1
|
Zipper L, Corominas-Murtra B, Reiff T. Steroid hormone-induced wingless ligands tune female intestinal size in Drosophila. Nat Commun 2025; 16:436. [PMID: 39762218 PMCID: PMC11704138 DOI: 10.1038/s41467-024-55664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Female reproduction comes at great expense to energy metabolism compensated by extensive organ adaptations including intestinal size. Upon mating, endocrine signals orchestrate a 30% net increase of absorptive epithelium. Mating increases production of the steroid hormone Ecdysone released by the Drosophila ovaries that stimulates intestinal stem cell (ISC) divisions. Here, we uncover the transcription factor crooked legs (crol) as an intraepithelial coordinator of Ecdysone-induced ISC mitosis. For the precise investigation of non-autonomous factors on ISC behaviour, we establish Rapport, a spatiotemporally-controlled dual expression and tracing system for the analysis of paracrine genetic manipulation while tracing ISC behaviour. Rapport tracing reveals that Ecdysone-induced Crol controls mitogenic Wnt/Wg-ligand expression from epithelial enterocytes activating ISC mitosis. Paracrine Wg stimulation is counterbalanced by Crol-repression of string/CDC25 and CyclinB autonomously in ISC. Rapport-based ISC tumours confirm paracrine stimulation through the Ecdysone-Crol-Wg axis on mitotic behaviour, whereas the autonomous anti-proliferative role of Crol in ISC is conserved in models of colorectal cancer. Finally, mathematical modelling corroborates increasing enterocyte numbers and Wnt/Wg-degradation to set a stable post-mating intestinal size. Together, our findings provide insights into the complex endocrine growth control mechanisms during mating-induced adaptations and might help untangling pleiotropic hormonal effects observed in gastrointestinal tumorigenesis.
Collapse
Affiliation(s)
- Lisa Zipper
- Department of Biology, Institute of Genetics, The Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Tobias Reiff
- Department of Biology, Institute of Genetics, The Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
2
|
Wang X, Bao H, Huang YC, Barua A, Lai CM, Sun J, Zhou Y, Cong F, Gong S, Chang CH, Deng WM. Sex-dimorphic tumor growth is regulated by tumor microenvironmental and systemic signals. SCIENCE ADVANCES 2024; 10:eads4229. [PMID: 39642218 PMCID: PMC11623276 DOI: 10.1126/sciadv.ads4229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/01/2024] [Indexed: 12/08/2024]
Abstract
Tumor growth and progression involve coordinated regulation by internal, microenvironmental, and systemic signals and often display conspicuous sexual dimorphism. The mechanisms governing the integration and coordination of these signals, along with their sex-based differences, remain largely unknown. Using a Drosophila tumor model originating from nonreproductive tissue, we show that female-biased tumor growth involves multifaceted communications among tumor cells, hemocytes, and neuroendocrine insulin-producing cells (IPCs). Notch-active tumor cells recruit hemocytes carrying the tumor necrosis factor-α (TNF-α) homolog Eiger to the tumor microenvironment (TME), activating the c-Jun N-terminal kinase (JNK) pathway in tumor cells, instigating the sexually dimorphic up-regulation of cytokine Unpaired 2 (Upd2). Upd2, in turn, exerts a distal influence by modulating the release of a Drosophila insulin-like peptide (Dilp2) from IPCs. Dilp2 then activates the insulin signaling in the tumor, thereby fostering sexual-dimorphic tumor growth. Together, these findings reveal a relay mechanism involving the TME and systemic signals that collectively control the sexual dimorphism of tumor growth.
Collapse
Affiliation(s)
- Xianfeng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Hongcun Bao
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Anindita Barua
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | | | - Jie Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Youfang Zhou
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Fei Cong
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | | | | | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Guo X, Zhou J, La Yan, Liu X, Yuan Y, Ye J, Zhang Z, Chen H, Ma Y, Zhong Z, Luo G, Chen H. Very long-chain fatty acids control peroxisome dynamics via a feedback loop in intestinal stem cells during gut regeneration. Dev Cell 2024; 59:3008-3024.e8. [PMID: 39047737 DOI: 10.1016/j.devcel.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Peroxisome dynamics are crucial for intestinal stem cell (ISC) differentiation and gut regeneration. However, the precise mechanisms that govern peroxisome dynamics within ISCs during gut regeneration remain unknown. Using mouse colitis and Drosophila intestine models, we have identified a negative-feedback control mechanism involving the transcription factors peroxisome proliferator-activated receptors (PPARs) and SOX21. This feedback mechanism effectively regulates peroxisome abundance during gut regeneration. Following gut injury, the released free very long-chain fatty acids (VLCFAs) increase peroxisome abundance by stimulating PPARs-PEX11s signaling. PPARs act to stimulate peroxisome fission and inhibit pexophagy. SOX21, which acts downstream of peroxisomes during ISC differentiation, induces peroxisome elimination through pexophagy while repressing PPAR expression. Hence, PPARs and SOX21 constitute a finely tuned negative-feedback loop that regulates peroxisome dynamics. These findings shed light on the complex molecular mechanisms underlying peroxisome regulation in ISCs, contributing to our understanding of gut renewal and repair.
Collapse
Affiliation(s)
- Xiaoxin Guo
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Juanyu Zhou
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - La Yan
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingzhu Liu
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Yuan
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinbao Ye
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zehong Zhang
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haiou Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongxin Ma
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Zhendong Zhong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Guanzheng Luo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Haiyang Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Trubin S, Patel DB, Tian A. Regulation of the Intestinal Stem Cell Pool and Proliferation in Drosophila. Cells 2024; 13:1856. [PMID: 39594605 PMCID: PMC11592481 DOI: 10.3390/cells13221856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Understanding the regulation of somatic stem cells, both during homeostasis and in response to environmental challenges like injury, infection, chemical exposure, and nutritional changes, is critical because their dysregulation can result in tissue degeneration or tumorigenesis. The use of models such as the Drosophila and mammalian adult intestines offers valuable insights into tissue homeostasis and regeneration, advancing our knowledge of stem cell biology and cancer development. This review highlights significant findings from recent studies, unveiling the molecular mechanisms that govern self-renewal, proliferation, differentiation, and regeneration of intestinal stem cells (ISCs). These insights not only enhance our understanding of normal tissue maintenance but also provide critical perspectives on how ISC dysfunction can lead to pathological conditions such as colorectal cancer (CRC).
Collapse
Affiliation(s)
- Simona Trubin
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Dhruv B. Patel
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Aiguo Tian
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
5
|
Vincow ES, Thomas RE, Milstein G, Pareek G, Bammler TK, MacDonald J, Pallanck LJ. Glucocerebrosidase deficiency leads to neuropathology via cellular immune activation. PLoS Genet 2024; 20:e1011105. [PMID: 39527642 PMCID: PMC11581407 DOI: 10.1371/journal.pgen.1011105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 11/21/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Mutations in GBA (glucosylceramidase beta), which encodes the lysosomal enzyme glucocerebrosidase (GCase), are the strongest genetic risk factor for the neurodegenerative disorders Parkinson's disease (PD) and Lewy body dementia. Recent work has suggested that neuroinflammation may be an important factor in the risk conferred by GBA mutations. We therefore systematically tested the contributions of immune-related genes to neuropathology in a Drosophila model of GCase deficiency. We identified target immune factors via RNA-Seq and proteomics on heads from GCase-deficient flies, which revealed both increased abundance of humoral factors and increased macrophage activation. We then manipulated the identified immune factors and measured their effect on head protein aggregates, a hallmark of neurodegenerative disease. Genetic ablation of humoral (secreted) immune factors did not suppress the development of protein aggregation. By contrast, re-expressing Gba1b in activated macrophages suppressed head protein aggregation in Gba1b mutants and rescued their lifespan and behavioral deficits. Moreover, reducing the GCase substrate glucosylceramide in activated macrophages also ameliorated Gba1b mutant phenotypes. Taken together, our findings show that glucosylceramide accumulation due to GCase deficiency leads to macrophage activation, which in turn promotes the development of neuropathology.
Collapse
Affiliation(s)
- Evelyn S. Vincow
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Ruth E. Thomas
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gillian Milstein
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gautam Pareek
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Leo J. Pallanck
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Yu Z, Zhu Y, Chen Y, Feng C, Zhang Z, Guo X, Chen H, Liu X, Yuan Y, Chen H. Nutrient-sensing alteration leads to age-associated distortion of intestinal stem cell differentiating direction. Nat Commun 2024; 15:9243. [PMID: 39455549 PMCID: PMC11512028 DOI: 10.1038/s41467-024-53675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Nutrient-sensing pathways undergo deregulation in aged animals, exerting a pivotal role in regulating the cell cycle and subsequent stem cell division. Nevertheless, their precise functions in governing pluripotent stem cell differentiation remain largely elusive. Here, we uncovered a significant alteration in the cellular constituents of the intestinal epithelium in aged humans and mice. Employing Drosophila midgut and mouse organoid culture models, we made an observation regarding the altered trajectory of differentiation in intestinal stem cells (ISC) during overnutrition or aging, which stems from the erroneous activation of the insulin receptor signaling pathway. Through genetic analyses, we ascertained that the nutrient-sensing pathway regulated the direction of ISC differentiation by modulating the maturation of endosomes and SOX21A transcription factor. This study elucidates a nutrient-sensing pathway-mediated mechanism underlying stem cell differentiation, offering insights into the etiology of stem cell dysfunction in aged animals, including humans.
Collapse
Affiliation(s)
- Zihua Yu
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuedan Zhu
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Chen
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chenxi Feng
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zehong Zhang
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoxin Guo
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiou Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingzhu Liu
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Yuan
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Pranoto IKA, Kwon YV. Protocol to analyze Drosophila intestinal tumor cellular heterogeneity using immunofluorescence imaging and nuclear size quantification. STAR Protoc 2024; 5:102946. [PMID: 38470911 PMCID: PMC10945268 DOI: 10.1016/j.xpro.2024.102946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Drosophila intestinal tumors show an extended cellular heterogeneity. We devise a protocol to assess tumor cell heterogeneity by employing nuclear size measurement and immunofluorescence-based cell lineage analysis. We describe steps for intestinal dissection, staining, and imaging, followed by detailed procedures for nuclear size analysis. This approach detects overall heterogeneity across the entire tumor cell population and deviations within specific cell populations. The procedure is also applicable for analyzing the heterogeneity of wild-type intestinal cells in various contexts. For complete details on the use and execution of this protocol, please refer to Pranoto et al.1.
Collapse
Affiliation(s)
| | - Young V Kwon
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Wang J, Xue H, Yi X, Kim H, Hao Y, Jin LH. InR and Pi3K maintain intestinal homeostasis through STAT/EGFR and Notch signaling in enteroblasts. J Cell Biochem 2024; 125:e30545. [PMID: 38436545 DOI: 10.1002/jcb.30545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
To maintain the integrity of the adult gut, the proliferation and differentiation of stem cells must be strictly controlled. Several signaling pathways control the proliferation and differentiation of Drosophila intestinal epithelial cells. Although the modulatory effects of insulin pathway components on cell proliferation have been characterized, their specific role in which cell type and how these components interact with other regulatory signaling pathways remain largely unclear. In this study, we found that InR/Pi3K has major functions in enteroblasts (EBs) that were not previously described. The absence of InR/Pi3K in progenitors leads to a decrease in the number of EBs, while it has no significant effect on intestinal stem cells (ISCs). In addition, we found that InR/Pi3K regulates Notch activity in ISCs and EBs in an opposite way. This is also the reason for the decrease in EB. On the one hand, aberrantly low levels of Notch signaling in ISCs inhibit their proper differentiation into EBs; on the other hand, the higher Notch levels in EBs promote their excessive differentiation into enterocytes (ECs), leading to marked increases in abnormal ECs and decreased proliferation. Moreover, we found that Upd/JAK/STAT signaling acts as an effector or modifier of InR/Pi3K function in the midgut and cooperates with EGFR signaling to regulate cell proliferation. Altogether, our results demonstrate that InR and Pi3K are essential for coordinating stem cell differentiation and proliferation to maintain intestinal homeostasis.
Collapse
Affiliation(s)
- Jiewei Wang
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hongmei Xue
- Department of Children's Emergency Medicine, Women's and Children's Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xinyu Yi
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hyonil Kim
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
- College of Life Science, Kim ll Sung University, Pyongyang, North Korea
| | - Yangguang Hao
- Department of Basic Medical, Shenyang Medical College, Shenyang, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
9
|
Guo X, Wang C, Zhang Y, Wei R, Xi R. Cell-fate conversion of intestinal cells in adult Drosophila midgut by depleting a single transcription factor. Nat Commun 2024; 15:2656. [PMID: 38531872 DOI: 10.1038/s41467-024-46956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
The manipulation of cell identity by reprograming holds immense potential in regenerative medicine, but is often limited by the inefficient acquisition of fully functional cells. This problem can potentially be resolved by better understanding the reprogramming process using in vivo genetic models, which are currently scarce. Here we report that both enterocytes (ECs) and enteroendocrine cells (EEs) in adult Drosophila midgut show a surprising degree of cell plasticity. Depleting the transcription factor Tramtrack in the differentiated ECs can initiate Prospero-mediated cell transdifferentiation, leading to EE-like cells. On the other hand, depletion of Prospero in the differentiated EEs can lead to the loss of EE-specific transcription programs and the gain of intestinal progenitor cell identity, allowing cell cycle re-entry or differentiation into ECs. We find that intestinal progenitor cells, ECs, and EEs have a similar chromatin accessibility profile, supporting the concept that cell plasticity is enabled by pre-existing chromatin accessibility with switchable transcription programs. Further genetic analysis with this system reveals that the NuRD chromatin remodeling complex, cell lineage confliction, and age act as barriers to EC-to-EE transdifferentiation. The establishment of this genetically tractable in vivo model should facilitate mechanistic investigation of cell plasticity at the molecular and genetic level.
Collapse
Affiliation(s)
- Xingting Guo
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Chenhui Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Yongchao Zhang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Ruxue Wei
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Rongwen Xi
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
10
|
Parasram K, Zuccato A, Shin M, Willms R, DeVeale B, Foley E, Karpowicz P. The emergence of circadian timekeeping in the intestine. Nat Commun 2024; 15:1788. [PMID: 38413599 PMCID: PMC10899604 DOI: 10.1038/s41467-024-45942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
The circadian clock is a molecular timekeeper, present from cyanobacteria to mammals, that coordinates internal physiology with the external environment. The clock has a 24-h period however development proceeds with its own timing, raising the question of how these interact. Using the intestine of Drosophila melanogaster as a model for organ development, we track how and when the circadian clock emerges in specific cell types. We find that the circadian clock begins abruptly in the adult intestine and gradually synchronizes to the environment after intestinal development is complete. This delayed start occurs because individual cells at earlier stages lack the complete circadian clock gene network. As the intestine develops, the circadian clock is first consolidated in intestinal stem cells with changes in Ecdysone and Hnf4 signalling influencing the transcriptional activity of Clk/cyc to drive the expression of tim, Pdp1, and vri. In the mature intestine, stem cell lineage commitment transiently disrupts clock activity in differentiating progeny, mirroring early developmental clock-less transitions. Our data show that clock function and differentiation are incompatible and provide a paradigm for studying circadian clocks in development and stem cell lineages.
Collapse
Affiliation(s)
- Kathyani Parasram
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Amy Zuccato
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Minjeong Shin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Reegan Willms
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Brian DeVeale
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Phillip Karpowicz
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
11
|
Al Zouabi L, Stefanutti M, Roumeliotis S, Le Meur G, Boumard B, Riddiford N, Rubanova N, Bohec M, Gervais L, Servant N, Bardin AJ. Molecular underpinnings and environmental drivers of loss of heterozygosity in Drosophila intestinal stem cells. Cell Rep 2023; 42:113485. [PMID: 38032794 DOI: 10.1016/j.celrep.2023.113485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/29/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
During development and aging, genome mutation leading to loss of heterozygosity (LOH) can uncover recessive phenotypes within tissue compartments. This phenomenon occurs in normal human tissues and is prevalent in pathological genetic conditions and cancers. While studies in yeast have defined DNA repair mechanisms that can promote LOH, the predominant pathways and environmental triggers in somatic tissues of multicellular organisms are not well understood. Here, we investigate mechanisms underlying LOH in intestinal stem cells in Drosophila. Infection with the pathogenic bacteria, Erwinia carotovora carotovora 15, but not Pseudomonas entomophila, increases LOH frequency. Using whole genome sequencing of somatic LOH events, we demonstrate that they arise primarily via mitotic recombination. Molecular features and genetic evidence argue against a break-induced replication mechanism and instead support cross-over via double Holliday junction-based repair. This study provides a mechanistic understanding of mitotic recombination, an important mediator of LOH, and its effects on stem cells in vivo.
Collapse
Affiliation(s)
- Lara Al Zouabi
- Genetics and Developmental Biology Department, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, 75248 Paris, France
| | - Marine Stefanutti
- Genetics and Developmental Biology Department, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, 75248 Paris, France
| | - Spyridon Roumeliotis
- Genetics and Developmental Biology Department, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, 75248 Paris, France
| | - Gwenn Le Meur
- Genetics and Developmental Biology Department, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, 75248 Paris, France
| | - Benjamin Boumard
- Genetics and Developmental Biology Department, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, 75248 Paris, France
| | - Nick Riddiford
- Genetics and Developmental Biology Department, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, 75248 Paris, France
| | - Natalia Rubanova
- Genetics and Developmental Biology Department, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, 75248 Paris, France; Bioinformatics, Biostatistics, Epidemiology and Computational Systems Unit, Institut Curie, PSL Research University, INSERM U900, 75005 Paris, France
| | - Mylène Bohec
- ICGex Next-Generation Sequencing Platform, Institut Curie, PSL Research University, 75005 Paris, France
| | - Louis Gervais
- Genetics and Developmental Biology Department, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, 75248 Paris, France
| | - Nicolas Servant
- Bioinformatics, Biostatistics, Epidemiology and Computational Systems Unit, Institut Curie, PSL Research University, INSERM U900, 75005 Paris, France
| | - Allison J Bardin
- Genetics and Developmental Biology Department, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR 3215, INSERM U934, 75248 Paris, France.
| |
Collapse
|
12
|
Vincow ES, Thomas RE, Milstein G, Pareek G, Bammler T, MacDonald J, Pallanck L. Glucocerebrosidase deficiency leads to neuropathology via cellular immune activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571406. [PMID: 38168223 PMCID: PMC10760128 DOI: 10.1101/2023.12.13.571406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Mutations in GBA (glucosylceramidase beta), which encodes the lysosomal enzyme glucocerebrosidase (GCase), are the strongest genetic risk factor for the neurodegenerative disorders Parkinson's disease (PD) and Lewy body dementia. Recent work has suggested that neuroinflammation may be an important factor in the risk conferred by GBA mutations. We therefore systematically tested the contributions of immune-related genes to neuropathology in a Drosophila model of GCase deficiency. We identified target immune factors via RNA-Seq and proteomics on heads from GCase-deficient flies, which revealed both increased abundance of humoral factors and increased macrophage activation. We then manipulated the identified immune factors and measured their effect on head protein aggregates, a hallmark of neurodegenerative disease. Genetic ablation of humoral (secreted) immune factors did not suppress the development of protein aggregation. By contrast, re-expressing Gba1b in activated macrophages suppressed head protein aggregation in Gba1b mutants and rescued their lifespan and behavioral deficits. Moreover, reducing the GCase substrate glucosylceramide in activated macrophages also ameliorated Gba1b mutant phenotypes. Taken together, our findings show that glucosylceramide accumulation due to GCase deficiency leads to macrophage activation, which in turn promotes the development of neuropathology.
Collapse
Affiliation(s)
- Evelyn S. Vincow
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Ruth E. Thomas
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gillian Milstein
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gautam Pareek
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Theo Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Leo Pallanck
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
13
|
Pranoto IKA, Lee J, Kwon YV. The roles of the native cell differentiation program aberrantly recapitulated in Drosophila intestinal tumors. Cell Rep 2023; 42:113245. [PMID: 37837622 PMCID: PMC10872463 DOI: 10.1016/j.celrep.2023.113245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/11/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
Many tumors recapitulate the developmental and differentiation program of their tissue of origin, a basis for tumor cell heterogeneity. Although stem-cell-like tumor cells are well studied, the roles of tumor cells undergoing differentiation remain to be elucidated. We employ Drosophila genetics to demonstrate that the differentiation program of intestinal stem cells is crucial for enabling intestinal tumors to invade and induce non-tumor-autonomous phenotypes. The differentiation program that generates absorptive cells is aberrantly recapitulated in the intestinal tumors generated by activation of the Yap1 ortholog Yorkie. Inhibiting it allows stem-cell-like tumor cells to grow but suppresses invasiveness and reshapes various phenotypes associated with cachexia-like wasting by altering the expression of tumor-derived factors. Our study provides insight into how a native differentiation program determines a tumor's capacity to induce advanced cancer phenotypes and suggests that manipulating the differentiation programs co-opted in tumors might alleviate complications of cancer, including cachexia.
Collapse
Affiliation(s)
| | - Jiae Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Young V Kwon
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
14
|
Zhou J, Boutros M. Intestinal stem cells and their niches in homeostasis and disease. Cells Dev 2023; 175:203862. [PMID: 37271243 DOI: 10.1016/j.cdev.2023.203862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Tissues such as the intestine harbor stem cells that have remarkable functional plasticity in response to a dynamic environment. To adapt to the environment, stem cells constantly receive information from their surrounding microenvironment (also called the 'niche') that instructs them how to adapt to changes. The Drosophila midgut shows morphological and functional similarities to the mammalian small intestine and has been a useful model system to study signaling events in stem cells and tissue homeostasis. In this review, we summarize the current understanding of the Drosophila midgut regarding how stem cells communicate with microenvironmental niches including enteroblasts, enterocytes, enteroendocrine cells and visceral muscles to coordinate tissue regeneration and homeostasis. In addition, distant cells such as hemocytes or tracheal cells have been shown to interact with stem cells and influence the development of intestinal diseases. We discuss the contribution of stem cell niches in driving or counteracting disease progression, and review conceptual advances derived from the Drosophila intestine as a model for stem cell biology.
Collapse
Affiliation(s)
- Jun Zhou
- German Cancer Research Center (DKFZ), Heidelberg University, Division Signaling and Functional Genomics, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany; School of Biomedical Sciences, Hunan University, Changsha, China.
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Heidelberg University, Division Signaling and Functional Genomics, BioQuant and Medical Faculty Mannheim, D-69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Hodge RA, Ghannam M, Edmond E, de la Torre F, D’Alterio C, Kaya NH, Resnik-Docampo M, Reiff T, Jones DL. The septate junction component bark beetle is required for Drosophila intestinal barrier function and homeostasis. iScience 2023; 26:106901. [PMID: 37332603 PMCID: PMC10276166 DOI: 10.1016/j.isci.2023.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Age-related loss of intestinal barrier function has been documented across species, but the causes remain unknown. The intestinal barrier is maintained by tight junctions (TJs) in mammals and septate junctions (SJs) in insects. Specialized TJs/SJs, called tricellular junctions (TCJs), are located at the nexus of three adjacent cells, and we have shown that aging results in changes to TCJs in intestines of adult Drosophila melanogaster. We now demonstrate that localization of the TCJ protein bark beetle (Bark) decreases in aged flies. Depletion of bark from enterocytes in young flies led to hallmarks of intestinal aging and shortened lifespan, whereas depletion of bark in progenitor cells reduced Notch activity, biasing differentiation toward the secretory lineage. Our data implicate Bark in EC maturation and maintenance of intestinal barrier integrity. Understanding the assembly and maintenance of TCJs to ensure barrier integrity may lead to strategies to improve tissue integrity when function is compromised.
Collapse
Affiliation(s)
- Rachel A. Hodge
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mirna Ghannam
- Institute of Genetics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Emma Edmond
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fernando de la Torre
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cecilia D’Alterio
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nida Hatice Kaya
- Institute of Genetics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martin Resnik-Docampo
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tobias Reiff
- Institute of Genetics, Heinrich-Heine-University, Düsseldorf, Germany
| | - D. Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Medicine, Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94143, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Zhang Y, Chen R, Gong L, Huang W, Li P, Zhai Z, Ling E. Regulation of intestinal stem cell activity by a mitotic cell cycle regulator Polo in Drosophila. G3 (BETHESDA, MD.) 2023; 13:jkad084. [PMID: 37154439 PMCID: PMC10234410 DOI: 10.1093/g3journal/jkad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/31/2023] [Indexed: 05/10/2023]
Abstract
Maintaining a definite and stable pool of dividing stem cells plays an important role in organ development. This process requires an appropriate progression of mitosis for proper spindle orientation and polarity to ensure the ability of stem cells to proliferate and differentiate correctly. Polo-like kinases (Plks)/Polo are the highly conserved serine/threonine kinases involved in the initiation of mitosis as well as in the progression of the cell cycle. Although numerous studies have investigated the mitotic defects upon loss of Plks/Polo in cells, little is known about the in vivo consequences of stem cells with abnormal Polo activity in the context of tissue and organism development. The current study aimed to investigate this question using the Drosophila intestine, an organ dynamically maintained by the intestinal stem cells (ISCs). The results indicated that the polo depletion caused a reduction in the gut size due to a gradual decrease in the number of functional ISCs. Interestingly, the polo-deficient ISCs showed an extended G2/M phase and aneuploidy and were subsequently eliminated by premature differentiation into enterocytes (ECs). In contrast, the constitutively active Polo (poloT182D) suppressed ISC proliferation, induced abnormal accumulation of β-tubulin in cells, and drove ISC loss via apoptosis. Therefore, Polo activity should be properly maintained for optimal stem cell function. Further analysis suggested that polo was a direct target gene of Sox21a, a Sox transcription factor that critically regulates stem cell activity. Together, this study provided a novel perspective on the correlation between the progression of mitosis and the ISC function in Drosophila.
Collapse
Affiliation(s)
- Ying Zhang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rongbing Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Liyuan Gong
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wuren Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
| | - Ping Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zongzhao Zhai
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Erjun Ling
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
| |
Collapse
|
17
|
Galenza A, Moreno-Roman P, Su YH, Acosta-Alvarez L, Debec A, Guichet A, Knapp JM, Kizilyaprak C, Humbel BM, Kolotuev I, O'Brien LE. Basal stem cell progeny establish their apical surface in a junctional niche during turnover of an adult barrier epithelium. Nat Cell Biol 2023; 25:658-671. [PMID: 36997641 PMCID: PMC10317055 DOI: 10.1038/s41556-023-01116-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
Barrier epithelial organs face the constant challenge of sealing the interior body from the external environment while simultaneously replacing the cells that contact this environment. New replacement cells-the progeny of basal stem cells-are born without barrier-forming structures such as a specialized apical membrane and occluding junctions. Here, we investigate how new progeny acquire barrier structures as they integrate into the intestinal epithelium of adult Drosophila. We find they gestate their future apical membrane in a sublumenal niche created by a transitional occluding junction that envelops the differentiating cell and enables it to form a deep, microvilli-lined apical pit. The transitional junction seals the pit from the intestinal lumen until differentiation-driven, basal-to-apical remodelling of the niche opens the pit and integrates the now-mature cell into the barrier. By coordinating junctional remodelling with terminal differentiation, stem cell progeny integrate into a functional, adult epithelium without jeopardizing barrier integrity.
Collapse
Affiliation(s)
- Anthony Galenza
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paola Moreno-Roman
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Foldscope Instruments, Inc., Palo Alto, CA, USA
| | - Yu-Han Su
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lehi Acosta-Alvarez
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alain Debec
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Institute of Ecology and Environmental Sciences, iEES, Sorbonne University, UPEC, CNRS, IRD, INRA, Paris, France
| | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Caroline Kizilyaprak
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
| | - Bruno M Humbel
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Provost's Office, Okinawa Institute of Science and Technology, Tancha, Japan
| | - Irina Kolotuev
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
| | - Lucy Erin O'Brien
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
18
|
Kinoshita S, Takarada K, Kinoshita Y, Inoue YH. Drosophila hemocytes recognize lymph gland tumors of mxc mutants and activate the innate immune pathway in a reactive oxygen species-dependent manner. Biol Open 2022; 11:bio059523. [PMID: 36226812 PMCID: PMC9641529 DOI: 10.1242/bio.059523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/03/2022] [Indexed: 12/29/2022] Open
Abstract
Mechanisms of cancer cell recognition and elimination by the innate immune system remains unclear. The immune signaling pathways are activated in the fat body to suppress the tumor growth in mxcmbn1 hematopoietic tumor mutants in Drosophila by inducing antimicrobial peptides (AMP). Here, we investigated the regulatory mechanism underlying the activation in the mutant. Firstly, we found that reactive oxygen species (ROS) accumulated in the hemocytes due to induction of dual oxidase and one of its activators. This was required for the AMP induction and the tumor growth suppression. Next, more hemocytes transplanted from normal larvae were associated with the mutant tumor than normal lymph glands (LGs). Matrix metalloproteinase 1 and 2 (MMP2) were highly expressed in the tumors. The basement membrane components in the tumors were reduced and ultimately lost inside. Depletion of the MMP2 rather than MMP1 resulted in a significantly reduced AMP expression in the mutant larvae. The hemocytes may recognize the disassembly of basement membrane in the tumors and activate the ROS production. Our findings highlight the mechanism via which macrophage-like hemocytes recognize tumor cells and subsequently convey the information to induce AMPs in the fat body. They contribute to uncover the role of innate immune system against cancer.
Collapse
Affiliation(s)
- Suzuko Kinoshita
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kazuki Takarada
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuriko Kinoshita
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yoshihiro H. Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
19
|
Chen J, St Johnston D. De novo apical domain formation inside the Drosophila adult midgut epithelium. eLife 2022; 11:e76366. [PMID: 36169289 PMCID: PMC9545526 DOI: 10.7554/elife.76366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
In the adult Drosophila midgut, basal intestinal stem cells give rise to enteroblasts that integrate into the epithelium as they differentiate into enterocytes. Integrating enteroblasts must generate a new apical domain and break through the septate junctions between neighbouring enterocytes, while maintaining barrier function. We observe that enteroblasts form an apical membrane initiation site (AMIS) when they reach the septate junction between the enterocytes. Cadherin clears from the apical surface and an apical space appears between above the enteroblast. New septate junctions then form laterally with the enterocytes and the AMIS develops into an apical domain below the enterocyte septate junction. The enteroblast therefore forms a pre-assembled apical compartment before it has a free apical surface in contact with the gut lumen. Finally, the enterocyte septate junction disassembles and the enteroblast/pre-enterocyte reaches the gut lumen with a fully formed brush border. The process of enteroblast integration resembles lumen formation in mammalian epithelial cysts, highlighting the similarities between the fly midgut and mammalian epithelia.
Collapse
Affiliation(s)
- Jia Chen
- The Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | | |
Collapse
|
20
|
Chen J, St Johnston D. Epithelial Cell Polarity During Drosophila Midgut Development. Front Cell Dev Biol 2022; 10:886773. [PMID: 35846367 PMCID: PMC9281564 DOI: 10.3389/fcell.2022.886773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
The adult Drosophila midgut epithelium is derived from a group of stem cells called adult midgut precursors (AMPs) that are specified during the migration of the endoderm in early embryogenesis. AMPs are maintained and expanded in AMP nests that lie on the basal side of the larval midgut throughout the larval development. During metamorphosis, the larval midgut undergoes histolysis and programmed cell death, while the central cells in the AMP nests form the future adult midgut and the peripheral cells form the transient pupal midgut. Here we review what is known about how cells polarise in the embryonic, larval, pupal and adult midgut, and discuss the open questions about the mechanisms that control the changes in cell arrangements, cell shape and cell polarity during midgut development.
Collapse
Affiliation(s)
| | - Daniel St Johnston
- Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
21
|
Ho MT, Lu J, Vazquez-Pianzola P, Suter B. α-Phenylalanyl tRNA synthetase competes with Notch signaling through its N-terminal domain. PLoS Genet 2022; 18:e1010185. [PMID: 35486661 PMCID: PMC9094542 DOI: 10.1371/journal.pgen.1010185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/11/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023] Open
Abstract
The alpha subunit of the cytoplasmic Phenylalanyl tRNA synthetase (α-PheRS, FARSA in humans) displays cell growth and proliferation activities and its elevated levels can induce cell fate changes and tumor-like phenotypes that are neither dependent on the canonical function of charging tRNAPhe with phenylalanine nor on stimulating general translation. In intestinal stem cells of Drosophila midguts, α-PheRS levels are naturally slightly elevated and human FARSA mRNA levels are elevated in multiple cancers. In the Drosophila midgut model, elevated α-PheRS levels caused the accumulation of many additional proliferating cells resembling intestinal stem cells (ISCs) and enteroblasts (EBs). This phenotype partially resembles the tumor-like phenotype described as Notch RNAi phenotype for the same cells. Genetic interactions between α-PheRS and Notch suggest that their activities neutralize each other and that elevated α-PheRS levels attenuate Notch signaling when Notch induces differentiation into enterocytes, type II neuroblast stem cell proliferation, or transcription of a Notch reporter. These non-canonical functions all map to the N-terminal part of α-PheRS which accumulates naturally in the intestine. This truncated version of α-PheRS (α-S) also localizes to nuclei and displays weak sequence similarity to the Notch intracellular domain (NICD), suggesting that α-S might compete with the NICD for binding to a common target. Supporting this hypothesis, the tryptophan (W) residue reported to be key for the interaction between the NICD and the Su(H) BTD domain is not only conserved in α-PheRS and α-S, but also essential for attenuating Notch signaling. Aminoacyl tRNA synthetases charge tRNAs with their cognate amino acid to ensure proper decoding of the genetic code during translation. Independent of its aminoacylation function, the alpha subunit of Drosophila cytoplasmic Phenylalanyl tRNA synthetase (α-PheRS, FARSA in humans) has an additional activity that promotes growth and proliferation. Here we describe that elevated α-PheRS levels also induce cell fate changes and tumorous phenotypes in Drosophila midguts. Excessive proliferating cells with stem and progenitor cell characteristics accumulate and the composition of the terminally differentiated cells changes, too. This phenotype together with observed genetic interactions between α-PheRS and Notch levels show that α-PheRS counteracts Notch signaling in many different tissues and developmental stages. This novel activity of α-PheRS maps to its N-terminal part, which is naturally produced. The fragment contains a DNA binding domain, translocates into nuclei, and displays essential similarities to a Notch domain that binds to the downstream transcription factor. This suggests that it might be competing with Notch for binding to a common target. Not only because Notch plays important roles in many tumors, but also because FARSA mRNA levels are considerably upregulated in many tumors, this novel activity deserves more attention for cancer research.
Collapse
Affiliation(s)
- Manh Tin Ho
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Jiongming Lu
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | - Beat Suter
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
22
|
Microbes affect gut epithelial cell composition through immune-dependent regulation of intestinal stem cell differentiation. Cell Rep 2022; 38:110572. [PMID: 35354023 PMCID: PMC9078081 DOI: 10.1016/j.celrep.2022.110572] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/14/2021] [Accepted: 03/03/2022] [Indexed: 12/29/2022] Open
Abstract
Gut microbes play important roles in host physiology; however, the mechanisms underlying their impact remain poorly characterized. Here, we demonstrate that microbes not only influence gut physiology but also alter its epithelial composition. The microbiota and pathogens both influence intestinal stem cell (ISC) differentiation. Intriguingly, while the microbiota promotes ISC differentiation into enterocytes (EC), pathogens stimulate enteroendocrine cell (EE) fate and long-term accumulation of EEs in the midgut epithelium. Importantly, the evolutionarily conserved Drosophila NFKB (Relish) pushes stem cell lineage specification toward ECs by directly regulating differentiation factors. Conversely, the JAK-STAT pathway promotes EE fate in response to infectious damage. We propose a model in which the balance of microbial pattern recognition pathways, such as Imd-Relish, and damage response pathways, such as JAK-STAT, influence ISC differentiation, epithelial composition, and gut physiology.
Collapse
|
23
|
Xie G, Peng Z, Liang J, Larabee SM, Drachenberg CB, Yfantis H, Raufman JP. Zinc finger protein 277 is an intestinal transit-amplifying cell marker and colon cancer oncogene. JCI Insight 2022; 7:150894. [PMID: 35015732 PMCID: PMC8876557 DOI: 10.1172/jci.insight.150894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/05/2022] [Indexed: 01/10/2023] Open
Abstract
Sustained proliferative signaling and resisting cell death are hallmarks of cancer. Zinc finger protein 277 (ZNF277; murine Zfp277), a transcription factor regulating cellular senescence, is overexpressed in colon cancer, but its actions in intestinal homeostasis and neoplasia are unclear. Using human and murine intestine, human colon cancer cells, and ApcMin/+ mice with dysregulated β-catenin signaling and exuberant intestinal neoplasia, we explored the actions of ZNF277/Zfp277 and defined the underlying mechanisms. In normal human and murine intestine, ZNF277/Zfp277 was expressed uniquely in early stem cell progenitors, undifferentiated transit-amplifying cells (TACs). Zfp277 was overexpressed in the ApcMin/+ mouse colon, implicating ZNF277/Zfp277 as a transcriptional target of β-catenin signaling. We confirmed this by showing β-catenin knockdown reduced ZNF277 expression and, using chromatin IP, identified 2 β-catenin binding sites in the ZNF277 promoter. Zfp277 deficiency attenuated intestinal epithelial cell proliferation and tumor formation, and it strikingly prolonged ApcMin/+ mouse survival. RNA-Seq and PCR analyses revealed that Zfp277 modulates expression of genes in key cancer pathways, including β-catenin signaling, the HOXD family that regulates development, and p21WAF1, a cell cycle inhibitor and tumor suppressor. In both human colon cancer cells and the murine colon, ZNF277/Zfp277 deficiency induced p21WAF1 expression and promoted senescence. Our findings identify ZNF277/Zfp277 as both a TAC marker and colon cancer oncogene that regulates cellular proliferation and senescence, in part by repressing p21WAF1 expression.
Collapse
Affiliation(s)
- Guofeng Xie
- University of Maryland School of Medicine, Baltimore, United States of America
| | - Zhongsheng Peng
- Department of Medicine, University of Maryland School of Medicine, Baltimore, United States of America
| | - Jinqing Liang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, United States of America
| | - Shannon M Larabee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, United States of America
| | - Cinthia B Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, United States of America
| | - Harris Yfantis
- Department of Pathology and Laboratory Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, United States of America
| | - Jean-Pierre Raufman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, United States of America
| |
Collapse
|
24
|
Jin Z, Che M, Xi R. Identification of progenitor cells and their progenies in adult Drosophila midgut. Methods Cell Biol 2022; 170:169-187. [DOI: 10.1016/bs.mcb.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Ferraces-Riegas P, Galbraith AC, Doupé DP. Epithelial Stem Cells: Making, Shaping and Breaking the Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1387:1-12. [DOI: 10.1007/5584_2021_686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractEpithelial stem cells maintain tissues throughout adult life and are tightly regulated by their microenvironmental niche to balance cell production and loss. These stem cells have been studied extensively as signal-receiving cells, responding to cues from other cell types and mechanical stimuli that comprise the niche. However, studies from a wide range of systems have identified epithelial stem cells as major contributors to their own microenvironment either through producing niche cells, acting directly as niche cells or regulating niche cells. The importance of stem cell contributions to the niche is particularly clear in cancer, where tumour cells extensively remodel their microenvironment to promote their survival and proliferation.
Collapse
|
26
|
Wu K, Tang Y, Zhang Q, Zhuo Z, Sheng X, Huang J, Ye J, Li X, Liu Z, Chen H. Aging-related upregulation of the homeobox gene caudal represses intestinal stem cell differentiation in Drosophila. PLoS Genet 2021; 17:e1009649. [PMID: 34228720 PMCID: PMC8284806 DOI: 10.1371/journal.pgen.1009649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/16/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
The differentiation efficiency of adult stem cells undergoes a significant decline in aged animals, which is closely related to the decline in organ function and age-associated diseases. However, the underlying mechanisms that ultimately lead to this observed decline of the differentiation efficiency of stem cells remain largely unclear. This study investigated Drosophila midguts and identified an obvious upregulation of caudal (cad), which encodes a homeobox transcription factor. This factor is traditionally known as a central regulator of embryonic anterior-posterior body axis patterning. This study reports that depletion of cad in intestinal stem/progenitor cells promotes quiescent intestinal stem cells (ISCs) to become activate and produce enterocytes in the midgut under normal gut homeostasis conditions. However, overexpression of cad results in the failure of ISC differentiation and intestinal epithelial regeneration after injury. Moreover, this study suggests that cad prevents intestinal stem/progenitor cell differentiation by modulating the Janus kinase/signal transducers and activators of the transcription pathway and Sox21a-GATAe signaling cascade. Importantly, the reduction of cad expression in intestinal stem/progenitor cells restrained age-associated gut hyperplasia in Drosophila. This study identified a function of the homeobox gene cad in the modulation of adult stem cell differentiation and suggested a potential gene target for the treatment of age-related diseases induced by age-related stem cell dysfunction. Adult stem cells undergo an aging-related decline of differentiation efficiency in aged animals. However, the underlying mechanisms that ultimately lead to this observed decline of differentiation efficiency in stem cells still remain largely unclear. By using the Drosophila midgut as a model system, this study identified the homeobox family transcription factor gene caudal (cad), the expression of which is significantly upregulated in intestinal stem cells (ISCs) and progenitor cells of aged Drosophila. Depletion of cad promoted quiescent ISCs to become activate and produce enterocytes (ECs) in midguts under normal gut homeostasis conditions; However, overexpression of cad resulted in the failure of ISC differentiation and intestinal epithelial regeneration after injury. Moreover, cad prevents ISC-to-EC differentiation by inhibiting JAK/STAT signaling, and the expressions of Sox21a and GATAe. Reduction of cad expression in intestinal stem/progenitor cells restrained age-associated gut hyperplasia in Drosophila. These findings enable a detailed understanding of the roles of homeobox genes in the modulation of adult stem cell aging in humans. This will be beneficial for the treatment of age-associated diseases that are caused by a functional decline of stem cells.
Collapse
Affiliation(s)
- Kun Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiming Tang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiaoqiao Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhangpeng Zhuo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao Sheng
- Laboratory for Aging and Stem Cell Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingping Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie’er Ye
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaorong Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiming Liu
- Laboratory for Aging and Stem Cell Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Chen
- Laboratory for Aging and Stem Cell Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
27
|
Microenvironmental innate immune signaling and cell mechanical responses promote tumor growth. Dev Cell 2021; 56:1884-1899.e5. [PMID: 34197724 DOI: 10.1016/j.devcel.2021.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 05/01/2021] [Accepted: 06/09/2021] [Indexed: 01/08/2023]
Abstract
Tissue homeostasis is achieved by balancing stem cell maintenance, cell proliferation and differentiation, as well as the purging of damaged cells. Elimination of unfit cells maintains tissue health; however, the underlying mechanisms driving competitive growth when homeostasis fails, for example, during tumorigenesis, remain largely unresolved. Here, using a Drosophila intestinal model, we find that tumor cells outcompete nearby enterocytes (ECs) by influencing cell adhesion and contractility. This process relies on activating the immune-responsive Relish/NF-κB pathway to induce EC delamination and requires a JNK-dependent transcriptional upregulation of the peptidoglycan recognition protein PGRP-LA. Consequently, in organisms with impaired PGRP-LA function, tumor growth is delayed and lifespan extended. Our study identifies a non-cell-autonomous role for a JNK/PGRP-LA/Relish signaling axis in mediating death of neighboring normal cells to facilitate tumor growth. We propose that intestinal tumors "hijack" innate immune signaling to eliminate enterocytes in order to support their own growth.
Collapse
|
28
|
Tamamouna V, Rahman MM, Petersson M, Charalambous I, Kux K, Mainor H, Bolender V, Isbilir B, Edgar BA, Pitsouli C. Remodelling of oxygen-transporting tracheoles drives intestinal regeneration and tumorigenesis in Drosophila. Nat Cell Biol 2021; 23:497-510. [PMID: 33972730 PMCID: PMC8567841 DOI: 10.1038/s41556-021-00674-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 03/31/2021] [Indexed: 02/03/2023]
Abstract
The Drosophila trachea, as the functional equivalent of mammalian blood vessels, senses hypoxia and oxygenates the body. Here, we show that the adult intestinal tracheae are dynamic and respond to enteric infection, oxidative agents and tumours with increased terminal branching. Increased tracheation is necessary for efficient damage-induced intestinal stem cell (ISC)-mediated regeneration and is sufficient to drive ISC proliferation in undamaged intestines. Gut damage or tumours induce HIF-1α (Sima in Drosophila), which stimulates tracheole branching via the FGF (Branchless (Bnl))-FGFR (Breathless (Btl)) signalling cascade. Bnl-Btl signalling is required in the intestinal epithelium and the trachea for efficient damage-induced tracheal remodelling and ISC proliferation. Chemical or Pseudomonas-generated reactive oxygen species directly affect the trachea and are necessary for branching and intestinal regeneration. Similarly, tracheole branching and the resulting increase in oxygenation are essential for intestinal tumour growth. We have identified a mechanism of tracheal-intestinal tissue communication, whereby damage and tumours induce neo-tracheogenesis in Drosophila, a process reminiscent of cancer-induced neoangiogenesis in mammals.
Collapse
Affiliation(s)
- Vasilia Tamamouna
- University of Cyprus, Department of Biological Sciences, 1 Panepistimiou Avenue, 2109 Aglantzia, Cyprus
| | - M. Mahidur Rahman
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Monika Petersson
- German Cancer Research Center (DKFZ)-Center for Molecular Biology (ZMBH), University of Heidelberg Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Irini Charalambous
- University of Cyprus, Department of Biological Sciences, 1 Panepistimiou Avenue, 2109 Aglantzia, Cyprus
| | - Kristina Kux
- University of Cyprus, Department of Biological Sciences, 1 Panepistimiou Avenue, 2109 Aglantzia, Cyprus
| | - Hannah Mainor
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Verena Bolender
- German Cancer Research Center (DKFZ)-Center for Molecular Biology (ZMBH), University of Heidelberg Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Buse Isbilir
- German Cancer Research Center (DKFZ)-Center for Molecular Biology (ZMBH), University of Heidelberg Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Bruce A. Edgar
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA,Corresponding authors ,
| | - Chrysoula Pitsouli
- University of Cyprus, Department of Biological Sciences, 1 Panepistimiou Avenue, 2109 Aglantzia, Cyprus,Corresponding authors ,
| |
Collapse
|
29
|
Lindblad JL, Tare M, Amcheslavsky A, Shields A, Bergmann A. Non-apoptotic enteroblast-specific role of the initiator caspase Dronc for development and homeostasis of the Drosophila intestine. Sci Rep 2021; 11:2645. [PMID: 33514791 PMCID: PMC7846589 DOI: 10.1038/s41598-021-81261-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
The initiator caspase Dronc is the only CARD-domain containing caspase in Drosophila and is essential for apoptosis. Here, we report that homozygous dronc mutant adult animals are short-lived due to the presence of a poorly developed, defective and leaky intestine. Interestingly, this mutant phenotype can be significantly rescued by enteroblast-specific expression of dronc+ in dronc mutant animals, suggesting that proper Dronc function specifically in enteroblasts, one of four cell types in the intestine, is critical for normal development of the intestine. Furthermore, enteroblast-specific knockdown of dronc in adult intestines triggers hyperplasia and differentiation defects. These enteroblast-specific functions of Dronc do not require the apoptotic pathway and thus occur in a non-apoptotic manner. In summary, we demonstrate that an apoptotic initiator caspase has a very critical non-apoptotic function for normal development and for the control of the cell lineage in the adult midgut and therefore for proper physiology and homeostasis.
Collapse
Affiliation(s)
- Jillian L Lindblad
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Meghana Tare
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani, Rajasthan, 333031, India
| | - Alla Amcheslavsky
- University of Massachusetts Medical School, MassBiologics, 460 Walk Hill Road, Boston, MA, USA
| | - Alicia Shields
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Andreas Bergmann
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
30
|
Abstract
Stem cells drive tissue regeneration due to their capacity to proliferate and differentiate in response to damage. In this issue of Developmental cell, Du et al. reveal a mechanism regulating intestinal stem cell differentiation and epithelial repair following injury, which depends on peroxisomes and their action inducing JAK/Stat signaling and Sox21a.
Collapse
Affiliation(s)
- Karen Bellec
- Institute of Cancer Sciences-University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Julia B Cordero
- Institute of Cancer Sciences-University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.
| |
Collapse
|
31
|
Arthurton L, Nahotko DA, Alonso J, Wendler F, Baena‐Lopez LA. Non-apoptotic caspase activation preserves Drosophila intestinal progenitor cells in quiescence. EMBO Rep 2020; 21:e48892. [PMID: 33135280 PMCID: PMC7726796 DOI: 10.15252/embr.201948892] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Caspase malfunction in stem cells often precedes the appearance and progression of multiple types of cancer, including human colorectal cancer. However, the caspase-dependent regulation of intestinal stem cell properties remains poorly understood. Here, we demonstrate that Dronc, the Drosophila ortholog of caspase-9/2 in mammals, limits the number of intestinal progenitor cells and their entry into the enterocyte differentiation programme. Strikingly, these unexpected roles for Dronc are non-apoptotic and have been uncovered under experimental conditions without epithelial replenishment. Supporting the non-apoptotic nature of these functions, we show that they require the enzymatic activity of Dronc, but are largely independent of the apoptotic pathway. Alternatively, our genetic and functional data suggest that they are linked to the caspase-mediated regulation of Notch signalling. Our findings provide novel insights into the non-apoptotic, caspase-dependent modulation of stem cell properties that could improve our understanding of the origin of intestinal malignancies.
Collapse
Affiliation(s)
- Lewis Arthurton
- Sir William Dunn School of PathologyUniversity of OxfordOxfordshireUK
| | | | - Jana Alonso
- Laboratorio de Agrobiología Juan José Bravo Rodríguez (Cabildo Insular de La Palma)Unidad Técnica del IPNA‐CSICSanta Cruz de La PalmaSpain
| | - Franz Wendler
- Sir William Dunn School of PathologyUniversity of OxfordOxfordshireUK
| | | |
Collapse
|
32
|
Han H, Davidson LA, Fan Y, Goldsby JS, Yoon G, Jin U, Wright GA, Landrock KK, Weeks BR, Wright RC, Allred CD, Jayaraman A, Ivanov I, Roper J, Safe SH, Chapkin RS. Loss of aryl hydrocarbon receptor potentiates FoxM1 signaling to enhance self-renewal of colonic stem and progenitor cells. EMBO J 2020; 39:e104319. [PMID: 32915464 PMCID: PMC7527924 DOI: 10.15252/embj.2019104319] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that senses xenobiotics, diet, and gut microbial-derived metabolites, is increasingly recognized as a key regulator of intestinal biology. However, its effects on the function of colonic stem and progenitor cells remain largely unexplored. Here, we observed that inducible deletion of AhR in Lgr5+ stem cells increases the percentage of colonic stem cells and enhances organoid initiating capacity and growth of sorted stem and progenitor cells, while AhR activation has the opposite effect. Moreover, intestinal-specific AhR knockout increases basal stem cell and crypt injury-induced cell proliferation and promotes colon tumorigenesis in a preclinical colitis-associated tumor model by upregulating FoxM1 signaling. Mechanistically, AhR transcriptionally suppresses FoxM1 expression. Activation of AhR in human organoids recapitulates phenotypes observed in mice, such as reduction in the percentage of colonic stem cells, promotion of stem cell differentiation, and attenuation of FoxM1 signaling. These findings indicate that the AhR-FoxM1 axis, at least in part, mediates colonic stem/progenitor cell behavior.
Collapse
Affiliation(s)
- Huajun Han
- Program in Integrative Nutrition and Complex DiseasesTexas A&M UniversityCollege StationTXUSA,Department of Biochemistry & BiophysicsTexas A&M UniversityCollege StationTXUSA
| | - Laurie A Davidson
- Program in Integrative Nutrition and Complex DiseasesTexas A&M UniversityCollege StationTXUSA,Department of NutritionTexas A&M UniversityCollege StationTXUSA
| | - Yang‐Yi Fan
- Program in Integrative Nutrition and Complex DiseasesTexas A&M UniversityCollege StationTXUSA,Department of NutritionTexas A&M UniversityCollege StationTXUSA
| | - Jennifer S Goldsby
- Program in Integrative Nutrition and Complex DiseasesTexas A&M UniversityCollege StationTXUSA,Department of NutritionTexas A&M UniversityCollege StationTXUSA
| | - Grace Yoon
- Department of StatisticsTexas A&M UniversityCollege StationTXUSA
| | - Un‐Ho Jin
- Veterinary Physiology and PharmacologyTexas A&M UniversityCollege StationTXUSA
| | - Gus A Wright
- Department of Veterinary PathobiologyTexas A&M UniversityCollege StationTXUSA
| | - Kerstin K Landrock
- Program in Integrative Nutrition and Complex DiseasesTexas A&M UniversityCollege StationTXUSA,Department of NutritionTexas A&M UniversityCollege StationTXUSA
| | - Bradley R Weeks
- Department of Veterinary PathobiologyTexas A&M UniversityCollege StationTXUSA
| | - Rachel C Wright
- Program in Integrative Nutrition and Complex DiseasesTexas A&M UniversityCollege StationTXUSA,Department of NutritionTexas A&M UniversityCollege StationTXUSA
| | | | - Arul Jayaraman
- Department of Chemical EngineeringTexas A&M UniversityCollege StationTXUSA
| | - Ivan Ivanov
- Program in Integrative Nutrition and Complex DiseasesTexas A&M UniversityCollege StationTXUSA,Veterinary Physiology and PharmacologyTexas A&M UniversityCollege StationTXUSA
| | - Jatin Roper
- Department of MedicineDivision of GastroenterologyDuke University School of MedicineDurhamNCUSA
| | - Stephen H Safe
- Veterinary Physiology and PharmacologyTexas A&M UniversityCollege StationTXUSA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex DiseasesTexas A&M UniversityCollege StationTXUSA,Department of Biochemistry & BiophysicsTexas A&M UniversityCollege StationTXUSA,Department of NutritionTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
33
|
Guo X, Yin C, Yang F, Zhang Y, Huang H, Wang J, Deng B, Cai T, Rao Y, Xi R. The Cellular Diversity and Transcription Factor Code of Drosophila Enteroendocrine Cells. Cell Rep 2020; 29:4172-4185.e5. [PMID: 31851941 DOI: 10.1016/j.celrep.2019.11.048] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/13/2019] [Accepted: 11/12/2019] [Indexed: 01/12/2023] Open
Abstract
Enteroendocrine cells (EEs) in the intestinal epithelium have important endocrine functions, yet this cell lineage exhibits great local and regional variations that have hampered detailed characterization of EE subtypes. Through single-cell RNA-sequencing analysis, combined with a collection of peptide hormone and receptor knockin strains, here we provide a comprehensive analysis of cellular diversity, spatial distribution, and transcription factor (TF) code of EEs in adult Drosophila midgut. We identify 10 major EE subtypes that totally produced approximately 14 different classes of hormone peptides. Each EE on average co-produces approximately 2-5 different classes of hormone peptides. Functional screen with subtype-enriched TFs suggests a combinatorial TF code that controls EE cell diversity; class-specific TFs Mirr and Ptx1 respectively define two major classes of EEs, and regional TFs such as Esg, Drm, Exex, and Fer1 further define regional EE identity. Our single-cell data should greatly facilitate Drosophila modeling of EE differentiation and function.
Collapse
Affiliation(s)
- Xingting Guo
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Chang Yin
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Fu Yang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yongchao Zhang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Huanwei Huang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Jiawen Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Bowen Deng
- Peking University School of Life Sciences, Beijing 100091, China
| | - Tao Cai
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yi Rao
- Peking University School of Life Sciences, Beijing 100091, China
| | - Rongwen Xi
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
34
|
Tamamouna V, Panagi M, Theophanous A, Demosthenous M, Michail M, Papadopoulou M, Teloni S, Pitsouli C, Apidianakis Y. Evidence of two types of balance between stem cell mitosis and enterocyte nucleus growth in the Drosophila midgut. Development 2020; 147:147/11/dev189472. [PMID: 32513656 DOI: 10.1242/dev.189472] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
Systemic and stem cell niche-emanating cytokines and growth factors can promote regeneration, through mitosis. High mitosis, however, predisposes for all types of cancer and, thus, a trade-off exists between regeneration capacity and tissue homeostasis. Here, we study the role of tissue-intrinsic regenerative signaling in stem cell mitosis of adult Drosophila midgut of different genetic backgrounds. We provide evidence of two naturally occurring types of balance between mitosis and enterocyte nucleus growth: one based mostly on stem cell mitosis producing new cells and the other based mostly on the degree of young enterocyte nucleus size increase. Mitosis promotes intestinal host defense to infection, but predisposes for dysplasia in the form of stem cell-like clusters. Enterocyte nucleus growth also promotes host defense, without the drawback of promoting dysplasia. Through quantitative genetics, we identified eiger as an autocrine and paracrine inducer of stem cell mitosis. eiger expression in immature epithelial cells tilts the balance towards mitosis and dysplasia via a positive-feedback loop of highly mitotic stem cells sustaining more small nucleus enterocytes, which in turn supply more Eiger.
Collapse
Affiliation(s)
- Vasilia Tamamouna
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus
| | - Myrofora Panagi
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus
| | - Andria Theophanous
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus
| | - Maria Demosthenous
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus
| | - Maria Michail
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus
| | | | - Savvas Teloni
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus
| | - Yiorgos Apidianakis
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus
| |
Collapse
|
35
|
Xie L, Hu WY, Hu DP, Shi G, Li Y, Yang J, Prins GS. Effects of Inorganic Arsenic on Human Prostate Stem-Progenitor Cell Transformation, Autophagic Flux Blockade, and NRF2 Pathway Activation. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:67008. [PMID: 32525701 PMCID: PMC7289393 DOI: 10.1289/ehp6471] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/18/2020] [Accepted: 05/06/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Inorganic arsenic (iAs) is an environmental toxicant associated with an increased risk of prostate cancer in chronically exposed populations worldwide. However, the biological mechanisms underlying iAs-induced prostate carcinogenesis remain unclear. OBJECTIVES We studied how iAs affects normal human prostate stem-progenitor cells (PrSPCs) and drives transformation and interrogated the molecular mechanisms involved. METHODS PrSPCs were enriched by spheroid culture from normal human primary or immortalized prostate epithelial cells, and their differentiation capability was evaluated by organoid culture. Microarray analysis was conducted to identify iAs-dysregulated genes, and lentiviral infection was used for stable manipulation of identified genes. Soft agar colony growth assays were applied to examine iAs-induced transformation. For in vivo study, PrSPCs mixed with rat urogenital sinus mesenchyme were grafted under the renal capsule of nude mice to generate prostatelike tissues, and mice were exposed to 5 ppm (∼65μM) iAs in drinking water for 3 months. RESULTS Low-dose iAs (1μM) disturbed PrSPC homeostasis in vitro, leading to increased self-renewal and suppressed differentiation. Transcriptomic analysis indicated that iAs activated oncogenic pathways in PrSPCs, including the KEAP1-NRF2 pathway. Further, iAs-exposed proliferative progenitor cells exhibited NRF2 pathway activation that was sustained in their progeny cells. Knockdown of NRF2 inhibited spheroid formation by driving PrSPC differentiation, whereas its activation enhanced spheroid growth. Importantly, iAs-induced transformation was suppressed by NRF2 knockdown. Mechanistically, iAs suppressed Vacuolar ATPase subunit VMA5 expression, impairing lysosome acidification and inhibiting autophagic protein degradation including p62, which further activated NRF2. In vivo, chronic iAs exposure activated NRF2 in both epithelial and stroma cells of chimeric human prostate grafts and induced premalignant events. CONCLUSIONS Low-dose iAs increased self-renewal and decreased differentiation of human PrSPCs by activating the p62-NRF2 axis, resulting in epithelial cell transformation. NRF2 is activated by iAs through specific autophagic flux blockade in progenitor cells, which may have potential therapeutic implications. https://doi.org/10.1289/EHP6471.
Collapse
Affiliation(s)
- Lishi Xie
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Chicago Center for Health and Environment, Chicago, Illinois, USA
| | - Wen-Yang Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Chicago Center for Health and Environment, Chicago, Illinois, USA
| | - Dan-Ping Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Guangbin Shi
- Division of Cardiothoracic Surgery, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Ye Li
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jianfu Yang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Gail S. Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Chicago Center for Health and Environment, Chicago, Illinois, USA
- Departments of Physiology & Biophysics and Pathology, College of Medicine; Division of Epidemiology & Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA
- University of Illinois Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
36
|
Zhang F, Pirooznia M, Xu H. Mitochondria regulate intestinal stem cell proliferation and epithelial homeostasis through FOXO. Mol Biol Cell 2020; 31:1538-1549. [PMID: 32374658 PMCID: PMC7359575 DOI: 10.1091/mbc.e19-10-0560] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A metabolic transition from glycolysis to oxidative phosphorylation is often associated with differentiation of many types of stem cells. However, the link between mitochondrial respiration and stem cells' behavior is not fully understood. We genetically disrupted electron transport chain (ETC) complexes in the intestinal stem cells (ISCs) of Drosophila. We found that ISCs carrying impaired ETC proliferated much more slowly than normal and produced very few enteroblasts, which failed to further differentiate into enterocytes. One of the main impediments to ISC proliferation and lineage specification appeared to be abnormally elevated forkhead box O (FOXO) signaling in the ETC-deficient ISCs, as genetically suppressing the signaling pathway partially restored the number of enterocytes. Contrary to common belief, reactive oxygen species (ROS) accumulation did not appear to mediate the ETC mutant phenotype. Our results demonstrate that mitochondrial respiration is essential for Drosophila ISC proliferation and lineage specification in vivo and acts at least partially by repressing endogenous FOXO signaling.
Collapse
Affiliation(s)
- Fan Zhang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mehdi Pirooznia
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
37
|
Jin Z, Chen J, Huang H, Wang J, Lv J, Yu M, Guo X, Zhang Y, Cai T, Xi R. The Drosophila Ortholog of Mammalian Transcription Factor Sox9 Regulates Intestinal Homeostasis and Regeneration at an Appropriate Level. Cell Rep 2020; 31:107683. [DOI: 10.1016/j.celrep.2020.107683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/13/2020] [Accepted: 05/02/2020] [Indexed: 01/05/2023] Open
|
38
|
Ulgherait M, Chen A, McAllister SF, Kim HX, Delventhal R, Wayne CR, Garcia CJ, Recinos Y, Oliva M, Canman JC, Picard M, Owusu-Ansah E, Shirasu-Hiza M. Circadian regulation of mitochondrial uncoupling and lifespan. Nat Commun 2020; 11:1927. [PMID: 32317636 PMCID: PMC7174288 DOI: 10.1038/s41467-020-15617-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Because old age is associated with defects in circadian rhythm, loss of circadian regulation is thought to be pathogenic and contribute to mortality. We show instead that loss of specific circadian clock components Period (Per) and Timeless (Tim) in male Drosophila significantly extends lifespan. This lifespan extension is not mediated by canonical diet-restriction longevity pathways but is due to altered cellular respiration via increased mitochondrial uncoupling. Lifespan extension of per mutants depends on mitochondrial uncoupling in the intestine. Moreover, upregulated uncoupling protein UCP4C in intestinal stem cells and enteroblasts is sufficient to extend lifespan and preserve proliferative homeostasis in the gut with age. Consistent with inducing a metabolic state that prevents overproliferation, mitochondrial uncoupling drugs also extend lifespan and inhibit intestinal stem cell overproliferation due to aging or even tumorigenesis. These results demonstrate that circadian-regulated intestinal mitochondrial uncoupling controls longevity in Drosophila and suggest a new potential anti-aging therapeutic target.
Collapse
Affiliation(s)
- Matt Ulgherait
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Anna Chen
- Columbia College, New York, NY, 10027, USA
| | | | - Han X Kim
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Rebecca Delventhal
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Charlotte R Wayne
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Christian J Garcia
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Yocelyn Recinos
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | | | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Martin Picard
- Departments of Psychiatry and Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Edward Owusu-Ansah
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
39
|
Ngo S, Liang J, Su YH, O'Brien LE. Disruption of EGF Feedback by Intestinal Tumors and Neighboring Cells in Drosophila. Curr Biol 2020; 30:1537-1546.e3. [PMID: 32243854 PMCID: PMC7409949 DOI: 10.1016/j.cub.2020.01.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 12/11/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
In healthy adult organs, robust feedback mechanisms control cell turnover to enforce homeostatic equilibrium between cell division and death [1, 2]. Nascent tumors must subvert these mechanisms to achieve cancerous overgrowth [3-7]. Elucidating the nature of this subversion can reveal how cancers become established and may suggest strategies to prevent tumor progression. In adult Drosophila intestine, a well-studied model of homeostatic cell turnover, the linchpin of cell equilibrium is feedback control of the epidermal growth factor (EGF) protease Rhomboid (Rho). Expression of Rho in apoptotic cells enables them to secrete EGFs, which stimulate nearby stem cells to undergo replacement divisions [8]. As in mammals, loss of adenomatous polyposis coli (APC) causes Drosophila intestinal stem cells to form adenomas [9]. Here, we demonstrate that Drosophila APC-/- tumors trigger widespread Rho expression in non-apoptotic cells, resulting in chronic EGF signaling. Initially, nascent APC-/- tumors induce rho in neighboring wild-type cells via acute, non-autonomous activation of Jun N-terminal kinase (JNK). During later growth and multilayering, APC-/- tumors induce rho in tumor cells by autonomous downregulation of E-cadherin (E-cad) and consequent activity of p120-catenin. This sequential dysregulation of tumor non-autonomous and -autonomous EGF signaling converts tissue-level feedback into feed-forward activation that drives cancerous overgrowth. Because Rho, EGF receptor (EGFR), and E-cad are associated with colorectal cancer in humans [10-17], our findings may shed light on how human colorectal tumors progress.
Collapse
Affiliation(s)
- Sang Ngo
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jackson Liang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yu-Han Su
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
JNK-dependent intestinal barrier failure disrupts host-microbe homeostasis during tumorigenesis. Proc Natl Acad Sci U S A 2020; 117:9401-9412. [PMID: 32277031 PMCID: PMC7196803 DOI: 10.1073/pnas.1913976117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The intestinal epithelium forms a tight barrier to the environment and is constantly regenerated. Precise control of barrier function and tissue renewal is important to maintain homeostasis. Using an inducible tumor model in the Drosophila intestine, this study shows that tumor progression disrupts the intestinal barrier and leads to commensal dysbiosis, thereby further fueling tumor growth. This reenforcing feedback loop can be interrupted by treatments with JNK inhibitor or antibiotics. In all animals, the intestinal epithelium forms a tight barrier to the environment. The epithelium regulates the absorption of nutrients, mounts immune responses, and prevents systemic infections. Here, we investigate the consequences of tumorigenesis on the microbiome using a Drosophila intestinal tumor model. We show that upon loss of BMP signaling, tumors lead to aberrant activation of JNK/Mmp2 signaling, followed by intestinal barrier dysfunction and commensal imbalance. In turn, the dysbiotic microbiome triggers a regenerative response and stimulates tumor growth. We find that inhibiting JNK signaling or depletion of the microbiome restores barrier function of the intestinal epithelium, leading to a reestablishment of host–microbe homeostasis, and organismic lifespan extension. Our experiments identify a JNK-dependent feedback amplification loop between intestinal tumors and the microbiome. They also highlight the importance of controlling the activity level of JNK signaling to maintain epithelial barrier function and host–microbe homeostasis.
Collapse
|
41
|
Du G, Xiong L, Li X, Zhuo Z, Zhuang X, Yu Z, Wu L, Xiao D, Liu Z, Jie M, Liu X, Luo G, Guo Z, Chen H. Peroxisome Elevation Induces Stem Cell Differentiation and Intestinal Epithelial Repair. Dev Cell 2020; 53:169-184.e11. [PMID: 32243783 DOI: 10.1016/j.devcel.2020.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/20/2020] [Accepted: 03/03/2020] [Indexed: 02/08/2023]
Abstract
Epithelial-repair-dependent mucosal healing (MH) is associated with a more favorable prognosis for patients with inflammatory bowel disease (IBD). MH is accomplished via repair and regeneration of the intestinal epithelium. However, the mechanism underlying MH is ill defined. We found a striking upregulation of peroxisomes in the injured crypts of IBD patients. By increasing peroxisome levels in Drosophila midguts, we found that peroxisome elevation enhanced RAB7-dependent late endosome maturation, which then promoted stem and/or progenitor-cell differentiation via modulation of Janus Kinase (JAK) and Signal Transducer and Activator of Transcription (STAT)-SOX21A signaling. This in turn enhanced ISC-mediated regeneration. Importantly, RAB7 and SOX21 were upregulated in the crypts of IBD patients. Moreover, administration of drugs that increased peroxisome levels reversed the symptoms of dextran sulfate sodium (DSS)-induced colitis in mice. This study demonstrates a peroxisome-mediated epithelial repair mechanism, which opens a therapeutic avenue for the enhancement of MH in IBD patients.
Collapse
Affiliation(s)
- Gang Du
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China; Laboratory for Stem Cell and anti-Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lishou Xiong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaorong Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Zhangpeng Zhuo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Xiaojun Zhuang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zihua Yu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Lijian Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Danqing Xiao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Zhiming Liu
- Laboratory for Stem Cell and anti-Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Minwen Jie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Xuehong Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Guanzheng Luo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haiyang Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China; Laboratory for Stem Cell and anti-Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
42
|
Arnaoutov A, Lee H, Plevock Haase K, Aksenova V, Jarnik M, Oliver B, Serpe M, Dasso M. IRBIT Directs Differentiation of Intestinal Stem Cell Progeny to Maintain Tissue Homeostasis. iScience 2020; 23:100954. [PMID: 32179478 PMCID: PMC7068126 DOI: 10.1016/j.isci.2020.100954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/24/2020] [Accepted: 02/25/2020] [Indexed: 11/27/2022] Open
Abstract
The maintenance of the intestinal epithelium is ensured by the controlled proliferation of intestinal stem cells (ISCs) and differentiation of their progeny into various cell types, including enterocytes (ECs) that both mediate nutrient absorption and provide a barrier against pathogens. The signals that regulate transition of proliferative ISCs into differentiated ECs are not fully understood. IRBIT is an evolutionarily conserved protein that regulates ribonucleotide reductase (RNR), an enzyme critical for the generation of DNA precursors. Here, we show that IRBIT expression in ISC progeny within the Drosophila midgut epithelium cells regulates their differentiation via suppression of RNR activity. Disruption of this IRBIT-RNR regulatory circuit causes a premature loss of intestinal tissue integrity. Furthermore, age-related dysplasia can be reversed by suppression of RNR activity in ISC progeny. Collectively, our findings demonstrate a role of the IRBIT-RNR pathway in gut homeostasis. IRBIT is required for homeostasis of the intestinal epithelium IRBIT inhibition of RNR ensures proper intestinal stem cell differentiation Suppression of RNR in intestinal stem cell progeny reverses age-related dysplasia
Collapse
Affiliation(s)
- Alexei Arnaoutov
- Section on Cell Cycle Regulation, NICHD, NIH, Bethesda, MD 20892, USA.
| | - Hangnoh Lee
- Section on Cell Cycle Regulation, NICHD, NIH, Bethesda, MD 20892, USA
| | | | - Vasilisa Aksenova
- Section on Cell Cycle Regulation, NICHD, NIH, Bethesda, MD 20892, USA
| | - Michal Jarnik
- Cell Biology and Metabolism Program, NICHD, NIH, Bethesda, MD 20892, USA
| | - Brian Oliver
- Developmental Genomics Section, Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20814, USA
| | - Mihaela Serpe
- Section on Cellular Communications, NICHD, NIH, Bethesda, MD 20892, USA
| | - Mary Dasso
- Section on Cell Cycle Regulation, NICHD, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
43
|
Sox100B Regulates Progenitor-Specific Gene Expression and Cell Differentiation in the Adult Drosophila Intestine. Stem Cell Reports 2020; 14:226-240. [PMID: 32032550 PMCID: PMC7013235 DOI: 10.1016/j.stemcr.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 01/30/2023] Open
Abstract
Robust production of terminally differentiated cells from self-renewing resident stem cells is essential to maintain proper tissue architecture and physiological functions, especially in high-turnover tissues. However, the transcriptional networks that precisely regulate cell transition and differentiation are poorly understood in most tissues. Here, we identified Sox100B, a Drosophila Sox E family transcription factor, as a critical regulator of adult intestinal stem cell differentiation. Sox100B is expressed in stem and progenitor cells and required for differentiation of enteroblast progenitors into absorptive enterocytes. Mechanistically, Sox100B regulates the expression of another critical stem cell differentiation factor, Sox21a. Supporting a direct control of Sox21a by Sox100B, we identified a Sox21a intronic enhancer that is active in all intestinal progenitors and directly regulated by Sox100B. Taken together, our results demonstrate that the activity and regulation of two Sox transcription factors are essential to coordinate stem cell differentiation and proliferation and maintain intestinal tissue homeostasis. Sox100B is expressed in progenitor cells in the adult intestine Sox100B is required for stem cell differentiation Sox100B is required for Sox21a expression Sox100B directly controls the activity of a Sox21a intronic enhancer
Collapse
|
44
|
Li Z, Guo X, Huang H, Wang C, Yang F, Zhang Y, Wang J, Han L, Jin Z, Cai T, Xi R. A Switch in Tissue Stem Cell Identity Causes Neuroendocrine Tumors in Drosophila Gut. Cell Rep 2020; 30:1724-1734.e4. [DOI: 10.1016/j.celrep.2020.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/15/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
|
45
|
zfh2 controls progenitor cell activation and differentiation in the adult Drosophila intestinal absorptive lineage. PLoS Genet 2019; 15:e1008553. [PMID: 31841513 PMCID: PMC6936859 DOI: 10.1371/journal.pgen.1008553] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/30/2019] [Accepted: 12/05/2019] [Indexed: 01/21/2023] Open
Abstract
Many tissues rely on resident stem cell population to maintain homeostasis. The balance between cell proliferation and differentiation is critical to permit tissue regeneration and prevent dysplasia, particularly following tissue damage. Thus, understanding the cellular processes and genetic programs that coordinate these processes is essential. Here, we report that the conserved transcription factor zfh2 is specifically expressed in Drosophila adult intestinal stem cell and progenitors and is a critical regulator of cell differentiation in this lineage. We show that zfh2 expression is required and sufficient to drive the activation of enteroblasts, the non-proliferative progenitors of absorptive cells. This transition is characterized by the transient formation of thin membrane protrusions, morphological changes characteristic of migratory cells and compensatory stem cell proliferation. We found that zfh2 acts in parallel to insulin signaling and upstream of the TOR growth-promoting pathway during early differentiation. Finally, maintaining zfh2 expression in late enteroblasts blocks terminal differentiation and leads to the formation of highly dysplastic lesions, defining a new late cell differentiation transition. Together, our study greatly improves our understanding of the cascade of cellular changes and regulatory steps that control differentiation in the adult fly midgut and identifies zfh2 as a major player in these processes. The ability of stem cells to produce functional cells, through the process of differentiation, is critical to maintain the integrity and function of many adult organs. Therefore, describing the molecular and cellular mechanisms that control cell differentiation is an essential part in understanding tissue regeneration, as well as diseases such as cancer or degenerative syndromes. For over a decade, the intestine of the fruitfly Drosophila has served as a model to study adult tissue stem cells in a genetically amenable organism. Here we report a novel function for the conserved transcription factor zfh2, ATBF1 in mammals, and demonstrate that it controls an essential cell fate transition during early differentiation in the fly intestine. We also show that abnormal expression of this regulator leads to the rapid formation of aggressive tumors. Our work sheds new light on the function of zfh2 and related factors in the control of cell identity and will likely help us and others formulate new hypotheses regarding the role of these transcription factors in cancer.
Collapse
|
46
|
Wisidagama DR, Thummel CS. Regulation of Drosophila Intestinal Stem Cell Proliferation by Enterocyte Mitochondrial Pyruvate Metabolism. G3 (BETHESDA, MD.) 2019; 9:3623-3630. [PMID: 31488514 PMCID: PMC6829144 DOI: 10.1534/g3.119.400633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022]
Abstract
Multiple signaling pathways in the adult Drosophila enterocyte sense cellular damage or stress and signal to intestinal stem cells (ISCs) to undergo proliferation and differentiation, thereby maintaining intestinal homeostasis. Here we show that misregulation of mitochondrial pyruvate metabolism in enterocytes can stimulate ISC proliferation and differentiation. Our studies focus on the Mitochondrial Pyruvate Carrier (MPC), which is an evolutionarily-conserved protein complex that resides in the inner mitochondrial membrane and transports cytoplasmic pyruvate into the mitochondrial matrix. Loss of MPC function in enterocytes induces Unpaired cytokine expression, which activates the JAK/STAT pathway in ISCs, promoting their proliferation. Upd3 and JNK signaling are required in enterocytes for ISC proliferation, indicating that this reflects a canonical non-cell autonomous damage response. Disruption of lactate dehydrogenase in enterocytes has no effect on ISC proliferation but it suppresses the proliferative response to a loss of enterocyte MPC function, suggesting that lactate contributes to this pathway. These studies define an important role for cellular pyruvate metabolism in differentiated enterocytes to maintain stem cell proliferation rates.
Collapse
Affiliation(s)
- Dona R Wisidagama
- Department of Human Genetics, University of Utah School of Medicine, 15 North 2030 East Room 5100, Salt Lake City UT 84112-5330, USA
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, 15 North 2030 East Room 5100, Salt Lake City UT 84112-5330, USA
| |
Collapse
|
47
|
Reiff T, Antonello ZA, Ballesta-Illán E, Mira L, Sala S, Navarro M, Martinez LM, Dominguez M. Notch and EGFR regulate apoptosis in progenitor cells to ensure gut homeostasis in Drosophila. EMBO J 2019; 38:e101346. [PMID: 31566767 DOI: 10.15252/embj.2018101346] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/20/2019] [Accepted: 08/01/2019] [Indexed: 12/25/2022] Open
Abstract
The regenerative activity of adult stem cells carries a risk of cancer, particularly in highly renewable tissues. Members of the family of inhibitor of apoptosis proteins (IAPs) inhibit caspases and cell death, and are often deregulated in adult cancers; however, their roles in normal adult tissue homeostasis are unclear. Here, we show that regulation of the number of enterocyte-committed progenitor (enteroblast) cells in the adult Drosophila involves a caspase-mediated physiological apoptosis, which adaptively eliminates excess enteroblast cells produced by intestinal stem cells (ISCs) and, when blocked, can also lead to tumorigenesis. Importantly, we found that Diap1 is expressed by enteroblast cells and that loss and gain of Diap1 led to changes in enteroblast numbers. We also found that antagonistic interplay between Notch and EGFR signalling governs enteroblast life/death decisions via the Klumpfuss/WT1 and Lozenge/RUNX transcription regulators, which also regulate enteroblast differentiation and cell fate plasticity. These data provide new insights into how caspases drive adult tissue renewal and protect against the formation of tumours.
Collapse
Affiliation(s)
- Tobias Reiff
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Zeus A Antonello
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Esther Ballesta-Illán
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Laura Mira
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Salvador Sala
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Maria Navarro
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Luis M Martinez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Maria Dominguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| |
Collapse
|
48
|
Herrera SC, Bach EA. JAK/STAT signaling in stem cells and regeneration: from Drosophila to vertebrates. Development 2019; 146:dev167643. [PMID: 30696713 PMCID: PMC6361132 DOI: 10.1242/dev.167643] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
The JAK/STAT pathway is a conserved metazoan signaling system that transduces cues from extracellular cytokines into transcriptional changes in the nucleus. JAK/STAT signaling is best known for its roles in immunity. However, recent work has demonstrated that it also regulates critical homeostatic processes in germline and somatic stem cells, as well as regenerative processes in several tissues, including the gonad, intestine and appendages. Here, we provide an overview of JAK/STAT signaling in stem cells and regeneration, focusing on Drosophila and highlighting JAK/STAT pathway functions in proliferation, survival and cell competition that are conserved between Drosophila and vertebrates.
Collapse
Affiliation(s)
- Salvador C Herrera
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Erika A Bach
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Helen L. and Martin S. Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
49
|
Doupé DP, Marshall OJ, Dayton H, Brand AH, Perrimon N. Drosophila intestinal stem and progenitor cells are major sources and regulators of homeostatic niche signals. Proc Natl Acad Sci U S A 2018; 115:12218-12223. [PMID: 30404917 PMCID: PMC6275525 DOI: 10.1073/pnas.1719169115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epithelial homeostasis requires the precise balance of epithelial stem/progenitor proliferation and differentiation. While many signaling pathways that regulate epithelial stem cells have been identified, it is probable that other regulators remain unidentified. Here, we use gene-expression profiling by targeted DamID to identify the stem/progenitor-specific transcription and signaling factors in the Drosophila midgut. Many signaling pathway components, including ligands of most major pathways, exhibit stem/progenitor-specific expression and have regulatory regions bound by both intrinsic and extrinsic transcription factors. In addition to previously identified stem/progenitor-derived ligands, we show that both the insulin-like factor Ilp6 and TNF ligand eiger are specifically expressed in the stem/progenitors and regulate normal tissue homeostasis. We propose that intestinal stem cells not only integrate multiple signals but also contribute to and regulate the homeostatic signaling microenvironmental niche through the expression of autocrine and paracrine factors.
Collapse
Affiliation(s)
- David P Doupé
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
- Department of Biosciences, Durham University, DH1 3LE Durham, United Kingdom
| | - Owen J Marshall
- The Gurdon Institute, University of Cambridge, CB2 1QN Cambridge, United Kingdom
- Department of Physiology Development and Neuroscience, University of Cambridge, CB2 1QN Cambridge, United Kingdom
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Hannah Dayton
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Andrea H Brand
- The Gurdon Institute, University of Cambridge, CB2 1QN Cambridge, United Kingdom
- Department of Physiology Development and Neuroscience, University of Cambridge, CB2 1QN Cambridge, United Kingdom
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
50
|
Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. Genetics 2018; 210:357-396. [PMID: 30287514 PMCID: PMC6216580 DOI: 10.1534/genetics.118.300224] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract has recently come to the forefront of multiple research fields. It is now recognized as a major source of signals modulating food intake, insulin secretion and energy balance. It is also a key player in immunity and, through its interaction with microbiota, can shape our physiology and behavior in complex and sometimes unexpected ways. The insect intestine had remained, by comparison, relatively unexplored until the identification of adult somatic stem cells in the Drosophila intestine over a decade ago. Since then, a growing scientific community has exploited the genetic amenability of this insect organ in powerful and creative ways. By doing so, we have shed light on a broad range of biological questions revolving around stem cells and their niches, interorgan signaling and immunity. Despite their relatively recent discovery, some of the mechanisms active in the intestine of flies have already been shown to be more widely applicable to other gastrointestinal systems, and may therefore become relevant in the context of human pathologies such as gastrointestinal cancers, aging, or obesity. This review summarizes our current knowledge of both the formation and function of the Drosophila melanogaster digestive tract, with a major focus on its main digestive/absorptive portion: the strikingly adaptable adult midgut.
Collapse
Affiliation(s)
- Irene Miguel-Aliaga
- Medical Research Council London Institute of Medical Sciences, Imperial College London, W12 0NN, United Kingdom
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, California 94945-1400
- Immunology Discovery, Genentech, Inc., San Francisco, California 94080
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|