1
|
Chua GNL, Liu S. When Force Met Fluorescence: Single-Molecule Manipulation and Visualization of Protein-DNA Interactions. Annu Rev Biophys 2024; 53:169-191. [PMID: 38237015 DOI: 10.1146/annurev-biophys-030822-032904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Myriad DNA-binding proteins undergo dynamic assembly, translocation, and conformational changes while on DNA or alter the physical configuration of the DNA substrate to control its metabolism. It is now possible to directly observe these activities-often central to the protein function-thanks to the advent of single-molecule fluorescence- and force-based techniques. In particular, the integration of fluorescence detection and force manipulation has unlocked multidimensional measurements of protein-DNA interactions and yielded unprecedented mechanistic insights into the biomolecular processes that orchestrate cellular life. In this review, we first introduce the different experimental geometries developed for single-molecule correlative force and fluorescence microscopy, with a focus on optical tweezers as the manipulation technique. We then describe the utility of these integrative platforms for imaging protein dynamics on DNA and chromatin, as well as their unique capabilities in generating complex DNA configurations and uncovering force-dependent protein behaviors. Finally, we give a perspective on the future directions of this emerging research field.
Collapse
Affiliation(s)
- Gabriella N L Chua
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
- Tri-Institutional PhD Program in Chemical Biology, New York, New York, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
| |
Collapse
|
2
|
Graham E, Esashi F. DNA strand breaks at centromeres: Friend or foe? Semin Cell Dev Biol 2024; 156:141-151. [PMID: 37872040 DOI: 10.1016/j.semcdb.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Centromeres are large structural regions in the genomic DNA, which are essential for accurately transmitting a complete set of chromosomes to daughter cells during cell division. In humans, centromeres consist of highly repetitive α-satellite DNA sequences and unique epigenetic components, forming large proteinaceous structures required for chromosome segregation. Despite their biological importance, there is a growing body of evidence for centromere breakage across the cell cycle, including periods of quiescence. In this review, we provide an up-to-date examination of the distinct centromere environments at different stages of the cell cycle, highlighting their plausible contribution to centromere breakage. Additionally, we explore the implications of these breaks on centromere function, both in terms of negative consequences and potential positive effects.
Collapse
Affiliation(s)
- Emily Graham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Malinowska AM, van Mameren J, Peterman EJG, Wuite GJL, Heller I. Introduction to Optical Tweezers: Background, System Designs, and Applications. Methods Mol Biol 2024; 2694:3-28. [PMID: 37823997 DOI: 10.1007/978-1-0716-3377-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Optical tweezers are a means to manipulate objects with light. With the technique, microscopically small objects can be held and steered, allowing for accurate measurement of the forces applied to these objects. Optical tweezers can typically obtain a nanometer spatial resolution, a picoNewton force resolution, and a millisecond time resolution, which makes the technique well suited for the study of biological processes from the single-cell down to the single-molecule level. In this chapter, we aim to provide an introduction to the use of optical tweezers for single-molecule analyses. We start from the basic principles and methodology involved in optical trapping, force calibration, and force measurements. Next, we describe the components of an optical tweezers setup and their experimental relevance. Finally, we will provide an overview of the broad applications in context of biological research, with the emphasis on the measurement modes, experimental assays, and possible combinations with fluorescence microscopy techniques.
Collapse
Affiliation(s)
- Agata M Malinowska
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joost van Mameren
- Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Iddo Heller
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Zhang C, Tian F, Lu Y, Yuan B, Tan ZJ, Zhang XH, Dai L. Twist-diameter coupling drives DNA twist changes with salt and temperature. SCIENCE ADVANCES 2022; 8:eabn1384. [PMID: 35319990 PMCID: PMC8942373 DOI: 10.1126/sciadv.abn1384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
DNA deformations upon environmental changes, e.g., salt and temperature, play crucial roles in many biological processes and material applications. Here, our magnetic tweezers experiments observed that the increase in NaCl, KCl, or RbCl concentration leads to substantial DNA overwinding. Our simulations and theoretical calculation quantitatively explain the salt-induced twist change through the mechanism: More salt enhances the screening of interstrand electrostatic repulsion and hence reduces DNA diameter, which is transduced to twist increase through twist-diameter coupling. We determined that the coupling constant is 4.5 ± 0.8 kBT/(degrees∙nm) for one base pair. The coupling comes from the restraint of the contour length of DNA backbone. On the basis of this coupling constant and diameter-dependent DNA conformational entropy, we predict the temperature dependence of DNA twist Δωbp/ΔT ≈ -0.01 degree/°C, which agrees with our and previous experimental results. Our analysis suggests that twist-diameter coupling is a common driving force for salt- and temperature-induced DNA twist changes.
Collapse
Affiliation(s)
- Chen Zhang
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Fujia Tian
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Ying Lu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Zhi-Jie Tan
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Liang Dai
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
5
|
Raudsepp A, Williams MA, Jameson GB. Modeling multiple duplex DNA attachments in a force-extension experiment. BIOPHYSICAL REPORTS 2022; 2:100045. [PMID: 36425083 PMCID: PMC9680770 DOI: 10.1016/j.bpr.2022.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/30/2022]
Abstract
Optical tweezers-based DNA stretching often relies on tethering a single end-activated DNA molecule between optically manipulated end-binding beads. Measurement success can depend on DNA concentration. At lower DNA concentrations tethering is less common, and many trials may be required to observe a single-molecule stretch. At higher DNA concentrations tethering is more common; however, the resulting force-extensions observed are more complex and may vary from measurement to measurement. Typically these more complex results are attributed to the formation of multiple tethers between the beads; however, to date there does not appear to have been a critical examination of this hypothesis or the potential usefulness of such data. Here we examine stretches at a higher DNA concentration and use analysis and simulation to show how the more complex force-extensions observed can be understood in terms of multiple DNA attachments.
Collapse
|
6
|
King GA, Spakman D, Peterman EJG, Wuite GJL. Generating Negatively Supercoiled DNA Using Dual-Trap Optical Tweezers. Methods Mol Biol 2022; 2478:243-272. [PMID: 36063323 DOI: 10.1007/978-1-0716-2229-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many genomic processes lead to the formation of underwound (negatively supercoiled) or overwound (positively supercoiled) DNA. These DNA topological changes regulate the interactions of DNA-binding proteins, including transcription factors, architectural proteins and topoisomerases. In order to advance our understanding of the structure and interactions of supercoiled DNA, we recently developed a single-molecule approach called Optical DNA Supercoiling (ODS). This method enables rapid generation of negatively supercoiled DNA (with between <5% and 70% lower helical twist than nonsupercoiled DNA) using a standard dual-trap optical tweezers instrument. ODS is advantageous as it allows for combined force spectroscopy, fluorescence imaging, and spatial control of the supercoiled substrate, which is difficult to achieve with most other approaches. Here, we describe how to generate negatively supercoiled DNA using dual-trap optical tweezers. To this end, we provide detailed instructions on the design and preparation of suitable DNA substrates, as well as a step-by-step guide for how to control and calibrate the supercoiling density produced.
Collapse
Affiliation(s)
- Graeme A King
- Institute of Structural and Molecular Biology, University College London, London, UK.
| | - Dian Spakman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Gijs J L Wuite
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Aicart-Ramos C, Hormeno S, Wilkinson OJ, Dillingham MS, Moreno-Herrero F. Long DNA constructs to study helicases and nucleic acid translocases using optical tweezers. Methods Enzymol 2022; 673:311-358. [DOI: 10.1016/bs.mie.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Backer AS, King GA, Biebricher AS, Shepherd JW, Noy A, Leake MC, Heller I, Wuite GJL, Peterman EJG. Elucidating the Role of Topological Constraint on the Structure of Overstretched DNA Using Fluorescence Polarization Microscopy. J Phys Chem B 2021; 125:8351-8361. [PMID: 34309392 PMCID: PMC8350907 DOI: 10.1021/acs.jpcb.1c02708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/01/2021] [Indexed: 11/29/2022]
Abstract
The combination of DNA force spectroscopy and polarization microscopy of fluorescent DNA intercalator dyes can provide valuable insights into the structure of DNA under tension. These techniques have previously been used to characterize S-DNA-an elongated DNA conformation that forms when DNA overstretches at forces ≥ 65 pN. In this way, it was deduced that the base pairs of S-DNA are highly inclined, relative to those in relaxed (B-form) DNA. However, it is unclear whether and how topological constraints on the DNA may influence the base-pair inclinations under tension. Here, we apply polarization microscopy to investigate the impact of DNA pulling geometry, torsional constraint, and negative supercoiling on the orientations of intercalated dyes during overstretching. In contrast to earlier predictions, the pulling geometry (namely, whether the DNA molecule is stretched via opposite strands or the same strand) is found to have little influence. However, torsional constraint leads to a substantial reduction in intercalator tilting in overstretched DNA, particularly in AT-rich sequences. Surprisingly, the extent of intercalator tilting is similarly reduced when the DNA molecule is negatively supercoiled up to a critical supercoiling density (corresponding to ∼70% reduction in the linking number). We attribute these observations to the presence of P-DNA (an overwound DNA conformation). Our results suggest that intercalated DNA preferentially flanks regions of P-DNA rather than those of S-DNA and also substantiate previous suggestions that P-DNA forms predominantly in AT-rich sequences.
Collapse
Affiliation(s)
- Adam S. Backer
- Apple Inc, 1 Apple Park Way, Cupertino, California 95014, United States
| | - Graeme A. King
- Institute
of Structural and Molecular Biology, University
College London, Gower Street, London WC1E
6BT, U.K.
| | - Andreas S. Biebricher
- Department
of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Jack W. Shepherd
- Department
of Physics, University of York, York YO10 5DD, U.K.
- Department
of Biology, University of York, York YO10 5DD, U.K.
| | - Agnes Noy
- Department
of Physics, University of York, York YO10 5DD, U.K.
| | - Mark C. Leake
- Department
of Physics, University of York, York YO10 5DD, U.K.
- Department
of Biology, University of York, York YO10 5DD, U.K.
| | - Iddo Heller
- Department
of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Gijs J. L. Wuite
- Department
of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Erwin J. G. Peterman
- Department
of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
9
|
Le S, Yu M, Bershadsky A, Yan J. Mechanical regulation of formin-dependent actin polymerization. Semin Cell Dev Biol 2020; 102:73-80. [DOI: 10.1016/j.semcdb.2019.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
|
10
|
Abstract
Torsional stress plays a vital role in many genomic transactions, including replication and transcription, and often results in underwound (negatively supercoiled) DNA. Here, we present a single-molecule method, termed Optical DNA Supercoiling (ODS), that advances our ability to study negatively supercoiled DNA. Since ODS is based on dual-trap optical tweezers, it is compatible with a wide range of functionalities that are difficult to combine with traditional methods of DNA twist control. This includes the ability to image supercoiled DNA with fluorescence microscopy and move the supercoiled substrate rapidly between different buffer/protein solutions. We demonstrate that ODS yields unique and important insights into both the biomechanical properties of negatively supercoiled DNA and the dynamics of DNA–protein interactions on underwound DNA. Cellular DNA is regularly subject to torsional stress during genomic processes, such as transcription and replication, resulting in a range of supercoiled DNA structures. For this reason, methods to prepare and study supercoiled DNA at the single-molecule level are widely used, including magnetic, angular-optical, micropipette, and magneto-optical tweezers. However, it is currently challenging to combine DNA supercoiling control with spatial manipulation and fluorescence microscopy. This limits the ability to study complex and dynamic interactions of supercoiled DNA. Here we present a single-molecule assay that can rapidly and controllably generate negatively supercoiled DNA using a standard dual-trap optical tweezers instrument. This method, termed Optical DNA Supercoiling (ODS), uniquely combines the ability to study supercoiled DNA using force spectroscopy, fluorescence imaging of the whole DNA, and rapid buffer exchange. The technique can be used to generate a wide range of supercoiled states, with between <5 and 70% lower helical twist than nonsupercoiled DNA. Highlighting the versatility of ODS, we reveal previously unobserved effects of ionic strength and sequence on the structural state of underwound DNA. Next, we demonstrate that ODS can be used to directly visualize and quantify protein dynamics on supercoiled DNA. We show that the diffusion of the mitochondrial transcription factor TFAM can be significantly hindered by local regions of underwound DNA. This finding suggests a mechanism by which supercoiling could regulate mitochondrial transcription in vivo. Taken together, we propose that ODS represents a powerful method to study both the biophysical properties and biological interactions of negatively supercoiled DNA.
Collapse
|
11
|
Ma G, Hu C, Li S, Gao X, Li H, Hu X. Simultaneous, hybrid single-molecule method by optical tweezers and fluorescence. NANOTECHNOLOGY AND PRECISION ENGINEERING 2019. [DOI: 10.1016/j.npe.2019.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Multi-parameter measurements of conformational dynamics in nucleic acids and nucleoprotein complexes. Methods 2019; 169:69-77. [PMID: 31228549 DOI: 10.1016/j.ymeth.2019.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 11/20/2022] Open
Abstract
Biological macromolecules undergo dynamic conformational changes. Single-molecule methods can track such structural rearrangements in real time. However, while the structure of large macromolecules may change along many degrees of freedom, single-molecule techniques only monitor a limited number of these axes of motion. Advanced single-molecule methods are being developed to track multiple degrees of freedom in nucleic acids and nucleoprotein complexes at high resolution, to enable better manipulation and control of the system under investigation, and to collect measurements in massively parallel fashion. Combining complementary single-molecule methods within the same assay also provides unique measurement opportunities. Implementations of magnetic and optical tweezers combined with fluorescence and FRET have demonstrated results unattainable by either technique alone. Augmenting other advanced single-molecule methods with fluorescence detection will allow us to better capture the multidimensional dynamics of nucleic acids and nucleoprotein complexes central to biology.
Collapse
|
13
|
Langston LD, O'Donnell ME. An explanation for origin unwinding in eukaryotes. eLife 2019; 8:e46515. [PMID: 31282859 PMCID: PMC6634965 DOI: 10.7554/elife.46515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/06/2019] [Indexed: 12/14/2022] Open
Abstract
Twin CMG complexes are assembled head-to-head around duplex DNA at eukaryotic origins of replication. Mcm10 activates CMGs to form helicases that encircle single-strand (ss) DNA and initiate bidirectional forks. How the CMGs melt duplex DNA while encircling it is unknown. Here we show that S. cerevisiae CMG tracks with force while encircling double-stranded (ds) DNA and that in the presence of Mcm10 the CMG melts long blocks of dsDNA while it encircles dsDNA. We demonstrate that CMG tracks mainly on the 3'-5' strand during duplex translocation, predicting that head-to-head CMGs at an origin exert force on opposite strands. Accordingly, we show that CMGs that encircle double strand DNA in a head-to-head orientation melt the duplex in an Mcm10-dependent reaction.
Collapse
Affiliation(s)
- Lance D Langston
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | - Michael E O'Donnell
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
14
|
Wasserman MR, Liu S. A Tour de Force on the Double Helix: Exploiting DNA Mechanics To Study DNA-Based Molecular Machines. Biochemistry 2019; 58:4667-4676. [PMID: 31251042 DOI: 10.1021/acs.biochem.9b00346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DNA is both a fundamental building block of life and a fascinating natural polymer. The advent of single-molecule manipulation tools made it possible to exert controlled force on individual DNA molecules and measure their mechanical response. Such investigations elucidated the elastic properties of DNA and revealed its distinctive structural configurations across force regimes. In the meantime, a detailed understanding of DNA mechanics laid the groundwork for single-molecule studies of DNA-binding proteins and DNA-processing enzymes that bend, stretch, and twist DNA. These studies shed new light on the metabolism and transactions of nucleic acids, which constitute a major part of the cell's operating system. Furthermore, the marriage of single-molecule fluorescence visualization and force manipulation has enabled researchers to directly correlate the applied tension to changes in the DNA structure and the behavior of DNA-templated complexes. Overall, experimental exploitation of DNA mechanics has been and will continue to be a unique and powerful strategy for understanding how molecular machineries recognize and modify the physical state of DNA to accomplish their biological functions.
Collapse
Affiliation(s)
- Michael R Wasserman
- Laboratory of Nanoscale Biophysics and Biochemistry , The Rockefeller University , New York , New York 10065 , United States
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry , The Rockefeller University , New York , New York 10065 , United States
| |
Collapse
|
15
|
Cristofalo M, Kovari D, Corti R, Salerno D, Cassina V, Dunlap D, Mantegazza F. Nanomechanics of Diaminopurine-Substituted DNA. Biophys J 2019; 116:760-771. [PMID: 30795872 DOI: 10.1016/j.bpj.2019.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 10/27/2022] Open
Abstract
2,6-diaminopurine (DAP) is a nucleobase analog of adenine. When incorporated into double-stranded DNA (dsDNA), it forms three hydrogen bonds with thymine. Rare in nature, DAP substitution alters the physical characteristics of a DNA molecule without sacrificing sequence specificity. Here, we show that in addition to stabilizing double-strand hybridization, DAP substitution also changes the mechanical and conformational properties of dsDNA. Thermal melting experiments reveal that DAP substitution raises melting temperatures without diminishing sequence-dependent effects. Using a combination of atomic force microscopy (AFM), magnetic tweezer (MT) nanomechanical assays, and circular dichroism spectroscopy, we demonstrate that DAP substitution increases the flexural rigidity of dsDNA yet also facilitates conformational shifts, which manifest as changes in molecule length. DAP substitution increases both the static and dynamic persistence length of DNA (measured by AFM and MT, respectively). In the static case (AFM), in which tension is not applied to the molecule, the contour length of DAP-DNA appears shorter than wild-type (WT)-DNA; under tension (MT), they have similar dynamic contour lengths. At tensions above 60 pN, WT-DNA undergoes characteristic overstretching because of strand separation (tension-induced melting) and spontaneous adoption of a conformation termed S-DNA. Cyclic overstretching and relaxation of WT-DNA at near-zero loading rates typically yields hysteresis, indicative of tension-induced melting; conversely, cyclic stretching of DAP-DNA showed little or no hysteresis, consistent with the adoption of the S-form, similar to what has been reported for GC-rich sequences. However, DAP-DNA overstretching is distinct from GC-rich overstretching in that it happens at a significantly lower tension. In physiological salt conditions, evenly mixed AT/GC DNA typically overstretches around 60 pN. GC-rich sequences overstretch at similar if not slightly higher tensions. Here, we show that DAP-DNA overstretches at 52 pN. In summary, DAP substitution decreases the overall stability of the B-form double helix, biasing toward non-B-form DNA helix conformations at zero tension and facilitating the B-to-S transition at high tension.
Collapse
Affiliation(s)
- Matteo Cristofalo
- School of Medicine and Surgery, Università di Milano-Bicocca, Monza (MB), Italy
| | - Daniel Kovari
- Department of Physics, Emory University, Atlanta, Georgia
| | - Roberta Corti
- School of Medicine and Surgery, Università di Milano-Bicocca, Monza (MB), Italy
| | - Domenico Salerno
- School of Medicine and Surgery, Università di Milano-Bicocca, Monza (MB), Italy.
| | - Valeria Cassina
- School of Medicine and Surgery, Università di Milano-Bicocca, Monza (MB), Italy
| | - David Dunlap
- Department of Physics, Emory University, Atlanta, Georgia.
| | | |
Collapse
|
16
|
Hashemi Shabestari M, Meijering AEC, Roos WH, Wuite GJL, Peterman EJG. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy. Methods Enzymol 2016; 582:85-119. [PMID: 28062046 DOI: 10.1016/bs.mie.2016.09.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Over the past two decades, single-molecule techniques have evolved into robust tools to study many fundamental biological processes. The combination of optical tweezers with fluorescence microscopy and microfluidics provides a powerful single-molecule manipulation and visualization technique that has found widespread application in biology. In this combined approach, the spatial (~nm) and temporal (~ms) resolution, as well as the force scale (~pN) accessible to optical tweezers is complemented with the power of fluorescence microscopy. Thereby, it provides information on the local presence, identity, spatial dynamics, and conformational dynamics of single biomolecules. Together, these techniques allow comprehensive studies of, among others, molecular motors, protein-protein and protein-DNA interactions, biomolecular conformational changes, and mechanotransduction pathways. In this chapter, recent applications of fluorescence microscopy in combination with optical trapping are discussed. After an introductory section, we provide a description of instrumentation together with the current capabilities and limitations of the approaches. Next we summarize recent studies that applied this combination of techniques in biological systems and highlight some representative biological assays to mark the exquisite opportunities that optical tweezers combined with fluorescence microscopy provide.
Collapse
Affiliation(s)
| | | | - W H Roos
- Moleculaire Biofysica, Zernike Institute, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - G J L Wuite
- Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
17
|
Single-molecule studies of high-mobility group B architectural DNA bending proteins. Biophys Rev 2016; 9:17-40. [PMID: 28303166 PMCID: PMC5331113 DOI: 10.1007/s12551-016-0236-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 11/23/2022] Open
Abstract
Protein–DNA interactions can be characterized and quantified using single molecule methods such as optical tweezers, magnetic tweezers, atomic force microscopy, and fluorescence imaging. In this review, we discuss studies that characterize the binding of high-mobility group B (HMGB) architectural proteins to single DNA molecules. We show how these studies are able to extract quantitative information regarding equilibrium binding as well as non-equilibrium binding kinetics. HMGB proteins play critical but poorly understood roles in cellular function. These roles vary from the maintenance of chromatin structure and facilitation of ribosomal RNA transcription (yeast high-mobility group 1 protein) to regulatory and packaging roles (human mitochondrial transcription factor A). We describe how these HMGB proteins bind, bend, bridge, loop and compact DNA to perform these functions. We also describe how single molecule experiments observe multiple rates for dissociation of HMGB proteins from DNA, while only one rate is observed in bulk experiments. The measured single-molecule kinetics reveals a local, microscopic mechanism by which HMGB proteins alter DNA flexibility, along with a second, much slower macroscopic rate that describes the complete dissociation of the protein from DNA.
Collapse
|