1
|
Garg R, Jaiswal M, Kumar K, Kaur K, Rawat B, Kailasam K, Gautam UK. Extending conducting channels in Fe-N-C by interfacial growth of CNTs with minimal metal loss for efficient ORR electrocatalysis. NANOSCALE 2023; 15:15590-15599. [PMID: 37728049 DOI: 10.1039/d3nr02706f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Achieving a high electrocatalytic performance using a completely metal-free electrocatalyst, preferably based on only carbonaceous materials, remains a challenge. Alternatively, an efficient composite of a carbon nanostructure and a non-noble metal with minimum dependence on a metal holds immense potential. Although single-atom catalysis brings superior performance, its complex synthetic strategy limits its large-scale implementation. Previous investigation has shown that atomic dispersion (Fe-Nx-C) is accompanied by higher metal-loss compared to nanoparticle formation (Fe-NPs-N-C). Therefore, to achieve minimum metal loss, we first incorporated iron nanoparticles (Fe NPs) to N-doped carbon (N-C) and then exposed them to a cheap carbon source, melamine at high temperature, resulting in the growth of carbon nanotubes (CNTs) catalysed by those Fe NPs loaded on N-C (Fe-NPs-N-C). Thermogravimetric analysis showed that the metal-retention in the composite is higher than that in the bare carbon nanotube and even the atomically dispersed Fe-active sites on N-C. The composite material (Fe-NPs-N-C/CNT) shows a high half-wave potential (0.89 V vs. RHE) which is superior to that of commercial Pt/C towards the oxygen reduction reaction (ORR). The enhanced activity is attributed to the synergistic effect of high conductivity of CNTs and active Fe-sites as the composite exceeds the individual electrocatalytic performance shown by Fe-CNTs & Fe-NPs-N-C, and even that of atomically dispersed Fe-active sites on N-C.
Collapse
Affiliation(s)
- Reeya Garg
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali 140306, Punjab, India.
| | - Mohit Jaiswal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali 140306, Punjab, India.
| | - Kaustubh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali 140306, Punjab, India.
| | - Komalpreet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali 140306, Punjab, India.
| | - Bhawna Rawat
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Manauli, SAS Nagar, 140306 Mohali, Punjab, India
| | - Kamalakannan Kailasam
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Manauli, SAS Nagar, 140306 Mohali, Punjab, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali 140306, Punjab, India.
| |
Collapse
|
2
|
Xue J, Han C, Yang Y, Xu S, Li Q, Nie H, Qian J, Yang Z. Partially Oxidized Carbon Nanomaterials with Ni/NiO Heterostructures as Durable Glucose Sensors. Inorg Chem 2023; 62:3288-3296. [PMID: 36735285 DOI: 10.1021/acs.inorgchem.2c04445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Conventional enzyme-based glucose biosensors have limited extensive applications in daily life because glucose oxidase is easily inactivated and is expensive. In this paper, we propose a strategy to prepare a new type of cost-effective, efficient, and robust nonenzymatic Ni-CNT-O for electrochemical glucose sensing. It is first followed by the pyrolysis of Ni-ABDC nanostrips using melamine to grow carbon nanotubes (CNTs) to give an intermediate product of Ni-CNT, which is further accompanied by partial oxidation to enable the facile formation of hierarchical carbon nanomaterials with improved hydrophilicity. A series of physicochemical characterizations have fully proved that Ni-CNT-O is a carbon-coated heterostructure of Ni and NiO nanoparticles embedded into coordination polymer-derived porous carbons. The obtained Ni-CNT-O exhibits a better electrocatalytic activity for glucose oxidation stemming from the synergistic effect of a metal element and a metal oxide than unoxidized Ni-CNT, which also shows high performance with a wide linear range from 1 to 3000 μM. It also offers a high sensitivity of 79.4 μA mM-1 cm-2, a low detection limit of 500 nM (S/N = 3), and a satisfactory long-term durability. Finally, this glucose sensor exhibits good reproducibility, high selectivity, as well as satisfactory results by comparing the current response of simulated serum within egg albumen.
Collapse
Affiliation(s)
- Jinhang Xue
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, P. R. China.,Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Cheng Han
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, P. R. China
| | - Yuandong Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, P. R. China.,Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325000, P. R. China
| | - Shaojie Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, P. R. China
| | - Qipeng Li
- Science and Technology Department, College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, Yunnan 657000, P. R. China
| | - Huagui Nie
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, P. R. China
| | - Jinjie Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, P. R. China
| | - Zhi Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, P. R. China
| |
Collapse
|
3
|
Kharlamova MV, Kramberger C. Metallocene-Filled Single-Walled Carbon Nanotube Hybrids. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:774. [PMID: 36839142 PMCID: PMC9962040 DOI: 10.3390/nano13040774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
In this paper, the growth mechanism, structure, growth processes, growth kinetics, and optical, vibronic and electronic properties of metallocene-filled single-walled carbon nanotubes (SWCNTs) are considered. A description of the procedures used to fill the nanotubes is provided. An investigation of doping effects on metallicity-mixed SWCNTs filled with metallocenes by Raman spectroscopy, near edge X-ray absorption fine structure spectroscopy, photoemission spectroscopy, and optical absorption spectroscopy is described. The studies of doping effects on metallicity-sorted SWCNTs filled with metallocenes are discussed. Doping effects in metallicity-mixed and sorted SWCNTs upon the chemical transformation of encapsulated molecules are analyzed. A discussion of the modification of the electronic properties of filled SWCNTs is presented. Applications of metallocene-filled SWCNTs in electrochemistry, thermoelectric power generation, chemical sensors, and magnetic recording are discussed.
Collapse
Affiliation(s)
- Marianna V. Kharlamova
- Centre for Advanced Materials Application (CEMEA), Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 11 Bratislava, Slovakia
| | - Christian Kramberger
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
4
|
Diko CS, Abitonze M, Liu Y, Zhu Y, Yang Y. Synthesis and Applications of Dimensional SnS 2 and SnS 2/Carbon Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4497. [PMID: 36558350 PMCID: PMC9786647 DOI: 10.3390/nano12244497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Dimensional nanomaterials can offer enhanced application properties benefiting from their sizes and morphological orientations. Tin disulfide (SnS2) and carbon are typical sources of dimensional nanomaterials. SnS2 is a semiconductor with visible light adsorption properties and has shown high energy density and long cycle life in energy storage processes. The integration of SnS2 and carbon materials has shown enhanced visible light absorption and electron transmission efficiency. This helps to alleviate the volume expansion of SnS2 which is a limitation during energy storage processes and provides a favorable bandgap in photocatalytic degradation. Several innovative approaches have been geared toward controlling the size, shape, and hybridization of SnS2/Carbon composite nanostructures. However, dimensional nanomaterials of SnS2 and SnS2/Carbon have rarely been discussed. This review summarizes the synthesis methods of zero-, one-, two-, and three-dimensional SnS2 and SnS2/Carbon composite nanomaterials through wet and solid-state synthesis strategies. Moreover, the unique properties that promote their advances in photocatalysis and energy conversion and storage are discussed. Finally, some remarks and perspectives on the challenges and opportunities for exploring advanced SnS2/Carbon nanomaterials are presented.
Collapse
Affiliation(s)
| | - Maurice Abitonze
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yining Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yimin Zhu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yan Yang
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian 116045, China
| |
Collapse
|
5
|
Alamri M, Liu B, Berrie CL, Walsh M, Wu JZ. Probing the role of CNTs in Pt nanoparticle/CNT/graphene nanohybrids H 2 sensors. NANO EXPRESS 2022. [DOI: 10.1088/2632-959x/ac843d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
In the carbon nanotubes film/graphene heterostructure decorated with catalytic Pt nanoparticles using atomic layer deposition (Pt-NPs/CNTs/Gr) H2 sensors, the CNT film determines the effective sensing area and the signal transport to Gr channel. The former requires a large CNT aspect ratio for a higher sensing area while the latter demands high electric conductivity for efficient charge transport. Considering the CNT’s aspect ratio decreases, while its conductivity increases (i.e., bandgap decreases), with the CNT diameter, it is important to understand how quantitatively these effects impact the performance of the Pt-NPs/CNTs/Gr nanohybrids sensors. Motivated by this, this work presents a systematic study of the Pt-NPs/CNTs/Gr H2 sensor performance with the CNT films made from different constituent CNTs of diameters ranging from 1 nm for single-wall CNTs, to 2 nm for double-wall CNTs, and to 10–30 nm for multi-wall CNTs (MWCNTs). By measuring the morphology and electric conductivity of SWCNT, DWCNT and MWCNT films, this work aims to reveal the quantitative correlation between the sensor performance and relevant CNT properties. Interestingly, the best performance is obtained on Pt-NPs/MWCNTs/Gr H2 sensors, which can be attributed to the compromise of the effective sensing area and electric conductivity on MWCNT films and illustrates the importance of optimizing sensor design.
Collapse
|
6
|
Li X, Zhang F, Zhang L, Ji ZH, Zhao YM, Xu ZW, Wang Y, Hou PX, Tian M, Zhao HB, Jiang S, Ping LQ, Cheng HM, Liu C. Kinetics-Controlled Growth of Metallic Single-Wall Carbon Nanotubes from CoRe x Nanoparticles. ACS NANO 2022; 16:232-240. [PMID: 34995440 DOI: 10.1021/acsnano.1c05969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The controlled growth of metallic single-wall carbon nanotubes (m-SWCNTs) is very important for the fabrication of high-performance interconnecting wires, transparent conductive electrodes, light and conductive fibers, etc. However, it has been extremely difficult to synthesize m-SWCNTs due to their lower abundance and higher chemical reactivity than semiconducting SWCNTs (s-SWCNTs). Here, we report the kinetically controlled growth of m-SWCNTs by manipulating their binding energy with the catalyst and promoting their growth rate. We prepared CoRe4 nanoparticles with a hexagonal close-packed structure and an average size of ∼2.3 nm, which have a lower binding energy with m-SWCNTs than with s-SWCNTs. The selective growth of m-SWCNTs from the CoRe4 catalyst was achieved by using a low concentration of carbon source feed at a relative low temperature of 760 °C. The m-SWCNTs had a narrow diameter distribution of 1.1 ± 0.3 nm, and their content was over 80%.
Collapse
Affiliation(s)
- Xin Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences (IMR), Shenyang 110016, P.R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Feng Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences (IMR), Shenyang 110016, P.R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Lili Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences (IMR), Shenyang 110016, P.R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Zhong-Hai Ji
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences (IMR), Shenyang 110016, P.R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Yi-Ming Zhao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences (IMR), Shenyang 110016, P.R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Zi-Wei Xu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Yang Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences (IMR), Shenyang 110016, P.R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Peng-Xiang Hou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences (IMR), Shenyang 110016, P.R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Min Tian
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences (IMR), Shenyang 110016, P.R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Hai-Bo Zhao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences (IMR), Shenyang 110016, P.R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Song Jiang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences (IMR), Shenyang 110016, P.R. China
| | - Lin-Quan Ping
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences (IMR), Shenyang 110016, P.R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences (IMR), Shenyang 110016, P.R. China
- School of Materials Science and Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences (IMR), Shenyang 110016, P.R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
7
|
Lin D, Yu Y, Li L, Zou M, Zhang J. Growth of Semiconducting Single-Walled Carbon Nanotubes Array by Precisely Inhibiting Metallic Tubes Using ZrO 2 Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006605. [PMID: 33522113 DOI: 10.1002/smll.202006605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Synthesis of high-quality single-walled carbon nanotubes arrays with pure semiconducting type is crucial for the fabrication of integrated circuits in nanoscale. However, the naturally grown carbon nanotubes usually have diverse structures and properties. Here the bicomponent catalyst using Au and ZrO2 is designed and prepared. The Au nanoparticle serves as the catalysts for carbon feedstock cracking and facilitating the nucleation of carbon nanotubes, whereas the close-connected ZrO2 forms a localized etching zone around Au by releasing lattice oxygen and to inhibit the nucleation of metallic carbon nanotubes precisely. The obtained single-walled carbon nanotubes array show a high semiconducting content of >96%, on the basis of good performance of field-effect transistor devices. And such building of localized etching zone is compatible with other catalyst systems as a universal and efficient method for the scalable production of semiconducting carbon nanotubes.
Collapse
Affiliation(s)
- Dewu Lin
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yue Yu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lanying Li
- China Bluestar Chengrand Chemical Co. Ltd., 4th Xinghua Road, Xinjin Industry Zone B, Chengdu, 611430, P. R. China
| | - Mingzhi Zou
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
8
|
Yang X, Liu T, Li R, Yang X, Lyu M, Fang L, Zhang L, Wang K, Zhu A, Zhang L, Qiu C, Zhang YZ, Wang X, Peng LM, Yang F, Li Y. Host-Guest Molecular Interaction Enabled Separation of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes. J Am Chem Soc 2021; 143:10120-10130. [PMID: 34105955 DOI: 10.1021/jacs.1c02245] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Semiconducting single-walled carbon nanotubes (s-SWCNTs) with a diameter of around 1.0-1.5 nm, which present bandgaps comparable to silicon, are highly desired for electronic applications. Therefore, the preparation of s-SWCNTs of such diameters has been attracting great attention. The inner surface of SWCNTs has a suitable curvature and large contacting area, which is attractive in host-guest chemistry triggered by electron transfer. Here we reported a strategy of host-guest molecular interaction between SWCNTs and inner clusters with designed size, thus selectively separating s-SWCNTs of expected diameters. When polyoxometalate clusters of ∼1 nm in size were filled in the inner cavities of SWCNTs, s-SWCNTs with diameters concentrated at ∼1.3-1.4 nm were selectively extracted with the purity of ∼98% by a commercially available polyfluorene derivative. The field-effect transistors built from the sorted s-SWCNTs showed a typical behavior of semiconductors. The sorting mechanisms associated with size-dependent electron transfer from nanotubes to inner polyoxometalate were revealed by the spectroscopic and in situ electron microscopic evidence as well as the theoretical calculation. The polyoxometalates with designable size and redox property enable the flexible regulation of interaction between the nanotubes and the clusters, thus tuning the diameter of sorted s-SWCNTs. The present sorting strategy is simple and should be generally feasible in other SWCNT sorting techniques, bringing both great easiness in dispersant design and improved selectivity.
Collapse
Affiliation(s)
- Xusheng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tianhui Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruoming Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaoxin Yang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Min Lyu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Li Fang
- Department of Electronics, Peking University, Beijing 100871, China
| | - Lei Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kun Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Anquan Zhu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Luyao Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chenguang Qiu
- Department of Electronics, Peking University, Beijing 100871, China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao Wang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lian-Mao Peng
- Department of Electronics, Peking University, Beijing 100871, China
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking University Shenzhen Institute, Shenzhen 518057, China.,PKU-HKUST ShenZhen-HongKong Institution, Shenzhen 518055, China
| |
Collapse
|
9
|
Wang Y, Qiu L, Zhang L, Tang DM, Ma R, Wang Y, Zhang B, Ding F, Liu C, Cheng HM. Precise Identification of the Active Phase of Cobalt Catalyst for Carbon Nanotube Growth by In Situ Transmission Electron Microscopy. ACS NANO 2020; 14:16823-16831. [PMID: 33275403 DOI: 10.1021/acsnano.0c05542] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Revealing the active phase and structure of catalyst nanoparticles (NPs) is crucial for understanding the growth mechanism and realizing the controlled synthesis of carbon nanotubes (CNTs). However, due to the high temperature and complex environment during CNT growth, precise identification of the active catalytic phase remains a great challenge. We investigated the phase evolution of cobalt (Co) catalyst NPs during the incubation, nucleation, and growth stages of CNTs under near-atmospheric pressure using an in situ close-cell environmental transmission electron microscope (ETEM). Strict statistical analysis of the electron diffractograms was performed to accurately identify the phases of the catalyst NPs. It was found that the NPs belong to an orthorhombic Co3C phase that remained unchanged during CNT growth, with errors in lattice spacing <5% and in angle <2°, despite changes in their morphology and orientation. Theoretical calculations further confirm that Co3C is the thermodynamically preferred phase during CNT growth, with the supply of carbon atoms through the surface and NP-CNT interfacial diffusion.
Collapse
Affiliation(s)
- Yang Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China (USTC), 72 Wenhua Road, Shenyang 110016, China
| | - Lu Qiu
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
- Center for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, South Korea
| | - Lili Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Dai-Ming Tang
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Ruixue Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China (USTC), 72 Wenhua Road, Shenyang 110016, China
| | - Yongzhao Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China (USTC), 72 Wenhua Road, Shenyang 110016, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Feng Ding
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
- Center for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan 44919, South Korea
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, 1001 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
10
|
He M, Zhang S, Zhang J. Horizontal Single-Walled Carbon Nanotube Arrays: Controlled Synthesis, Characterizations, and Applications. Chem Rev 2020; 120:12592-12684. [PMID: 33064453 DOI: 10.1021/acs.chemrev.0c00395] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Single-walled carbon nanotubes (SWNTs) emerge as a promising material to advance carbon nanoelectronics. However, synthesizing or assembling pure metallic/semiconducting SWNTs required for interconnects/integrated circuits, respectively, by a conventional chemical vapor deposition method or by an assembly technique remains challenging. Recent studies have shown significant scientific breakthroughs in controlled SWNT synthesis/assembly and applications in scaled field effect transistors, which are a critical component in functional nanodevices, thereby rendering the horizontal SWNT array an important candidate for innovating nanotechnology. This review provides a comprehensive analysis of the controlled synthesis, surface assembly, characterization techniques, and potential applications of horizontally aligned SWNT arrays. This review begins with the discussion of synthesis of horizontally aligned SWNTs with regulated direction, density, structure, and theoretical models applied to understand the growth results. Several traditional procedures applied for assembling SWNTs on target surface are also briefly discussed. It then discusses the techniques adopted to characterize SWNTs, ranging from electron/probe microscopy to various optical spectroscopy methods. Prototype applications based on the horizontally aligned SWNTs, such as interconnects, field effect transistors, integrated circuits, and even computers, are subsequently described. Finally, this review concludes with challenges and a brief outlook of the future development in this research field.
Collapse
Affiliation(s)
- Maoshuai He
- State Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuchen Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Quan X, Sun Z, Xu J, Liu S, Han Y, Xu Y, Meng H, Wu J, Zhang X. Construction of an Aminated MIL-53(Al)-Functionalized Carbon Nanotube for the Efficient Removal of Bisphenol AF and Metribuzin. Inorg Chem 2020; 59:2667-2679. [PMID: 32081001 DOI: 10.1021/acs.inorgchem.9b02841] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A versatile organic-inorganic hybrid structure makes a metal-organic framework (MOF) an outstanding host for different kinds of guests; in addition, its easy pyrolysis nature has been proven to be useful as precursors in the construction of carbon-based materials with a special porous structure. Herein, a novel porous composite nanostructure of an aminated MIL-53(Al)@carbon nanotube (CNT) has been successfully constructed for the first time based on in situ synthesis combining the pyrolysis of ZIF-67. The resulting composite nanostructure was performed by the means of scanning electron microscopy, Brunauer-Emmett-Teller analysis, typical and high-resolution transmission electronic microscopy, X-ray photoelectron spectroscopy, etc. The results showed that a compact heterostructure has been formed between an aminated MIL-53(Al) and a CNT. The resulting composites, named N-MIL@CNT, represent distinct promoted activities in the removal of Bisphenol AF (BPAF) and Metribuzin from wastewater, and the maximum adsorption values were 274 mg/g (BPAF) and 213 mg/g (Metribuzin), which are larger than the results obtained by other MOF-based nanomaterials. The adsorption isotherm, kinetics, and thermodynamics were studied in detail, and the selective adsorption mechanism was also suggested. The excellent selectivity, reusability, and structure stability suggest the potential application of this composite nanostructure in the selective removal of BPAF or Metribuzin from the practical wastewater.
Collapse
Affiliation(s)
- Xueping Quan
- Faculty of Chemistry, Northeastern University, Liaoning 110819, P. R. China
| | - Zhongqiao Sun
- Faculty of Chemistry, Northeastern University, Liaoning 110819, P. R. China
| | - Junli Xu
- Faculty of Chemistry, Northeastern University, Liaoning 110819, P. R. China
| | - Siyang Liu
- Faculty of Chemistry, Northeastern University, Liaoning 110819, P. R. China
| | - Yide Han
- Faculty of Chemistry, Northeastern University, Liaoning 110819, P. R. China
| | - Yan Xu
- Faculty of Chemistry, Northeastern University, Liaoning 110819, P. R. China
| | - Hao Meng
- Faculty of Chemistry, Northeastern University, Liaoning 110819, P. R. China
| | - Junbiao Wu
- Faculty of Chemistry, Northeastern University, Liaoning 110819, P. R. China
| | - Xia Zhang
- Faculty of Chemistry, Northeastern University, Liaoning 110819, P. R. China
| |
Collapse
|
12
|
Yang F, Wang M, Zhang D, Yang J, Zheng M, Li Y. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chem Rev 2020; 120:2693-2758. [PMID: 32039585 DOI: 10.1021/acs.chemrev.9b00835] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been attracting tremendous attention owing to their structure (chirality) dependent outstanding properties, which endow them with great potential in a wide range of applications. The preparation of chirality-pure SWCNTs is not only a great scientific challenge but also a crucial requirement for many high-end applications. As such, research activities in this area over the last two decades have been very extensive. In this review, we summarize recent achievements and accumulated knowledge thus far and discuss future developments and remaining challenges from three aspects: controlled growth, postsynthesis sorting, and characterization techniques. In the growth part, we focus on the mechanism of chirality-controlled growth and catalyst design. In the sorting part, we organize and analyze existing literature based on sorting targets rather than methods. Since chirality assignment and quantification is essential in the study of selective preparation, we also include in the last part a comprehensive description and discussion of characterization techniques for SWCNTs. It is our view that even though progress made in this area is impressive, more efforts are still needed to develop both methodologies for preparing ultrapure (e.g., >99.99%) SWCNTs in large quantity and nondestructive fast characterization techniques with high spatial resolution for various nanotube samples.
Collapse
Affiliation(s)
- Feng Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Daqi Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Juan Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Miao Y, Wu C, Guan L. High-efficient and environmentally friendly enrichment of semiconducting single-walled carbon nanotubes by combining short-time electrochemical pre-oxidation and combustion. NANOTECHNOLOGY 2019; 30:355603. [PMID: 31035260 DOI: 10.1088/1361-6528/ab1dbc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High purity semiconducting single-walled carbon nanotubes (s-SWCNTs) have bright prospects in the field of microelectronics, but their enrichment processes are usually very complicated and cost time and energy, which represent a major impediment for their future applications. Here, we report on a new efficient covalent modification enrichment approach that tackles this problem. Our method is to first selectively functionalize the surface of arc-discharge metallic single-walled carbon nanotubes (m-SWCNTs) rapidly by electrochemical pre-oxidation at 7.0 V in 0.1 M KCl aqueous solution, and subsequently followed up by removing the m-SWCNTs with a short-time combustion process at 600 °C for 30 s to enrich high purity s-SWCNTs. Although the surface of the s-SWCNTs was functionalized and heat-treated, the intrinsic tubular structure and electronic characteristics were well maintained. Besides, our approach, without any complex equipment or toxic reagents, is energy and time saving and can be easily scaled up. Milligrams of high-quality s-SWCNTs with high purity of more than 95 wt% can be easily obtained in only several minutes. The retention rate of s-SWCNTs after combustion is as high as 61 wt%.
Collapse
Affiliation(s)
- Yuming Miao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | |
Collapse
|
14
|
Venkataraman A, Amadi EV, Chen Y, Papadopoulos C. Carbon Nanotube Assembly and Integration for Applications. NANOSCALE RESEARCH LETTERS 2019; 14:220. [PMID: 31263975 PMCID: PMC6603253 DOI: 10.1186/s11671-019-3046-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/10/2019] [Indexed: 05/02/2023]
Abstract
Carbon nanotubes (CNTs) have attracted significant interest due to their unique combination of properties including high mechanical strength, large aspect ratios, high surface area, distinct optical characteristics, high thermal and electrical conductivity, which make them suitable for a wide range of applications in areas from electronics (transistors, energy production and storage) to biotechnology (imaging, sensors, actuators and drug delivery) and other applications (displays, photonics, composites and multi-functional coatings/films). Controlled growth, assembly and integration of CNTs is essential for the practical realization of current and future nanotube applications. This review focuses on progress to date in the field of CNT assembly and integration for various applications. CNT synthesis based on arc-discharge, laser ablation and chemical vapor deposition (CVD) including details of tip-growth and base-growth models are first introduced. Advances in CNT structural control (chirality, diameter and junctions) using methods such as catalyst conditioning, cloning, seed-, and template-based growth are then explored in detail, followed by post-growth CNT purification techniques using selective surface chemistry, gel chromatography and density gradient centrifugation. Various assembly and integration techniques for multiple CNTs based on catalyst patterning, forest growth and composites are considered along with their alignment/placement onto different substrates using photolithography, transfer printing and different solution-based techniques such as inkjet printing, dielectrophoresis (DEP) and spin coating. Finally, some of the challenges in current and emerging applications of CNTs in fields such as energy storage, transistors, tissue engineering, drug delivery, electronic cryptographic keys and sensors are considered.
Collapse
Affiliation(s)
- Anusha Venkataraman
- Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2 Canada
| | - Eberechukwu Victoria Amadi
- Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2 Canada
| | - Yingduo Chen
- Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2 Canada
| | - Chris Papadopoulos
- Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2 Canada
| |
Collapse
|
15
|
Zhang S, Wang X, Yao F, He M, Lin D, Ma H, Sun Y, Zhao Q, Liu K, Ding F, Zhang J. Controllable Growth of (n, n −1) Family of Semiconducting Carbon Nanotubes. Chem 2019. [DOI: 10.1016/j.chempr.2019.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Shi J, Chu H, Li Y, Zhang X, Pan H, Li D. Synthesis and nonlinear optical properties of semiconducting single-walled carbon nanotubes at 1 μm. NANOSCALE 2019; 11:7287-7292. [PMID: 30933201 DOI: 10.1039/c8nr10174d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein, we synthesized and extracted pure semiconducting single-walled carbon nanotubes (s-SWCNTs). Moreover, the nonlinear optical (NLO) properties, such as saturable absorption, two-photon absorption coefficient, modulation depth and optical limitation, of s-SWCNTs were experimentally determined using a high-energy 1064 nm nanosecond (ns) laser. Compared with the common SWCNTs, the s-SWCNTs demonstrated lower saturation intensity and lower two-photon absorption (TPA) coefficient. The modulation depth of the s-SWCNTs was as high as 8.6%. Based on these parameters, the s-SWCNTs can be used as excellent saturable absorbers in pulsed laser applications.
Collapse
Affiliation(s)
- Jichao Shi
- School of Information Science and Engineering, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China.
| | | | | | | | | | | |
Collapse
|
17
|
Forel S, Castan A, Amara H, Florea I, Fossard F, Catala L, Bichara C, Mallah T, Huc V, Loiseau A, Cojocaru CS. Tuning bimetallic catalysts for a selective growth of SWCNTs. NANOSCALE 2019; 11:4091-4100. [PMID: 30785462 DOI: 10.1039/c8nr09589b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent advances in structural control during the synthesis of SWCNTs have in common the use of bimetallic nanoparticles as catalysts, despite the fact that their exact role is not fully understood. We therefore analyze the effect of the catalyst's chemical composition on the structure of the resulting SWCNTs by comparing three bimetallic catalysts (FeRu, CoRu and NiRu). A specific synthesis protocol is designed to impede the catalyst nanoparticle coalescence mechanisms and stabilize their diameter distributions throughout the growth. Owing to the ruthenium component which has a limited carbon solubility, tubes grow in tangential mode and their diameter is close to that of their seeding nanoparticles. By using the as-synthesized SWCNTs as a channel material infield effect transistors, we show how the chemical composition of the catalysts and temperature can be used as parameters to tune the diameter distribution and semiconducting-to-metallic ratio of SWCNT samples. Finally, a phenomenological model, based on the dependence of the carbon solubility as a function of catalyst nanoparticle size and nature of the alloying elements, is proposed to interpret the results.
Collapse
Affiliation(s)
- Salomé Forel
- Laboratoire de Physique des Interfaces et des Couches Minces, CNRS, Ecole Polytechnique, 91128, Palaiseau Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Miao Y, Wu C, Guan L. Enrichment of semiconducting single-walled carbon nanotubes by simple equipment and solar radiation. NANOTECHNOLOGY 2019; 30:06LT01. [PMID: 30524085 DOI: 10.1088/1361-6528/aaf1f6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High-purity semiconducting (s-) single-walled carbon nanotubes (SWCNTs) have great potential to replace silicon-based materials for microelectronic devices. However, the enrichment methods of s-SWCNTs usually required complex devices and non-renewable energy. In this study, instead of a traditional heating method, renewable solar was employed to dramatically increase the heating rate and improve the reaction to be simple and more controllable, thereby water was successfully used to selectively etch metallic (m-) SWCNTs. In this work, purified SWCNTs films were wetted by water and then exposed to focused solar radiation, causing the surface temperature of the SWCNT films to reach about 800 °C within 2 s. In this case, the m-SWCNTs could be selectively etched by water rapidly. Finally, s-SWCNTs with a purity of about 95 wt% were obtained in several minutes without any complex devices or non-renewable energy.
Collapse
Affiliation(s)
- Yuming Miao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | |
Collapse
|
19
|
Xu Q, Li W, Ding L, Yang W, Xiao H, Ong WJ. Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. NANOSCALE 2019; 11:1475-1504. [PMID: 30620019 DOI: 10.1039/c8nr08738e] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Metal-free carbonaceous nanomaterials have witnessed a renaissance of interest due to the surge in the realm of nanotechnology. Among myriads of carbon-based nanostructures with versatile dimensionality, one-dimensional (1D) carbon nanotubes (CNTs) and zero-dimensional (0D) carbon dots (CDs) have grown into a research frontier in the past few decades. With extraordinary mechanical, thermal, electrical and optical properties, CNTs are utilized in transparent displays, quantum wires, field emission transistors, aerospace materials, etc. Although CNTs possess diverse characteristics, their most attractive property is their unique photoluminescence. On the other hand, another growing family of carbonaceous nanomaterials, which is CDs, has drawn much research attention due to its cost-effectiveness, low toxicity, environmental friendliness, fluorescence, luminescence and simplicity to be synthesized and functionalized with surface passivation. Benefiting from these unprecedented properties, CDs have been widely employed in biosensing, bioimaging, nanomedicine, and catalysis. Herein, we have systematically presented the fascinating properties, preparation methods and multitudinous applications of CNTs and CDs (including graphene quantum dots). We will discuss how CNTs and CDs have emerged as auspicious nanomaterials for potential applications, especially in electronics, sensors, bioimaging, wearable devices, batteries, supercapacitors, catalysis and light-emitting diodes (LEDs). Last but not least, this review is concluded with a summary, outlook and invigorating perspectives for future research horizons in this emerging platform of carbonaceous nanomaterials.
Collapse
Affiliation(s)
- Quan Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, 102249, China.
| | | | | | | | | | | |
Collapse
|
20
|
Bati ASR, Yu L, Batmunkh M, Shapter JG. Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. NANOSCALE 2018; 10:22087-22139. [PMID: 30475354 DOI: 10.1039/c8nr07379a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have attracted significant attention due to their outstanding mechanical, chemical and optoelectronic properties, which makes them promising candidates for use in a wide range of applications. However, as-produced SWCNTs have a wide distribution of various chiral species with different properties (i.e. electronic structures). In order to take full advantage of SWCNT properties, highly purified and well-separated SWCNTs are of great importance. Recent advances have focused on developing new strategies to effectively separate nanotubes into single-chirality and/or semiconducting/metallic species and integrating them into different applications. This review highlights recent progress in this cutting-edge research area alongside the enormous development of their identification and structural characterization techniques. A comprehensive review of advances in both controlled synthesis and post-synthesis separation methods of SWCNTs are presented. The relationship between the unique structure of SWCNTs and their intrinsic properties is also discussed. Finally, important future directions for the development of sorting and purification protocols for SWCNTs are provided.
Collapse
Affiliation(s)
- Abdulaziz S R Bati
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - LePing Yu
- College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Munkhbayar Batmunkh
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. and College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Joseph G Shapter
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. and College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| |
Collapse
|
21
|
Tang DM, Kvashnin DG, Cretu O, Nemoto Y, Uesugi F, Takeguchi M, Zhou X, Hsia FC, Liu C, Sorokin PB, Kawamoto N, Mitome M, Cheng HM, Golberg D, Bando Y. Chirality transitions and transport properties of individual few-walled carbon nanotubes as revealed by in situ TEM probing. Ultramicroscopy 2018; 194:108-116. [PMID: 30107290 DOI: 10.1016/j.ultramic.2018.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/18/2018] [Accepted: 07/28/2018] [Indexed: 10/28/2022]
Abstract
Physical properties of carbon nanotubes (CNTs) are closely related to the atomic structure, i.e. the chirality. It is highly desirable to develop a technique to modify their chirality and control the resultant transport properties. Herein, we present an in situ transmission electron microscopy (TEM) probing method to monitor the chirality transition and transport properties of individual few-walled CNTs. The changes of tube structure including the chirality are stimulated by programmed bias pulses and associated Joule heating. The chirality change of each shell is analyzed by nanobeam electron diffraction. Supported by molecular dynamics simulations, a preferred chirality transition path is identified, consistent with the Stone-Wales defect formation and dislocation sliding mechanism. The electronic transport properties are measured along with the structural changes, via fabricating transistors using the individual nanotubes as the suspended channels. Metal-to-semiconductor transitions are observed along with the chirality changes as confirmed by both the electron diffraction and electrical measurements. Apart from providing an alternative route to control the chirality of CNTs, the present work demonstrates the rare possibility of obtaining the dynamic structure-properties relationships at the atomic and molecular levels.
Collapse
Affiliation(s)
- Dai-Ming Tang
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), 72 Wenhua Road, Shenyang 110016, China.
| | - Dmitry G Kvashnin
- National University of Science and Technology MISiS, 4 Leninskiy prospekt, Moscow 119049, Russian Federation; Emanuel Institute of Biochemical Physics, 4 Kosigina Street, Moscow 119334, Russian Federation
| | - Ovidiu Cretu
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshihiro Nemoto
- Transmission Electron Microscopy Station, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Fumihiko Uesugi
- Transmission Electron Microscopy Station, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Masaki Takeguchi
- Transmission Electron Microscopy Station, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Xin Zhou
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Feng-Chun Hsia
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Chang Liu
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), 72 Wenhua Road, Shenyang 110016, China
| | - Pavel B Sorokin
- National University of Science and Technology MISiS, 4 Leninskiy prospekt, Moscow 119049, Russian Federation; Emanuel Institute of Biochemical Physics, 4 Kosigina Street, Moscow 119334, Russian Federation; Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Str., Troitsk, Moscow 108840, Russian Federation
| | - Naoyuki Kawamoto
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Masanori Mitome
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), 72 Wenhua Road, Shenyang 110016, China
| | - Dmitri Golberg
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), 2st George Str., Brisbane, QLD 4000, Australia.
| | - Yoshio Bando
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2500, Australia.
| |
Collapse
|
22
|
Tian Y, Jiang H, Laiho P, Kauppinen EI. Validity of Measuring Metallic and Semiconducting Single-Walled Carbon Nanotube Fractions by Quantitative Raman Spectroscopy. Anal Chem 2018; 90:2517-2525. [PMID: 29334731 PMCID: PMC6150638 DOI: 10.1021/acs.analchem.7b03712] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/16/2018] [Indexed: 01/23/2023]
Abstract
Although it is known that the Raman spectroscopic signature of single-walled carbon nanotubes (SWCNTs) is highly chirality dependent, using Raman spectroscopy with several laser excitations as a tool for quantifying fraction of either metallic or semiconducting nanotubes in a sample has become a widely used analytical method. In this work, using the electron diffraction technique as a basis, we have examined the validity of Raman spectroscopy for quantitative evaluation of metallic fractions (M%) in single-walled carbon nanotube samples. Our results show that quantitative Raman spectroscopic evaluations of M% by using several discrete laser lines, either by using integrated intensities of chirality-associated radial breathing modes (RBMs) or, as has been more commonly utilized in recent studies, by statistically counting the numbers of RBMs can be misrepresentative. Specifically, we have found that the occurrence numbers of certain types of RBMs in Raman spectral mapping depend critically on the diameter distribution, resonant coupling between transition energies and excitation laser energy, and the chirality-dependent Raman scattering cross sections rather than simply on the metallic and semiconducting SWCNT fractions. These dependencies are similar to those observed in the integrated intensities of RBMs. Our findings substantially advance the understanding of the proper use of Raman spectroscopy for carbon nanotube quantification, which is important for carbon nanotube characterization and crucial to guide research in SWCNT growth and their applications.
Collapse
Affiliation(s)
- Ying Tian
- Department
of Physics, Dalian Maritime University, Dalian, Liaoning 116026, China
- Department
of Applied Physics, Aalto University School
of Science, Puumiehenkuja
2, 00076 Aalto, Finland
| | - Hua Jiang
- Department
of Applied Physics, Aalto University School
of Science, Puumiehenkuja
2, 00076 Aalto, Finland
| | - Patrik Laiho
- Department
of Applied Physics, Aalto University School
of Science, Puumiehenkuja
2, 00076 Aalto, Finland
| | - Esko I. Kauppinen
- Department
of Applied Physics, Aalto University School
of Science, Puumiehenkuja
2, 00076 Aalto, Finland
| |
Collapse
|
23
|
Lim YD, Grapov D, Hu L, Kong Q, Tay BK, Labunov V, Miao J, Coquet P, Aditya S. Enhanced field emission properties of carbon nanotube bundles confined in SiO 2 pits. NANOTECHNOLOGY 2018; 29:075205. [PMID: 29239308 DOI: 10.1088/1361-6528/aaa1bb] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It has been widely reported that carbon nanotubes (CNTs) exhibit superior field emission (FE) properties due to their high aspect ratios and unique structural properties. Among the various types of CNTs, random growth CNTs exhibit promising FE properties due to their reduced inter-tube screening effect. However, growing random growth CNTs on individual catalyst islands often results in spread out CNT bundles, which reduces overall field enhancement. In this study, significant improvement in FE properties in CNT bundles is demonstrated by confining them in microfabricated SiO2 pits. Growing CNT bundles in narrow (0.5 μm diameter and 2 μm height) SiO2 pits achieves FE current density of 1-1.4 A cm-2, which is much higher than for freestanding CNT bundles (76.9 mA cm-2). From the Fowler Nordheim plots, confined CNT bundles show a higher field enhancement factor. This improvement can be attributed to the reduced bundle diameter by SiO2 pit confinement, which yields bundles with higher aspect ratios. Combining the obtained outcomes, it can be conclusively summarized that confining CNTs in SiO2 pits yields higher FE current density due to the higher field enhancement of confined CNTs.
Collapse
Affiliation(s)
- Yu Dian Lim
- Centre for Micro-/Nano-electronics (NOVITAS), School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
McLean B, Eveleens CA, Mitchell I, Webber GB, Page AJ. Catalytic CVD synthesis of boron nitride and carbon nanomaterials - synergies between experiment and theory. Phys Chem Chem Phys 2018; 19:26466-26494. [PMID: 28849841 DOI: 10.1039/c7cp03835f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-dimensional carbon and boron nitride nanomaterials - hexagonal boron nitride, graphene, boron nitride nanotubes and carbon nanotubes - remain at the forefront of advanced materials research. Catalytic chemical vapour deposition has become an invaluable technique for reliably and cost-effectively synthesising these materials. In this review, we will emphasise how a synergy between experimental and theoretical methods has enhanced the understanding and optimisation of this synthetic technique. This review examines recent advances in the application of CVD to synthesising boron nitride and carbon nanomaterials and highlights where, in many cases, molecular simulations and quantum chemistry have provided key insights complementary to experimental investigation. This synergy is particularly prominent in the field of carbon nanotube and graphene CVD synthesis, and we propose here it will be the key to future advances in optimisation of CVD synthesis of boron nitride nanomaterials, boron nitride - carbon composite materials, and other nanomaterials generally.
Collapse
Affiliation(s)
- Ben McLean
- School of Environmental & Life Sciences, The University of Newcastle, Callaghan NSW 2308, Australia.
| | | | | | | | | |
Collapse
|
25
|
Ding EX, Jiang H, Zhang Q, Tian Y, Laiho P, Hussain A, Liao Y, Wei N, Kauppinen EI. Highly conductive and transparent single-walled carbon nanotube thin films from ethanol by floating catalyst chemical vapor deposition. NANOSCALE 2017; 9:17601-17609. [PMID: 29114684 DOI: 10.1039/c7nr05554d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Single-walled carbon nanotube (SWCNT) films have great potential to replace indium tin oxide films for applications in transparent and conductive electronics. Here we report a high yield production of SWCNT transparent conducting films (TCFs) by the floating catalyst chemical vapor deposition method using ethanol as the carbon source. To the best of our knowledge, this is the first report regarding SWCNT TCFs using ethanol as the carbon source. The fabricated uniform SWCNT TCFs exhibit a competitive sheet resistance of 95 Ω sq-1 at 90% transmittance after doping with AuCl3. The SWCNT TCFs possess high quality and the mean length of SWCNT bundles is approximately 27.4 μm. Furthermore, the concentration of semiconducting SWCNTs is 75-77%. Additionally, the chirality maps obtained from electron diffraction analysis demonstrate that our SWCNTs are biased towards the armchair type.
Collapse
Affiliation(s)
- Er-Xiong Ding
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, 00076 Aalto, Espoo, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cui J, Yang D, Zeng X, Zhou N, Liu H. Recent progress on the structure separation of single-wall carbon nanotubes. NANOTECHNOLOGY 2017; 28:452001. [PMID: 28877034 DOI: 10.1088/1361-6528/aa8ac9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The mass production of single-structure, single-wall carbon nanotubes (SWCNTs) with identical properties is critical for their basic research and technical applications in the fields of electronics, optics and optoelectronics. Great efforts have been made to control the structures of SWCNTs since their discovery. Recently, the structure separation of SWCNTs has been making great progress. Various solution-sorting methods have been developed to achieve not only the separation of metallic and semiconducting species, but also the sorting of distinct (n, m) single-chirality species and even their enantiomers. This progress would dramatically accelerate the application of SWCNTs in the next-generation electronic devices. Here, we review the recent progress in the structure sorting of SWCNTs and outline the challenges and prospects of the structure separation of SWCNTs.
Collapse
Affiliation(s)
- Jiaming Cui
- School of Materials Science and Engineering, Nanchang University, Nanchang 330031, People's Republic of China. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Pierce N, Chen G, P Rajukumar L, Chou NH, Koh AL, Sinclair R, Maruyama S, Terrones M, Harutyunyan AR. Intrinsic Chirality Origination in Carbon Nanotubes. ACS NANO 2017; 11:9941-9949. [PMID: 28953362 DOI: 10.1021/acsnano.7b03957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Elucidating the origin of carbon nanotube chirality is key for realizing their untapped potential. Currently, prevalent theories suggest that catalyst structure originates chirality via an epitaxial relationship. Here we studied chirality abundances of carbon nanotubes grown on floating liquid Ga droplets, which excludes the influence of catalyst features, and compared them with abundances grown on solid Ru nanoparticles. Results of growth on liquid droplets bolsters the intrinsic preference of carbon nuclei toward certain chiralities. Specifically, the abundance of the (11,1)/χ = 4.31° tube can reach up to 95% relative to (9,4)/χ = 17.48°, although they have exactly the same diameter, (9.156 Å). However, the comparative abundances for the pair, (19,3)/χ = 7.2° and (17,6)/χ = 14.5°, with bigger diameter, (16.405 Å), fluctuate depending on synthesis temperature. The abundances of the same pairs of tubes grown on floating solid polyhedral Ru nanoparticles show completely different trends. Analysis of abundances in relation to nucleation probability, represented by a product of the Zeldovich factor and the deviation interval of a growing nuclei from equilibrium critical size, explain the findings. We suggest that the chirality in the nanotube in general is a result of interplay between intrinsic preference of carbon cluster and induction by catalyst structure. This finding can help to build the comprehensive theory of nanotube growth and offers a prospect for chirality-preferential synthesis of carbon nanotubes by the exploitation of liquid catalyst droplets.
Collapse
Affiliation(s)
- Neal Pierce
- Honda Research Institute USA Inc. , Columbus, Ohio 43212, United States
| | - Gugang Chen
- Honda Research Institute USA Inc. , Columbus, Ohio 43212, United States
| | - Lakshmy P Rajukumar
- Honda Research Institute USA Inc. , Columbus, Ohio 43212, United States
- Department of Physics, The Pennsylvania State University , University Park, Pennsylvania 16801, United States
| | - Nam Hawn Chou
- Honda Research Institute USA Inc. , Columbus, Ohio 43212, United States
| | - Ai Leen Koh
- Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
| | - Robert Sinclair
- Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo , Tokyo 113-8656, Japan
- Energy NanoEngineering Lab, The National Institute of Advanced Industrial Science and Technology , Tsukuba 305-8561, Japan
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University , University Park, Pennsylvania 16801, United States
| | | |
Collapse
|
28
|
Ahmad K, Wan C. Enhanced thermoelectric performance of Bi 2Te 3 through uniform dispersion of single wall carbon nanotubes. NANOTECHNOLOGY 2017; 28:415402. [PMID: 28726685 DOI: 10.1088/1361-6528/aa810b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The advancement in nanostructured powder processing has attracted great interest as a cost effective and scalable strategy for high performance thermoelectric bulk materials. However, the level of technical breakthrough realized in quantum dot supperlattices/wires has not yet been demonstrated in these materials. Here, we report the first ever study on the uniform dispersion of single wall carbon nanotubes (SWCNTs) in nanostructured Bi2Te3 bulk, and their effect on thermoelectric parameters above room temperature. The Bi2Te3 based SWCNT composites were prepared through controlled powder processing, and their thermoelectric properties were finely tuned at the nanoscale by regulating various (0.5, 0.75, 1.0 and 1.5) vol% of SWCNTs in the matrix. The flexible ropes of SWCNT, making an interconnected network through the inter/trans granular positions of Bi2Te3, thus substantially change the transport properties of the composites. The perfect one-dimensional (1D) conducting structure of SWCNTs acts as a source of electrical transport through a percolating network, with significantly suppressed lattice thermal conductivity, via intensified boundary scattering. The remarkable increase in power factor is ascribed to energy filtering effects and excellent electrical transport of 1D SWCNTs in the composites. Consequently, with a considerable reduction in thermal conductivity, the figure of merit culminates in a several-fold improvement, at 0.5 vol% of SWCNTs, over pristine bulk Bi2Te3.
Collapse
Affiliation(s)
- Kaleem Ahmad
- Sustainable Energy Technologies Center, College of Engineering, King Saud University. PO Box 800, Riyadh 11421, Saudi Arabia. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | | |
Collapse
|
29
|
Wei L, Flavel BS, Li W, Krupke R, Chen Y. Exploring the upper limit of single-walled carbon nanotube purity by multiple-cycle aqueous two-phase separation. NANOSCALE 2017; 9:11640-11646. [PMID: 28770923 DOI: 10.1039/c7nr03302h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ultrahigh purity semiconducting single-walled carbon nanotubes (S-SWCNTs) are required for high-performance transistors. Aqueous two-phase (ATP) separation is an attractive method to obtain such SWCNTs due to its simplicity and scalability. This work targeted two questions; namely what is the upper limit of S-SWCNT purity that can be achieved by multiple cycles of ATP separation from the most commonly used polyethylene glycol and dextran system and how accurately can commonly used methods characterize the improvement in purity? SWCNT purity in nanotube dispersions obtained by multi-cycle ATP separation (2, 4, 6 and 8 cycles) was evaluated by three methods, including UV-vis-NIR absorption spectroscopy analysis, performance of thin-film field effect transistors (FETs) prepared by drop casting and short-channel FET devices prepared by dielectrophoresis deposition. Absorption spectroscopic analysis and the performance of the thin-film FET devices can hardly differentiate metallic SWCNT residues in the dispersions obtained after 4 cycles with the purity above 99.5%, and the short channel FET devices prepared by dielectrophoresis deposition are more sensitive towards tiny metallic SWCNT residues. A new method was also demonstrated to visualize the minor metallic content in the nanotube suspension using voltage contrast imaging in a scanning electron microscope, which enables rapid screening of many devices and the accurate obtainment of metallic content without performing a large number of individual transconductance measurements.
Collapse
Affiliation(s)
- Li Wei
- The University of Sydney, School of Chemical and Biomolecular Engineering, NSW 2006, Australia.
| | | | | | | | | |
Collapse
|
30
|
Celik I, Mason BE, Phillips AB, Heben MJ, Apul D. Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4722-4732. [PMID: 28234471 DOI: 10.1021/acs.est.6b06272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
An ex-ante life cycle inventory was developed for single walled carbon nanotube (SWCNT) PV cells, including a laboratory-made 1% efficient device and an aspirational 28% efficient four-cell tandem device. The environmental impact of unit energy generation from the mono-Si PV technology was used as a reference point. Compared to monocrystalline Si (mono-Si), the environmental impacts from 1% SWCNT was ∼18 times higher due mainly to the short lifetime of three years. However, even with the same short lifetime, the 28% cell had lower environmental impacts than mono-Si. The effects of lifetime and efficiency on the environmental impacts were further examined. This analysis showed that if the SWCNT device efficiency had the same value as the best efficiency of the material under comparison, to match the total normalized impacts of the mono- and poly-Si, CIGS, CdTe, and a-Si devices, the SWCNT devices would need a lifetime of 2.8, 3.5, 5.3, 5.1, and 10.8 years, respectively. It was also found that if the SWCNT PV has an efficiency of 4.5% or higher, its energy payback time would be lower than other existing and emerging PV technologies. The major impacts of SWCNT PV came from the cell's materials synthesis.
Collapse
Affiliation(s)
- Ilke Celik
- School of Solar and Advanced Renewable Energy, Department of Civil Engineering, University of Toledo 2801 W. Bancroft St., Toledo, Ohio 43606, United States
| | - Brooke E Mason
- School of Solar and Advanced Renewable Energy, Department of Civil Engineering, University of Toledo 2801 W. Bancroft St., Toledo, Ohio 43606, United States
| | - Adam B Phillips
- School of Solar and Advanced Renewable Energy, Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo 2801 W. Bancroft St., Toledo, Ohio 43606, United States
| | - Michael J Heben
- School of Solar and Advanced Renewable Energy, Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo 2801 W. Bancroft St., Toledo, Ohio 43606, United States
| | - Defne Apul
- School of Solar and Advanced Renewable Energy, Department of Civil Engineering, University of Toledo 2801 W. Bancroft St., Toledo, Ohio 43606, United States
| |
Collapse
|
31
|
Tripathi N, Islam SS. A new approach for orientation-controlled growth of CNTs: an in-depth analysis on the role of oxygen plasma treatment to catalyst. APPLIED NANOSCIENCE 2017. [DOI: 10.1007/s13204-017-0549-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Liu B, Wu F, Gui H, Zheng M, Zhou C. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes. ACS NANO 2017; 11:31-53. [PMID: 28072518 DOI: 10.1021/acsnano.6b06900] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Preparation of chirality-defined single-wall carbon nanotubes (SWCNTs) is the top challenge in the nanotube field. In recent years, great progress has been made toward preparing single-chirality SWCNTs through both direct controlled synthesis and postsynthesis separation approaches. Accordingly, the uses of single-chirality-dominated SWCNTs for various applications have emerged as a new front in nanotube research. In this Review, we review recent progress made in the chirality-controlled synthesis of SWCNTs, including metal-catalyst-free SWCNT cloning by vapor-phase epitaxy elongation of purified single-chirality nanotube seeds, chirality-specific growth of SWCNTs on bimetallic solid alloy catalysts, chirality-controlled synthesis of SWCNTs using bottom-up synthetic strategy from carbonaceous molecular end-cap precursors, etc. Recent major progresses in postsynthesis separation of single-chirality SWCNT species, as well as methods for chirality characterization of SWCNTs, are also highlighted. Moreover, we discuss some examples where single-chirality SWCNTs have shown clear advantages over SWCNTs with broad chirality distributions. We hope this review could inspire more research on the chirality-controlled preparation of SWCNTs and equally important inspire the use of single-chirality SWCNT samples for more fundamental studies and practical applications.
Collapse
Affiliation(s)
- Bilu Liu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University , Shenzhen, Guangdong 518055, P. R. China
| | | | | | - Ming Zheng
- National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | | |
Collapse
|
33
|
Yang F, Wang X, Si J, Zhao X, Qi K, Jin C, Zhang Z, Li M, Zhang D, Yang J, Zhang Z, Xu Z, Peng LM, Bai X, Li Y. Water-Assisted Preparation of High-Purity Semiconducting (14,4) Carbon Nanotubes. ACS NANO 2017; 11:186-193. [PMID: 28114760 DOI: 10.1021/acsnano.6b06890] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Semiconducting single-walled carbon nanotubes (s-SWNTs) with diameters of 1.0-1.5 nm (with similar bandgap to crystalline silicon) are highly desired for nanoelectronics. Up to date, the highest reported content of s-SWNTs as-grown is ∼97%, which is still far below the daunting requirements of high-end applications. Herein, we report a feasible and green pathway to use H2O vapor to modulate the structure of the intermetallic W6Co7 nanocrystals. By using the resultant W6Co7 nanocatalysts with a high percentage of (1 0 10) planes as structural templates, we realized the direct growth of s-SWNT with the purity of ∼99%, in which ∼97% is (14,4) tubes (diameter 1.29 nm). H2O can also act as an environmentally friendly and facile etchant for eliminating metallic SWNTs, and the content of s-SWNTs was further improved to 99.8% and (14,4) tubes to 98.6%. High purity s-SWNTs with even bandgap determined by their uniform structure can be used for the exquisite applications in different fields.
Collapse
Affiliation(s)
| | | | | | | | - Kuo Qi
- Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China
| | - Chuanhong Jin
- School of Materials Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | | | | | | | | | | | - Zhi Xu
- Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China
| | | | - Xuedong Bai
- Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China
| | | |
Collapse
|
34
|
Salah N, Abdel-wahab MS, Alshahrie A, Alharbi ND, Khan ZH. Carbon nanotubes of oil fly ash as lubricant additives for different base oils and their tribology performance. RSC Adv 2017. [DOI: 10.1039/c7ra07155h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CNTs of oil fly ash were found to be suitable as lubricant additives for Aramco base oil.
Collapse
Affiliation(s)
- Numan Salah
- Center of Nanotechnology
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - M. Sh. Abdel-wahab
- Center of Nanotechnology
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Ahmed Alshahrie
- Center of Nanotechnology
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
- Dept. Phys
| | - Najlaa D. Alharbi
- Dept. Phys
- Sciences Faculty for Girls
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Zishan H. Khan
- Dept. Applied Sciences and Humanities
- Jamia Millia Islamia
- New Delhi 110025
- India
| |
Collapse
|
35
|
Zhang R, Zhang Y, Wei F. Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chem Soc Rev 2017; 46:3661-3715. [DOI: 10.1039/c7cs00104e] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes the growth mechanism, controlled synthesis, characterization, properties and applications of horizontally aligned carbon nanotube arrays.
Collapse
Affiliation(s)
- Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Yingying Zhang
- Department of Chemistry and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
36
|
Kharlamova MV. Investigation of growth dynamics of carbon nanotubes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:826-856. [PMID: 28503394 PMCID: PMC5405693 DOI: 10.3762/bjnano.8.85] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/23/2017] [Indexed: 05/06/2023]
Abstract
The synthesis of single-walled carbon nanotubes (SWCNTs) with defined properties is required for both fundamental investigations and practical applications. The revealing and thorough understanding of the growth mechanism of SWCNTs is the key to the synthesis of nanotubes with required properties. This paper reviews the current status of the research on the investigation of growth dynamics of carbon nanotubes. The review starts with the consideration of the peculiarities of the growth mechanism of carbon nanotubes. The physical and chemical states of the catalyst during the nanotube growth are discussed. The chirality selective growth of nanotubes is described. The main part of the review is dedicated to the analysis and systematization of the reported results on the investigation of growth dynamics of nanotubes. The studies on the revealing of the dependence of the growth rate of nanotubes on the synthesis parameters are reviewed. The correlation between the lifetime of catalyst and growth rate of nanotubes is discussed. The reports on the calculation of the activation energy of the nanotube growth are summarized. Finally, the growth properties of inner tubes inside SWCNTs are considered.
Collapse
|
37
|
Cong S, Cao Y, Fang X, Wang Y, Liu Q, Gui H, Shen C, Cao X, Kim ES, Zhou C. Carbon Nanotube Macroelectronics for Active Matrix Polymer-Dispersed Liquid Crystal Displays. ACS NANO 2016; 10:10068-10074. [PMID: 27763766 DOI: 10.1021/acsnano.6b04951] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Active matrix liquid crystal display (AMLCD) is the most widely used display technology nowadays. Transparent display is one of the emerging technologies to provide people with more features such as displaying images on transparent substrates and simultaneously enabling people to see the scenery behind the panel. Polymer-dispersed liquid crystal (PDLC) is a possible active matrix transparent display technology due to its high transparency, good visibility, and low power consumption. Carbon nanotubes (CNTs) with excellent mobility, high transparency, and room-temperature processing compatibility are ideal materials for the driver circuit of the PDLC display. Here, we report the monolithic integration of CNT thin-film transistor driver circuit with PDLC pixels. We studied the transmission properties of the PDLC pixels and characterized the performance of CNT thin-film transistors. Furthermore, we successfully demonstrated active matrix seven-segment PDLC displays using CNT driver transistors. Our achievements open up opportunities for future nanotube-based, flexible thin-film transparent display electronics.
Collapse
Affiliation(s)
- Sen Cong
- Ming Hsieh Department of Electrical Engineering and §Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California 90089, United States
| | - Yu Cao
- Ming Hsieh Department of Electrical Engineering and §Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California 90089, United States
| | - Xin Fang
- Ming Hsieh Department of Electrical Engineering and §Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California 90089, United States
| | - Yufeng Wang
- Ming Hsieh Department of Electrical Engineering and §Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California 90089, United States
| | - Qingzhou Liu
- Ming Hsieh Department of Electrical Engineering and §Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California 90089, United States
| | - Hui Gui
- Ming Hsieh Department of Electrical Engineering and §Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California 90089, United States
| | - Chenfei Shen
- Ming Hsieh Department of Electrical Engineering and §Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California 90089, United States
| | - Xuan Cao
- Ming Hsieh Department of Electrical Engineering and §Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California 90089, United States
| | - Eun Sok Kim
- Ming Hsieh Department of Electrical Engineering and §Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California 90089, United States
| | - Chongwu Zhou
- Ming Hsieh Department of Electrical Engineering and §Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
38
|
Yu Q, Wu C, Guan L. Direct Enrichment of Metallic Single-Walled Carbon Nanotubes by Using NO 2 as Oxidant to Selectively Etch Semiconducting Counterparts. J Phys Chem Lett 2016; 7:4470-4474. [PMID: 27779874 DOI: 10.1021/acs.jpclett.6b02140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report an efficient method for enriching high-purity metallic single-walled carbon nanotubes (m-SWCNTs) by using NO2 as oxidant to remove semiconducting components at 220 °C. After etching, m-SWCNTs with purity higher than 90% were obtained. The surviving m-SWCNTs retain an intact structure without any extra defects on their surface.
Collapse
Affiliation(s)
- Qiangmin Yu
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350108, China
- Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350108, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Chuxin Wu
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350108, China
- Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350108, China
| | - Lunhui Guan
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350108, China
- Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350108, China
| |
Collapse
|
39
|
Zhu Z, Wei N, Xie H, Zhang R, Bai Y, Wang Q, Zhang C, Wang S, Peng L, Dai L, Wei F. Acoustic-assisted assembly of an individual monochromatic ultralong carbon nanotube for high on-current transistors. SCIENCE ADVANCES 2016; 2:e1601572. [PMID: 28138534 PMCID: PMC5262447 DOI: 10.1126/sciadv.1601572] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/26/2016] [Indexed: 05/30/2023]
Abstract
Great effort has been applied to scientific research on the controllable synthesis of carbon nanotubes (CNTs) with high semiconducting selectivity or high areal density toward the macroscale applications of high-performance carbon-based electronics. However, the key issue of compatibility between these two requirements for CNTs remains a challenge, blocking the expected performance boost of CNT devices. We report an in situ acoustic-assisted assembly of high-density monochromatic CNT tangles (m-CNT-Ts), consisting of one self-entangled CNT with a length of up to 100 mm and consistent chirality. On the basis of a minimum consumed energy model with a Strouhal number of approximately 0.3, the scale could be controlled within the range of 1 × 104 to 3 × 104 μm2 or even a larger range. Transistors fabricated with one m-CNT-T showed an on/off ratio of 103 to 106 with 4-mA on-state current, which is also the highest on-state current recorded so far for single CNT-based transistors. This acoustic-assisted assembly of chiral-consistent m-CNT-Ts will provide new opportunities for the fabrication of high-performance electronics based on perfect CNTs with high purity and high density.
Collapse
Affiliation(s)
- Zhenxing Zhu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Nan Wei
- Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, China
| | - Huanhuan Xie
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yunxiang Bai
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Qi Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Chenxi Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Sheng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, China
| | - Lianmao Peng
- Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, China
| | - Liming Dai
- Center of Advanced Science and Engineering for Carbon (Case4Carbon), Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medicine University, Wenzhou, Zhejiang 325027, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Cruz-Silva R, Araki T, Hayashi T, Terrones H, Terrones M, Endo M. Fullerene and nanotube growth: new insights using first principles and molecular dynamics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20150327. [PMID: 27501974 PMCID: PMC4978748 DOI: 10.1098/rsta.2015.0327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Shortly after the discovery of fullerenes, many researchers pointed out that carbon nanotubes could be considered as elongated fullerenes. However, the detailed formation mechanism for both structures has been a topic of debate for several years, and consequently it has been difficult to draw a clear connection between the two systems. While the synthesis conditions appear to be different for both fullerenes and nanotubes, here, we demonstrate that it is highly likely that, at an initial growth stage, single-walled carbon nanotubes begin to grow from a hemisphere-like fullerene cap. More importantly, by analysing the minimum-energy path, it is shown that the insertion of C2 fragments drives the transformation of this fullerene cap into an elongated structure that leads to the formation of very short carbon nanotubes.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'.
Collapse
Affiliation(s)
- Rodolfo Cruz-Silva
- Global Aqua Innovation Center, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Takumi Araki
- Global Aqua Innovation Center, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan Research Organization for Information Science and Technology, 2-32-3 Kitashinagawa, Shinagawa-ku, Tokyo 140-0001, Japan
| | - Takuya Hayashi
- Global Aqua Innovation Center, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan Institute of Carbon, Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Humberto Terrones
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Mauricio Terrones
- Institute of Carbon, Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan Department of Physics, Pennsylvania State University, University Park, PA 16802, USA Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA Center for 2-Dimensional & Layered Materials, Pennsylvania State University, University Park, PA 16802, USA
| | - Morinobu Endo
- Global Aqua Innovation Center, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan Institute of Carbon, Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
41
|
Liu C, Cheng HM. Controlled Growth of Semiconducting and Metallic Single-Wall Carbon Nanotubes. J Am Chem Soc 2016; 138:6690-8. [DOI: 10.1021/jacs.6b00838] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chang Liu
- Shenyang National Laboratory
for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hui-Ming Cheng
- Shenyang National Laboratory
for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
42
|
Xu W, Dou J, Zhao J, Tan H, Ye J, Tange M, Gao W, Xu W, Zhang X, Guo W, Ma C, Okazaki T, Zhang K, Cui Z. Printed thin film transistors and CMOS inverters based on semiconducting carbon nanotube ink purified by a nonlinear conjugated copolymer. NANOSCALE 2016; 8:4588-4598. [PMID: 26847814 DOI: 10.1016/j.carbon.2016.07.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge SWCNTs according to their chiralities with high selectivity. With the sorted sc-SWCNTs ink, thin film transistors (TFTs) have been fabricated by aerosol jet printing. The TFTs displayed good uniformity, low operating voltage (±2 V) and subthreshold swing (SS) (122-161 mV dec(-1)), high effective mobility (up to 17.6-37.7 cm(2) V(-1) s(-1)) and high on/off ratio (10(4)-10(7)). With the printed TFTs, a CMOS inverter was constructed, which is based on the p-type TFT and ambipolar TFT instead of the conventional p-type and n-type TFTs. Compared with other recently reported inverters fabricated by printing, the printed CMOS inverters demonstrated a better noise margin (74% 1/2 Vdd) and was hysteresis free. The inverter has a voltage gain of up to 16 at an applied voltage of only 1 V and low static power consumption.
Collapse
Affiliation(s)
- Wenya Xu
- Printable Electronics Research Centre, Suzhou Institute of Nanotech and nano-bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China.
| | - Junyan Dou
- Printable Electronics Research Centre, Suzhou Institute of Nanotech and nano-bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China.
| | - Jianwen Zhao
- Printable Electronics Research Centre, Suzhou Institute of Nanotech and nano-bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China.
| | - Hongwei Tan
- College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Jun Ye
- Institute of High Performance Computing, Agency for Science, Technology and Research, 138632, Singapore
| | - Masayoshi Tange
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Wei Gao
- Printable Electronics Research Centre, Suzhou Institute of Nanotech and nano-bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China.
| | - Weiwei Xu
- Printable Electronics Research Centre, Suzhou Institute of Nanotech and nano-bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China. and School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xiang Zhang
- Printable Electronics Research Centre, Suzhou Institute of Nanotech and nano-bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China. and School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Wenrui Guo
- Printable Electronics Research Centre, Suzhou Institute of Nanotech and nano-bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China.
| | - Changqi Ma
- Printable Electronics Research Centre, Suzhou Institute of Nanotech and nano-bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China.
| | - Toshiya Okazaki
- CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Kai Zhang
- Printable Electronics Research Centre, Suzhou Institute of Nanotech and nano-bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China.
| | - Zheng Cui
- Printable Electronics Research Centre, Suzhou Institute of Nanotech and nano-bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, PR China.
| |
Collapse
|