1
|
Wu H, Lyu X, Xu M, Chen Y, Liao S, Zhang G, Lin Y, Cai X. A Multifunctional miRNA Delivery System Based on Tetrahedral Framework Nucleic Acids for Regulating Inflammatory Periodontal Ligament Stem Cells and Attenuating Periodontitis Bone Loss. ACS APPLIED MATERIALS & INTERFACES 2025; 17:560-571. [PMID: 39679863 DOI: 10.1021/acsami.4c17195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Periodontitis is a chronic inflammatory disease that leads to periodontal tissue damage and tooth loss. Therefore, controlling inflammatory bone loss and promoting osteogenesis is a crucial challenge clinically. MicroRNA (miRNA) based gene therapy has shown substantial prospects in recent years, but its application has been limited due to structural instability and easy degradation by enzymes. Research has shown that miRNA-200c is regarded as a key miRNA by regulating multiple signaling pathways during the process of bone resorption. Tetrahedral framework nucleic acid (tFNA) can be considered an ideal carrier of miRNA due to its good tissue permeability, cell uptake efficiency, and biocompatibility. This study developed a tFNA system carrying miR-200c, named T-200c, to exert various biological effects in human periodontal ligament stem cells (PDLSCs). The activation of the NF-κB pathway is diminished, whereas the Akt/β-catenin pathway is enhanced, resulting in a notable decrease in the release of diverse inflammatory mediators and cellular reactive oxygen species. This modulation fosters cell proliferation and osteogenic differentiation, thereby rejuvenating the functionality of PDLSCs. These changes offer a viable alternative for the treatment of periodontitis and the regeneration of periodontal tissues.
Collapse
Affiliation(s)
- Haoyan Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoying Lyu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengzhuo Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ye Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengnan Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Geru Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Xu Y, Chang L, Chen Y, Dan Z, Zhou L, Tang J, Deng L, Tang G, Li C. USP26 Combats Age-Related Declines in Self-Renewal and Multipotent Differentiation of BMSC by Maintaining Mitochondrial Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406428. [PMID: 39377219 PMCID: PMC11600297 DOI: 10.1002/advs.202406428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/24/2024] [Indexed: 10/09/2024]
Abstract
Age-related declines in self-renewal and multipotency of bone marrow mesenchymal stem cells (BMSCs) limit their applications in tissue engineering and clinical therapy. Thus, understanding the mechanisms behind BMSC senescence is crucial for maintaining the rejuvenation and multipotent differentiation capabilities of BMSCs. This study reveals that impaired USP26 expression in BMSCs leads to mitochondrial dysfunction, ultimately resulting in aging and age-related declines in the self-renewal and multipotency of BMSCs. Specifically, decreased USP26 expression results in decreased protein levels of Sirtuin 2 due to its ubiquitination degradation, which leads to mitochondrial dysfunction in BMSCs and ultimately resulting in aging and age-related declines in self-renewal and multilineage differentiation potentials. Additionally, decreased USP26 expression in aging BMSCs is a result of dampened hypoxia-inducible factor 1α (HIF-1α) expression. HIF-1α facilitates USP26 transcriptional expression by increasing USP26 promoter activity through binding to the -191 - -198 bp and -262 - -269 bp regions on the USP26 promoter. Therefore, the identification of USP26 as being correlated with aging and age-related declines in self-renewal and multipotency of BMSCs, along with understanding its expression and action mechanisms, suggests that USP26 represents a novel therapeutic target for combating aging and age-related declines in the self-renewal and multipotent differentiation of BMSCs.
Collapse
Affiliation(s)
- Yiming Xu
- Department of OrthopedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| | - Leilei Chang
- Department of OrthopedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| | - Yong Chen
- Department of OrthopedicsKunshan Hospital of Chinese MedicineAffiliated Hospital of Yangzhou UniversitySuzhouJiangsu Province215300China
- Institute of Traumatology and OrthopedicsKunshan Hospital of Chinese MedicineAffiliated Hospital of Yangzhou UniversitySuzhouJiangsu Province215300China
| | - Zhou Dan
- Department of OrthopedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| | - Li Zhou
- Department of OrthopedicsKunshan Hospital of Chinese MedicineAffiliated Hospital of Yangzhou UniversitySuzhouJiangsu Province215300China
- Institute of Traumatology and OrthopedicsKunshan Hospital of Chinese MedicineAffiliated Hospital of Yangzhou UniversitySuzhouJiangsu Province215300China
| | - Jiyuan Tang
- Department of OrthopedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| | - Lianfu Deng
- Department of OrthopedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| | - Guoqing Tang
- Department of OrthopedicsKunshan Hospital of Chinese MedicineAffiliated Hospital of Yangzhou UniversitySuzhouJiangsu Province215300China
- Institute of Traumatology and OrthopedicsKunshan Hospital of Chinese MedicineAffiliated Hospital of Yangzhou UniversitySuzhouJiangsu Province215300China
| | - Changwei Li
- Department of OrthopedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| |
Collapse
|
3
|
Shan XQ, Zhao L. Enhancing the functionality of mesenchymal stem cells: An attractive treatment strategy for metabolic dysfunction-associated steatotic liver disease? World J Stem Cells 2024; 16:854-859. [PMID: 39493827 PMCID: PMC11525648 DOI: 10.4252/wjsc.v16.i10.854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/06/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
The intrinsic heterogeneity of metabolic dysfunction-associated fatty liver disease (MASLD) and the intricate pathogenesis have impeded the advancement and clinical implementation of therapeutic interventions, underscoring the critical demand for novel treatments. A recent publication by Li et al proposes mesenchymal stem cells as promising effectors for the treatment of MASLD. This editorial is a continuum of the article published by Jiang et al which focuses on the significance of strategies to enhance the functionality of mesenchymal stem cells to improve efficacy in curing MASLD, including physical pretreatment, drug or chemical pretreatment, pretreatment with bioactive substances, and genetic engineering.
Collapse
Affiliation(s)
- Xiao-Qian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
4
|
Li SR, Li DW, Man QW. Proteomic profile of tissue-derived extracellular vesicles from benign odontogenic lesions. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101921. [PMID: 38795909 DOI: 10.1016/j.jormas.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Benign odontogenic lesions (BOLs) can cause severe jaw bone defects and compromise the quality of life of patients. Extracellular vesicles (EVs) are well-established and versatile players in mediating pathophysiological events. EVs in the interstitial space (tissue-derived EVs or Ti-EVs) possess higher specificity and sensitivity in disease-related biomarker discovery. However, the role of Ti-EV-loaded proteins in mediating the development of BOLs has remained untapped. Herein, we aim to explore the contribution of Ti-EV-loaded proteins to the development of BOLs. METHODS Samples were obtained from 3 with dental follicle, 3 with dentigerous cyst (DC), 7 with odontogenic keratocyst (OKC), and 3 patients with ameloblastoma (AM). Tissue-derived EVs were then extracted, purified, and validated using ultracentrifugation, transmission electron microscopy, and western blotting. Proteins from Ti-EVs were analyzed using LC-ESI tandem mass spectroscopy and differentially expressed proteins were screened, which was then validated by immunohistochemistry and immunofluorescence assays. RESULTS The protein profile of Ti-EVs in each group was mapped by LC-MS analysis. The top 10 abundant proteins in BOL-derived Ti-EVs were COL6A3, COL6A1, ALB, HIST1H4A, HBB, ACTB, HIST1H2BD, ANXA2, COL6A2 and FBN1. Additionally, unique proteins in the Ti-EVs from various lesions were identified. Moreover, focal adhesion kinase (FAK) and myeloid differentiation primary response 88 (MyD88) showed higher expressions in Ti-EVs derived from OKC and AM, which were confirmed by immunohistochemistry and immunofluorescence staining. CONCLUSIONS Ti-EVs containing FAK and MyD88 might be related to the development of OKC and AM, which can be potential therapeutic targets.
Collapse
Affiliation(s)
- Su-Ran Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan 430079, China
| | - Dong-Wen Li
- Department of Orthodontic, Affiliated Stomatological Hospital of Jiamusi University, Jiamusi 154003, China
| | - Qi-Wen Man
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan 430079, China; Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China..
| |
Collapse
|
5
|
Lee M, Lee H, Chung H, Lee JH, Kim D, Cho S, Kim TJ, Kim HS. Micro-current stimulation could inhibit IL-1β-induced inflammatory responses in chondrocytes and protect knee bone cartilage from osteoarthritis. Biomed Eng Lett 2024; 14:801-812. [PMID: 38946809 PMCID: PMC11208348 DOI: 10.1007/s13534-024-00376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/24/2024] [Accepted: 03/29/2024] [Indexed: 07/02/2024] Open
Abstract
This study aimed to evaluate the inhibitory effects of micro-current stimulation (MCS) on inflammatory responses in chondrocytes and degradation of extracellular matrix (ECM) in osteoarthritis (OA). To determine the efficacy of MCS, IL-1β-treated chondrocytes and monosodium iodoacetate (MIA)-induced OA rat model were used. To evaluate the cytotoxicity and nitric oxide (NO) production in SW1353 cells, the presence or absence of IL-1β treatment or various levels of MCS were applied. Immunoblot analysis was conducted to evaluate whether MCS can modulate IL-1R1/MyD88/NF-κB signaling pathway and various indicators involved in ECM degradation. Additionally, to determine whether MCS alleviates subchondral bone structure destruction caused by OA, micro-CT analysis, immunoblot analysis, and ELISA were conducted using OA rat model. 25 and 50 µA levels of MCS showed effects in cell proliferation and NO production. The MCS group with IL-1β treatment lead to significant inhibition of protein expression levels regarding IL-1R1/MyD88/NF-κB signaling and reduction of the nucleus translocation of NF-κB. In addition, the protein expression levels of MMP-1, MMP-3, MMP-13, and IL-1β decreased, whereas collagen II and aggrecan increased. In animal results, morphological analysis of subchondral bone using micro-CT showed that MCS induced subchondral bone regeneration and improvement, as evidenced by increased thickness and bone mineral density of the subchondral bone. Furthermore, MCS-applied groups showed decreases in the protein expression of MMP-1 and MMP-3, while increases in collagen-II and aggrecan expressions. These findings suggest that MCS has the potential to be used as a non-pharmaceutical method to alleviate OA.
Collapse
Affiliation(s)
- Minjoo Lee
- Department of Biomedical Engineering, Yonsei University, Gangwon, 26493 South Korea
| | - Hana Lee
- Department of Biomedical Engineering, Yonsei University, Gangwon, 26493 South Korea
| | - Halim Chung
- Department of Biomedical Engineering, Yonsei University, Gangwon, 26493 South Korea
| | - Jin-Ho Lee
- Division of Biological Science and Technology, Yonsei University, Gangwon, 26493 South Korea
| | - Doyong Kim
- Department of Biomedical Engineering, Yonsei University, Gangwon, 26493 South Korea
| | | | - Tack-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Gangwon, 26493 South Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Gangwon, 26493 South Korea
| |
Collapse
|
6
|
Cuahtecontzi Delint R, Jaffery H, Ishak MI, Nobbs AH, Su B, Dalby MJ. Mechanotransducive surfaces for enhanced cell osteogenesis, a review. BIOMATERIALS ADVANCES 2024; 160:213861. [PMID: 38663159 DOI: 10.1016/j.bioadv.2024.213861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/31/2024] [Accepted: 04/12/2024] [Indexed: 05/04/2024]
Abstract
Novel strategies employing mechano-transducing materials eliciting biological outcomes have recently emerged for controlling cellular behaviour. Targeted cellular responses are achieved by manipulating physical, chemical, or biochemical modification of material properties. Advances in techniques such as nanopatterning, chemical modification, biochemical molecule embedding, force-tuneable materials, and artificial extracellular matrices are helping understand cellular mechanotransduction. Collectively, these strategies manipulate cellular sensing and regulate signalling cascades including focal adhesions, YAP-TAZ transcription factors, and multiple osteogenic pathways. In this minireview, we are providing a summary of the influence that these materials, particularly titanium-based orthopaedic materials, have on cells. We also highlight recent complementary methodological developments including, but not limited to, the use of metabolomics for identification of active biomolecules that drive cellular differentiation.
Collapse
Affiliation(s)
- Rosalia Cuahtecontzi Delint
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Hussain Jaffery
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mohd I Ishak
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Bo Su
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
7
|
Su Z, Li J, Lin J, Li Z, Che Y, Zhang Z, Zheng G, Ye G, Yu W, Zeng Y, Xu P, Xu X, Xie Z, Wu Y, Shen H. TNF-α-Induced KAT2A Impedes BMMSC Quiescence by Mediating Succinylation of the Mitophagy-Related Protein VCP. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303388. [PMID: 38145956 PMCID: PMC10933659 DOI: 10.1002/advs.202303388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Regular quiescence and activation are important for the function of bone marrow mesenchymal stem cells (BMMSC), multipotent stem cells that are widely used in the clinic due to their capabilities in tissue repair and inflammatory disease treatment. TNF-α is previously reported to regulate BMMSC functions, including multilineage differentiation and immunoregulation. The present study demonstrates that TNF-α impedes quiescence and promotes the activation of BMMSC in vitro and in vivo. Mechanistically, the TNF-α-induced expression of KAT2A promotes the succinylation of VCP at K658, which inhibits the interaction between VCP and MFN1 and thus inhibits mitophagy. Furthermore, activated BMMSC exhibits stronger fracture repair and immunoregulation functions in vivo. This study contributes to a better understanding of the mechanisms of BMMSC quiescence and activation and to improving the effectiveness of BMMSC in clinical applications.
Collapse
Affiliation(s)
- Zepeng Su
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Jinteng Li
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Jiajie Lin
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Zhikun Li
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Yunshu Che
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Zhaoqiang Zhang
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Guan Zheng
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Guiwen Ye
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Wenhui Yu
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Yipeng Zeng
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Peitao Xu
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Xiaojun Xu
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Zhongyu Xie
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Yanfeng Wu
- Center for BiotherapyThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Huiyong Shen
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| |
Collapse
|
8
|
Wang T, Zhao C, Zhang J, Li S, Zhang Y, Gong Y, Zhou Y, Yan L, Zhang S, Zhang Z, Hu H, Liu A, Bai X, Zou Z. Whitening of brown adipose tissue inhibits osteogenic differentiation via secretion of S100A8/A9. iScience 2024; 27:108857. [PMID: 38303710 PMCID: PMC10830855 DOI: 10.1016/j.isci.2024.108857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/20/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
The mechanism by which brown adipose tissue (BAT) regulates bone metabolism is unclear. Here, we reveal that BAT secretes S100A8/A9, a previously unidentified BAT adipokine (batokine), to impair bone formation. Brown adipocytes-specific knockout of Rheb (RhebBAD KO), the upstream activator of mTOR, causes BAT malfunction to inhibit osteogenesis. Rheb depletion induces NF-κB dependent S100A8/A9 secretion from brown adipocytes, but not from macrophages. In wild-type mice, age-related Rheb downregulation in BAT is associated with enhanced S100A8/A9 secretion. Either batokines from RhebBAD KO mice, or recombinant S100A8/A9, inhibits osteoblast differentiation of mesenchymal stem cells in vitro by targeting toll-like receptor 4 on their surfaces. Conversely, S100A8/A9 neutralization not only rescues the osteogenesis repressed in the RhebBAD KO mice, but also alleviates age-related osteoporosis in wild-type mice. Collectively, our data revealed an unexpected BAT-bone crosstalk driven by Rheb-S100A8/A9, uncovering S100A8/A9 as a promising target for the treatment, and potentially, prevention of osteoporosis.
Collapse
Affiliation(s)
- Ting Wang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chaoran Zhao
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiahuan Zhang
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shengfa Li
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Youming Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Gong
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yingyue Zhou
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lei Yan
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopadics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongling Hu
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, China
| | - Anling Liu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Zou
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Pinto-Cardoso R, Bessa-Andrês C, Correia-de-Sá P, Bernardo Noronha-Matos J. Could hypoxia rehabilitate the osteochondral diseased interface? Lessons from the interplay of hypoxia and purinergic signals elsewhere. Biochem Pharmacol 2023:115646. [PMID: 37321413 DOI: 10.1016/j.bcp.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
The osteochondral unit comprises the articular cartilage (90%), subchondral bone (5%) and calcified cartilage (5%). All cells present at the osteochondral unit that is ultimately responsible for matrix production and osteochondral homeostasis, such as chondrocytes, osteoblasts, osteoclasts and osteocytes, can release adenine and/or uracil nucleotides to the local microenvironment. Nucleotides are released by these cells either constitutively or upon plasma membrane damage, mechanical stress or hypoxia conditions. Once in the extracellular space, endogenously released nucleotides can activate membrane-bound purinoceptors. Activation of these receptors is fine-tuning regulated by nucleotides' breakdown by enzymes of the ecto-nucleotidase cascade. Depending on the pathophysiological conditions, both the avascular cartilage and the subchondral bone subsist to significant changes in oxygen tension, which has a tremendous impact on tissue homeostasis. Cell stress due to hypoxic conditions directly influences the expression and activity of several purinergic signalling players, namely nucleotide release channels (e.g. Cx43), NTPDase enzymes and purinoceptors. This review gathers experimental evidence concerning the interplay between hypoxia and the purinergic signalling cascade contributing to osteochondral unit homeostasis. Reporting deviations to this relationship resulting from pathological alterations of articular joints may ultimately unravel novel therapeutic targets for osteochondral rehabilitation. At this point, one can only hypothesize how hypoxia mimetic conditions can be beneficial to the ex vivo expansion and differentiation of osteo- and chondro-progenitors for auto-transplantation and tissue regenerative purposes.
Collapse
Affiliation(s)
- Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP).
| |
Collapse
|
10
|
Wu F, She Z, Li C, Mao J, Luo S, Chen X, Tian J, Wen C. Therapeutic potential of MSCs and MSC-derived extracellular vesicles in immune thrombocytopenia. Stem Cell Res Ther 2023; 14:79. [PMID: 37041587 PMCID: PMC10091587 DOI: 10.1186/s13287-023-03323-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/29/2023] [Indexed: 04/13/2023] Open
Abstract
Immune thrombocytopenia (ITP) is an acquired autoimmune disease involving a variety of immune cells and factors. Despite being a benign disease, it is still considered incurable due to its complex pathogenesis. Mesenchymal stem cells (MSCs), with low immunogenicity, pluripotent differentiation, and immunomodulatory ability, are widely used in a variety of autoimmune diseases. In recent years, impaired bone marrow mesenchymal stem cells (BMMSCs) were found to play an important role in the pathogenesis of ITP; and the therapeutic role of MSCs in ITP has also been supported by increasing evidence with encouraging efficacy. MSCs hold promise as a new approach to treat or even cure refractory ITP. Extracellular vesicles (EVs), as novel carriers in the "paracrine" mechanism of MSCs, are the focus of MSCs. Encouragingly, several studies suggested that EVs may perform similar functions as MSCs to treat ITP. This review summarized the role of MSCs in the pathophysiology and treatment of ITP.
Collapse
Affiliation(s)
- Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Cuifang Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xiaoyu Chen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jidong Tian
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
11
|
Lee J, Kim D, Park S, Baek S, Jung J, Kim T, Han DK. Nitric Oxide-Releasing Bioinspired Scaffold for Exquisite Regeneration of Osteoporotic Bone via Regulation of Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205336. [PMID: 36581472 PMCID: PMC9951336 DOI: 10.1002/advs.202205336] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Osteoporotic bone regeneration is a challenging process which involves the occurrence of sophisticated interactions. Although various polymeric scaffolds have been proposed for bone repair, research on osteoporotic bone regeneration remains practically limited. In particular, achieving satisfactory bone regeneration when using osteoporotic drugs is challenging including bisphosphonates. Here, a novel nitric oxide-releasing bioinspired scaffold with bioactive agents for the exquisite regeneration of osteoporotic bone is proposed. The bone-like biomimetic poly(lactic-co-glycolic acid) scaffold is first prepared in combination with organic/inorganic ECM and magnesium hydroxide as the base implant material. Nanoparticles containing bioactive agents of zinc oxide (ZO), alendronate, and BMP2 are incorporated to the biomimetic scaffold to impart multifunctionality such as anti-inflammation, angiogenesis, anti-osteoclastogenesis, and bone regeneration. Especially, nitric oxide (NO) generated from ZO stimulates the activity of cGMP and protein kinase G; in addition, ZO downregulates the RANKL/osteoprotegerin ratio by suppressing the Wnt/β-catenin signaling pathway. The new bone is formed much better in the osteoporotic rat model than in the normal model through the regulation of bone homeostasis via the scaffold. These synergistic effects suggest that such a bioinspired scaffold could be a comprehensive way to regenerate exceptionally osteoporotic bones.
Collapse
Affiliation(s)
- Jun‐Kyu Lee
- Department of Biomedical ScienceCHA University335 Pangyo‐ro, Bundang‐gu, Seongnam‐siGyeonggi‐do13488Republic of Korea
| | - Da‐Seul Kim
- Department of Biomedical ScienceCHA University335 Pangyo‐ro, Bundang‐gu, Seongnam‐siGyeonggi‐do13488Republic of Korea
- School of Integrative EngineeringChung‐Ang University84 Heukseok‐ro, Dongjak‐guSeoul06974Republic of Korea
| | - So‐Yeon Park
- Department of Biomedical ScienceCHA University335 Pangyo‐ro, Bundang‐gu, Seongnam‐siGyeonggi‐do13488Republic of Korea
- Division of BiotechnologyCollege of Life Sciences and BiotechnologyKorea UniversitySeongbuk‐guSeoul02841Republic of Korea
| | - Seung‐Woon Baek
- Department of Biomedical ScienceCHA University335 Pangyo‐ro, Bundang‐gu, Seongnam‐siGyeonggi‐do13488Republic of Korea
- Department of Biomedical EngineeringSKKU Institute for ConvergenceSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐gu, Suwon‐siGyeonggi‐do16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSKKU Institute for ConvergenceSungkyunkwan University (SKKU)2066 Seobu‐ro, Jangan‐gu, Suwon‐siGyeonggi‐do16419Republic of Korea
| | - Ji‐Won Jung
- Department of Biomedical ScienceCHA University335 Pangyo‐ro, Bundang‐gu, Seongnam‐siGyeonggi‐do13488Republic of Korea
| | - Tae‐Hyung Kim
- School of Integrative EngineeringChung‐Ang University84 Heukseok‐ro, Dongjak‐guSeoul06974Republic of Korea
| | - Dong Keun Han
- Department of Biomedical ScienceCHA University335 Pangyo‐ro, Bundang‐gu, Seongnam‐siGyeonggi‐do13488Republic of Korea
| |
Collapse
|
12
|
Panos JA, Coenen MJ, Nagelli CV, McGlinch EB, Atasoy-Zeybek A, De Padilla CL, Coghlan RF, Johnstone B, Ferreira E, Porter RM, De la Vega RE, Evans CH. IL-1Ra gene transfer potentiates BMP2-mediated bone healing by redirecting osteogenesis toward endochondral ossification. Mol Ther 2023; 31:420-434. [PMID: 36245128 PMCID: PMC9931547 DOI: 10.1016/j.ymthe.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
An estimated 100,000 patients each year in the United States suffer severe disability from bone defects that fail to heal, a condition where bone-regenerative therapies could provide substantial clinical benefits. Although recombinant human bone morphogenetic protein-2 (rhBMP2) is an osteogenic growth factor that is clinically approved for this purpose, it is only effective when used at exceedingly high doses that incur substantial costs, induce severe inflammation, produce adverse side effects, and form morphologically abnormal bone. Using a validated rat femoral segmental defect model, we show that bone formed in response to clinically relevant doses of rhBMP2 is accompanied by elevated expression of interleukin-1 (IL-1). Local delivery of cDNA encoding the IL-1 receptor antagonist (IL-1Ra) achieved bridging of segmental, critical size defects in bone with a 90% lower dose of rhBMP2. Unlike use of high-dose rhBMP2, bone formation in the presence of IL-1Ra occurred via the native process of endochondral ossification, resulting in improved quality without sacrificing the mechanical properties of the regenerated bone. Our results demonstrate that local immunomodulation may permit effective use of growth factors at lower doses to recapitulate more precisely the native biology of healing, leading to higher-quality tissue regeneration.
Collapse
Affiliation(s)
- Joseph A Panos
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, MN, USA; Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA; Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | - Michael J Coenen
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Christopher V Nagelli
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Erin B McGlinch
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, MN, USA; Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA; Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA
| | - Aysegul Atasoy-Zeybek
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Consuelo Lopez De Padilla
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Ryan F Coghlan
- Research Center, Shriners Hospitals for Children, Portland, OR, USA
| | - Brian Johnstone
- Research Center, Shriners Hospitals for Children, Portland, OR, USA; Department of Orthopedics and Rehabilitation, Oregon Health & Science University, Portland, OR, USA
| | - Elisabeth Ferreira
- Center for Musculoskeletal Disease Research, Departments of Internal Medicine and Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ryan M Porter
- Center for Musculoskeletal Disease Research, Departments of Internal Medicine and Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rodolfo E De la Vega
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, MN, USA; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute, Maastricht, the Netherlands
| | - Christopher H Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA; Musculoskeletal Gene Therapy Research Laboratory, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
13
|
Chen L, Zhou X, Mo M. The response of RAW264.7 cells to dicalcium silicate nanoparticles and the effect of the nanoparticle-regulated immune environment on osteogenesis. JOURNAL OF MATERIALS RESEARCH 2022; 37:4268-4283. [DOI: 10.1557/s43578-022-00793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/10/2022] [Indexed: 01/04/2025]
|
14
|
Takimoto-Ito R, Kambe N, Kogame T, Nomura T, Izawa K, Jo T, Kazuma Y, Yoshifuji H, Tabuchi Y, Abe H, Yamamoto M, Nakajima K, Tomita O, Yagi Y, Katagiri K, Matsuzaka Y, Takeuchi Y, Hatanaka M, Kanekura T, Takeuchi S, Kadono T, Fujita Y, Migita K, Fujino T, Akagi T, Mukai T, Nagano T, Kawano M, Kimura H, Okubo Y, Morita A, Hide M, Satoh T, Asahina A, Kanazawa N, Kabashima K. Summary of the current status of clinically diagnosed cases of Schnitzler syndrome in Japan. Allergol Int 2022; 72:297-305. [PMID: 36470790 DOI: 10.1016/j.alit.2022.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/16/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Schnitzler syndrome is a rare disorder with chronic urticaria, and there is no report summarizing the current status in Japan. METHODS A nationwide survey of major dermatology departments in Japan was conducted in 2019. We further performed a systematic search of PubMed and Ichushi-Web, using the keywords "Schnitzler syndrome" and "Japan" then contacted the corresponding authors or physicians for further information. RESULTS Excluding duplicates, a total of 36 clinically diagnosed cases were identified from 1994 through the spring of 2022, with a male to female ratio of 1:1. The median age of onset was 56.5 years. It took 3.3 years from the first symptom, mostly urticaria, to reach the final diagnosis. The current status of 30 cases was ascertained; two patients developed B-cell lymphoma. SchS treatment was generally effective with high doses of corticosteroids, but symptoms sometimes recurred after tapering. Colchicine was administered in 17 cases and was effective in 8, but showed no effect in the others. Tocilizumab, used in six cases, improved laboratory abnormalities and symptoms, but lost its efficacy after several years. Rituximab, used in five cases, was effective in reducing serum IgM levels or lymphoma mass, but not in inflammatory symptoms. Four cases were treated with IL-1 targeting therapy, either anakinra or canakinumab, and achieved complete remission, except one case with diffuse large B-cell lymphoma. CONCLUSIONS Since Schnitzler syndrome is a rare disease, the continuous collection and long-term follow-up of clinical information is essential for its appropriate treatment and further understanding of its pathophysiology.
Collapse
|
15
|
Petronglo JR, Putnam NE, Ford CA, Cruz-Victorio V, Curry JM, Butrico CE, Fulbright LE, Johnson JR, Peck SH, Fatah SR, Cassat JE. Context-Dependent Roles for Toll-Like Receptors 2 and 9 in the Pathogenesis of Staphylococcus aureus Osteomyelitis. Infect Immun 2022; 90:e0041722. [PMID: 36226943 PMCID: PMC9670883 DOI: 10.1128/iai.00417-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is the major causative agent of bacterial osteomyelitis, an invasive infection of bone. Inflammation generated by the immune response to S. aureus contributes to bone damage by altering bone homeostasis. Increases in the differentiation of monocyte lineage cells into bone-resorbing osteoclasts (osteoclastogenesis) promote bone loss in the setting of osteomyelitis. In this study, we sought to define the role of Toll-like receptor (TLR) signaling in the pathogenesis of S. aureus osteomyelitis. We hypothesized that S. aureus-sensing TLRs 2 and 9, both of which are known to alter osteoclastogenesis in vitro, promote pathological changes to bone, including increased osteoclast abundance, bone loss, and altered callus formation during osteomyelitis. Stimulation of osteoclast precursors with S. aureus supernatant increased osteoclastogenesis in a TLR2-dependent, but not a TLR9-dependent, manner. However, in vivo studies using a posttraumatic murine model of osteomyelitis revealed that TLR2-null mice experienced similar bone damage and increased osteoclastogenesis compared to wild type (WT) mice. Therefore, we tested the hypothesis that compensation between TLR2 and TLR9 contributes to osteomyelitis pathogenesis. We found that mice deficient in both TLR2 and TLR9 (Tlr2/9-/-) have decreased trabecular bone loss in response to infection compared to WT mice. However, osteoclastogenesis is comparable between WT and Tlr2/9-/- mice, suggesting that alternative mechanisms enhance osteoclastogenesis in vivo during osteomyelitis. Indeed, we discovered that osteoclast precursors intracellularly infected with S. aureus undergo significantly increased osteoclast formation, even in the absence of TLR2 and TLR9. These results suggest that TLR2 and TLR9 have context-dependent roles in the alteration of bone homeostasis during osteomyelitis.
Collapse
Affiliation(s)
- Jenna R. Petronglo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Nicole E. Putnam
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Caleb A. Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Virginia Cruz-Victorio
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Jacob M. Curry
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Casey E. Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Laura E. Fulbright
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Joshua R. Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Sun H. Peck
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Sana R. Fatah
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - James E. Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Lv B, Wu J, Xiong Y, Xie X, Lin Z, Mi B, Liu G. Functionalized multidimensional biomaterials for bone microenvironment engineering applications: Focus on osteoimmunomodulation. Front Bioeng Biotechnol 2022; 10:1023231. [PMID: 36406210 PMCID: PMC9672076 DOI: 10.3389/fbioe.2022.1023231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/20/2022] [Indexed: 09/26/2023] Open
Abstract
As bone biology develops, it is gradually recognized that bone regeneration is a pathophysiological process that requires the simultaneous participation of multiple systems. With the introduction of osteoimmunology, the interplay between the immune system and the musculoskeletal diseases has been the conceptual framework for a thorough understanding of both systems and the advancement of osteoimmunomodulaty biomaterials. Various therapeutic strategies which include intervention of the surface characteristics or the local delivery systems with the incorporation of bioactive molecules have been applied to create an ideal bone microenvironment for bone tissue regeneration. Our review systematically summarized the current research that is being undertaken in the field of osteoimmunomodulaty bone biomaterials on a case-by-case basis, aiming to inspire more extensive research and promote clinical conversion.
Collapse
Affiliation(s)
| | | | | | | | | | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Potential of stem cells for treating infected Diabetic Foot Wounds and Ulcers: a systematic review. Mol Biol Rep 2022; 49:10925-10934. [PMID: 36008608 DOI: 10.1007/s11033-022-07721-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023]
Abstract
Infected diabetic foot ulcers (iDFUs) cause great concern, as they generally heal poorly and are precursive of diabetic-related foot amputation and even death. Scientists have tested various techniques in attempts to ascertain the best treatment for iDFUs; however, the results have remained inconclusive. Stem cell therapy (SCT) appears to improve iDFU through its antimicrobial impacts, yet cogent information regarding the repair of iDFUs with SCT is lacking. Herein, published articles are evaluated to report coherent information about the antimicrobial effects of SCT on the repair of iDFUs in diabetic animals and humans. In this systematic review, we searched the Scopus, Medline, Google Scholar, and Web of Science databases for relevant full-text English language articles published from 2000 to 2022 that described stem cell antimicrobial treatments, infected diabetic wounds, or ulcers. Ultimately, six preclinical and five clinical studies pertaining to the effectiveness of SCT on healing infected diabetic wounds or ulcers were selected. Some of the human studies confirmed that SCT is a promising therapy for diabetic wounds and ulcers. Notably, more controlled studies performed on animal models revealed that stem cells combined with a biostimulator such as photobiomodulation decreased colony forming units and hastened healing in infected diabetic wounds. Moreover, stem cells alone had lower therapeutic impact than when combined with a biostimulant.
Collapse
|
18
|
Zhao DW, Fan XC, Zhao YX, Zhao W, Zhang YQ, Zhang RH, Cheng L. Biocompatible Nano-Hydroxyapatites Regulate Macrophage Polarization. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196986. [PMID: 36234325 PMCID: PMC9573195 DOI: 10.3390/ma15196986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 10/05/2022] [Indexed: 05/27/2023]
Abstract
Research on regulation of the immune microenvironment based on bioactive materials is important to osteogenic regeneration. Hydroxyapatite (HAP) is believed to be a promising scaffold material for dental and orthopedic implantation due to its ideal biocompatibility and high osteoconductivity. However, any severe inflammation response can lead to loosening and fall of implantation, which cause implant failures in the clinic. Morphology modification has been widely studied to regulate the host immune environment and to further promote bone regeneration. Here, we report the preparation of nHAPs, which have uniform rod-like shape and different size (200 nm and 400 nm in length). The morphology, biocompatibility, and anti-inflammatory properties were evaluated. The results showed that the 400 nm nHAPs exhibited excellent biocompatibility and osteoimmunomodulation, which can not only induce M2-phenotype macrophages (M2) polarization to decrease the production of inflammatory cytokines, but also promote the production of osteogenic factor. The reported 400 nm nHAPs are promising for osteoimmunomodulation in bone regeneration, which is beneficial for clinical application of bone defects.
Collapse
Affiliation(s)
- Da-Wang Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Stomatology, Shandong University, Jinan 250012, China
| | - Xin-Cheng Fan
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
- Department of Orthopaedics, Taian City Central Hospital, Tai’an 271000, China
| | - Yi-Xiang Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Stomatology, Shandong University, Jinan 250012, China
| | - Wei Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Stomatology, Shandong University, Jinan 250012, China
| | - Yuan-Qiang Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Ren-Hua Zhang
- Outpatient Department, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Lei Cheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
19
|
Cheng J, Feng Y, Feng X, Wu D, Lu X, Rao Z, Li C, Lin N, Jia C, Zhang Q. Improving the immunomodulatory function of mesenchymal stem cells by defined chemical approach. Front Immunol 2022; 13:1005426. [PMID: 36203584 PMCID: PMC9530344 DOI: 10.3389/fimmu.2022.1005426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Mesenchymal stem cell (MSC) is a potential therapeutic material that has self-renewal, multilineage differentiation, and immunomodulation properties. However, the biological function of MSCs may decline due to the influence of donor differences and the in vitro expansion environment, which hinders the advancement of MSC-based clinical therapy. Here, we investigated a method for improving the immunomodulatory function of MSCs with the help of small-molecule compounds, A-83-01, CHIR99021, and Y27632 (ACY). The results showed that small-molecule induced MSCs (SM-MSCs) could enhance their immunosuppressive effects on T cells and macrophages. In vivo studies showed that, in contrast to control MSCs (Ctrl-MSCs), SM-MSCs could inhibit the inflammatory response in mouse models of delayed hypersensitivity and acute peritonitis more effectively. In addition, SM-MSCs showed the stronger ability to inhibit the infiltration of pro-inflammatory T cells and macrophages. Thus, small-molecule compounds ACY could better promote the immunomodulatory effect of MSCs, indicating it could be a potential improving method in MSC culture.
Collapse
Affiliation(s)
- Jintao Cheng
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao Feng
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Donghao Wu
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xu Lu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihua Rao
- Tangxia Laboratory, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cuiping Li
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Nan Lin, ; Changchang Jia, ; Qi Zhang,
| | - Changchang Jia
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Nan Lin, ; Changchang Jia, ; Qi Zhang,
| | - Qi Zhang
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Nan Lin, ; Changchang Jia, ; Qi Zhang,
| |
Collapse
|
20
|
Monocytic myeloid-derived suppressive cells mitigate over-adipogenesis of bone marrow microenvironment in aplastic anemia by inhibiting CD8 + T cells. Cell Death Dis 2022; 13:620. [PMID: 35851002 PMCID: PMC9293984 DOI: 10.1038/s41419-022-05080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 01/21/2023]
Abstract
Aplastic anemia (AA) is a blood disorder resulted from over-activated T-cell related hematopoietic failure, with the characterization of hypocellularity and enhanced adipogenic differentiation of mesenchymal stroma cells (MSCs) in bone marrow (BM). However, little is known about the relationship between immune imbalance and polarized adipogenic abnormity of BM microenvironment in this disease entity. In the present study, we differentiated BM-MSCs into osteoblastic or adipogenic lineages to mimic the osteo-adipogenic differentiation. Activated CD8+ T cells and interferon-γ (IFN-γ) were found to stimulate adipogenesis of BM-MSCs either in vitro or in vivo of AA mouse model. Interestingly, myeloid-derived suppressive cells (MDSCs), one of the immune-regulating populations, were decreased within BM of AA mice. We found that it was not CD11b+Ly6G+Ly6C- granulocytic-MDSCs (gMDSCs) but CD11b+Ly6G-Ly6C+ monocytic-MDSCs (mMDSCs) inhibiting both T cell proliferation and IFN-γ production via inducible nitric oxide synthetase (iNOS) pathway. Single-cell RNA-sequencing (scRNA-seq) of AA- and mMDSCs-treated murine BM cells revealed that mMDSCs transfusion could reconstitute BM hematopoietic progenitors by inhibiting T cells population and signature cytokines and decreasing immature Adipo-Cxcl12-abundant reticular cells within BM. Multi-injection of mMDSCs into AA mice reduced intra-BM T cells infiltration and suppressed BM adipogenesis, which subsequently restored the intra-BM immune balance and eventually prevented pancytopenia and hypo-hematopoiesis. In conclusion, adoptive transfusion of mMDSCs might be a novel immune-regulating strategy to treat AA, accounting for not only restoring the intra-BM immune balance but also improving stroma's multi-differentiating microenvironment.
Collapse
|
21
|
Lackington WA, Gehweiler D, Zhao E, Zderic I, Nehrbass D, Zeiter S, González-Vázquez A, O'Brien FJ, Stoddart MJ, Thompson K. Interleukin-1 receptor antagonist enhances the therapeutic efficacy of a low dose of rhBMP-2 in a weight-bearing rat femoral defect model. Acta Biomater 2022; 149:189-197. [PMID: 35840106 DOI: 10.1016/j.actbio.2022.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/01/2022]
Abstract
In the clinical treatment of fractures, rhBMP-2 administration is associated with a well-established profile of side-effects, including osteolysis and ectopic bone formation, which are driven by pro-inflammatory processes triggered by the use of high doses. Immunomodulatory strategies could minimize the incidence of side-effects by enabling the use of lower, and safer, rhBMP-2 doses. This study investigated whether interleukin-1 receptor antagonist (IL-1Ra) can enhance the therapeutic efficacy of a low dose of rhBMP-2 in a weight-bearing femoral fracture healing model. Exogenous IL-1Ra, in combination with rhBMP-2, was delivered using a collagen-hydroxyapatite scaffold (CHA) to attenuate IL-1β produced in response to fracture. Femoral defects were treated with CHA scaffolds alone, or loaded with IL-1Ra (2.5 µg), rhBMP-2 (1 µg), IL-1Ra (2.5 µg) in combination with rhBMP-2 (1 µg). Bone healing was assessed over 14 weeks in comparison to control groups, empty defect, and a higher dose of rhBMP-2 (5 µg), which were recently demonstrated to lead to non-union, and successful bridging of the defect, respectively. The combination of IL-1Ra and rhBMP-2 led to significantly faster early bone formation, at both week 4 and 6, compared to a low dose of rhBMP-2 alone. By 14 weeks, the combination of IL-1Ra and a rhBMP-2 promoted full bridging of femurs, which were 3-fold more mechanically reliable compared to the femurs treated with a low dose of rhBMP-2 alone. Taken together, this study demonstrates that IL-1Ra can significantly enhance femoral bone healing when used in combination with a low dose of rhBMP-2. STATEMENT OF SIGNIFICANCE: Enabling the use of lower and safer doses of rhBMP-2, a potent inducer of bone formation, is of clinical relevance in orthopaedic medicine. In this study, the immunomodulatory interleukin-1 receptor antagonist (IL-1Ra) was investigated for its capacity to enhance the therapeutic efficacy of rhBMP-2 when used at lower doses in a weight-bearing femoral fracture healing model. The combination of IL-1Ra and rhBMP-2 led to significantly faster early bone formation, and resulted in more mechanically reliable healed femurs, compared to a low dose of rhBMP-2 alone. This demonstrates for the first time in a rat long bone healing model that IL-1Ra can significantly enhance bone healing when used in combination with a low dose of rhBMP-2.
Collapse
Affiliation(s)
- William A Lackington
- AO Research Institute Davos, AO Foundation, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland; Present address: Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces, St. Gallen, Switzerland
| | - Dominic Gehweiler
- AO Research Institute Davos, AO Foundation, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Ensi Zhao
- AO Research Institute Davos, AO Foundation, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Ivan Zderic
- AO Research Institute Davos, AO Foundation, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Dirk Nehrbass
- AO Research Institute Davos, AO Foundation, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Stephan Zeiter
- AO Research Institute Davos, AO Foundation, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Arlyng González-Vázquez
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin, Ireland; AMBER Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, 123 St Stephen's Green, Dublin, Ireland; AMBER Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Martin J Stoddart
- AO Research Institute Davos, AO Foundation, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Keith Thompson
- AO Research Institute Davos, AO Foundation, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland.
| |
Collapse
|
22
|
Wu L, Su C, Yang C, Liu J, Ye Y. TBX3 regulates the transcription of VEGFA to promote osteoblasts proliferation and microvascular regeneration. PeerJ 2022; 10:e13722. [PMID: 35846885 PMCID: PMC9281600 DOI: 10.7717/peerj.13722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/22/2022] [Indexed: 01/17/2023] Open
Abstract
Objective Osteochondral decellularization can promote local vascular regeneration, but the exact mechanism is unknown. The aim of this study is to study osteogenic microvascular regeneration in single cells. Methods The scRNA-seq dataset of human periosteal-derived cells (hPDCs) were analyzed by pySCENIC. To examine the role of TBX3 in osteogenesis and vascularization, cell transfection, qRT-PCR, western blot, and CCK-8 cell proliferation assays were performed. Results TCF7L2, TBX3, FLI1, NFKB2, and EZH2 were found to be transcription factors (TFs) most closely associated with corresponding cells. The regulatory network of these TFs was then visualized. Our study knocked down the expression of TBX3 in human osteoblast cell lines. In the TBX3 knockdown group, we observed decreased expression of VEGFA, VEGFB, and VEGFC. Moreover, Western blot analysis showed that downregulating TBX3 resulted in a reduction of VEGFA expression. And TBX3 stimulated osteoblast proliferation in CCK-8 assays. Conclusion TBX3 regulates VEGFA expression and promotes osteoblast proliferation in skeletal microvasculature formation. The findings provide a theoretical basis for investigating the role of TBX3 in promoting local vascular regeneration.
Collapse
Affiliation(s)
- Lichuang Wu
- Department of Trauma/Joint Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenxian Su
- Department of Trauma/Joint Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chuanhua Yang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Jinxing Liu
- Shanghai ninth people’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiheng Ye
- Department of Trauma/Joint Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
Wang Y, Xie C, Zhang Z, Liu H, Xu H, Peng Z, Liu C, Li J, Wang C, Xu T, Zhu L. 3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29506-29520. [PMID: 35729092 DOI: 10.1021/acsami.2c04378] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The repair of large bone defects remains a challenging problem in bone tissue engineering. Ischemia and hypoxia in the bone defect area make it difficult for seed cells to survive and differentiate, which fail to perform effective tissue regeneration. Current oxygen-producing materials frequently encounter problems such as a rapid degradation rate, insufficient mechanical properties, difficult molding, and cumbersome fabrication. Here, a novel three-dimensional (3D) printed integrated bionic oxygenated scaffold was fabricated with gelatin-CaO2 microspheres, polycaprolactone (PCL), and nanohydroxyapatite (nHA) using low-temperature molding 3D printing technology. The scaffold had outstanding mechanical properties with bionic hierarchical porous structures. In vitro reports showed that the scaffold exhibited excellent cytocompatibility and could release O2 sustainably for more than 2 weeks, which significantly enhanced the survival, growth, and osteogenic differentiation of bone marrow mesenchymal stem cells under hypoxia. In vivo experiments revealed that the scaffold facilitated efficient bone repair after it was transplanted into a rabbit calvarial defect model. This result may be due to the scaffolds reducing hypoxia-inducible factor-1α accumulation, improving the expression of osteogenic regulatory transcription factors, and accelerating osteogenesis. In summary, the integrated bionic PCL/nHA/CaO2 scaffold had excellent capabilities in sustainable O2 release and bone regeneration, which provided a promising clinical strategy for bone defect repair.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Changnan Xie
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhiming Zhang
- Department of Orthopedics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Haining Liu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Haixia Xu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ziyue Peng
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chun Liu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianjun Li
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chengqiang Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tao Xu
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing 100084, China
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
- Scientific Research Center, East China Institute of Digital Medical Engineering, Shangrao 334000, China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
24
|
Su N, Villicana C, Yang F. Immunomodulatory strategies for bone regeneration: A review from the perspective of disease types. Biomaterials 2022; 286:121604. [PMID: 35667249 PMCID: PMC9881498 DOI: 10.1016/j.biomaterials.2022.121604] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Tissue engineering strategies for treating bone loss to date have largely focused on targeting stem cells or vascularization. Immune cells, including macrophages and T cells, can also indirectly enhance bone healing via cytokine secretion to interact with other bone niche cells. Bone niche cues and local immune environment vary depending on anatomical location, size of defects and disease types. As such, it is critical to evaluate the role of the immune system in the context of specific bone niche and different disease types. This review focuses on immunomodulation research for bone applications using biomaterials and cell-based strategies, with a unique perspective from different disease types. We first reviewed applications for prolonging orthopaedic implant lifetime and enhancing fracture healing, two clinical challenges where immunomodulatory strategies were initially developed for orthopedic applications. We then reviewed recent research progress in harnessing immunomodulatory strategies for regenerating critical-sized, long bone or cranial bone defects, and treating osteolytic bone diseases. Remaining gaps in knowledge, future directions and opportunities were also discussed.
Collapse
Affiliation(s)
- Ni Su
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Cassandra Villicana
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA.,: Corresponding Author Fan Yang, Ph D, Department of Orthopaedic Surgery and Bioengineering, Stanford University School of Medicine, 240 Pasteur Dr, Palo Alto, CA 94304, Biomedical Innovation Building, 1st floor, Room 1200, , Phone: (650) 646-8558
| |
Collapse
|
25
|
Metformin Facilitates Osteoblastic Differentiation and M2 Macrophage Polarization by PI3K/AKT/mTOR Pathway in Human Umbilical Cord Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:9498876. [PMID: 35761829 PMCID: PMC9233575 DOI: 10.1155/2022/9498876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are the most promising multipotent stem cells that can differentiate into osteoblasts, chondrocytes, and adipocytes. This cellular flexibility contributes to widespread clinical use of MSCs in tissue repair and regeneration. The immune system is a key player in regulating bone remodeling. In recent years, the association between the immune system and bone metabolism has become an increasing focus of interest. Metformin, a glucose-lowering drug, exerts powerful impact on metabolic signaling. However, whether metformin can modulate bone metabolism or whether metformin can influence immune milieu by regulation of macrophages has not been thoroughly elucidated. Herein, we specifically explored the complex interactions between macrophages and human umbilical cord mesenchymal stem cells (UC-MSCs) in the context of metformin. Our research demonstrated that metformin not only stimulated osteogenesis of UC-MSCs but also influenced the immune system via promoting M2 but reducing M1 macrophages. Mechanically, we found that metformin-treated M2 macrophages possessed more potent osteoinductive capacity in our coculture system. Molecularly, these metformin-stimulated M2 macrophages facilitated osteogenesis via activating the PI3K/AKT/mTOR pathway. As demonstrated by using PI3K-specific inhibitor LY294002, we found that the pathway inhibitor partly reversed osteoinductive activity which was activated by coculture of metformin-treated M2 macrophages. Overall, our novel research illuminated the cooperative and synergistic effects of metformin and M2 macrophages on the dynamic balance of bone metabolism.
Collapse
|
26
|
Vitale E, Perveen S, Rossin D, Lo Iacono M, Rastaldo R, Giachino C. Role of Chaperone-Mediated Autophagy in Ageing Biology and Rejuvenation of Stem Cells. Front Cell Dev Biol 2022; 10:912470. [PMID: 35837330 PMCID: PMC9273769 DOI: 10.3389/fcell.2022.912470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
What lies at the basis of the mechanisms that regulate the maintenance and self-renewal of pluripotent stem cells is still an open question. The control of stemness derives from a fine regulation between transcriptional and metabolic factors. In the last years, an emerging topic has concerned the involvement of Chaperone-Mediated Autophagy (CMA) as a key mechanism in stem cell pluripotency control acting as a bridge between epigenetic, transcriptional and differentiation regulation. This review aims to clarify this new and not yet well-explored horizon discussing the recent studies regarding the CMA impact on embryonic, mesenchymal, and haematopoietic stem cells. The review will discuss how CMA influences embryonic stem cell activity promoting self-renewal or differentiation, its involvement in maintaining haematopoietic stem cell function by increasing their functionality during the normal ageing process and its effects on mesenchymal stem cells, in which modulation of CMA regulates immunosuppressive and differentiation properties. Finally, the importance of these new discoveries and their relevance for regenerative medicine applications, from transplantation to cell rejuvenation, will be addressed.
Collapse
|
27
|
Rai V, Dilisio MF, Samadi F, Agrawal DK. Counteractive Effects of IL-33 and IL-37 on Inflammation in Osteoarthritis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5690. [PMID: 35565085 PMCID: PMC9100324 DOI: 10.3390/ijerph19095690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is a chronic inflammatory disease where pro-inflammatory cytokines, damage-associated molecular patterns (DAMPs), and macrophages play a crucial role. However, the interactive role of these mediators, the exact cause precipitating OA and definitive treatment for OA are not known yet. Moreover, the interactive role of interleukin (IL)-33 and IL-37 with other factors in the pathogenesis of OA has not been discussed elaborately. In this study, we analyzed the expression of IL-33 and IL-37 in human OA knee and hip joint cartilage tissues. The effect of increased DAMPs, IL-33, and IL-37 on IL-6, tumor necrosis factor (TNF)-α, toll-like receptors (TLRs), and matrix metalloproteinases (MMPs) expression was delineated using human normal and osteoarthritic chondrocytes. The effect of anti-inflammatory cytokine IL-37 on various mediators of inflammation in the presence of IL-33, rHMGB-1, and LPS was investigated to delineate the effects of IL-37. Further, the effects of blocking IL-33 downstream signaling and the effects of IL-33 and IL-37 on macrophage polarization were assessed along with examining the macrophage phenotypes in human OA cartilage tissues. The results of this study revealed increased expression of IL-33 in OA cartilage and that IL-33 increases IL-6, TNF-α, TLRs, and MMPs expression and favors phenotypic conversion towards the M1 phenotype, while IL-37 and blocking IL-33 receptor ST2 have opposite effects. Overall, the results suggest that blocking IL-33 and increasing IL-37 act synergistically to attenuate inflammation and might serve as potential therapeutics in OA.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Matthew F. Dilisio
- Department of Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE 68178, USA;
| | - Farial Samadi
- Department of Biology, College of Arts and Sciences, University of Nebraska at Omaha, Omaha, NE 68182, USA;
| | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
28
|
Geyer M, Schönfeld C, Schreiyäck C, Susanto S, Michel C, Looso M, Braun T, Borchardt T, Neumann E, Müller-Ladner U. Comparative transcriptional profiling of regenerating damaged knee joints in two animal models of the newt Notophthalmus viridescens strengthens the role of candidate genes involved in osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100273. [DOI: 10.1016/j.ocarto.2022.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022] Open
|
29
|
Tredicine M, Camponeschi C, Pirolli D, Lucchini M, Valentini M, Geloso MC, Mirabella M, Fidaleo M, Righino B, Moliterni C, Giorda E, Rende M, De Rosa MC, Foti M, Constantin G, Ria F, Di Sante G. A TLR/CD44 axis regulates T cell trafficking in experimental and human multiple sclerosis. iScience 2022; 25:103763. [PMID: 35128357 PMCID: PMC8804271 DOI: 10.1016/j.isci.2022.103763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/28/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
In the pathogenesis of autoimmune disorders, the modulation of leukocytes' trafficking plays a central role, still poorly understood. Here, we focused on the effect of TLR2 ligands in trafficking of T helper cells through reshuffling of CD44 isoforms repertoire. Concurrently, strain background and TLR2 haplotype affected Wnt/β-catenin signaling pathway and expression of splicing factors. During EAE, mCD44 v9- v 10 was specifically enriched in the forebrain and showed an increased ability to bind stably to osteopontin. Similarly, we observed that hCD44 v7 was highly enriched in cells of cerebrospinal fluid from MS patients with active lesions. Moreover, TLRs engagement modulated the composition of CD44 variants also in human T helper cells, supporting the hypothesis that pathogens or commensals, through TLRs, in turn modulate the repertoire of CD44 isoforms, thereby controlling the distribution of lesions in the CNS. The interference with this mechanism(s) represents a potential tool for prevention and treatment of autoimmune relapses and exacerbations.
Collapse
Affiliation(s)
- Maria Tredicine
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Chiara Camponeschi
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Davide Pirolli
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) -CNR, Largo Francesco Vito 1,00168 Rome, Italy
| | - Matteo Lucchini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli1-8,00168 Rome, Italy
- Centro di ricerca per la Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Francesco Vito 1,00168 Rome, Italy
| | - Mariagrazia Valentini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli1-8,00168 Rome, Italy
| | - Maria Concetta Geloso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli1-8,00168 Rome, Italy
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1,00168 Rome, Italy
| | - Massimiliano Mirabella
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli1-8,00168 Rome, Italy
- Centro di ricerca per la Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Francesco Vito 1,00168 Rome, Italy
| | - Marco Fidaleo
- Department of Biology and Biotechnology Charles Darwin, University of Rome Sapienza,00185 Rome, Italy
| | - Benedetta Righino
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) -CNR, Largo Francesco Vito 1,00168 Rome, Italy
| | - Camilla Moliterni
- Department of Biology and Biotechnology Charles Darwin, University of Rome Sapienza,00185 Rome, Italy
| | - Ezio Giorda
- Core Facilities di Ricerca, Ospedale Pediatrico Bambino Gesù Roma – IRCCS, V.le Ferdinando Baldelli,40,00146 Roma, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinic and Forensic Anatomy, University of Perugia, Piazza L. Severi, 06132 Perugia, Italy
| | - Maria Cristina De Rosa
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) -CNR, Largo Francesco Vito 1,00168 Rome, Italy
| | - Maria Foti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8,37134 Verona, Italy
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli1-8,00168 Rome, Italy
| | - Gabriele Di Sante
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Department of Medicine and Surgery, Section of Human, Clinic and Forensic Anatomy, University of Perugia, Piazza L. Severi, 06132 Perugia, Italy
| |
Collapse
|
30
|
Yang J, Zhang X, Chen J, Heng BC, Jiang Y, Hu X, Ge Z. Macrophages promote cartilage regeneration in a time- and phenotype-dependent manner. J Cell Physiol 2022; 237:2258-2270. [PMID: 35147979 DOI: 10.1002/jcp.30694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
Immune regulation of osteochondral defect regeneration has not yet been rigorously characterized. Although macrophages have been demonstrated to regulate the regeneration process in various tissues, their direct contribution to cartilage regeneration remains to be investigated, particularly the functions of polarized macrophage subpopulations. In this study, we investigated the origins and functions of macrophages during healing of osteochondral injury in the murine model. Upon osteochondral injury, joint macrophages are predominantly derived from circulating monocytes. Macrophages are essential for spontaneous cartilage regeneration in juvenile C57BL/6 mice, by modulating proliferation and apoptosis around the injury site. Exogeneous macrophages also exhibit therapeutic potential in promoting cartilage regeneration in adult mice with poor regenerative capacity, possibly via regulation of PDGFRα+ stem cells, with this process being influenced by initial phenotype and administration timing. Only M2c macrophages are able to promote regeneration of both cartilage tissues and subchondral bone. Overall, we reveal the direct link between macrophages and osteochondral regeneration and highlight the key roles of relevant immunological niches in successful regeneration.
Collapse
Affiliation(s)
- Jiabei Yang
- Department of Biomedical Engineering, Peking University, Beijing, China
| | - Xuewei Zhang
- Department of Biomedical Engineering, Peking University, Beijing, China
| | - Jiaqing Chen
- Department of Biomedical Engineering, Peking University, Beijing, China
| | | | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Centre for Life Sciences, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Zigang Ge
- Department of Biomedical Engineering, Peking University, Beijing, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
31
|
Garg V, Chandanala S, David-Luther M, Govind M, Prasad RR, Kumar A, Prasanna SJ. The Yin and Yang of Immunity in Stem Cell Decision Guidance in Tissue Ecologies: An Infection Independent Perspective. Front Cell Dev Biol 2022; 10:793694. [PMID: 35198558 PMCID: PMC8858808 DOI: 10.3389/fcell.2022.793694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of immune system and inflammation on organ homeostasis and tissue stem cell niches in the absence of pathogen invasion has long remained a conundrum in the field of regenerative medicine. The paradoxical role of immune components in promoting tissue injury as well as resolving tissue damage has complicated therapeutic targeting of inflammation as a means to attain tissue homeostasis in degenerative disease contexts. This confound could be resolved by an integrated intricate assessment of cross-talk between inflammatory components and micro- and macro-environmental factors existing in tissues during health and disease. Prudent fate choice decisions of stem cells and their differentiated progeny are key to maintain tissue integrity and function. Stem cells have to exercise this fate choice in consultation with other tissue components. With this respect tissue immune components, danger/damage sensing molecules driving sterile inflammatory signaling cascades and barrier cells having immune-surveillance functions play pivotal roles in supervising stem cell decisions in their niches. Stem cells learn from their previous damage encounters, either endogenous or exogenous, or adapt to persistent micro-environmental changes to orchestrate their decisions. Thus understanding the communication networks between stem cells and immune system components is essential to comprehend stem cell decisions in endogenous tissue niches. Further the systemic interactions between tissue niches integrated through immune networks serve as patrolling systems to establish communication links and orchestrate micro-immune ecologies to better organismal response to injury and promote regeneration. Understanding these communication links is key to devise immune-centric regenerative therapies. Thus the present review is an integrated attempt to provide a unified purview of how inflammation and immune cells provide guidance to stem cells for tissue sculpting during development, organismal aging and tissue crisis based on the current knowledge in the field.
Collapse
|
32
|
Alshoubaki YK, Nayer B, Das S, Martino MM. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:248-258. [PMID: 35303109 PMCID: PMC8968657 DOI: 10.1093/stcltm/szab022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/09/2021] [Indexed: 12/04/2022] Open
Abstract
Numerous components of the immune system, including inflammatory mediators, immune cells and cytokines, have a profound modulatory effect on the homeostatic regulation and regenerative activity of endogenous stem cells and progenitor cells. Thus, understanding how the immune system interacts with stem/progenitor cells could build the foundation to design novel and more effective regenerative therapies. Indeed, utilizing and controlling immune system components may be one of the most effective approaches to promote tissue regeneration. In this review, we first summarize the effects of various immune cell types on endogenous stem/progenitor cells, focusing on the tissue healing context. Then, we present interesting regenerative strategies that control or mimic the effect of immune components on stem/progenitor cells, in order to enhance the regenerative capacity of endogenous and transplanted stem cells. We highlight the potential clinical translation of such approaches for multiple tissues and organ systems, as these novel regenerative strategies could considerably improve or eventually substitute stem cell-based therapies. Overall, harnessing the power of the cross-talk between the immune system and stem/progenitor cells holds great potential for the development of novel and effective regenerative therapies.
Collapse
Affiliation(s)
- Yasmin K Alshoubaki
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Bhavana Nayer
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Surojeet Das
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Corresponding author: Mikaël M. Martino, Martino Lab, Australian Regenerative Medicine Institute, 15 Innovation Walk, Level 1, Monash University, Victoria 3800, Australia;
| |
Collapse
|
33
|
Effectiveness of preconditioned adipose-derived mesenchymal stem cells with photobiomodulation for the treatment of diabetic foot ulcers: a systematic review. Lasers Med Sci 2021; 37:1415-1425. [PMID: 34697696 DOI: 10.1007/s10103-021-03451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
The primary goal of this systematic review article was to provide an outline of the use of diabetic autologous adipose-derived mesenchymal stem cells (DAAD-MSCs) in the treatment of wounds and ulcers in animal models and patients with diabetes mellitus (DM). The secondary goal was to present the outcomes of pretreatment of diabetic adipose-derived mesenchymal stem cells (DAD-MSCs) with probable different agents in the treatment of diabetic foot ulcers (DFUs) and wounds. In view of possible clinical applications of AD-MSC-mediated cell therapy for DFUs, it is essential to evaluate the influence of DM on AD-MSC functions. Nevertheless, there are conflicting results about the effects of DAAD-MSCs on accelerating wound healing in animals and DM patients. Multistep research of the MEDLINE, PubMed, Embase, Clinicaltrials.gov, Scopus database, and Cochrane databases was conducted for abstracts and full-text scientific papers published between 2000 and 2020. Finally, 5 articles confirmed that the usage of allogeneic or autologous AD-MSCs had encouraging outcomes on diabetic wound healing. One study reported that DM changes AD-MSC function and therapeutic potential, and one article recommended that the pretreatment of diabetic allogeneic adipose-derived mesenchymal stem cells (DAlD-MSCs) was more effective in accelerating diabetic wound healing. Recently, much work has concentrated on evolving innovative healing tactics for hastening the repair of DFUs. While DM alters the intrinsic properties of AD-MSCs and impairs their function, one animal study showed that the pretreatment of DAlD-MSCs in vitro significantly increased the function of DAlD-MSCs compared with DAlD-MSCs without any treatment. Preconditioning diabetic AD-MSCs with pretreatment agents like photobiomodulation (PBM) significantly hastened healing in delayed-healing wounds. It is suggested that further animal and human studies be conducted in order to provide more documentation. Hopefully, these outcomes will help the use of DAAD-MSCs plus PBM as a routine treatment protocol for healing severe DFUs in DM patients.
Collapse
|
34
|
Calcium phosphate-based materials regulate osteoclast-mediated osseointegration. Bioact Mater 2021; 6:4517-4530. [PMID: 34632163 PMCID: PMC8484898 DOI: 10.1016/j.bioactmat.2021.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 12/16/2022] Open
Abstract
Calcium phosphate-based materials (CaP) have been widely used as bone graft substitutes with a decent osseointegration. However, the mechanism whereby cells function and repair the bone defect in CaP micro-environment is still elusive. The aim of this study is to find the mechanism how osteoclast behaviors mediate bone healing with CaP scaffolds. Recent reports show that behaviors of osteoclast are closely related with osteogenesis, thus we make a hypothesis that active osteoclast behaviors induced by CaP facilitate bone healing. Here, we found a new mechanism that CaP can regulate osteoclast-mediated osseointegration. Calcium phosphate cement (CPC) is selected as a representative CaP. We demonstrate that the osteoclast-mediated osseointegration can be strongly modulated by the stimulation with CaP. An appropriate Ca/P ratio in CaP can effectively promote the RANKL-RANK binding and evoke more activated NF-κB signaling transduction, which results in vigorous osteoclast differentiation. We observe significant improvement of bone healing in vivo, owing to the active coupling effect of osteoclasts. What is more noteworthy is that the phosphate ions released from CaP can be a pivotal role regulating osteoclast activity by changing Ca/P ratio readily in materials. These studies suggest the potential of harnessing osteoclast-mediated osteogenesis in order to develop a materials-manipulated approach for improving osseointegration. Calcium phosphate-based materials (CaP) can directly participate in bone healing by released ions. Excessive phosphate ions released from CaP can inhibit the affinity of RANKL and RANK. Altering Ca/P ratio in CaP can significantly regulate osteoclast differentiation and function through RANKL-RANK dependent NF-κB signaling pathway.
Collapse
|
35
|
The Role of MSCs and Cell Fusion in Tissue Regeneration. Int J Mol Sci 2021; 22:ijms222010980. [PMID: 34681639 PMCID: PMC8535885 DOI: 10.3390/ijms222010980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine is concerned with the investigation of therapeutic agents that can be used to promote the process of regeneration after injury or in different diseases. Mesenchymal stem/stromal cells (MSCs) and their secretome—including extracellular vesicles (EVs) are of great interest, due to their role in tissue regeneration, immunomodulatory capacity and low immunogenicity. So far, clinical studies are not very conclusive as they show conflicting efficacies regarding the use of MSCs. An additional process possibly involved in regeneration might be cell fusion. This process occurs in both a physiological and a pathophysiological context and can be affected by immune response due to inflammation. In this review the role of MSCs and cell fusion in tissue regeneration is discussed.
Collapse
|
36
|
Shanley LC, Mahon OR, Kelly DJ, Dunne A. Harnessing the innate and adaptive immune system for tissue repair and regeneration: Considering more than macrophages. Acta Biomater 2021; 133:208-221. [PMID: 33657453 DOI: 10.1016/j.actbio.2021.02.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Tissue healing and regeneration is a complex, choreographed, spatiotemporal process involving a plethora of cell types, the activity of which is stringently regulated in order for effective tissue repair to ensue post injury. A number of globally prevalent conditions such as heart disease, organ failure, and severe musculoskeletal disorders require new therapeutic strategies to repair damaged or diseased tissue, particularly given an ageing population in which obesity, diabetes, and consequent tissue defects have reached epidemic proportions. This is further compounded by the lack of intrinsic healing and poor regenerative capacity of certain adult tissues. While vast progress has been made in the last decade regarding tissue regenerative strategies to direct self-healing, for example, through implantation of tissue engineered scaffolds, several challenges have hampered the clinical application of these technologies. Control of the immune response is growing as an attractive approach in regenerative medicine and it is becoming increasingly apparent that an in depth understanding of the interplay between cells of the immune system and tissue specific progenitor cells is of paramount importance. Furthermore, the integration of immunology and bioengineering promises to elevate the efficacy of biomaterial-based tissue repair and regeneration. In this review, we highlight the role played by individual immune cell subsets in tissue repair processes and describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated targeting of immune cell activity. STATEMENT OF SIGNIFICANCE: It is becoming increasingly apparent that controlling the immune response is as an attractive approach in regenerative medicine. Here, we propose that an in-depth understanding of immune system and tissue specific progenitor cell interactions may reveal mechanisms by which tissue healing and regeneration takes place, in addition to identifying novel therapeutic targets that could be used to enhance the tissue repair process. To date, most reviews have focused solely on macrophage subsets. This manuscript details the role of other innate and adaptive immune cells such as innate lymphoid cells (ILCs), natural killer (NK) cells and γδT cells (in addition to macrophages) in tissue healing. We also describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated cytokine and drug delivery.
Collapse
|
37
|
Polarized M2 macrophages induced by mechanical stretching modulate bone regeneration of the craniofacial suture for midfacial hypoplasia treatment. Cell Tissue Res 2021; 386:585-603. [PMID: 34568957 DOI: 10.1007/s00441-021-03533-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/21/2021] [Indexed: 01/01/2023]
Abstract
The underlying mechanism of the trans-sutural distraction osteogenesis (TSDO) technique as an effective treatment that improves the symptoms of midfacial hypoplasia syndromes is not clearly understood. Increasing findings in the orthopedics field indicate that macrophages are mechanically sensitive and their phenotypes can respond to mechanical cues. However, how macrophages respond to mechanical stretching and consequently influence osteoblast differentiation of suture-derived stem cells (SuSCs) remains unclear, particularly during the TSDO process. In the present study, we established a TSDO rat model to determine whether and how macrophages were polarized in response to stretching and consequently affected bone regeneration of the suture frontal edge. Notably, after performing immunofluorescence, RNA-sequencing, and micro-computed tomography, it was demonstrated that macrophages are first recruited by various chemokines factors and polarized to the M2 phenotype upon optimal stretching. The latter in turn regulates SuSC activity and facilitates bone regeneration in sutures. Moreover, when the activated M2 macrophages were suppressed by pharmacological manipulation, new bone microarchitecture could rarely be detected under mechanical stretching and the expansion of the sutures was clear. Additionally, macrophages achieved M2 polarization in response to the optimal mechanical stretching (10%, 0.5 Hz) and strongly facilitated SuSC osteogenic differentiation and human umbilical vein endothelial cell angiogenesis using an indirect co-culture system in vitro. Collectively, this study revealed the mechanical stimulation-immune response-bone regeneration axis and clarified at least in part how sutures achieve bone regeneration in response to mechanical force.
Collapse
|
38
|
Wildemann B, Ignatius A, Leung F, Taitsman LA, Smith RM, Pesántez R, Stoddart MJ, Richards RG, Jupiter JB. Non-union bone fractures. Nat Rev Dis Primers 2021; 7:57. [PMID: 34354083 DOI: 10.1038/s41572-021-00289-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
The human skeleton has remarkable regenerative properties, being one of the few structures in the body that can heal by recreating its normal cellular composition, orientation and mechanical strength. When the healing process of a fractured bone fails owing to inadequate immobilization, failed surgical intervention, insufficient biological response or infection, the outcome after a prolonged period of no healing is defined as non-union. Non-union represents a chronic medical condition not only affecting function but also potentially impacting the individual's psychosocial and economic well-being. This Primer provides the reader with an in-depth understanding of our contemporary knowledge regarding the important features to be considered when faced with non-union. The normal mechanisms involved in bone healing and the factors that disrupt the normal signalling mechanisms are addressed. Epidemiological considerations and advances in the diagnosis and surgical therapy of non-union are highlighted and the need for greater efforts in basic, translational and clinical research are identified.
Collapse
Affiliation(s)
- Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany. .,Julius Wolff Institute and BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University, Ulm, Baden Württemberg, Germany
| | - Frankie Leung
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, the University of Hong Kong, Hong Kong, Hong Kong
| | - Lisa A Taitsman
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - R Malcolm Smith
- Orthopedic trauma service, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rodrigo Pesántez
- Departamento de Ortopedia Y Traumatología Fundación Santa Fé de Bogotá - Universidad de los Andes, Bogotá, Colombia
| | | | | | - Jesse B Jupiter
- Department of Orthopaedic surgery, Massachussets General Hospital, Boston, MA, USA.
| |
Collapse
|
39
|
Zhang Q, Yu J, Chen Q, Yan H, Du H, Luo W. Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review). Mol Med Rep 2021; 24:648. [PMID: 34278470 PMCID: PMC8299209 DOI: 10.3892/mmr.2021.12287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Tissues have remarkable natural capabilities to regenerate for the purpose of physiological turnover and repair of damage. Adult mesenchymal stem cells (MSCs) are well known for their unique self-renewal ability, pluripotency, homing potential, paracrine effects and immunomodulation. Advanced research of the unique properties of MSCs have opened up new horizons for tissue regenerative therapies. However, certain drawbacks of the application of MSCs, such as the low survival rate of transplanted MSCs, unsatisfactory efficiency and even failure to regenerate under an unbalanced microenvironment, are concerning with regards to their wider therapeutic applications. The activity of stem cells is mainly regulated by the anatomical niche; where they are placed during their clinical and therapeutic applications. Crosstalk between various niche signals maintains MSCs in homeostasis, in which the WNT signaling pathway plays vital roles. Several external or internal stimuli have been reported to interrupt the normal bioactivity of stem cells. The irreversible tissue loss that occurs during infection at the site of tissue grafting suggests an inhibitory effect mediated by microbial infections within MSC niches. In addition, MSC-seeded tissue engineering success is difficult in various tissues, when sites of injury are under the effects of a severe infection despite the immunomodulatory properties of MSCs. In the present review, the current understanding of the way in which WNT signaling regulates MSC activity modification under physiological and pathological conditions was summarized. An effort was also made to illustrate parts of the underlying mechanism, including the inflammatory factors and their interactions with the regulatory WNT signaling pathway, aiming to promote the clinical translation of MSC-based therapy.
Collapse
Affiliation(s)
- Qingtao Zhang
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Jian Yu
- Department of Stomatology, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| | - Qiuqiu Chen
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Honghai Yan
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Hongjiang Du
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Wenjing Luo
- Department of General Dentistry, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| |
Collapse
|
40
|
Laird NZ, Acri TM, Tingle K, Salem AK. Gene- and RNAi-activated scaffolds for bone tissue engineering: Current progress and future directions. Adv Drug Deliv Rev 2021; 174:613-627. [PMID: 34015421 PMCID: PMC8217358 DOI: 10.1016/j.addr.2021.05.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 01/02/2023]
Abstract
Large bone defects are usually managed by replacing lost bone with non-biological prostheses or with bone grafts that come from the patient or a donor. Bone tissue engineering, as a field, offers the potential to regenerate bone within these large defects without the need for grafts or prosthetics. Such therapies could provide improved long- and short-term outcomes in patients with critical-sized bone defects. Bone tissue engineering has long relied on the administration of growth factors in protein form to stimulate bone regeneration, though clinical applications have shown that using such proteins as therapeutics can lead to concerning off-target effects due to the large amounts required for prolonged therapeutic action. Gene-based therapies offer an alternative to protein-based therapeutics where the genetic material encoding the desired protein is used and thus loading large doses of protein into the scaffolds is avoided. Gene- and RNAi-activated scaffolds are tissue engineering devices loaded with nucleic acids aimed at promoting local tissue repair. A variety of different approaches to formulating gene- and RNAi-activated scaffolds for bone tissue engineering have been explored, and include the activation of scaffolds with plasmid DNA, viruses, RNA transcripts, or interfering RNAs. This review will discuss recent progress in the field of bone tissue engineering, with specific focus on the different approaches employed by researchers to implement gene-activated scaffolds as a means of facilitating bone tissue repair.
Collapse
Affiliation(s)
- Noah Z Laird
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Timothy M Acri
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Kelsie Tingle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
41
|
Zhao DW, Ren B, Wang HW, Zhang X, Yu MZ, Cheng L, Sang YH, Cao SS, Thieringer FM, Zhang D, Wan Y, Liu C. 3D-printed titanium implant combined with interleukin 4 regulates ordered macrophage polarization to promote bone regeneration and angiogenesis. Bone Joint Res 2021; 10:411-424. [PMID: 34259564 PMCID: PMC8333031 DOI: 10.1302/2046-3758.107.bjr-2020-0334.r4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aims The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration. Methods IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic environment for bone marrow mesenchymal stromal cell (BMMSC) osteogenesis and macrophage polarization on the DT. The osteogenic and immune responses of BMMSCs and macrophages were evaluated respectively. Results DT plus 30 ng/ml of IL4 (DT + 30 IL4) from day 3 to day 7 significantly (p < 0.01) enhanced macrophage type 2 polarization and BMMSC osteogenesis compared with the other groups. Local injection of IL4 enhanced new bone formation surrounding the DT. Conclusion DT + 30 IL4 may switch macrophage polarization at the appropriate timepoints to promote bone regeneration. Cite this article: Bone Joint Res 2021;10(7):411–424.
Collapse
Affiliation(s)
- Da-Wang Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China.,Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Stomatology, Shandong University, Jinan, Shandong, China
| | - Bing Ren
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan, China.,National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, China.,Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Hong-Wei Wang
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan, China.,National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Xiao Zhang
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan, China.,National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Ming-Zhi Yu
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan, China.,National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Lei Cheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Yuan-Hua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, China
| | - Shuai-Shuai Cao
- Medical Additive Manufacturing Research Group, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
| | - Florian M Thieringer
- Medical Additive Manufacturing Research Group, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
| | - Dong Zhang
- Institute of Stomatology, Shandong University, Jinan, Shandong, China.,Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Wan
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan, China.,National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Chao Liu
- Institute of Stomatology, Shandong University, Jinan, Shandong, China.,Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
42
|
Gong Y, Li Z, Zou S, Deng D, Lai P, Hu H, Yao Y, Hu L, Zhang S, Li K, Wei T, Zhao X, Xiao G, Chen Z, Jiang Y, Bai X, Zou Z. Vangl2 limits chaperone-mediated autophagy to balance osteogenic differentiation in mesenchymal stem cells. Dev Cell 2021; 56:2103-2120.e9. [PMID: 34214490 DOI: 10.1016/j.devcel.2021.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/04/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
Lysosomes are the recycling center and nutrient signaling hub of the cell. Here, we show that lysosomes also control mesenchymal stem cell (MSC) differentiation by proteomic reprogramming. The chaperone-mediated autophagy (CMA) lysosome subgroup promotes osteogenesis, while suppressing adipogenesis, by selectively removing osteogenesis-deterring factors, especially master transcriptional factors, such as adipogenic TLE3, ZNF423, and chondrogenic SOX9. The activity of the CMA-committed lysosomes in MSCs are controlled by Van-Gogh-like 2 (Vangl2) at lysosomes. Vangl2 directly binds to lysosome-associated membrane protein 2A (LAMP-2A) and targets it for degradation. MSC-specific Vangl2 ablation in mice increases LAMP-2A expression and CMA-lysosome numbers, promoting bone formation while reducing marrow fat. The Vangl2:LAMP-2A ratio in MSCs correlates inversely with the capacity of the cells for osteoblastic differentiation in humans and mice. These findings demonstrate a critical role for lysosomes in MSC lineage acquisition and establish Vangl2-LAMP-2A signaling as a critical control mechanism.
Collapse
Affiliation(s)
- Yan Gong
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziqi Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shitian Zou
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Daizhao Deng
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pinglin Lai
- State Key Laboratory of Organ Failure Research, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Hongling Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yongzhou Yao
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Le Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kai Li
- State Key Laboratory of Organ Failure Research, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Tiantian Wei
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zifeng Chen
- Department of Orthopedic Trauma, Panyu District Central Hospital of Guangzhou, Guangzhou 511400, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.
| | - Zhipeng Zou
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
43
|
Debuque RJ, Nowoshilow S, Chan KE, Rosenthal NA, Godwin JW. Distinct toll-like receptor signaling in the salamander response to tissue damage. Dev Dyn 2021; 251:988-1003. [PMID: 33797128 DOI: 10.1002/dvdy.340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Efficient wound healing or pathogen clearance both rely on balanced inflammatory responses. Inflammation is essential for effective innate immune-cell recruitment; however, excessive inflammation will result in local tissue destruction, pathogen egress, and ineffective pathogen clearance. Sterile and nonsterile inflammation operate with competing functional priorities but share common receptors and overlapping signal transduction pathways. In regenerative organisms such as the salamander, whole limbs can be replaced after amputation while exposed to a nonsterile environment. In mammals, exposure to sterile-injury Damage Associated Molecular Patterns (DAMPS) alters innate immune-cell responsiveness to secondary Pathogen Associated Molecular Pattern (PAMP) exposure. RESULTS Using new phospho-flow cytometry techniques to measure signaling in individual cell subsets we compared mouse to salamander inflammation. These studies demonstrated evolutionarily conserved responses to PAMP ligands through toll-like receptors (TLRs) but identified key differences in response to DAMP ligands. Co-exposure of macrophages to DAMPs/PAMPs suppressed MAPK signaling in mammals, but not salamanders, which activate sustained MAPK stimulation in the presence of endogenous DAMPS. CONCLUSIONS These results reveal an alternative signal transduction network compatible with regeneration that may ultimately lead to the promotion of enhanced tissue repair in mammals.
Collapse
Affiliation(s)
- Ryan J Debuque
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Victoria, Australia
| | - Sergej Nowoshilow
- The Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | | | | | - James W Godwin
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Victoria, Australia.,The Jackson Laboratory, Bar Harbour, Maine, USA.,The MDI Biological Laboratory (MDIBL), Salisbury Cove, Maine, USA
| |
Collapse
|
44
|
Yoshida H, Suzawa T, Shibata Y, Takahashi M, Kawai R, Takami M, Maki K, Kamijo R. Neural crest-derived cells in nasal conchae of adult mice contribute to bone regeneration. Biochem Biophys Res Commun 2021; 554:173-178. [PMID: 33798944 DOI: 10.1016/j.bbrc.2021.03.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/02/2023]
Abstract
Neural crest-derived cells (NCDCs), a class of adult stem cells not restricted to embryonic tissues, are attractive tissue regenerative therapy candidates because of their ease of isolation, self-renewing properties, and multipotency. Although adult NCDCs can undergo osteogenic differentiation in vitro, whether they induce bone formation in vivo remains unclear. Previously, our group reported findings showing high amounts of NCDCs scattered throughout nasal concha tissues of adult mice. In the present study, NCDCs in nasal conchae labeled with enhanced green fluorescent protein (EGFP) were collected from adult P0-Cre/CAG-CAT-EGFP double transgenic mice, then cultured in serum-free medium to increase the number. Subsequently, NCDCs were harvested and suspended in type I atelocollagen gel, then an atelocollagen sponge was used as a scaffold for the cell suspension. Atelocollagen scaffolds with NCDCs were placed on bone defects created in a mouse calvarial bone defect model. Over the ensuing 12 weeks, micro-CT and histological analysis findings showed that mice with scaffolds containing NCDCs had slightly greater bone formation as compared to those with a scaffold alone. Furthermore, Raman spectroscopy revealed spectral properties of bone in mice that received scaffolds with NCDCs similar to those of native calvarial bone. Bone regeneration is important not only for gaining bone mass but also chemical properties. These results are the first to show the validity of biomolecule-free adult nasal concha-derived NCDCs for bone regeneration, including the chemical properties of regenerated bone tissue.
Collapse
Affiliation(s)
- Hiroshi Yoshida
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan; Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Tetsuo Suzawa
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan.
| | - Yo Shibata
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, School of Dentistry, Showa University, Tokyo, Japan
| | - Masahiro Takahashi
- Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Ryota Kawai
- Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Masamichi Takami
- Department of Pharmacology, School of Dentistry, Showa University, Tokyo, Japan
| | - Koutaro Maki
- Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
45
|
Restoration of the healing microenvironment in diabetic wounds with matrix-binding IL-1 receptor antagonist. Commun Biol 2021; 4:422. [PMID: 33772102 PMCID: PMC7998035 DOI: 10.1038/s42003-021-01913-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic wounds are a major clinical problem where wound closure is prevented by pathologic factors, including immune dysregulation. To design efficient immunotherapies, an understanding of the key molecular pathways by which immunity impairs wound healing is needed. Interleukin-1 (IL-1) plays a central role in regulating the immune response to tissue injury through IL-1 receptor (IL-1R1). Generating a knockout mouse model, we demonstrate that the IL-1-IL-1R1 axis delays wound closure in diabetic conditions. We used a protein engineering approach to deliver IL-1 receptor antagonist (IL-1Ra) in a localised and sustained manner through binding extracellular matrix components. We demonstrate that matrix-binding IL-1Ra improves wound healing in diabetic mice by re-establishing a pro-healing microenvironment characterised by lower levels of pro-inflammatory cells, cytokines and senescent fibroblasts, and higher levels of anti-inflammatory cytokines and growth factors. Engineered IL-1Ra has translational potential for chronic wounds and other inflammatory conditions where IL-1R1 signalling should be dampened.
Collapse
|
46
|
Zhang P, Liu X, Guo P, Li X, He Z, Li Z, Stoddart MJ, Grad S, Tian W, Chen D, Zou X, Zhou Z, Liu S. Effect of cyclic mechanical loading on immunoinflammatory microenvironment in biofabricating hydroxyapatite scaffold for bone regeneration. Bioact Mater 2021; 6:3097-3108. [PMID: 33778191 PMCID: PMC7960680 DOI: 10.1016/j.bioactmat.2021.02.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
It has been proven that the mechanical microenvironment can impact the differentiation of mesenchymal stem cells (MSCs). However, the effect of mechanical stimuli in biofabricating hydroxyapatite scaffolds on the inflammatory response of MSCs remains unclear. This study aimed to investigate the effect of mechanical loading on the inflammatory response of MSCs seeded on scaffolds. Cyclic mechanical loading was applied to biofabricate the cell-scaffold composite for 15 min/day over 7, 14, or 21 days. At the predetermined time points, culture supernatant was collected for inflammatory mediator detection, and gene expression was analyzed by qRT-PCR. The results showed that the expression of inflammatory mediators (IL1B and IL8) was downregulated (p < 0.05) and the expression of ALP (p < 0.01) and COL1A1 (p < 0.05) was upregulated under mechanical loading. The cell-scaffold composites biofabricated with or without mechanical loading were freeze-dried to prepare extracellular matrix-based scaffolds (ECM-based scaffolds). Murine macrophages were seeded on the ECM-based scaffolds to evaluate their polarization. The ECM-based scaffolds that were biofabricated with mechanical loading before freeze-drying enhanced the expression of M2 polarization-related biomarkers (Arginase 1 and Mrc1, p < 0.05) of macrophages in vitro and increased bone volume/total volume ratio in vivo. Overall, these findings demonstrated that mechanical loading could dually modulate the inflammatory responses and osteogenic differentiation of MSCs. Besides, the ECM-based scaffolds that were biofabricated with mechanical loading before freeze-drying facilitated the M2 polarization of macrophages in vitro and bone regeneration in vivo. Mechanical loading may be a promising biofabrication strategy for bone biomaterials. Compressive mechanical loading is applied to biofabricate the MSCs-hydroxyapatite composites for bone regeneration. Mechanical loading can modulate the inflammatory responses and osteogenic differentiation of MSCs seeded on scaffold. ECM-based scaffolds from initially loading biofabrication facilitated the M2 polarization of macrophages and bone repair. Mechanical loading may be a promising biofabrication strategy for bone biomaterials.
Collapse
Affiliation(s)
- Penghui Zhang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute /Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute /Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Peng Guo
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute /Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xianlong Li
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute /Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhongyuan He
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute /Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhen Li
- AO Research Institute Davos, Clavadelerstrasse 8, Davos, 7270, Switzerland
| | - Martin J Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, Davos, 7270, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Clavadelerstrasse 8, Davos, 7270, Switzerland
| | - Wei Tian
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing, 100035, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing, 100035, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute /Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhiyu Zhou
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute /Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shaoyu Liu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute /Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
47
|
Cooper TT, Sherman SE, Bell GI, Dayarathna T, McRae DM, Ma J, Lagugné-Labarthet F, Pasternak SH, Lajoie GA, Hess DA. Ultrafiltration and Injection of Islet Regenerative Stimuli Secreted by Pancreatic Mesenchymal Stromal Cells. Stem Cells Dev 2021; 30:247-264. [PMID: 33403929 PMCID: PMC10331161 DOI: 10.1089/scd.2020.0206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
The secretome of mesenchymal stromal cells (MSCs) is enriched for biotherapeutic effectors contained within and independent of extracellular vesicles (EVs) that may support tissue regeneration as an injectable agent. We have demonstrated that the intrapancreatic injection of concentrated conditioned media (CM) produced by bone marrow MSC supports islet regeneration and restored glycemic control in hyperglycemic mice, ultimately providing a platform to elucidate components of the MSC secretome. Herein, we extend these findings using human pancreas-derived MSC (Panc-MSC) as "biofactories" to enrich for tissue regenerative stimuli housed within distinct compartments of the secretome. Specifically, we utilized 100 kDa ultrafiltration as a simple method to debulk protein mass and to enrich for EVs while concentrating the MSC secretome into an injectable volume for preclinical assessments in murine models of blood vessel and islet regeneration. EV enrichment (EV+) was validated using nanoscale flow cytometry and atomic force microscopy, in addition to the detection of classical EV markers CD9, CD81, and CD63 using label-free mass spectrometry. EV+ CM was predominately enriched with mediators of wound healing and epithelial-to-mesenchymal transition that supported functional regeneration in mesenchymal and nonmesenchymal tissues. For example, EV+ CM supported human microvascular endothelial cell tubule formation in vitro and enhanced the recovery of blood perfusion following intramuscular injection in nonobese diabetic/severe combined immunodeficiency mice with unilateral hind limb ischemia. Furthermore, EV+ CM increased islet number and β cell mass, elevated circulating insulin, and improved glycemic control following intrapancreatic injection in streptozotocin-treated mice. Collectively, this study provides foundational evidence that Panc-MSC, readily propagated from the subculture of human islets, may be utilized for regenerative medicine applications.
Collapse
Affiliation(s)
- Tyler T. Cooper
- Department of Physiology and Pharmacology, Western University, London, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
- Don Rix Protein Identification Facility, Department of Biochemistry and Western University, London, Canada
| | - Stephen E. Sherman
- Department of Physiology and Pharmacology, Western University, London, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| | - Gillian I. Bell
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| | - Thamara Dayarathna
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| | | | - Jun Ma
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
- Don Rix Protein Identification Facility, Department of Biochemistry and Western University, London, Canada
| | | | - Stephen H. Pasternak
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| | - Gilles A. Lajoie
- Don Rix Protein Identification Facility, Department of Biochemistry and Western University, London, Canada
| | - David A. Hess
- Department of Physiology and Pharmacology, Western University, London, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Canada
| |
Collapse
|
48
|
Darzi S, Paul K, Leitan S, Werkmeister JA, Mukherjee S. Immunobiology and Application of Aloe Vera-Based Scaffolds in Tissue Engineering. Int J Mol Sci 2021; 22:1708. [PMID: 33567756 PMCID: PMC7915752 DOI: 10.3390/ijms22041708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Aloe vera (AV), a succulent plant belonging to the Liliaceae family, has been widely used for biomedical and pharmaceutical application. Its popularity stems from several of its bioactive components that have anti-oxidant, anti-microbial, anti-inflammatory and even immunomodulatory effects. Given such unique multi-modal biological impact, AV has been considered as a biomaterial for regenerative medicine and tissue engineering applications, where tissue repair and neo-angiogenesis are vital. This review outlines the growing scientific evidence that demonstrates the advantage of AV as tissue engineering scaffolds. We particularly highlight the recent advances in the application of AV-based scaffolds. From a tissue engineering perspective, it is pivotal that the implanted scaffolds strike an appropriate foreign body response to be well-accepted in the body without complications. Herein, we highlight the key cellular processes that regulate the foreign body response to implanted scaffolds and underline the immunomodulatory effects incurred by AV on the innate and adaptive system. Given that AV has several beneficial components, we discuss the importance of delving deeper into uncovering its action mechanism and thereby improving material design strategies for better tissue engineering constructs for biomedical applications.
Collapse
Affiliation(s)
- Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.D.); (K.P.); (S.L.); (J.A.W.)
| | - Kallyanashis Paul
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.D.); (K.P.); (S.L.); (J.A.W.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Shanilka Leitan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.D.); (K.P.); (S.L.); (J.A.W.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Jerome A. Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.D.); (K.P.); (S.L.); (J.A.W.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.D.); (K.P.); (S.L.); (J.A.W.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| |
Collapse
|
49
|
Zhang X, Weng M, Chen Z. Fibroblast Growth Factor 9 (FGF9) negatively regulates the early stage of chondrogenic differentiation. PLoS One 2021; 16:e0241281. [PMID: 33529250 PMCID: PMC7853451 DOI: 10.1371/journal.pone.0241281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/12/2020] [Indexed: 01/02/2023] Open
Abstract
Fibroblast growth factor signaling is essential for mammalian bone morphogenesis and growth, involving membranous ossification and endochondral ossification. FGF9 has been shown to be an important regulator of endochondral ossification; however, its role in the early differentiation of chondrocytes remains unknown. Therefore, in this study, we aimed to determine the role of FGF9 in the early differentiation of chondrogenesis. We found an increase in FGF9 expression during proliferating chondrocyte hypertrophy in the mouse growth plate. Silencing of FGF9 promotes the growth of ATDC5 cells and promotes insulin-induced differentiation of ATDC5 chondrocytes, which is due to increased cartilage matrix formation and type II collagen (col2a1) and X (col10a1), Acan, Ihh, Mmp13 gene expression. Then, we evaluated the effects of AKT, GSK-3β, and mTOR. Inhibition of FGF9 significantly inhibits phosphorylation of AKT and GSK-3β, but does not affected the activation of mTOR. Furthermore, phosphorylation of inhibited AKT and GSK-3β was compensated using the AKT activator SC79, and differentiation of ATDC5 cells was inhibited. In conclusion, our results indicate that FGF9 acts as an important regulator of early chondrogenesis partly through the AKT/GSK-3β pathway.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Department of Orthodontics, The Affiliated Stomatology Hospital of Tongji University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Mengjia Weng
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenqi Chen
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
50
|
Han L, Gong S, Wang R, Liu S, Wang B, Chen G, Gong T, Xu W. Knockdown of POSTN Inhibits Osteogenic Differentiation of Mesenchymal Stem Cells From Patients With Steroid-Induced Osteonecrosis. Front Cell Dev Biol 2021; 8:606289. [PMID: 33409280 PMCID: PMC7779561 DOI: 10.3389/fcell.2020.606289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Steroid-induced osteonecrosis of femoral head (SONFH) is a common and serious complication caused by long-term and/or excessive use of glucocorticoids (GCs). The decreased activity and abnormal differentiation of bone marrow mesenchymal stem cells (BMSCs) are considered to be one of the major reasons for the onset and progression of this disease. Periostin (POSTN) is a matricellular protein which plays an important role in regulating osteoblast function and bone formation. Sclerostin (SOST) is a secreted antagonist of Wnt signaling that is mainly expressed in osteocytes to inhibit bone formation. However, the exact role of POSTN and SOST in SONFH has not been reported yet. Therefore, we detected the differential expression of POSTN and SOST in BMSCs of SONFH Group patients, and Control Group was patients with traumatic ONFH (TONFH) and developmental dysplasia of the hip (DDH). Furthermore, we used lentiviral transfection to knockdown POSTN expression in BMSCs of patients with SONFH to study the effect of POSTN knockdown on the SOST expression and osteogenic differentiation of BMSCs. The results indicated that the endogenous expression of POSTN and SOST in BMSCs of SONFH Group was upregulated, compared with Control Group. POSTN was upregulated gradually while SOST was downregulated gradually at days 0, 3, and 7 of osteogenic differentiation of BMSCs in Control Group. Contrarily, POSTN was gradually downregulated while SOST was gradually upregulated during osteogenic differentiation of BMSCs in SONFH Group. This could be due to increased expression of SOST in BMSCs, which was caused by excessive GCs. In turn, the increased expression of POSTN in BMSCs may play a role in antagonizing the continuous rising of SOST during the osteogenic differentiation of BMSCs in patients with SONFH. POSTN knockdown significantly attenuated osteo-specific gene expression, alkaline phosphatase activity, and calcium nodule formation in vitro; thus inhibiting the osteogenic differentiation of BMSCs in patients with SONFH. Besides, POSTN knockdown upregulated SOST expression, increased GSK-3β activity, and downregulated β-catenin. These findings suggest that POSTN have an essential role in regulating the expression of SOST and osteogenic differentiation of BMSCs in patients with SONFH, and POSTN knockdown suppresses osteogenic differentiation by upregulating SOST and partially inactivating Wnt/β-catenin signaling pathway. Therefore, targeting POSTN and SOST may serve as a promising therapeutic target for the prevention and treatment of SONFH.
Collapse
Affiliation(s)
- Lizhi Han
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Gong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruoyu Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaokai Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Wang
- Department of Rehabilitation, Wuhan No.1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Guo Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianlun Gong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihua Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|