1
|
McAllester CS, Pool JE. Inversions Can Accumulate Balanced Sexual Antagonism: Evidence from Simulations and Drosophila Experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.02.560529. [PMID: 37873205 PMCID: PMC10592935 DOI: 10.1101/2023.10.02.560529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chromosomal inversion polymorphisms can be common, but the causes of their persistence are often unclear. We propose a model for the maintenance of inversion polymorphism, which requires that some variants contribute antagonistically to two phenotypes, one of which has negative frequency-dependent fitness. These conditions yield a form of frequency-dependent disruptive selection, favoring two predominant haplotypes segregating alleles that favor opposing antagonistic phenotypes. An inversion associated with one haplotype can reduce the fitness load incurred by generating recombinant offspring, reinforcing its linkage to the haplotype and enabling both haplotypes to accumulate more antagonistic variants than expected otherwise. We develop and apply a forward simulator to examine these dynamics under a tradeoff between survival and male display. These simulations indeed generate inversion-associated haplotypes with opposing sex-specific fitness effects. Antagonism strengthens with time, and can ultimately yield karyotypes at surprisingly predictable frequencies, with striking genotype frequency differences between sexes and between developmental stages. To test whether this model may contribute to well-studied yet enigmatic inversion polymorphisms in Drosophila melanogaster, we track inversion frequencies in laboratory crosses to test whether they influence male reproductive success or survival. We find that two of the four tested inversions show significant evidence for the tradeoff examined, with In(3R)K favoring survival and In(3L)Ok favoring male reproduction. In line with the apparent sex-specific fitness effects implied for both of those inversions, In(3L)Ok was also found to be less costly to the viability and/or longevity of males than females, whereas In(3R)K was more beneficial to female survival. Based on this work, we expect that balancing selection on antagonistically pleiotropic traits may provide a significant and underappreciated contribution to the maintenance of natural inversion polymorphism.
Collapse
Affiliation(s)
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin – Madison, USA
| |
Collapse
|
2
|
Braichenko S, Borges R, Kosiol C. Polymorphism-Aware Models in RevBayes: Species Trees, Disentangling Balancing Selection, and GC-Biased Gene Conversion. Mol Biol Evol 2024; 41:msae138. [PMID: 38980178 PMCID: PMC11272101 DOI: 10.1093/molbev/msae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/19/2024] [Accepted: 07/06/2024] [Indexed: 07/10/2024] Open
Abstract
The role of balancing selection is a long-standing evolutionary puzzle. Balancing selection is a crucial evolutionary process that maintains genetic variation (polymorphism) over extended periods of time; however, detecting it poses a significant challenge. Building upon the Polymorphism-aware phylogenetic Models (PoMos) framework rooted in the Moran model, we introduce a PoMoBalance model. This novel approach is designed to disentangle the interplay of mutation, genetic drift, and directional selection (GC-biased gene conversion), along with the previously unexplored balancing selection pressures on ultra-long timescales comparable with species divergence times by analyzing multi-individual genomic and phylogenetic divergence data. Implemented in the open-source RevBayes Bayesian framework, PoMoBalance offers a versatile tool for inferring phylogenetic trees as well as quantifying various selective pressures. The novel aspect of our approach in studying balancing selection lies in polymorphism-aware phylogenetic models' ability to account for ancestral polymorphisms and incorporate parameters that measure frequency-dependent selection, allowing us to determine the strength of the effect and exact frequencies under selection. We implemented validation tests and assessed the model on the data simulated with SLiM and a custom Moran model simulator. Real sequence analysis of Drosophila populations reveals insights into the evolutionary dynamics of regions subject to frequency-dependent balancing selection, particularly in the context of sex-limited color dimorphism in Drosophila erecta.
Collapse
Affiliation(s)
- Svitlana Braichenko
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife KY16 9TH, UK
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Rui Borges
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien 1210, Austria
| | - Carolin Kosiol
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife KY16 9TH, UK
| |
Collapse
|
3
|
Bastide H, Saenko SV, Chouteau M, Joron M, Llaurens V. Dominance mechanisms in supergene alleles controlling butterfly wing pattern variation: insights from gene expression in Heliconius numata. Heredity (Edinb) 2023; 130:92-98. [PMID: 36522413 PMCID: PMC9905084 DOI: 10.1038/s41437-022-00583-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Loci under balancing selection, where multiple alleles are maintained, offer a relevant opportunity to investigate the role of natural selection in shaping genetic dominance: the high frequency of heterozygotes at these loci has been shown to enable the evolution of dominance among alleles. In the butterfly Heliconius numata, mimetic wing color variations are controlled by an inversion polymorphism of a circa 2 Mb genomic region (supergene P), with strong dominance between sympatric alleles. To test how differences in dominance observed on wing patterns correlate with variations in expression levels throughout the supergene region, we sequenced the complete transcriptome of heterozygotes at the prepupal stage and compared it to corresponding homozygotes. By defining dominance based on non-overlapping ranges of transcript expression between genotypes, we found contrasting patterns of dominance between the supergene and the rest of the genome; the patterns of transcript expression in the heterozygotes were more similar to the expression observed in the dominant homozygotes in the supergene region. Dominance also differed among the three subinversions of the supergene, suggesting possible epistatic interactions among their gene contents underlying dominance evolution. We found the expression pattern of the melanization gene cortex located in the P-region to predict wing pattern phenotype in the heterozygote. We also identify new candidate genes that are potentially involved in mimetic color pattern variations highlighting the relevance of transcriptomic analyses in heterozygotes to pinpoint candidate genes in non-recombining regions.
Collapse
Affiliation(s)
- Héloïse Bastide
- Institut de Systématique, Evolution et Biodiversité (UMR 7205 CNRS, MNHN, Sorbonne Université, Université des Antilles) Muséum National d'Histoire Naturelle - CP50, 57 rue Cuvier, 75005, Paris, France.
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay - Institut Diversité, Écologie et Évolution (IDEEV), 12 route 128, 91190, Gif-sur-Yvette, France.
| | - Suzanne V Saenko
- Institut de Systématique, Evolution et Biodiversité (UMR 7205 CNRS, MNHN, Sorbonne Université, Université des Antilles) Muséum National d'Histoire Naturelle - CP50, 57 rue Cuvier, 75005, Paris, France
| | - Mathieu Chouteau
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Laboratoire Ecologie, Evolution, Interactions Des Systèmes Amazoniens (LEEISA), USR 3456, Université De Guyane, CNRS Guyane, 275 route de Montabo, 97334, Cayenne, French Guiana
| | - Mathieu Joron
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution et Biodiversité (UMR 7205 CNRS, MNHN, Sorbonne Université, Université des Antilles) Muséum National d'Histoire Naturelle - CP50, 57 rue Cuvier, 75005, Paris, France
| |
Collapse
|
4
|
The Genetic Mechanisms Underlying the Concerted Expression of the yellow and tan Genes in Complex Patterns on the Abdomen and Wings of Drosophila guttifera. Genes (Basel) 2023; 14:genes14020304. [PMID: 36833231 PMCID: PMC9957387 DOI: 10.3390/genes14020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
How complex morphological patterns form is an intriguing question in developmental biology. However, the mechanisms that generate complex patterns remain largely unknown. Here, we sought to identify the genetic mechanisms that regulate the tan (t) gene in a multi-spotted pigmentation pattern on the abdomen and wings of Drosophila guttifera. Previously, we showed that yellow (y) gene expression completely prefigures the abdominal and wing pigment patterns of this species. In the current study, we demonstrate that the t gene is co-expressed with the y gene in nearly identical patterns, both transcripts foreshadowing the adult abdominal and wing melanin spot patterns. We identified cis-regulatory modules (CRMs) of t, one of which drives reporter expression in six longitudinal rows of spots on the developing pupal abdomen, while the second CRM activates the reporter gene in a spotted wing pattern. Comparing the abdominal spot CRMs of y and t, we found a similar composition of putative transcription factor binding sites that are thought to regulate the complex expression patterns of both terminal pigmentation genes y and t. In contrast, the y and t wing spots appear to be regulated by distinct upstream factors. Our results suggest that the D. guttifera abdominal and wing melanin spot patterns have been established through the co-regulation of y and t, shedding light on how complex morphological traits may be regulated through the parallel coordination of downstream target genes.
Collapse
|
5
|
Yassin A, Gidaszewski N, Debat V, David JR. Long-term evolution of quantitative traits in the Drosophila melanogaster species subgroup. Genetica 2022; 150:343-353. [PMID: 36242716 DOI: 10.1007/s10709-022-00171-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022]
Abstract
Quantitative genetics aims at untangling the genetic and environmental effects on phenotypic variation. Trait heritability, which summarizes the relative importance of genetic effects, is estimated at the intraspecific level, but theory predicts that heritability could influence long-term evolution of quantitative traits. The phylogenetic signal concept bears resemblance to heritability and it has often been called species-level heritability. Under certain conditions, such as trait neutrality or contribution to phylogenesis, within-species heritability and between-species phylogenetic signal should be correlated. Here, we investigate the potential relationship between these two concepts by examining the evolution of multiple morphological traits for which heritability has been estimated in Drosophila melanogaster. Specifically, we analysed 42 morphological traits in both sexes on a phylogeny inferred from 22 nuclear genes for nine species of the melanogaster subgroup. We used Pagel's λ as a measurement of phylogenetic signal because it is the least influenced by the number of analysed taxa. Pigmentation traits showed the strongest concordance with the phylogeny, but no correlation was found between phylogenetic signal and heritability estimates mined from the literature. We obtained data for multiple climatic variables inferred from the geographical distribution of each species. Phylogenetic regression of quantitative traits on climatic variables showed a significantly positive correlation with heritability. Convergent selection, the response to which depends on the trait heritability, may have led to the null association between phylogenetic signal and heritability for morphological traits in Drosophila. We discuss the possible causes of discrepancy between both statistics and caution against their confusion in evolutionary biology.
Collapse
Affiliation(s)
- Amir Yassin
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay - Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), 12 route 128, 91190, Gif- sur-Yvette, France.
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP50, 75005, Paris, France.
| | - Nelly Gidaszewski
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP50, 75005, Paris, France
| | - Vincent Debat
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP50, 75005, Paris, France
| | - Jean R David
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay - Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), 12 route 128, 91190, Gif- sur-Yvette, France
| |
Collapse
|
6
|
David JR, Ferreira EA, Jabaud L, Ogereau D, Bastide H, Yassin A. Evolution of assortative mating following selective introgression of pigmentation genes between two Drosophila species. Ecol Evol 2022; 12:e8821. [PMID: 35432924 PMCID: PMC9006235 DOI: 10.1002/ece3.8821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
Adaptive introgression is ubiquitous in animals, but experimental support for its role in driving speciation remains scarce. In the absence of conscious selection, admixed laboratory strains of Drosophila asymmetrically and progressively lose alleles from one parental species and reproductive isolation against the predominant parent ceases after 10 generations. Here, we selectively introgressed during 1 year light pigmentation genes of D. santomea into the genome of its dark sibling D. yakuba, and vice versa. We found that the pace of phenotypic change differed between the species and the sexes and identified through genome sequencing common as well as distinct introgressed loci in each species. Mating assays showed that assortative mating between introgressed flies and both parental species persisted even after 4 years (~60 generations) from the end of the selection. Those results indicate that selective introgression of as low as 0.5% of the genome can beget morphologically distinct and reproductively isolated strains, two prerequisites for the delimitation of new species. Our findings hence represent a significant step toward understanding the genome-wide dynamics of speciation-through-introgression.
Collapse
Affiliation(s)
- Jean R. David
- Laboratoire Évolution, Génomes, Comportement et ÉcologieCNRSIRDUniversité Paris‐Saclay – Institut DiversitéEcologie et Evolution du Vivant (IDEEV)Gif‐sur‐YvetteFrance
| | - Erina A. Ferreira
- Laboratoire Évolution, Génomes, Comportement et ÉcologieCNRSIRDUniversité Paris‐Saclay – Institut DiversitéEcologie et Evolution du Vivant (IDEEV)Gif‐sur‐YvetteFrance
| | - Laure Jabaud
- Laboratoire Évolution, Génomes, Comportement et ÉcologieCNRSIRDUniversité Paris‐Saclay – Institut DiversitéEcologie et Evolution du Vivant (IDEEV)Gif‐sur‐YvetteFrance
| | - David Ogereau
- Laboratoire Évolution, Génomes, Comportement et ÉcologieCNRSIRDUniversité Paris‐Saclay – Institut DiversitéEcologie et Evolution du Vivant (IDEEV)Gif‐sur‐YvetteFrance
| | - Héloïse Bastide
- Laboratoire Évolution, Génomes, Comportement et ÉcologieCNRSIRDUniversité Paris‐Saclay – Institut DiversitéEcologie et Evolution du Vivant (IDEEV)Gif‐sur‐YvetteFrance
| | - Amir Yassin
- Laboratoire Évolution, Génomes, Comportement et ÉcologieCNRSIRDUniversité Paris‐Saclay – Institut DiversitéEcologie et Evolution du Vivant (IDEEV)Gif‐sur‐YvetteFrance
| |
Collapse
|
7
|
Harrison BR, Hoffman JM, Samuelson A, Raftery D, Promislow DEL. Modular Evolution of the Drosophila Metabolome. Mol Biol Evol 2022; 39:msab307. [PMID: 34662414 PMCID: PMC8760934 DOI: 10.1093/molbev/msab307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Comparative phylogenetic studies offer a powerful approach to study the evolution of complex traits. Although much effort has been devoted to the evolution of the genome and to organismal phenotypes, until now relatively little work has been done on the evolution of the metabolome, despite the fact that it is composed of the basic structural and functional building blocks of all organisms. Here we explore variation in metabolite levels across 50 My of evolution in the genus Drosophila, employing a common garden design to measure the metabolome within and among 11 species of Drosophila. We find that both sex and age have dramatic and evolutionarily conserved effects on the metabolome. We also find substantial evidence that many metabolite pairs covary after phylogenetic correction, and that such metabolome coevolution is modular. Some of these modules are enriched for specific biochemical pathways and show different evolutionary trajectories, with some showing signs of stabilizing selection. Both observations suggest that functional relationships may ultimately cause such modularity. These coevolutionary patterns also differ between sexes and are affected by age. We explore the relevance of modular evolution to fitness by associating modules with lifespan variation measured in the same common garden. We find several modules associated with lifespan, particularly in the metabolome of older flies. Oxaloacetate levels in older females appear to coevolve with lifespan, and a lifespan-associated module in older females suggests that metabolic associations could underlie 50 My of lifespan evolution.
Collapse
Affiliation(s)
- Benjamin R Harrison
- Department of Lab Medicine & Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jessica M Hoffman
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ariana Samuelson
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Daniel Raftery
- Department of Anesthesiology & Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Daniel E L Promislow
- Department of Lab Medicine & Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Takahashi M, Okude G, Futahashi R, Takahashi Y, Kawata M. The effect of the doublesex gene in body colour masculinization of the damselfly Ischnura senegalensis. Biol Lett 2021; 17:20200761. [PMID: 34102071 PMCID: PMC8187028 DOI: 10.1098/rsbl.2020.0761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/17/2021] [Indexed: 12/25/2022] Open
Abstract
Odonata species display a remarkable diversity of colour patterns, including intrasexual polymorphisms. In the damselfly (Ischnura senegalensis), the expression of a sex-determining transcription factor, the doublesex (Isdsx) gene is reportedly associated with female colour polymorphism (CP) (gynomorph for female-specific colour and andromorph for male-mimicking colour). Here, the function of Isdsx in thoracic coloration was investigated by electroporation-mediated RNA interference (RNAi). RNAi of the Isdsx common region in males and andromorphic females reduced melanization and thus changed the colour pattern into that of gynomorphic females, while the gynomorphic colour pattern was not affected. By contrast, RNAi against the Isdsx long isoform produced no changes, suggesting that the Isdsx short isoform is important for body colour masculinization in both males and andromorphic females. When examining the expression levels of five genes with differences between sexes and female morphs, two melanin-suppressing genes, black and ebony, were expressed at higher levels in the Isdsx RNAi body area than a control area. Therefore, the Isdsx short isoform may induce thoracic colour differentiation by suppressing black and ebony, thereby generating female CP in I. senegalensis. These findings contribute to the understanding of the molecular and evolutionary mechanisms underlying female CP in Odonata.
Collapse
Affiliation(s)
- Michihiko Takahashi
- Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki, Aoba, Sendai 980-8578, Japan
| | - Genta Okude
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Tsukuba, Ibaraki 305-8566, Japan
| | - Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Tsukuba, Ibaraki 305-8566, Japan
| | - Yuma Takahashi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
9
|
Gibert JM. [Phenotypic plasticity in insects]. Biol Aujourdhui 2020; 214:33-44. [PMID: 32773028 DOI: 10.1051/jbio/2020005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Indexed: 11/14/2022]
Abstract
Insects represent 85% of the animals. They have adapted to many environments and play a major role in ecosystems. Many insect species exhibit phenotypic plasticity. We here report on the mechanisms involved in phenotypic plasticity of different insects (aphids, migratory locust, map butterfly, honeybee) and also on the nutritional size plasticity in Drosophila and the plasticity of the wing eye-spots of the butterfly Bicyclus anynana. We also describe in more detail our work concerning the thermal plasticity of pigmentation in Drosophila. We have shown that the expression of the tan, yellow and Ddc genes, encoding enzymes of the melanin synthesis pathway, is modulated by temperature and that it is a consequence, at least in part, of the temperature-sensitive expression of the bab locus genes that repress them.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement (IBPS-LBD), 75005 Paris, France
| |
Collapse
|
10
|
Sramkoski LL, McLaughlin WN, Cooley AM, Yuan DC, John A, Wittkopp PJ. Genetic architecture of a body colour cline in Drosophila americana. Mol Ecol 2020; 29:2840-2854. [PMID: 32603541 PMCID: PMC7482988 DOI: 10.1111/mec.15531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Phenotypic variation within a species is often structured geographically in clines. In Drosophila americana, a longitudinal cline for body colour exists within North America that appears to be due to local adaptation. The tan and ebony genes have been hypothesized to contribute to this cline, with alleles of both genes that lighten body colour found in D. americana. These alleles are similar in sequence and function to the allele fixed in D. americana's more lightly pigmented sister species, Drosophila novamexicana. Here, we examine the frequency and geographic distribution of these D. novamexicana-like alleles in D. americana. Among alleles from over 100 strains of D. americana isolated from 21 geographic locations, we failed to identify additional alleles of tan or ebony with as much sequence similarity to D. novamexicana as the D. novamexicana-like alleles previously described. However, using genetic analysis of 51 D. americana strains derived from 20 geographic locations, we identified one new allele of ebony and one new allele of tan segregating in D. americana that are functionally equivalent to the D. novamexicana allele. An additional 5 alleles of tan also showed marginal evidence of functional similarity. Given the rarity of these alleles, however, we conclude that they are unlikely to be driving the pigmentation cline. Indeed, phenotypic distributions of the 51 backcross populations analysed indicate a more complex genetic architecture, with diversity in the number and effects of loci altering pigmentation observed both within and among populations of D. americana. This genetic heterogeneity poses a challenge to association studies and genomic scans for clinal variation, but might be common in natural populations.
Collapse
Affiliation(s)
| | - Wesley N. McLaughlin
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Arielle M. Cooley
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - David C. Yuan
- Department of Molecular, Cellular, and Developmental Biology
| | - Alisha John
- Department of Molecular, Cellular, and Developmental Biology
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048
| |
Collapse
|
11
|
Kuwalekar M, Deshmukh R, Padvi A, Kunte K. Molecular Evolution and Developmental Expression of Melanin Pathway Genes in Lepidoptera. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
12
|
The population genetics of crypsis in vertebrates: recent insights from mice, hares, and lizards. Heredity (Edinb) 2019; 124:1-14. [PMID: 31399719 PMCID: PMC6906368 DOI: 10.1038/s41437-019-0257-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
By combining well-established population genetic theory with high-throughput sequencing data from natural populations, major strides have recently been made in understanding how, why, and when vertebrate populations evolve crypsis. Here, we focus on background matching, a particular facet of crypsis that involves the ability of an organism to conceal itself through matching its color to the surrounding environment. While interesting in and of itself, the study of this phenotype has also provided fruitful population genetic insights into the interplay of strong positive selection with other evolutionary processes. Specifically, and predicated upon the findings of previous candidate gene association studies, a primary focus of this recent literature involves the realization that the inference of selection from DNA sequence data first requires a robust model of population demography in order to identify genomic regions which do not conform to neutral expectations. Moreover, these demographic estimates provide crucial information about the origin and timing of the onset of selective pressures associated with, for example, the colonization of a novel environment. Furthermore, such inference has revealed crypsis to be a particularly useful phenotype for investigating the interplay of migration and selection—with examples of gene flow constraining rates of adaptation, or alternatively providing the genetic variants that may ultimately sweep through the population. Here, we evaluate the underlying evidence, review the strengths and weaknesses of the many population genetic methodologies used in these studies, and discuss how these insights have aided our general understanding of the evolutionary process.
Collapse
|
13
|
Al Sayad S, Yassin A. Quantifying the extent of morphological homoplasy: A phylogenetic analysis of 490 characters in Drosophila. Evol Lett 2019; 3:286-298. [PMID: 31171984 PMCID: PMC6546384 DOI: 10.1002/evl3.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022] Open
Abstract
Homoplasy is a fundamental phenomenon in evolutionary biology but an appraisal of its extent at the morphological level is still lacking. Here, we analyzed the evolution of 490 morphological characters conceptualized among 56 drosophilid species. We found that two thirds of morphological changes were homoplastic and that the level of homoplasy depended on the stage of development and the type of the organ, with the adult terminalia being the least homoplastic. In spite of its predominance at the character change level, homoplasy accounts for only ∼13% of between species similarities in pairwise comparisons. These results provide empirical insights on the limits of morphological changes and the frequency of recurrent evolution.
Collapse
Affiliation(s)
- Sinan Al Sayad
- Institut Systématique Evolution Biodiversité (ISYEB)Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE57 rue Cuvier, CP 50,75005ParisFrance
| | - Amir Yassin
- Institut Systématique Evolution Biodiversité (ISYEB)Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE57 rue Cuvier, CP 50,75005ParisFrance
| |
Collapse
|
14
|
De Castro S, Peronnet F, Gilles JF, Mouchel-Vielh E, Gibert JM. bric à brac (bab), a central player in the gene regulatory network that mediates thermal plasticity of pigmentation in Drosophila melanogaster. PLoS Genet 2018; 14:e1007573. [PMID: 30067846 PMCID: PMC6089454 DOI: 10.1371/journal.pgen.1007573] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 08/13/2018] [Accepted: 07/19/2018] [Indexed: 01/28/2023] Open
Abstract
Drosophila body pigmentation has emerged as a major Evo-Devo model. Using two Drosophila melanogaster lines, Dark and Pale, selected from a natural population, we analyse here the interaction between genetic variation and environmental factors to produce this complex trait. Indeed, pigmentation varies with genotype in natural populations and is sensitive to temperature during development. We demonstrate that the bric à brac (bab) genes, that are differentially expressed between the two lines and whose expression levels vary with temperature, participate in the pigmentation difference between the Dark and Pale lines. The two lines differ in a bab regulatory sequence, the dimorphic element (called here bDE). Both bDE alleles are temperature-sensitive, but the activity of the bDE allele from the Dark line is lower than that of the bDE allele from the Pale line. Our results suggest that this difference could partly be due to differential regulation by AbdB. bab has been previously reported to be a repressor of abdominal pigmentation. We show here that one of its targets in this process is the pigmentation gene tan (t), regulated via the tan abdominal enhancer (t_MSE). Furthermore, t expression is strongly modulated by temperature in the two lines. Thus, temperature sensitivity of t expression is at least partly a consequence of bab thermal transcriptional plasticity. We therefore propose that a gene regulatory network integrating both genetic variation and temperature sensitivity modulates female abdominal pigmentation. Interestingly, both bDE and t_MSE were previously shown to have been recurrently involved in abdominal pigmentation evolution in drosophilids. We propose that the environmental sensitivity of these enhancers has turned them into evolutionary hotspots. Complex traits such as size or disease susceptibility are typically modulated by both genetic variation and environmental conditions. Model organisms such as fruit flies (Drosophila) are particularly appropriate to analyse the interactions between genetic variation and environmental factors during the development of complex phenotypes. Natural populations carry high genetic variation and can be grown in controlled conditions in the laboratory. Here, we use Drosophila melanogaster female abdominal pigmentation, which is both genetically variable and modulated by the environment (temperature) to dissect this kind of interaction. We show that the pigmentation difference between two inbred fly lines is caused by genetic variation in an enhancer of the bab locus, which encodes two transcription factors controlling abdominal pigmentation. Indeed, this enhancer drives differential expression between the two lines. Interestingly, this enhancer is sensitive to temperature in both lines. We show that the effect of bab on pigmentation is mediated by the pigmentation gene tan (t) that is repressed by bab. Thus, the previously reported temperature-sensitive expression of t is a direct consequence of bab transcriptional plasticity.
Collapse
Affiliation(s)
- Sandra De Castro
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team “Epigenetic control of developmental homeostasis and plasticity”, Paris, France
| | - Frédérique Peronnet
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team “Epigenetic control of developmental homeostasis and plasticity”, Paris, France
| | - Jean-François Gilles
- Sorbonne Université, CNRS, Core facility, Institut de Biologie Paris Seine (IBPS), Paris, France
| | - Emmanuèle Mouchel-Vielh
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team “Epigenetic control of developmental homeostasis and plasticity”, Paris, France
- * E-mail: (EM-V); (J-MG)
| | - Jean-Michel Gibert
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team “Epigenetic control of developmental homeostasis and plasticity”, Paris, France
- * E-mail: (EM-V); (J-MG)
| |
Collapse
|
15
|
Signor SA, Nuzhdin SV. The Evolution of Gene Expression in cis and trans. Trends Genet 2018; 34:532-544. [PMID: 29680748 PMCID: PMC6094946 DOI: 10.1016/j.tig.2018.03.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
There is abundant variation in gene expression between individuals, populations, and species. The evolution of gene regulation and expression within and between species is thought to frequently contribute to adaptation. Yet considerable evidence suggests that the primary evolutionary force acting on variation in gene expression is stabilizing selection. We review here the results of recent studies characterizing the evolution of gene expression occurring in cis (via linked polymorphisms) or in trans (through diffusible products of other genes) and their contribution to adaptation and response to the environment. We review the evidence for buffering of variation in gene expression at the level of both transcription and translation, and the possible mechanisms for this buffering. Lastly, we summarize unresolved questions about the evolution of gene regulation.
Collapse
Affiliation(s)
- Sarah A Signor
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Sergey V Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
16
|
Gibert JM. The flexible stem hypothesis: evidence from genetic data. Dev Genes Evol 2017; 227:297-307. [PMID: 28780641 DOI: 10.1007/s00427-017-0589-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/20/2017] [Indexed: 11/29/2022]
Abstract
Phenotypic plasticity, the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions, is widely observed in the wild. It is believed to facilitate evolution and, under the "flexible stem hypothesis", it is thought that an ancestral plastic species can be at the origin of sister lineages with divergent phenotypes fixed by genetic assimilation of alternative morphs. We review here the genetic mechanisms underlying such phenomenon. We show several examples in which the same gene shows transcriptional plasticity in response to environmental factors and divergence of expression within or between species. Thus, the same gene is involved both in the plasticity of a trait and in the evolution of that trait. In a few cases, it can be traced down to cis-regulatory variation in this gene and, in one case, in the very same regulatory sequence whose activity is modulated by the environment. These data are compatible with the "flexible stem hypothesis" and also suggest that the evolution of the plasticity of a trait and the evolution of the trait are not completely uncoupled as they often involve the same locus. Furthermore, the "flexible stem hypothesis" implies that it is possible to canalize initially plastic phenotypes. Several studies have shown that it was possible through modification of chromatin regulation or hormonal signalling/response. Further studies of phenotypic plasticity in an evolutionary framework are needed to see how much the findings described in this review can be generalized.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Biologie du Développement Paris Seine, Institut de Biologie Paris Seine (LBD-IBPS), 75005, Paris, France.
| |
Collapse
|
17
|
Llaurens V, Whibley A, Joron M. Genetic architecture and balancing selection: the life and death of differentiated variants. Mol Ecol 2017; 26:2430-2448. [PMID: 28173627 DOI: 10.1111/mec.14051] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 01/02/2023]
Abstract
Balancing selection describes any form of natural selection, which results in the persistence of multiple variants of a trait at intermediate frequencies within populations. By offering up a snapshot of multiple co-occurring functional variants and their interactions, systems under balancing selection can reveal the evolutionary mechanisms favouring the emergence and persistence of adaptive variation in natural populations. We here focus on the mechanisms by which several functional variants for a given trait can arise, a process typically requiring multiple epistatic mutations. We highlight how balancing selection can favour specific features in the genetic architecture and review the evolutionary and molecular mechanisms shaping this architecture. First, balancing selection affects the number of loci underlying differentiated traits and their respective effects. Control by one or few loci favours the persistence of differentiated functional variants by limiting intergenic recombination, or its impact, and may sometimes lead to the evolution of supergenes. Chromosomal rearrangements, particularly inversions, preventing adaptive combinations from being dissociated are increasingly being noted as features of such systems. Similarly, due to the frequency of heterozygotes maintained by balancing selection, dominance may be a key property of adaptive variants. High heterozygosity and limited recombination also influence associated genetic load, as linked recessive deleterious mutations may be sheltered. The capture of deleterious elements in a locus under balancing selection may reinforce polymorphism by further promoting heterozygotes. Finally, according to recent genomewide scans, balanced polymorphism might be more pervasive than generally thought. We stress the need for both functional and ecological studies to characterize the evolutionary mechanisms operating in these systems.
Collapse
Affiliation(s)
- Violaine Llaurens
- Institut de Systématique Evolution et Biodiversité (UMR 7205 CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle - CP50, 45 rue Buffon, 75005, Paris, France
| | - Annabel Whibley
- Cell and Developmental Biology, John Innes Centre, Norwich, Norfolk, NR4 7UH, UK
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive (UMR 5175 CNRS, Université de Montpellier, Université Paul Valéry Montpellier, EPHE), 1919 route de Mende, 34293, Montpellier, France
| |
Collapse
|
18
|
Lamb AM, Walker EA, Wittkopp PJ. Tools and strategies for scarless allele replacement in Drosophila using CRISPR/Cas9. Fly (Austin) 2017; 11:53-64. [PMID: 27494619 PMCID: PMC5354236 DOI: 10.1080/19336934.2016.1220463] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/30/2016] [Accepted: 07/21/2016] [Indexed: 12/21/2022] Open
Abstract
Genome editing via the CRISPR/Cas9 RNA-guided nuclease system has opened up exciting possibilities for genetic analysis. However, technical challenges associated with homology-directed repair have proven to be roadblocks for producing changes in the absence of unwanted, secondary mutations commonly known as "scars." To address these issues, we developed a 2-stage, marker-assisted strategy to facilitate precise, "scarless" edits in Drosophila with a minimal requirement for molecular screening. Using this method, we modified 2 base pairs in a gene of interest without altering the final sequence of the CRISPR cut sites. We executed this 2-stage allele swap using a novel transformation marker that drives expression in the pupal wings, which can be screened for in the presence of common eye-expressing reporters. The tools we developed can be used to make a single change or a series of allelic substitutions in a region of interest in any D. melanogaster genetic background as well as in other Drosophila species.
Collapse
Affiliation(s)
- Abigail M. Lamb
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth A. Walker
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Fujiwara H, Nishikawa H. Functional analysis of genes involved in color pattern formation in Lepidoptera. CURRENT OPINION IN INSECT SCIENCE 2016; 17:16-23. [PMID: 27720069 DOI: 10.1016/j.cois.2016.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 05/22/2023]
Abstract
In addition to the genome editing technology, novel functional analyses using electroporation are powerful tools to reveal the gene function in the color pattern formation. Using these methods, several genes involved in various larval color pattern formation are clarified in the silkworm Bombyx mori and some Papilio species. Furthermore, the coloration pattern mechanism underlying the longtime mystery of female-limited Batesian mimicry of Papilio polytes has been recently revealed. This review presents the recent progress on the molecular mechanisms and evolutionary process of coloration patterns contributing to various mimicry in Lepidoptera, especially focusing on the gene function in the silkworm and Papilio species.
Collapse
Affiliation(s)
- Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| | - Hideki Nishikawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
20
|
A Variable Genetic Architecture of Melanic Evolution in Drosophila melanogaster. Genetics 2016; 204:1307-1319. [PMID: 27638419 PMCID: PMC5105859 DOI: 10.1534/genetics.116.192492] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/14/2016] [Indexed: 12/30/2022] Open
Abstract
Unraveling the genetic architecture of adaptive phenotypic divergence is a fundamental quest in evolutionary biology. In Drosophila melanogaster, high-altitude melanism has evolved in separate mountain ranges in sub-Saharan Africa, potentially as an adaptation to UV intensity. We investigated the genetic basis of this melanism in three populations using a new bulk segregant analysis mapping method. We identified 19 distinct QTL regions from nine mapping crosses, with several QTL peaks overlapping between two or all populations, and yet different crosses involving the same melanic population commonly yielded distinct QTL. The strongest QTL often overlapped well-known pigmentation genes, but we typically did not find wide signals of genetic differentiation (FST) between lightly and darkly pigmented populations at these genes. Instead, we found small numbers of highly differentiated SNPs at the probable causative genes. A simulation analysis showed that these patterns of polymorphism were consistent with selection on standing genetic variation. Overall, our results suggest that, even for potentially simpler traits like pigmentation, the complexity of adaptive trait evolution poses important challenges for QTL mapping and population genetic analysis.
Collapse
|
21
|
Evolutionary Genetics: Reuse, Recycle, Converge. Curr Biol 2016; 26:R838-R840. [DOI: 10.1016/j.cub.2016.07.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Genetic Convergence in the Evolution of Male-Specific Color Patterns in Drosophila. Curr Biol 2016; 26:2423-2433. [DOI: 10.1016/j.cub.2016.07.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/10/2016] [Accepted: 07/13/2016] [Indexed: 11/23/2022]
|
23
|
Yassin A, Delaney EK, Reddiex AJ, Seher TD, Bastide H, Appleton NC, Lack JB, David JR, Chenoweth SF, Pool JE, Kopp A. The pdm3 Locus Is a Hotspot for Recurrent Evolution of Female-Limited Color Dimorphism in Drosophila. Curr Biol 2016; 26:2412-2422. [PMID: 27546577 DOI: 10.1016/j.cub.2016.07.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/24/2016] [Accepted: 07/08/2016] [Indexed: 12/30/2022]
Abstract
Sex-limited polymorphisms are an intriguing form of sexual dimorphism that offer unique opportunities to reconstruct the evolutionary changes that decouple male and female traits encoded by a shared genome. We investigated the genetic basis of a Mendelian female-limited color dimorphism (FLCD) that segregates in natural populations of more than 20 species of the Drosophila montium subgroup. In these species, females have alternative abdominal color morphs, light and dark, whereas males have only one color morph in each species. A comprehensive molecular phylogeny of the montium subgroup supports multiple origins of FLCD. Despite this, we mapped FLCD to the same locus in four distantly related species-the transcription factor POU domain motif 3 (pdm3), which acts as a repressor of abdominal pigmentation in D. melanogaster. In D. serrata, FLCD maps to a structural variant in the first intron of pdm3; however, this variant is not found in the three other species-D. kikkawai, D. leontia, and D. burlai-and sequence analysis strongly suggests the pdm3 alleles responsible for FLCD originated independently at least three times. We propose that cis-regulatory changes in pdm3 form sexually dimorphic and monomorphic alleles that segregate within species and are preserved, at least in one species, by structural variation. Surprisingly, pdm3 has not been implicated in the evolution of sex-specific pigmentation outside the montium subgroup, suggesting that the genetic paths to sexual dimorphism may be constrained within a clade but variable across clades.
Collapse
Affiliation(s)
- Amir Yassin
- Laboratory of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53705, USA
| | - Emily K Delaney
- Department of Evolution and Ecology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Adam J Reddiex
- School of Biological Sciences, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Thaddeus D Seher
- Department of Evolution and Ecology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA; Department of Quantitative and Systems Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Héloïse Bastide
- Laboratory of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53705, USA
| | - Nicholas C Appleton
- School of Biological Sciences, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Justin B Lack
- Laboratory of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53705, USA
| | - Jean R David
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE), CNRS, IRD, Université Paris Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Stephen F Chenoweth
- School of Biological Sciences, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53705, USA.
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
24
|
Gibert JM, Mouchel-Vielh E, De Castro S, Peronnet F. Phenotypic Plasticity through Transcriptional Regulation of the Evolutionary Hotspot Gene tan in Drosophila melanogaster. PLoS Genet 2016; 12:e1006218. [PMID: 27508387 PMCID: PMC4980059 DOI: 10.1371/journal.pgen.1006218] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/02/2016] [Indexed: 11/18/2022] Open
Abstract
Phenotypic plasticity is the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. Phenotypic plasticity can be adaptive. Furthermore, it is thought to facilitate evolution. Although phenotypic plasticity is a widespread phenomenon, its molecular mechanisms are only beginning to be unravelled. Environmental conditions can affect gene expression through modification of chromatin structure, mainly via histone modifications, nucleosome remodelling or DNA methylation, suggesting that phenotypic plasticity might partly be due to chromatin plasticity. As a model of phenotypic plasticity, we study abdominal pigmentation of Drosophila melanogaster females, which is temperature sensitive. Abdominal pigmentation is indeed darker in females grown at 18°C than at 29°C. This phenomenon is thought to be adaptive as the dark pigmentation produced at lower temperature increases body temperature. We show here that temperature modulates the expression of tan (t), a pigmentation gene involved in melanin production. t is expressed 7 times more at 18°C than at 29°C in female abdominal epidermis. Genetic experiments show that modulation of t expression by temperature is essential for female abdominal pigmentation plasticity. Temperature modulates the activity of an enhancer of t without modifying compaction of its chromatin or level of the active histone mark H3K27ac. By contrast, the active mark H3K4me3 on the t promoter is strongly modulated by temperature. The H3K4 methyl-transferase involved in this process is likely Trithorax, as we show that it regulates t expression and the H3K4me3 level on the t promoter and also participates in female pigmentation and its plasticity. Interestingly, t was previously shown to be involved in inter-individual variation of female abdominal pigmentation in Drosophila melanogaster, and in abdominal pigmentation divergence between Drosophila species. Sensitivity of t expression to environmental conditions might therefore give more substrate for selection, explaining why this gene has frequently been involved in evolution of pigmentation. Environmental conditions can strongly modulate the phenotype produced by a particular genotype. This process, called phenotypic plasticity, has major implications in medicine and agricultural sciences, and is thought to facilitate evolution. Phenotypic plasticity is observed in many animals and plants but its mechanisms are only partially understood. As a model of phenotypic plasticity, we study the effect of temperature on female abdominal pigmentation in the fruit fly Drosophila melanogaster. Here we show that temperature affects female abdominal pigmentation by modulating the expression of tan (t), a gene involved in melanin production, in female abdominal epidermis. This effect is mediated at least partly by a particular regulatory sequence of t, the t_MSE enhancer. However we detected no modulation of chromatin structure of t_MSE by temperature. By contrast, the level of the active chromatin mark H3K4me3 on the t promoter is strongly increased at lower temperature. We show that the H3K4 methyl-transferase Trithorax is involved in female abdominal pigmentation and its plasticity and regulates t expression and H3K4me3 level on the t promoter. Several studies have linked t to pigmentation evolution within and between Drosophila species. Our results suggest that sensitivity of t expression to temperature might facilitate its role in pigmentation evolution.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, Equipe “Contrôle épigénétique de l’homéostasie et de la plasticité du développement”, Paris, France
- * E-mail: (JMG); (EMV)
| | - Emmanuèle Mouchel-Vielh
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, Equipe “Contrôle épigénétique de l’homéostasie et de la plasticité du développement”, Paris, France
- * E-mail: (JMG); (EMV)
| | - Sandra De Castro
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, Equipe “Contrôle épigénétique de l’homéostasie et de la plasticité du développement”, Paris, France
| | - Frédérique Peronnet
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, Equipe “Contrôle épigénétique de l’homéostasie et de la plasticité du développement”, Paris, France
| |
Collapse
|
25
|
Massey JH, Wittkopp PJ. The Genetic Basis of Pigmentation Differences Within and Between Drosophila Species. Curr Top Dev Biol 2016; 119:27-61. [PMID: 27282023 DOI: 10.1016/bs.ctdb.2016.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Drosophila, as well as in many other plants and animals, pigmentation is highly variable both within and between species. This variability, combined with powerful genetic and transgenic tools as well as knowledge of how pigment patterns are formed biochemically and developmentally, has made Drosophila pigmentation a premier system for investigating the genetic and molecular mechanisms responsible for phenotypic evolution. In this chapter, we review and synthesize findings from a rapidly growing body of case studies examining the genetic basis of pigmentation differences in the abdomen, thorax, wings, and pupal cases within and between Drosophila species. A core set of genes, including genes required for pigment synthesis (eg, yellow, ebony, tan, Dat) as well as developmental regulators of these genes (eg, bab1, bab2, omb, Dll, and wg), emerge as the primary sources of this variation, with most genes having been shown to contribute to pigmentation differences both within and between species. In cases where specific genetic changes contributing to pigmentation divergence were identified in these genes, the changes were always located in noncoding sequences and affected cis-regulatory activity. We conclude this chapter by discussing these and other lessons learned from evolutionary genetic studies of Drosophila pigmentation and identify topics we think should be the focus of future work with this model system.
Collapse
Affiliation(s)
- J H Massey
- University of Michigan, Ann Arbor, MI, United States
| | - P J Wittkopp
- University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|