal D, Vasina M, Emond S, Dörr M, Chaloupkova R, Bednar D, Prokop Z, Hollfelder F, Bornscheuer UT, Damborsky J. Engineering the protein dynamics of an ancestral luciferase. Nat Commun 2021; 12:3616. [PMID: 34127663 PMCID: PMC8203615 DOI: 10.1038/s41467-021-23450-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
Protein dynamics are often invoked in explanations of enzyme catalysis, but their design has proven elusive. Here we track the role of dynamics in evolution, starting from the evolvable and thermostable ancestral protein AncHLD-RLuc which catalyses both dehalogenase and luciferase reactions. Insertion-deletion (InDel) backbone mutagenesis of AncHLD-RLuc challenged the scaffold dynamics. Screening for both activities reveals InDel mutations localized in three distinct regions that lead to altered protein dynamics (based on crystallographic B-factors, hydrogen exchange, and molecular dynamics simulations). An anisotropic network model highlights the importance of the conformational flexibility of a loop-helix fragment of Renilla luciferases for ligand binding. Transplantation of this dynamic fragment leads to lower product inhibition and highly stable glow-type bioluminescence. The success of our approach suggests that a strategy comprising (i) constructing a stable and evolvable template, (ii) mapping functional regions by backbone mutagenesis, and (iii) transplantation of dynamic features, can lead to functionally innovative proteins.
Collapse
Affiliation(s)
- Andrea Schenkmayerova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Gaspar P Pinto
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Toul
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Joan Planas-Iglesias
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Veronika Daniel Liskova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Daniel Pluskal
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michal Vasina
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Stephane Emond
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Mark Dörr
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Bednar
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zbynek Prokop
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| | - Jiri Damborsky
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
17
|
|
18
|
Wang L, Sun Y. Engineering organophosphate hydrolase for enhanced biocatalytic performance: A review. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Jedwabny W, Dyguda-Kazimierowicz E, Pernal K, Szalewicz K, Patkowski K. Extension of an Atom-Atom Dispersion Function to Halogen Bonds and Its Use for Rational Design of Drugs and Biocatalysts. J Phys Chem A 2021; 125:1787-1799. [PMID: 33620223 PMCID: PMC8028329 DOI: 10.1021/acs.jpca.0c11347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Indexed: 12/17/2022]
Abstract
A dispersion function Das in the form of a damped atom-atom asymptotic expansion fitted to ab initio dispersion energies from symmetry-adapted perturbation theory was improved and extended to systems containing heavier halogen atoms. To illustrate its performance, the revised Das function was implemented in the multipole first-order electrostatic and second-order dispersion (MED) scoring model. The extension has allowed applications to a much larger set of biocomplexes than it was possible with the original Das. A reasonable correlation between MED and experimentally determined inhibitory activities was achieved in a number of test cases, including structures featuring nonphysically shortened intermonomer distances, which constitute a particular challenge for binding strength predictions. Since the MED model is also computationally efficient, it can be used for reliable and rapid assessment of the ligand affinity or multidimensional scanning of amino acid side-chain conformations in the process of rational design of novel drugs or biocatalysts.
Collapse
Affiliation(s)
- Wiktoria Jedwabny
- Department
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Edyta Dyguda-Kazimierowicz
- Department
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Katarzyna Pernal
- Institute
of Physics, Łódź University
of Technology, Wólczańska
219, 90-924 Łódź, Poland
| | - Krzysztof Szalewicz
- Department
of Physics and Astronomy, University of
Delaware, Newark, Delaware 19716, United
States
| | - Konrad Patkowski
- Department
of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
20
|
Mathematical Modelling of Biosensing Platforms Applied for Environmental Monitoring. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9030050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, mathematical modelling has known an overwhelming integration in different scientific fields. In general, modelling is used to obtain new insights and achieve more quantitative and qualitative information about systems by programming language, manipulating matrices, creating algorithms and tracing functions and data. Researchers have been inspired by these techniques to explore several methods to solve many problems with high precision. In this direction, simulation and modelling have been employed for the development of sensitive and selective detection tools in different fields including environmental control. Emerging pollutants such as pesticides, heavy metals and pharmaceuticals are contaminating water resources, thus threatening wildlife. As a consequence, various biosensors using modelling have been reported in the literature for efficient environmental monitoring. In this review paper, the recent biosensors inspired by modelling and applied for environmental monitoring will be overviewed. Moreover, the level of success and the analytical performances of each modelling-biosensor will be discussed. Finally, current challenges in this field will be highlighted.
Collapse
|
21
|
Vong K, Nasibullin I, Tanaka K. Exploring and Adapting the Molecular Selectivity of Artificial Metalloenzymes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| | - Igor Nasibullin
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| |
Collapse
|
22
|
Wang HY, Xie YL, Shi X, Shi HL, Xu JH, Tang CD, Yao LG, Kan YC. Directed evolution of a D-mandelate dehydrogenase toward D-o-chloromandelic acid and insight into the molecular basis for its catalytic performance. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Paredes A, Loh BM, Peduzzi OM, Reig AJ, Buettner KM. DNA Cleavage by a De Novo Designed Protein-Titanium Complex. Inorg Chem 2020; 59:11248-11252. [PMID: 32799485 DOI: 10.1021/acs.inorgchem.0c01707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Titanium is one of the most abundant elements on Earth but is commonly thought to have no role in biology because of its propensity to hydrolyze. Nature stabilizes hard Lewis acidic metals from hydrolysis using a variety of mechanisms, providing inspiration for how titanium can be stabilized using biological ligands. The well-characterized Due Ferri single-chain (DFsc) de novo designed protein was developed to bind and stabilize iron and provides a binding site with hard Lewis basic residues able to bind two metal ions. We demonstrate that the DFsc scaffold stably binds 2 equiv of titanium and protects them from unwanted hydrolysis. The Ti4+-DFsc protein complex was tested for its ability to hydrolytically cleave DNA, where it was seen to linearize plasmid DNA in an overnight reaction. Ti4+-DFsc is thus the first example of a functional, soluble titanium-protein complex.
Collapse
Affiliation(s)
- Alexander Paredes
- Department of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| | - Brittany M Loh
- Department of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| | - Olivia M Peduzzi
- Department of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| | - Amanda J Reig
- Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Katherine M Buettner
- Department of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| |
Collapse
|
24
|
Lin M, Wang F, Zhu Y. Modeled structure-based computational redesign of a glycosyltransferase for the synthesis of rebaudioside D from rebaudioside A. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Beker W, Sokalski WA. Bottom-Up Nonempirical Approach To Reducing Search Space in Enzyme Design Guided by Catalytic Fields. J Chem Theory Comput 2020; 16:3420-3429. [PMID: 32282205 PMCID: PMC7467639 DOI: 10.1021/acs.jctc.0c00139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Currently developed protocols of theozyme design still lead to biocatalysts with much lower catalytic activity than enzymes existing in nature, and, so far, the only avenue of improvement was the in vitro laboratory-directed evolution (LDE) experiments. In this paper, we propose a different strategy based on "reversed" methodology of mutation prediction. Instead of common "top-down" approach, requiring numerous assumptions and vast computational effort, we argue for a "bottom-up" approach that is based on the catalytic fields derived directly from transition state and reactant complex wave functions. This enables direct one-step determination of the general quantitative angular characteristics of optimal catalytic site and simultaneously encompasses both the transition-state stabilization (TSS) and ground-state destabilization (GSD) effects. We further extend the static catalytic field approach by introducing a library of atomic multipoles for amino acid side-chain rotamers, which, together with the catalytic field, allow one to determine the optimal side-chain orientations of charged amino acids constituting the elusive structure of a preorganized catalytic environment. Obtained qualitative agreement with experimental LDE data for Kemp eliminase KE07 mutants validates the proposed procedure, yielding, in addition, a detailed insight into possible dynamic and epistatic effects.
Collapse
Affiliation(s)
- Wiktor Beker
- Wroclaw University of Science and Technology, Wroclaw, Poland
| | | |
Collapse
|
26
|
Alonso-Cotchico L, Rodrı́guez-Guerra J, Lledós A, Maréchal JD. Molecular Modeling for Artificial Metalloenzyme Design and Optimization. Acc Chem Res 2020; 53:896-905. [PMID: 32233391 DOI: 10.1021/acs.accounts.0c00031] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Artificial metalloenzymes (ArMs) are obtained by inserting homogeneous catalysts into biological scaffolds and are among the most promising strategies in the quest for new-to-nature biocatalysts. The quality of their design strongly depends on how three partners interact: the biological host, the "artificial cofactor," and the substrate. However, structural characterization of functional artificial metalloenzymes by X-ray or NMR is often partial, elusive, or absent. How the cofactor binds to the protein, how the receptor reorganizes upon the binding of the cofactor and the substrate, and which are the binding mode(s) of the substrate for the reaction to proceed are key questions that are frequently unresolved yet crucial for ArM design. Such questions may eventually be solved by molecular modeling but require a step change beyond the current state-of-the-art methodologies.Here, we summarize our efforts in the study of ArMs, presenting both the development of computational strategies and their application. We first focus on our integrative computational framework that incorporates a variety of methods such as protein-ligand docking, classical molecular dynamics (MD), and pure quantum mechanical (QM) methods, which, when properly combined, are able to depict questions that range from host-cofactor binding predictions to simulations of entire catalytic mechanisms. We also pay particular attention to the protein-ligand docking strategies that we have developed to accurately predict the binding of transition metal-containing molecules to proteins. While this aspect is fundamental to many bioinorganic fields beyond ArMs, it has been disregarded from the molecular modeling landscape until very recently.Next we describe how to apply this computational framework to particular ArMs including systems previously characterized experimentally as well as others where computation served to guide the design. We start with the prediction of the interactions between homogeneous catalysts and biological hosts. Protein-ligand docking is pivotal at that stage, but it needs to be combined with QM/MM or MD approaches when the binding of the cofactor implies significant conformational changes of the protein or involve changes of the electronic state of the metal.Then, we summarize molecular modeling studies aimed at identifying cofactor-substrate arrangements inside the ArM active pocket that are consistent with its reactivity. These calculations stand on "Theozyme"-like dockings, MD-refined or not, which provide molecular rationale of the catalytic profiles of the artificial systems.In the third section, we present case studies to decode the entire catalytic mechanism of two ArMs: (1) an iridium based asymmetric transfer hydrogenase obtained by insertion of Noyori's catalyst into streptavidin and (2) a metallohydrolase achieved by including a receptor. Transition states, second coordination sphere effects, as well as motions of the cofactors are identified as drivers of the enantiomeric profiles.Finally, we report computer-aided designs of ArMs to guide experiments toward chemical and mutational changes that improve their activity and/or enantioselective profiles and expand toward future directions.
Collapse
Affiliation(s)
- Lur Alonso-Cotchico
- Departament de Quı́mica, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallès, Barcelona Spain
| | - Jaime Rodrı́guez-Guerra
- Departament de Quı́mica, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallès, Barcelona Spain
| | - Agustí Lledós
- Departament de Quı́mica, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallès, Barcelona Spain
| | - Jean-Didier Maréchal
- Departament de Quı́mica, Universitat Autònoma de Barcelona, Edifici C.n., 08193 Cerdanyola del Vallès, Barcelona Spain
| |
Collapse
|
27
|
Affiliation(s)
- Marco Foscato
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Vidar R. Jensen
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
28
|
Jeong WJ, Yu J, Song WJ. Proteins as diverse, efficient, and evolvable scaffolds for artificial metalloenzymes. Chem Commun (Camb) 2020; 56:9586-9599. [DOI: 10.1039/d0cc03137b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have extracted and categorized the desirable properties of proteins that are adapted as the scaffolds for artificial metalloenzymes.
Collapse
Affiliation(s)
- Woo Jae Jeong
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Jaeseung Yu
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Woon Ju Song
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|
29
|
TANAKA K, VONG K. Unlocking the therapeutic potential of artificial metalloenzymes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:79-94. [PMID: 32161212 PMCID: PMC7167364 DOI: 10.2183/pjab.96.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In order to harness the functionality of metals, nature has evolved over billions of years to utilize metalloproteins as key components in numerous cellular processes. Despite this, transition metals such as ruthenium, palladium, iridium, and gold are largely absent from naturally occurring metalloproteins, likely due to their scarcity as precious metals. To mimic the evolutionary process of nature, the field of artificial metalloenzymes (ArMs) was born as a way to benefit from the unique chemoselectivity and orthogonality of transition metals in a biological setting. In its current state, numerous examples have successfully incorporated transition metals into a variety of protein scaffolds. Using these ArMs, many examples of new-to-nature reactions have been carried out, some of which have shown substantial biocompatibility. Given the rapid rate at which this field is growing, this review aims to highlight some important studies that have begun to take the next step within this field; namely the development of ArM-centered drug therapies or biotechnological tools.
Collapse
Affiliation(s)
- Katsunori TANAKA
- Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
- A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia
- Baton Zone Program, RIKEN, Wako, Saitama, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
- Correspondence should be addressed: K. Tanaka, Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan (e-mail: )
| | - Kenward VONG
- Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
30
|
Alonso S, Santiago G, Cea-Rama I, Fernandez-Lopez L, Coscolín C, Modregger J, Ressmann AK, Martínez-Martínez M, Marrero H, Bargiela R, Pita M, Gonzalez-Alfonso JL, Briand ML, Rojo D, Barbas C, Plou FJ, Golyshin PN, Shahgaldian P, Sanz-Aparicio J, Guallar V, Ferrer M. Genetically engineered proteins with two active sites for enhanced biocatalysis and synergistic chemo- and biocatalysis. Nat Catal 2019. [DOI: 10.1038/s41929-019-0394-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Engineering Metalloprotein Functions in Designed and Native Scaffolds. Trends Biochem Sci 2019; 44:1022-1040. [DOI: 10.1016/j.tibs.2019.06.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
|
32
|
Batha S, Arman H, Larionov OV, Musie GT. Zinc(II) complexes of a versatile heptadentate ligand as phosphohydrolase structural and functional mimics. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Marshall LR, Zozulia O, Lengyel-Zhand Z, Korendovych IV. Minimalist de novo Design of Protein Catalysts. ACS Catal 2019; 9:9265-9275. [PMID: 34094654 PMCID: PMC8174531 DOI: 10.1021/acscatal.9b02509] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The field of protein design has grown enormously in the past few decades. In this review we discuss the minimalist approach to design of artificial enzymes, in which protein sequences are created with the minimum number of elements for folding and function. This method relies on identifying starting points in catalytically inert scaffolds for active site installation. The progress of the field from the original helical assemblies of the 1980s to the more complex structures of the present day is discussed, highlighting the variety of catalytic reactions which have been achieved using these methods. We outline the strengths and weaknesses of the minimalist approaches, describe representative design cases and put it in the general context of the de novo design of proteins.
Collapse
Affiliation(s)
- Liam R. Marshall
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Oleksii Zozulia
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Zsofia Lengyel-Zhand
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Ivan V. Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| |
Collapse
|
34
|
Davis H, Ward TR. Artificial Metalloenzymes: Challenges and Opportunities. ACS CENTRAL SCIENCE 2019; 5:1120-1136. [PMID: 31404244 PMCID: PMC6661864 DOI: 10.1021/acscentsci.9b00397] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Indexed: 05/04/2023]
Abstract
Artificial metalloenzymes (ArMs) result from the incorporation of an abiotic metal cofactor within a protein scaffold. From the earliest techniques of transition metals adsorbed on silk fibers, the field of ArMs has expanded dramatically over the past 60 years to encompass a range of reaction classes and inspired approaches: Assembly of the ArMs has taken multiple forms with both covalent and supramolecular anchoring strategies, while the scaffolds have been intuitively selected and evolved, repurposed, or designed in silico. Herein, we discuss some of the most prominent recent examples of ArMs to highlight the challenges and opportunities presented by the field.
Collapse
|
35
|
Saif B, Zhang W, Zhang X, Gu Q, Yang P. Sn-Triggered Two-Dimensional Fast Protein Assembly with Emergent Functions. ACS NANO 2019; 13:7736-7749. [PMID: 31244042 DOI: 10.1021/acsnano.9b01392] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The discovery of a general strategy for organizing functional proteins into stable nanostructures with the desired dimension, shape, and function is an important focus in developing protein-based self-assembled materials, but the scalable synthesis of such materials and transfer to other substrates remain great challenges. We herein tackle this issue by creating a two-dimensional metal-protein hybrid nanofilm that is flexible and cost-effective with reliable self-recovery, stability, and multifunctionality. As it differs from traditional metal ions, we discover the capability of Sn2+ to initiate fast amyloid-like protein assembly (occurring in seconds) by effectively reducing the disulfide bonds of native globular proteins. The Sn2+-initiated lysozyme aggregation at the air/water interface leads to droplet flattening, a result never before reported in a protein system, which finally affords a multifunctional 2D Sn-doped hybrid lysozyme nanofilm with an ultralarge area (e.g., 0.2 m2) within a few minutes. The hybrid film is distinctive in its ease of coating on versatile material surfaces with endurable chemical and mechanical stability, optical transparency, and diverse end uses in antimicrobial and photo-/electrocatalytic scaffolds. Our approach provides not only insights into the effect of tin ions on macroscopic self-assembly of proteins but also a controllable and scalable synthesis of a potential biomimic framework for biomedical and biocatalytic applications.
Collapse
Affiliation(s)
- Bassam Saif
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , P.R. China
| | - Wenxin Zhang
- School and Hospital of Stomatology , Tianjin Medical University , 12 Observatory Road , Tianjin 30070 , P.R. China
| | - Xu Zhang
- School and Hospital of Stomatology , Tianjin Medical University , 12 Observatory Road , Tianjin 30070 , P.R. China
| | - Quan Gu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , P.R. China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , P.R. China
| |
Collapse
|
36
|
|
37
|
Tandem catalysis driven by enzymes directed hybrid nanoflowers for on-site ultrasensitive detection of organophosphorus pesticide. Biosens Bioelectron 2019; 141:111473. [PMID: 31272060 DOI: 10.1016/j.bios.2019.111473] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/20/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
Abstract
Accurate analysis of organophosphate pesticides (OPs) with portable devices remain an elusive goal that have received widespread investigative attention in the areas of environmental contamination and disease prevention. Herein, using all-in-one enzyme-inorganic hybrid nanoflowers (ACC-HNFs) to fabricate high-performance artificial enzyme cascade system, we established a sensitive and affordable lab-on-paper biosensor. This biosensor incorporated disposable screen-printed carbon electrode (SPCE) and colorimetric test strips, which enabled the dual-modal readout (electrochemical and colorimetric signal) for on-site monitoring of OPs, achieving an "on-demand" tuning of the detection performance. Using paraoxon as a model analyte, the ACC-HNFs-based lab-on-paper platform could reach a limit of detection down to the femtogram/mL level (6 fg mL-1). Meticulous design of ACC-HNFs provided a versatile approach for constructing artificial enzyme as a recognizer and amplifier to fill the gap in constructing robust artificial enzyme systems which can be used for on-site contamination monitoring and biological diagnosis.
Collapse
|
38
|
Li D, Ma Y, Zhou Y, Gou J, Zhong Y, Zhao L, Han L, Ovchinnikov S, Ma L, Huang S, Greisen P, Shang Y. A structural and data-driven approach to engineering a plant cytochrome P450 enzyme. SCIENCE CHINA-LIFE SCIENCES 2019; 62:873-882. [DOI: 10.1007/s11427-019-9538-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/26/2019] [Indexed: 10/26/2022]
|
39
|
St-Jacques AD, Eyahpaise MÈC, Chica RA. Computational Design of Multisubstrate Enzyme Specificity. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01464] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Antony D. St-Jacques
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Marie-Ève C. Eyahpaise
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Roberto A. Chica
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
40
|
Huang Y, Ren J, Qu X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem Rev 2019; 119:4357-4412. [PMID: 30801188 DOI: 10.1021/acs.chemrev.8b00672] [Citation(s) in RCA: 1643] [Impact Index Per Article: 273.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Because of the high catalytic activities and substrate specificity, natural enzymes have been widely used in industrial, medical, and biological fields, etc. Although promising, they often suffer from intrinsic shortcomings such as high cost, low operational stability, and difficulties of recycling. To overcome these shortcomings, researchers have been devoted to the exploration of artificial enzyme mimics for a long time. Since the discovery of ferromagnetic nanoparticles with intrinsic horseradish peroxidase-like activity in 2007, a large amount of studies on nanozymes have been constantly emerging in the next decade. Nanozymes are one kind of nanomaterials with enzymatic catalytic properties. Compared with natural enzymes, nanozymes have the advantages such as low cost, high stability and durability, which have been widely used in industrial, medical, and biological fields. A thorough understanding of the possible catalytic mechanisms will contribute to the development of novel and high-efficient nanozymes, and the rational regulations of the activities of nanozymes are of great significance. In this review, we systematically introduce the classification, catalytic mechanism, activity regulation as well as recent research progress of nanozymes in the field of biosensing, environmental protection, and disease treatments, etc. in the past years. We also propose the current challenges of nanozymes as well as their future research focus. We anticipate this review may be of significance for the field to understand the properties of nanozymes and the development of novel nanomaterials with enzyme mimicking activities.
Collapse
Affiliation(s)
- Yanyan Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China.,College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| |
Collapse
|
41
|
Carvalho HF, Branco RJF, Leite FAS, Matzapetakis M, Roque ACA, Iranzo O. Hydrolytic zinc metallopeptides using a computational multi-state design approach. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01364d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combination of multi-state design and long-timescale conformational dynamics as a powerful strategy to obtain metalloenzymes.
Collapse
Affiliation(s)
- Henrique F. Carvalho
- UCIBIO
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - Ricardo J. F. Branco
- UCIBIO
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - Fábio A. S. Leite
- UCIBIO
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - Manolis Matzapetakis
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
| | - A. Cecília A. Roque
- UCIBIO
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | | |
Collapse
|
42
|
Clarke DE, Noguchi H, Gryspeerdt JLAG, De Feyter S, Voet ARD. Artificial β-propeller protein-based hydrolases. Chem Commun (Camb) 2019; 55:8880-8883. [DOI: 10.1039/c9cc04388h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigated symmetrical β-propeller protein scaffolds as artificial hydrolases and discovered their catalytic mechanism to be centred around a threonine–histidine dyad.
Collapse
Affiliation(s)
- David E. Clarke
- Division of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- Leuven
- Belgium
| | - Hiroki Noguchi
- Laboratory of Biomolecular Modelling and Design
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | | | - Steven De Feyter
- Division of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven
- Leuven
- Belgium
| | - Arnout R. D. Voet
- Laboratory of Biomolecular Modelling and Design
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| |
Collapse
|
43
|
Xue J, Huang X, Zhu Y. Using molecular dynamics simulations to evaluate active designs of cephradine hydrolase by molecular mechanics/Poisson–Boltzmann surface area and molecular mechanics/generalized Born surface area methods. RSC Adv 2019; 9:13868-13877. [PMID: 35519543 PMCID: PMC9064048 DOI: 10.1039/c9ra02406a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/30/2019] [Indexed: 11/30/2022] Open
Abstract
The poor predictive accuracy of current computational enzyme design methods has led to low success rates of producing highly active variants that target non-natural substrates. In this report, a quantitative assessment approach based on molecular dynamics (MD) simulations was developed to eliminate false-positive enzyme designs at the computational stage. Taking cephradine hydrolase as an example, the apparent Michaelis binding constant (Km) and catalytic efficiency (kcat/Km) of designed variants were correlated with binding free energies and activation energy barriers, respectively, as calculated by molecular mechanics/Poisson–Boltzmann surface area (MM/PBSA) and molecular mechanics/generalized Born surface area (MM/GBSA) methods with explicit water considered based on general MD simulation protocols. The correlation results showed that both the MM/GBSA and MM/PBSA methods with a protein dielectric constant (εp = 4) could rank the variants well based on the predicted binding free energies between enzyme and the substrate. Furthermore, the activation energy barriers calculated by the MM/PBSA method with an εp = 24 correlated well with kcat/Km. Thus, false-positive variants obtained by the enzyme design program PRODA were eliminated prior to experimentation. Therefore, MD simulation-based quantitative assessment of designed variants greatly enhanced the predictive accuracy of computational enzyme design tools and should facilitate the construction of artificial enzymes with high catalytic activities toward non-natural substrates. A quantitative assessment method for computational enzyme design was developed to rank the active designs of cephradine hydrolase based on molecular dynamics simulation.![]()
Collapse
Affiliation(s)
- Jing Xue
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Xiaoqiang Huang
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Yushan Zhu
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
- MOE Key Lab for Industrial Biocatalysis
| |
Collapse
|
44
|
Cross-linked enzyme-polymer conjugates with excellent stability and detergent-enhanced activity for efficient organophosphate degradation. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0236-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
45
|
Khan AZ, Bilal M, Rasheed T, Iqbal HM. Advancements in biocatalysis: From computational to metabolic engineering. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63144-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
46
|
Charpentier A, Mignon D, Barbe S, Cortes J, Schiex T, Simonson T, Allouche D. Variable Neighborhood Search with Cost Function Networks To Solve Large Computational Protein Design Problems. J Chem Inf Model 2018; 59:127-136. [DOI: 10.1021/acs.jcim.8b00510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - David Mignon
- Laboratoire de Biochimie (CNRS UMR 7654), École Polytechnique, 91128 Palaiseau, France
| | - Sophie Barbe
- Laboratoire d’Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse, France
| | - Juan Cortes
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Thomas Schiex
- MIAT, Université de Toulouse, INRA, 31326 Castanet-Tolosan, France
| | - Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR 7654), École Polytechnique, 91128 Palaiseau, France
| | - David Allouche
- MIAT, Université de Toulouse, INRA, 31326 Castanet-Tolosan, France
| |
Collapse
|
47
|
Automated Design of Efficient and Functionally Diverse Enzyme Repertoires. Mol Cell 2018; 72:178-186.e5. [PMID: 30270109 DOI: 10.1016/j.molcel.2018.08.033] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/02/2018] [Accepted: 08/21/2018] [Indexed: 11/22/2022]
Abstract
Substantial improvements in enzyme activity demand multiple mutations at spatially proximal positions in the active site. Such mutations, however, often exhibit unpredictable epistatic (non-additive) effects on activity. Here we describe FuncLib, an automated method for designing multipoint mutations at enzyme active sites using phylogenetic analysis and Rosetta design calculations. We applied FuncLib to two unrelated enzymes, a phosphotriesterase and an acetyl-CoA synthetase. All designs were active, and most showed activity profiles that significantly differed from the wild-type and from one another. Several dozen designs with only 3-6 active-site mutations exhibited 10- to 4,000-fold higher efficiencies with a range of alternative substrates, including hydrolysis of the toxic organophosphate nerve agents soman and cyclosarin and synthesis of butyryl-CoA. FuncLib is implemented as a web server (http://FuncLib.weizmann.ac.il); it circumvents iterative, high-throughput experimental screens and opens the way to designing highly efficient and diverse catalytic repertoires.
Collapse
|
48
|
Almhjell PJ, Mills JH. Metal-chelating non-canonical amino acids in metalloprotein engineering and design. Curr Opin Struct Biol 2018; 51:170-176. [DOI: 10.1016/j.sbi.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/12/2018] [Indexed: 11/26/2022]
|
49
|
Catalytic bioscavengers as countermeasures against organophosphate nerve agents. Chem Biol Interact 2018; 292:50-64. [DOI: 10.1016/j.cbi.2018.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022]
|
50
|
In silico design of potentially functional artificial metallo-haloalkane dehalogenase containing catalytic zinc. 3 Biotech 2018; 8:314. [PMID: 30023146 DOI: 10.1007/s13205-018-1333-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/02/2018] [Indexed: 01/05/2023] Open
Abstract
Artificial metalloenzymes are unique as they combine the good features of homogeneous and enzymatic catalysts, and they can potentially improve some difficult catalytic assays. This study reports a method that can be used to create an artificial metal-binding site prior to proving it to be functional in a wet lab. Haloalkane dehalogenase was grafted into a metal-binding site to form an artificial metallo-haloalkane dehalogenase and was studied for its potential functionalities in silico. Computational protocols regarding dynamic metal docking were studied using native metalloenzymes and functional artificial metalloenzymes. Using YASARA Structure, a simulation box covering template structure was created to be filled with water molecules followed by one mutated water molecule closest to the metal-binding site to metal ion. A simple energy minimization step was subsequently run using an AMBER force field to allow the metal ion to interact with the metal-binding residues. Long molecular dynamic simulation using YASARA Structure was performed to analyze the stability of the metal-binding site and the distance between metal-binding residues. Metal ions fluctuating around 2.0 Å across a 20 ns simulation indicated a stable metal-binding site. Metal-binding energies were predicted using FoldX, with a native metalloenzyme (carbonic anhydrase) scoring 18.0 kcal/mol and the best mutant model (C1a) scoring 16.4 kcal/mol. Analysis of the metal-binding site geometry was performed using CheckMyMetal, and all scores for the metalloenzymes and mutant models were in an acceptable range. Like native metalloenzymes, the metal-binding site of C1a was supported by residues in the second coordination shell to maintain a more coordinated metal-binding site. Short-chain multihalogenated alkanes (1,2-dibromoethane and 1,2,3-trichloropropane) were able to dock in the active site of C1a. The halides of the substrate were in contact with both the metal and halide-stabilizing residues, thus indicating a better stabilization of the substrate. The simple catalytic mechanism proposed is that the metal ion interacted with halogen and polarized the carbon-halogen bond, thus making the alpha carbon susceptible to attack by nucleophilic hydroxide. The interaction between halogen in the metal ion and halide-stabilizing residues may help to improve the stabilization of the substrate-enzyme complex and reduce the activation energy. This study reports a modified dynamic metal-docking protocol and validation tests to verify the metal-binding site. These approaches can be applied to design different kinds of artificial metalloenzymes or metal-binding sites.
Collapse
|