1
|
Waheibi RA, Hsiao LC. Pairing-specific microstructure in depletion gels of bidisperse colloids. SOFT MATTER 2024. [PMID: 39526962 DOI: 10.1039/d4sm00811a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We report the ensemble-averaged and pairing-specific network microstructure formed by short-range depletion attractions in hard sphere-like colloidal systems. Gelation is induced by adding polystyrene molecules at a fixed concentration to colloids with different colloid bidispersity ratios (α = 1, 0.72, and 0.60) across a range of volume fractions (0.10 ≤ ϕ ≤ 0.40). 3D confocal microscopy imaging combined with a scale-invariant feature transform algorithm show that monodisperse colloids pack more efficiently, whereas increasing the size disparity leads to looser, more disordered, and sub-isostatic packings. Categorizing the structures formed by small and large particles reveal that certain cluster configurations may be favored due to the complex interplay between the differences in particle surface areas and attractive potentials. These pairwise bonds assemble to affect the density of tetrahedral and poly-tetrahedral clusters in bidisperse systems. With the exception of non-percolating samples at ϕ = 0.10, increasing the gel volume fraction leads to an increase in the number of nearest neighbors. However, the internal density within each cluster decreases, possibly due to kinetic arrest from the deeper potential wells of tetrahedral clusters at low volume fractions in which vertices are primarily made out of larger particles.
Collapse
Affiliation(s)
- Rony A Waheibi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA.
| | - Lilian C Hsiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA.
| |
Collapse
|
2
|
Tan Z, Calandrini V, Dhont JKG, Nägele G. Quasi-two-dimensional dispersions of Brownian particles with competitive interactions: phase behavior and structural properties. SOFT MATTER 2024. [PMID: 39415718 DOI: 10.1039/d4sm00736k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Competing short-range attractive (SA) and long range repulsive (LR) particle interactions can be used to describe three-dimensional charge-stabilized colloid or protein dispersions at low added salt concentrations, as well as membrane proteins with interaction contributions mediated by lipid molecules. Using Langevin dynamics (LD) simulations, we determine the generalized phase diagram, cluster shapes and size distributions of a generic quasi-two-dimensional (Q2D) dispersion of spherical SALR particles confined to in-plane motion inside a bulk fluid. The SA and LR interaction parts are modelled by a generalized Lennard-Jones potential and a screened Coulomb potential, respectively. The microstructures of the detected equilibrium and non-equilibrium Q2D phases are distinctly different from those observed in three-dimensional (3D) SALR systems, by exhibiting different levels of hexagonal ordering. We discuss a thermodynamic perturbation theory prediction for the metastable binodal line of a reference system of particles with SA interactions only, which in the explored Q2D-SALR phase diagram region separates cluster from non-clustered phases. The transition from the high-temperature (small SA) dispersed fluid (DF) phase to the lower-temperature equilibrium cluster (EC) fluid phase is characterised by a low-wavenumber peak height of the static structure factor (corresponding to a thermal correlation length of about twice the particle diameter) featuring a distinctly smaller value (≈1.4) than in 3D SALR systems. With decreasing temperature (increasing SA), the cluster morphology changes from disk-like shapes in the equilibrium cluster phase, to double-stranded anisotropic hexagonal cluster segments formed in a cluster-percolated (CP) gel-like phase. This transition can be quantified by a hexagonal order parameter distribution function. The mean cluster size and coordination number of particles in the CP phase are insensitive to changes in the attraction strength.
Collapse
Affiliation(s)
- Zihan Tan
- Biomacromolecular Systems and Processes, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
- Computational Biomedicine, Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrβe 36, 10623 Berlin, Germany.
| | - Vania Calandrini
- Computational Biomedicine, Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Jan K G Dhont
- Biomacromolecular Systems and Processes, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Physics, Heinrich-Heine Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Gerhard Nägele
- Biomacromolecular Systems and Processes, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Physics, Heinrich-Heine Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Kushwaha P, Maity S, Menon A, Chelakkot R, Chikkadi V. Percolation of nonequilibrium assemblies of colloidal particles in active chiral liquids. SOFT MATTER 2024; 20:4699-4706. [PMID: 38832669 DOI: 10.1039/d4sm00305e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The growing interest in the non-equilibrium assembly of colloidal particles in active liquids is driven by the motivation to create novel structures endowed with tunable properties unattainable within the confines of equilibrium systems. Here, we present an experimental investigation of the structural features of colloidal assemblies in active liquids of chiral E. coli. The colloidal particles form dynamic clusters due to the effective interaction mediated by active media. The activity and chirality of the swimmers strongly influence the dynamics and local ordering of colloidal particles, resulting in clusters with persistent rotation, whose structure differs significantly from those in equilibrium systems with attractive interactions, such as colloid-polymer mixtures. Our colloid-bacteria mixture displays several hallmark features of a percolation transition at a critical density, where the clusters span the system size. A closer examination of the critical exponents associated with cluster size distribution, the average cluster size, and the correlation length in the vicinity of the critical density shows deviations from the prediction of the standard continuum percolation model. Therefore, our experiments reveal a richer phase behavior of colloidal assemblies in active liquids.
Collapse
Affiliation(s)
- Pragya Kushwaha
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India.
| | - Sayan Maity
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India.
| | - Anjaly Menon
- Department of Applied Physics, Aalto University School of Science, Konemiehentie 1, 02150 Espoo, Finland
| | - Raghunath Chelakkot
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vijayakumar Chikkadi
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India.
| |
Collapse
|
4
|
Schulz F, Jain A, Dallari F, Markmann V, Lehmkühler F. In situ aggregation and early states of gelation of gold nanoparticle dispersions. SOFT MATTER 2024; 20:3836-3844. [PMID: 38651356 DOI: 10.1039/d4sm00080c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The aggregation and onset of gelation of PEGylated gold nanoparticles dispersed in a glycerol-water mixture is studied by small-angle X-ray scattering and X-ray photon correlation spectroscopy. Tracking structural dynamics with sub-ms time resolution over a total experimental time of 8 hours corresponding to a time windows larger than 108 Brownian times and varying the temperature between 298 K and 266 K we can identify three regimes. First, while cooling to 275 K the particles show Brownian motion that slows down due to the increasing viscosity. Second, upon further cooling the static structure changes significantly, indicated by a broad structure factor peak. We attribute this to the formation of aggregates while the dynamics are still dominated by single-particle diffusion. Finally, the relaxation functions become more and more stretched accompanied by an increased slow down of the dynamics. At the same time the structure changes continuously indicating the onset of gelation. Our observations further suggest that the colloidal aggregation and gelation is characterized first by structural changes with a subsequent slowing down of the systems dynamics. The analysis also reveals that the details of the gelation process and the gel structure strongly depend on the thickness of the PEG-coating of the gold nanoparticles.
Collapse
Affiliation(s)
- Florian Schulz
- Institute of Nanostructure and Solid State Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Avni Jain
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Francesco Dallari
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Verena Markmann
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Felix Lehmkühler
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| |
Collapse
|
5
|
Gimperlein M, Immink JN, Schmiedeberg M. Dilute gel networks vs. clumpy gels in colloidal systems with a competition between repulsive and attractive interactions. SOFT MATTER 2024; 20:3143-3153. [PMID: 38497831 DOI: 10.1039/d3sm01717f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Using Brownian dynamics simulations we study gel-forming colloidal systems. The focus of this article lies on the differences of dense and dilute gel networks in terms of structure formation both on a local and a global level. We apply reduction algorithms and observe that dilute networks and dense gels differ in the way structural properties like the thickness of strands emerge. We also analyze the percolation behavior and find that two different regimes of percolation exist which might be responsible for structural differences. In dilute networks we confirm that solidity is mainly a consequence of pentagonal bipyramids forming in the network. In dense gels, tetrahedral structures also influence solidity.
Collapse
Affiliation(s)
- M Gimperlein
- Institut für Theoretische Physik 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany.
| | - Jasper N Immink
- Condensed Matter Physics Laboratory, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
- KWR Water Research Institute, NL-3433 PE Nieuwegein, The Netherlands
| | - M Schmiedeberg
- Institut für Theoretische Physik 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany.
| |
Collapse
|
6
|
Li N, Li J, Qing L, Ma S, Li Y, Li B. Self-assembly of colloids with competing interactions confined in spheres. SOFT MATTER 2024; 20:304-314. [PMID: 38050746 DOI: 10.1039/d3sm01227a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
At low temperatures, colloidal particles with short-range attractive and long-range repulsive interactions can form various periodic microphases in bulk. In this paper, we investigate the self-assembly behaviour of colloids with competing interactions under spherical confinement by conducting molecular dynamics simulations. We find that the cluster, mixture, cylindrical, perforated lamellar and lamellar structures can be obtained, but the details of the ordered structures are different from those in bulk systems. Interestingly, the system tends to form more perforated structures when confined in smaller spheres. The mechanism behind this phenomenon is driven by the relationship between the energy of the ordered structures and the bending of the confinement wall, which is different from the mechanism in copolymer systems.
Collapse
Affiliation(s)
- Ningyi Li
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| | - Junhong Li
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| | - Lijingting Qing
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| | - Shicheng Ma
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| | - Yao Li
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| | - Baohui Li
- School of Physics, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| |
Collapse
|
7
|
Gallegos JAS, Martínez-Rivera J, Valadez-Pérez NE, Castañeda-Priego R. Patchy colloidal gels under the influence of gravity. J Chem Phys 2023; 158:114907. [PMID: 36948838 DOI: 10.1063/5.0130796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
In this contribution, gravitational effects in gel-forming patchy colloidal systems are studied. We focus on how the gel structure is modified by gravity. Through Monte Carlo computer simulations of gel-like states recently identified by the rigidity percolation criterion [J. A. S. Gallegos et al., Phys. Rev. E 104, 064606 (2021)], the influence of the gravitational field, characterized by the gravitational Péclet number, Pe, on patchy colloids is studied in terms of the patchy coverage, χ. Our findings point out that there exists a threshold Péclet number, Peg, that depends on χ above which the gravitational field enhances the particle bonding and, in consequence, promotes the aggregation or clustering of particles; the smaller the χ value, the higher the Peg. Interestingly, when χ ∼ 1 (near the isotropic limit), our results are consistent with an experimentally determined threshold Pe value where gravity affects the gel formation in short-range attractive colloids. In addition, our results show that the cluster size distribution and the density profile undergo variations that lead to changes in the percolating cluster, i.e., gravity is able to modify the structure of the gel-like states. These changes have an important impact on the structural rigidity of the patchy colloidal dispersion; the percolating cluster goes from a uniform spatially network to a heterogeneous percolated structure, where an interesting structural scenario emerges, namely, depending on the Pe value, the new heterogeneous gel-like states can coexist with both diluted and dense phases or they simply reach a crystalline-like state. In the isotropic case, the increase in the Pe number can shift the critical temperature to higher temperatures; however, when Pe > 0.01, the binodal disappears and the particles fully sediment at the bottom of the sample cell. Furthermore, gravity moves the rigidity percolation threshold to lower densities. Finally, we also note that within the values of the Péclet number here explored, the cluster morphology is barely altered.
Collapse
Affiliation(s)
- Javier A S Gallegos
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, 37150 León, Guanajuato, Mexico
| | - Jaime Martínez-Rivera
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, 37150 León, Guanajuato, Mexico
| | - Néstor E Valadez-Pérez
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Ramón Castañeda-Priego
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, 37150 León, Guanajuato, Mexico
| |
Collapse
|
8
|
Chen Y, Zhang Q, Ramakrishnan S, Leheny RL. Memory in aging colloidal gels with time-varying attraction. J Chem Phys 2023; 158:024906. [PMID: 36641382 DOI: 10.1063/5.0126432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We report a combined rheology, x-ray photon correlation spectroscopy, and modeling study of gel formation and aging in suspensions of nanocolloidal spheres with volume fractions of 0.20 and 0.43 and with a short-range attraction whose strength is tuned by changing temperature. Following a quench from high temperature, where the colloids are essentially hard spheres, to a temperature below the gel point, the suspensions form gels that undergo aging characterized by a steadily increasing elastic shear modulus and slowing, increasingly constrained microscopic dynamics. The aging proceeds at a faster rate for stronger attraction strength. When the attraction strength is suddenly lowered during aging, the gel properties evolve non-monotonically in a manner resembling the Kovacs effect in glasses, in which the modulus decreases and the microscopic dynamics become less constrained for a period before more conventional aging resumes. Eventually, the properties of the gel following the decrease in attraction strength converge to those of a gel that has undergone aging at the lower attraction strength throughout. The time scale of this convergence increases as a power law with the age at which the attraction strength is decreased and decreases exponentially with the magnitude of the change in attraction. A model for gel aging in which particles attach and detach from the gel at rates that depend on their contact number reproduces these trends and reveals that the non-monotonic behavior results from the dispersion in the rates that the populations of particles with different contact number adjust to the new attraction strength.
Collapse
Affiliation(s)
- Yihao Chen
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Qingteng Zhang
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Subramanian Ramakrishnan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, USA
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
9
|
Zhou X, Lei L, Zeng Y, Lu X, Liang F, Zhang L, Lin G. High salinity effects on the depletion attraction in colloid-polymer mixtures. J Colloid Interface Sci 2022; 631:155-164. [DOI: 10.1016/j.jcis.2022.10.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
10
|
Clusters in colloidal dispersions with a short-range depletion attraction: Thermodynamic identification and morphology. J Colloid Interface Sci 2022; 618:442-450. [DOI: 10.1016/j.jcis.2022.03.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022]
|
11
|
Richard D, Royall CP, Speck T. Response to "Comment on 'Communication: Is directed percolation in colloid-polymer mixtures linked to dynamic arrest?' " [J. Chem. Phys. 148, 241101 (2018)]. J Chem Phys 2022; 157:027102. [DOI: 10.1063/5.0090537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | - Thomas Speck
- Institute of Physics, Johannes Gutenberg University Mainz, Germany
| |
Collapse
|
12
|
Schmiedeberg M. Comment on "Communication: Is directed percolation in colloid-polymer mixtures linked to dynamic arrest?'. J Chem Phys 2022; 157:027101. [DOI: 10.1063/5.0078912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In their communication [J. Chem. Phys. 148, 241101 (2018)] Richard et al. misquote and criticize a work of Kohl et al.~[Nature Communications 7, 11817 (2016)] resting on simulations in a regime of the phase diagram that significantly differ from the one that Kohl et al.~consider. In this comment it is shown that both the effective density as well as the rescaled second virial coefficient indicate that the comparison presented by Richard et al.~is invalid. Therefore, the implications with respect to the work of Kohl et al.~are incorrect. There is no indication for a disagreement between the simulations of Richard et al.~and those of Kohl et al.~and I am confident that upon a consistent comparison and interpretation of the results both works can contribute to a more comprehensive picture of gel-forming systems.
Collapse
Affiliation(s)
- Michael Schmiedeberg
- Department für Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
13
|
Zhou J, Zhang L, Peng M, Zhou X, Cao Y, Liu J, Shen X, Yan C, Qian T. Diminishing Interfacial Turbulence by Colloid-Polymer Electrolyte to Stabilize Zinc Ion Flux for Deep-Cycling Zn Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200131. [PMID: 35357047 DOI: 10.1002/adma.202200131] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/26/2022] [Indexed: 06/14/2023]
Abstract
The fluidity of aqueous electrolytes and undesired H2 evolution reaction (HER) can cause severe interfacial turbulence in aqueous Zn metal batteries (ZMBs) at deep cycling with high capacities and current densities, which would further perturb ion flux and aggravate Zn dendrite growth. In this study, a colloid-polymer electrolyte (CPE) with special colloidal phase and suppressed HER is designed to diminish interfacial turbulence and boost deep Zn electrochemistry. Density functional theory calculations confirm that the quantitative migratory barriers of Zn2+ along the transport pathway in CPE demonstrate much smaller fluctuations compared with normal aqueous electrolyte, indicating that CPE can effectively diminish interfacial disturbance. Benefitting from this, the Zn2+ ion flux can be homogenized and deposited evenly on the electrode, which is confirmed by finite element simulation and in situ Raman measurements. Consequently, CPE enables stable operation of Zn//Cu cells even with high capacity (up to 20 mAh cm-2 ) and current density (up to 100 mA cm-2 ) and Zn//Na5 V12 O32 full-cell with N/P ratio as low as 1 (i.e., 100% Zn utilization). It is believed that this strategy opens a brand-new avenue based on CPE toward boosting deep-cycling electrochemistry in ZMBs and even other aqueous energy-storage applications.
Collapse
Affiliation(s)
- Jinqiu Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Lifang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Mingji Peng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Xi Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Yufeng Cao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Xiaowei Shen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Chenglin Yan
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| |
Collapse
|
14
|
Tateno M, Yanagishima T, Tanaka H. Microscopic structural origin behind slowing down of colloidal phase separation approaching gelation. J Chem Phys 2022; 156:084904. [DOI: 10.1063/5.0080403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The gelation of colloidal particles interacting through a short-range attraction is widely recognized as a consequence of the dynamic arrest of phase separation into colloid-rich and solvent-rich phases. However, the microscopic origin behind the slowing down and dynamic arrest of phase separation remains elusive. In order to access microscopic structural changes through the entire process of gelation in a continuous fashion, we used core–shell fluorescent colloidal particles, laser scanning confocal microscopy, and a unique experimental protocol that allows us to initiate phase separation instantaneously and gently. Combining these enables us to track the trajectories of individual particles seamlessly during the whole phase-separation process from the early stage to the late arresting stage. We reveal that the enhancement of local packing and the resulting formation of locally stable rigid structures slow down the phase-separation process and arrest it to form a gel with an average coordination number of z = 6–7. This result supports a mechanical perspective on the dynamic arrest of sticky-sphere systems based on the microstructure, replacing conventional explanations based on the macroscopic vitrification of the colloid-rich phase. Our findings illuminate the microscopic mechanisms behind the dynamic arrest of colloidal phase separation, the emergence of mechanical rigidity, and the stability of colloidal gels.
Collapse
Affiliation(s)
- Michio Tateno
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Taiki Yanagishima
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hajime Tanaka
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
15
|
Gallegos JAS, Perdomo-Pérez R, Valadez-Pérez NE, Castañeda-Priego R. Location of the gel-like boundary in patchy colloidal dispersions: Rigidity percolation, structure, and particle dynamics. Phys Rev E 2021; 104:064606. [PMID: 35030878 DOI: 10.1103/physreve.104.064606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
During the past decade, there has been a hot debate about the physical mechanisms that determine when a colloidal dispersion approaches the gel transition. However, there is still no consensus on a possible unique route that leads to the conditions for the formation of a gel-like state. Based on gel states identified in experiments, Valadez-Pérez et al. [Phys. Rev. E 88, 060302(R) (2013)PLEEE81539-375510.1103/PhysRevE.88.060302] proposed rigidity percolation as the precursor of colloidal gelation in adhesive hard-sphere dispersions with coordination number 〈n_{b}〉 equal to 2.4. Although this criterion was originally established to describe mechanical transitions in network-forming molecular materials with highly directional interactions, it worked well to explain gel formation in colloidal suspensions with isotropic short-range attractive forces. Recently, this idea has also been used to account for the dynamical arrest experimentally observed in attractive spherocylinders. Then, by assuming that rigidity percolation also drives gelation in spherical colloids interacting with short-ranged and highly directional potentials, we locate the thermodynamic states where gelation seems to occur in dispersions made up of patchy colloids. To check whether the criterion 〈n_{b}〉=2.4 also holds in patchy colloidal systems, we apply the so-called bond-bending analysis to determine the fraction of floppy modes at some percolating clusters. This analysis confirms that the condition 〈n_{b}〉=2.4 is a good approximation to determine those percolating clusters that are either mechanically stable or rigid. Furthermore, our results point out that not all combinations of patches and coverages lead to a gel-like state. Additionally, we systematically study the structure and the cluster size distribution along those thermodynamic states identified as gels. We show that for high coverage values, the structure is very similar for systems that have the same coverage regardless the number or the position of the patches on the particle surface. Finally, by using dynamic Monte Carlo computer simulations, we calculate both the mean-square displacement and the intermediate scattering function at and in the neighborhood of the gel-like states.
Collapse
Affiliation(s)
- Javier A S Gallegos
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, 37150 León, Guanajuato, Mexico
| | - Román Perdomo-Pérez
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, 37150 León, Guanajuato, Mexico
| | - Néstor Enrique Valadez-Pérez
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Ramón Castañeda-Priego
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, 37150 León, Guanajuato, Mexico
| |
Collapse
|
16
|
Immink JN, Maris JJE, Capellmann RF, Egelhaaf SU, Schurtenberger P, Stenhammar J. ArGSLab: a tool for analyzing experimental or simulated particle networks. SOFT MATTER 2021; 17:8354-8362. [PMID: 34550148 PMCID: PMC8457054 DOI: 10.1039/d1sm00692d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Microscopy and particle-based simulations are both powerful techniques to study aggregated particulate matter such as colloidal gels. The data provided by these techniques often contains information on a wide array of length scales, but structural analysis methods typically focus on the local particle arrangement, even though the data also contains information about the particle network on the mesoscopic length scale. In this paper, we present a MATLAB software package for quantifying mesoscopic network structures in colloidal samples. ArGSLab (Arrested and Gelated Structures Laboratory) extracts a network backbone from the input data, which is in turn transformed into a set of nodes and links for graph theory-based analysis. The routines can process both image stacks from microscopy as well as explicit coordinate data, and thus allows quantitative comparison between simulations and experiments. ArGSLab furthermore enables the accurate analysis of microscopy data where, e.g., an extended point spread function prohibits the resolution of individual particles. We demonstrate the resulting output for example datasets from both microscopy and simulation of colloidal gels, in order to showcase the capability of ArGSLab to quantitatively analyze data from various sources. The freely available software package can be used either with a provided graphical user interface or directly as a MATLAB script.
Collapse
Affiliation(s)
- Jasper N Immink
- Condensed Matter Physics Laboratory, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- Division of Physical Chemistry, Lund University, Lund, Sweden
| | - J J Erik Maris
- Inorganic Chemistry and Catalysis Group, Utrecht University, Utrecht, The Netherlands
| | - Ronja F Capellmann
- Condensed Matter Physics Laboratory, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Peter Schurtenberger
- Division of Physical Chemistry, Lund University, Lund, Sweden
- Lund Institute of advanced Neutron and X-ray Science (LINXS), Lund University, Lund, Sweden
| | | |
Collapse
|
17
|
Royall CP, Faers MA, Fussell SL, Hallett JE. Real space analysis of colloidal gels: triumphs, challenges and future directions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:453002. [PMID: 34034239 DOI: 10.1088/1361-648x/ac04cb] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Colloidal gels constitute an important class of materials found in many contexts and with a wide range of applications. Yet as matter far from equilibrium, gels exhibit a variety of time-dependent behaviours, which can be perplexing, such as an increase in strength prior to catastrophic failure. Remarkably, such complex phenomena are faithfully captured by an extremely simple model-'sticky spheres'. Here we review progress in our understanding of colloidal gels made through the use of real space analysis and particle resolved studies. We consider the challenges of obtaining a suitable experimental system where the refractive index and density of the colloidal particles is matched to that of the solvent. We review work to obtain a particle-level mechanism for rigidity in gels and the evolution of our understanding of time-dependent behaviour, from early-time aggregation to ageing, before considering the response of colloidal gels to deformation and then move on to more complex systems of anisotropic particles and mixtures. Finally we note some more exotic materials with similar properties.
Collapse
Affiliation(s)
- C Patrick Royall
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
- School of Chemistry, University of Bristol, Cantock Close, Bristol, BS8 1TS, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol, BS8 1FD, United Kingdom
| | - Malcolm A Faers
- Bayer AG, Crop Science Division, Formulation Technology, Alfred Nobel Str. 50, 40789 Monheim, Germany
| | - Sian L Fussell
- School of Chemistry, University of Bristol, Cantock Close, Bristol, BS8 1TS, United Kingdom
- Bristol Centre for Functional Nanomaterials, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
| | - James E Hallett
- Physical and Theoretical Chemistry Laboratory, South Parks Road, University of Oxford, OX1 3QZ, United Kingdom
| |
Collapse
|
18
|
Rocklin DZ, Hsiao L, Szakasits M, Solomon MJ, Mao X. Elasticity of colloidal gels: structural heterogeneity, floppy modes, and rigidity. SOFT MATTER 2021; 17:6929-6934. [PMID: 34180465 DOI: 10.1039/d0sm00053a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rheological measurements of model colloidal gels reveal that large variations in the shear moduli as colloidal volume-fraction changes are not reflected by simple structural parameters such as the coordination number, which remains almost a constant. We resolve this apparent contradiction by conducting a normal-mode analysis of experimentally measured bond networks of gels of colloidal particles with short-ranged attraction. We find that structural heterogeneity of the gels, which leads to floppy modes and a nonaffine-affine crossover as frequency increases, evolves as a function of the volume fraction and is key to understanding the frequency-dependent elasticity. Without any free parameters, we achieve good qualitative agreement with the measured mechanical response. Furthermore, we achieve universal collapse of the shear moduli through a phenomenological spring-dashpot model that accounts for the interplay between fluid viscosity, particle dissipation, and contributions from the affine and non-affine network deformation.
Collapse
Affiliation(s)
- D Zeb Rocklin
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA. and School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332, USA.
| | - Lilian Hsiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27606, USA
| | - Megan Szakasits
- Department of Chemical Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, Michigan 48109, USA
| | - Michael J Solomon
- Department of Chemical Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, Michigan 48109, USA
| | - Xiaoming Mao
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
19
|
Soto-Bustamante F, Valádez-Pérez NE, Castañeda-Priego R, Laurati M. Potential-invariant network structures in Asakura-Oosawa mixtures with very short attraction range. J Chem Phys 2021; 155:034903. [PMID: 34293895 DOI: 10.1063/5.0052273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We systematically investigated the structure and aggregate morphology of gel networks formed by colloid-polymer mixtures with a moderate colloid volume fraction and different values of the polymer-colloid size ratio, always in the limit of short-range attraction. Using the coordinates obtained from confocal microscopy experiments, we determined the radial, angular, and nearest-neighbor distribution functions together with the cluster radius of gyration as a function of size ratio and polymer concentration. The analysis of the structural correlations reveals that the network structure becomes increasingly less sensitive to the potential strength with the decreasing polymer-colloid size ratio. For the larger size ratios, compact clusters are formed at the onset of network formation and become progressively more branched and elongated with increasing polymer concentration/attraction strength. For the smallest size ratios, we observe that the aggregate structures forming the gel network are characterized by similar morphological parameters for different values of the size ratio and the polymer concentration, indicating a limited evolution of the gel structure with variations of the parameters that determine the interaction potential between colloids.
Collapse
Affiliation(s)
- Fernando Soto-Bustamante
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, 37150 León, Mexico
| | - Néstor E Valádez-Pérez
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Carretera Emiliano Zapata km 8, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Ramón Castañeda-Priego
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, 37150 León, Mexico
| | - Marco Laurati
- Dipartimento di Chimica and CSGI, Università di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
20
|
Gimperlein M, Schmiedeberg M. Structural and dynamical properties of dilute gel networks in colloid-polymer mixtures. J Chem Phys 2021; 154:244903. [PMID: 34241339 DOI: 10.1063/5.0048816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The competition of short-ranged depletion attraction and long-ranged repulsion between colloidal particles in colloid-polymer mixtures leads to the formation of heterogeneous gel-like structures. Our special focus will be on the states where the colloids arrange in thin strands that span the whole system and that we will refer to as dilute gel networks. These states occur at low packing fractions for attractions that are stronger than those at both the binodal line of the equilibrium gas-liquid phase separation and the directed percolation transition line. By using Brownian dynamics simulations, we explore the formation, structure, and aging dynamics of dilute gel networks. The essential connections in a dilute gel network are determined by constructing reduced networks. We compare the observed properties to those of clumpy gels or cluster fluids. Our results demonstrate that both the structure and the (often slow) dynamics of the stable or meta-stable heterogeneous states in colloid-polymer mixtures possess distinct features on various length and time scales and thus are richly diverse.
Collapse
Affiliation(s)
- M Gimperlein
- Institute for Theoretical Physics 1, FAU Erlangen-Nuremberg, Erlangen, Germany
| | - M Schmiedeberg
- Institute for Theoretical Physics 1, FAU Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
21
|
Kartha MJ, Tripathy M. Growth transitions and critical behavior in the non-equilibrium aggregation of short, patchy nanorods. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:72. [PMID: 34047852 DOI: 10.1140/epje/s10189-021-00064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
We have carried out Monte Carlo simulations to study the non-equilibrium aggregation of short patchy nanorods in two dimensions. Below a critical value of patch size ([Formula: see text]), the aggregates have finite sizes with small radii of gyration, [Formula: see text]. At [Formula: see text], the average radius of gyration shows a power law increase with time such that [Formula: see text], where [Formula: see text]. Above, [Formula: see text], the aggregates are fractal in nature and their fractal dimension depends on the value of patch size. These morphological differences are due to the fact that below the critical value of patch size ([Formula: see text]), the growth of the clusters is suppressed and the system reaches an 'absorbed state.' Above [Formula: see text], the system reaches an 'active state,' in which the cluster size keeps growing with a fixed rate at long times. Thus, the system encounters a non-equilibrium phase transition. Close to the transition, the growth rate scales as [Formula: see text], where [Formula: see text]. The long-time growth rate varies as [Formula: see text] where [Formula: see text]. These scaling exponents indicate that the transition belongs to the directed percolation universality class. The patchy nanorods also display a threshold patch size ([Formula: see text]), beyond which the long-time growth rate remains constant. We present geometric arguments for the existence of [Formula: see text]. The fractal dimension of the aggregates increases from 1.75, at [Formula: see text], to 1.81, at [Formula: see text]. It remains constant beyond [Formula: see text].
Collapse
Affiliation(s)
- Moses J Kartha
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, 400076, India
| | - Mukta Tripathy
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, 400076, India.
| |
Collapse
|
22
|
Wada AHO, Hoyos JA. Critical properties of the susceptible-exposed-infected model with correlated temporal disorder. Phys Rev E 2021; 103:012306. [PMID: 33601627 DOI: 10.1103/physreve.103.012306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
In this paper we study the critical properties of the nonequilibrium phase transition of the susceptible-exposed-infected (SEI) model under the effects of long-range correlated time-varying environmental noise on the Bethe lattice. We show that temporal noise is perturbatively relevant changing the universality class from the (mean-field) dynamical percolation to the exotic infinite-noise universality class of the contact process model. Our analytical results are based on a mapping to the one-dimensional fractional Brownian motion with an absorbing wall and is confirmed by Monte Carlo simulations. Unlike the contact process, our theory also predicts that it is quite difficult to observe the associated active temporal Griffiths phase in the long-time limit. Finally, we also show an equivalence between the infinite-noise and the compact directed percolation universality classes by relating the SEI model in the presence of temporal disorder to the Domany-Kinzel cellular automaton in the limit of compact clusters.
Collapse
Affiliation(s)
- Alexander H O Wada
- Instituto de Física de São Carlos, Universidade de São Paulo, C. P. 369, São Carlos, São Paulo 13560-970, Brazil
| | - José A Hoyos
- Instituto de Física de São Carlos, Universidade de São Paulo, C. P. 369, São Carlos, São Paulo 13560-970, Brazil
| |
Collapse
|
23
|
Richter P, Henkel M, Böttcher L. Aging and equilibration in bistable contagion dynamics. Phys Rev E 2020; 102:042308. [PMID: 33212607 DOI: 10.1103/physreve.102.042308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/02/2020] [Indexed: 11/07/2022]
Abstract
We analyze the late-time relaxation dynamics for a general contagion model. In this model, nodes are either active or failed. Active nodes can fail either "spontaneously" at any time or "externally" if their neighborhoods are sufficiently damaged. Failed nodes may always recover spontaneously. At late times, the breaking of time-translation invariance is a necessary condition for physical aging. We observe that time-translational invariance is lost for initial conditions that lie between the basins of attraction of the model's two stable stationary states. Based on corresponding mean-field predictions, we characterize the observed model behavior in terms of a phase diagram spanned by the fractions of spontaneously and externally failed nodes. For the square lattice, the phases in which the dynamics approaches one of the two stable stationary states are not linearly separable due to spatial correlation effects. Our results provide insights into aging and relaxation phenomena that are observable in a model of social contagion processes.
Collapse
Affiliation(s)
- Paul Richter
- Institute for Theoretical Physics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Malte Henkel
- Laboratoire de Physique et Chimie Théoriques (CNRS UMR 7019), Université de Lorraine Nancy, Boîte Postale 70239, F-54506 Vandœuvre lès Nancy Cedex, France.,Centro de Física Téorica e Computacional, Universidade de Lisboa, P-1749-016 Lisboa, Portugal.,MPIPKS, Nöthnitzer Straße 38, D-01187 Dresden, Germany
| | - Lucas Böttcher
- Institute for Theoretical Physics, ETH Zurich, CH-8093 Zurich, Switzerland.,Computational Medicine, University of California, Los Angeles, California 90024, USA.,Center of Economic Research, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
24
|
Tsurusawa H, Arai S, Tanaka H. A unique route of colloidal phase separation yields stress-free gels. SCIENCE ADVANCES 2020; 6:6/41/eabb8107. [PMID: 33028521 PMCID: PMC7541077 DOI: 10.1126/sciadv.abb8107] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/18/2020] [Indexed: 05/28/2023]
Abstract
Phase separation often leads to gelation in soft and biomatter. For colloidal suspensions, we have a consensus that gels form by the dynamical arrest of phase separation. In this gelation, percolation of the phase-separated structure occurs before the dynamical arrest, leading to the generation of mechanical stress in the gel network. Here, we find a previously unrecognized type of gelation in dilute colloidal suspensions, in which percolation occurs after the local dynamical arrest, i.e., the formation of mechanically stable, rigid clusters. Thus, topological percolation generates little mechanical stress, and the resulting gel is almost stress-free when formed. We also show that the selection of these two types of gelation (stressed and stress-free) is determined solely by the volume fraction as long as the interaction is short-ranged. This universal classification of gelation of particulate systems may have a substantial impact on material and biological science.
Collapse
Affiliation(s)
- Hideyo Tsurusawa
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Shunto Arai
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Department of Applied Physics, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hajime Tanaka
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| |
Collapse
|
25
|
Leandro A, Pacheco D, Cotas J, Marques JC, Pereira L, Gonçalves AMM. Seaweed's Bioactive Candidate Compounds to Food Industry and Global Food Security. Life (Basel) 2020; 10:E140. [PMID: 32781632 PMCID: PMC7459772 DOI: 10.3390/life10080140] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
The world population is continuously growing, so it is important to keep producing food in a sustainable way, especially in a way that is nutritious and in a sufficient quantity to overcome global needs. Seaweed grows, and can be cultivated, in seawater and generally does not compete for arable land and freshwater. Thus, the coastal areas of the planet are the most suitable for seaweed production, which can be an alternative to traditional agriculture and can thus contribute to a reduced carbon footprint. There are evolving studies that characterize seaweed's nutritional value and policies that recognize them as food, and identify the potential benefits and negative factors that may be produced or accumulated by seaweed, which are, or can be, dangerous for human health. Seaweeds have a high nutritional value along with a low caloric input and with the presence of fibers, proteins, omega 3 and 6 unsaturated fatty acids, vitamins, and minerals. Moreover, several seaweed sub-products have interesting features to the food industry. Therefore, the focus of this review is in the performance of seaweed as a potential alternative and as a safe food source. Here described is the nutritional value and concerns relating to seaweed consumption, and also how seaweed-derived compounds are already commercially explored and available in the food industry and the usage restrictions to safeguard them as safe food additives for human consumption.
Collapse
Affiliation(s)
- Adriana Leandro
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (A.L.); (D.P.); (J.C.); (J.C.M.); (L.P.)
| | - Diana Pacheco
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (A.L.); (D.P.); (J.C.); (J.C.M.); (L.P.)
| | - João Cotas
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (A.L.); (D.P.); (J.C.); (J.C.M.); (L.P.)
| | - João C. Marques
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (A.L.); (D.P.); (J.C.); (J.C.M.); (L.P.)
| | - Leonel Pereira
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (A.L.); (D.P.); (J.C.); (J.C.M.); (L.P.)
| | - Ana M. M. Gonçalves
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (A.L.); (D.P.); (J.C.); (J.C.M.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
26
|
Hatami-Marbini H. A computational study of the behavior of colloidal gel networks at low volume fraction. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:275101. [PMID: 32254046 DOI: 10.1088/1361-648x/ab76ab] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colloidal gel networks appear in different scientific and industrial applications because of their unique properties. Molecular dynamics simulations could reveal the relation between molecular level and macroscopic properties of these systems. Nevertheless, the predictions of numerical simulations might depend on the specific form and parameters of interaction potentials. In this paper, a new effective interaction potential is used for characterizing the mechanical behavior of low volume fraction colloidal gels under large shear deformation. The findings are compared with those obtained from other available forms of interaction potentials in order to determine gel characteristics that are interaction potential independent. Furthermore, the macroscopic stress-strain behavior is discussed in terms of the behavior of different terms of the proposed interaction potential. The correlation between the stretch of interparticle bonds and their alignment in the direction of the maximum principal stress is also computed in order to provide microscopic explanations for the initial strain softening behavior. It is concluded that, in addition to topology, local mechanical interactions between colloidal particles are important in defining the mechanical response of soft gels.
Collapse
Affiliation(s)
- Hamed Hatami-Marbini
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago IL, United States of America
| |
Collapse
|
27
|
Kaewpetch T, Gilchrist JF. Chemical vs. mechanical microstructure evolution in drying colloid and polymer coatings. Sci Rep 2020; 10:10264. [PMID: 32581230 PMCID: PMC7314827 DOI: 10.1038/s41598-020-66875-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/28/2020] [Indexed: 12/04/2022] Open
Abstract
Colloidal based films have been widely developed for a wide range of applications including chemical and electrical barrier coatings, photonic materials, biomaterials, and pharmaceutical oral drug delivery. Many previous studies investigate methods to generate uniformity or desired stratification of the final components with a desired microstructure. Few studies have been able to investigate this microstructure in-situ during drying. This experimental study directly tracks fluorescent colloids that are either stable in suspension or have attractive interactions during the drying process using high speed laser scanning confocal microscopy to obtain details of microstructural evolution during drying. The colloidal microstructure in stable suspensions evolves continuously during drying. Microstructures in these systems have a signature Voronoi polyhedra distribution that is defined by lognormal curve having a constant standard deviation that only depends on its chemical composition. Those formulations having strongly attractive constituents have microstructure that is heterogeneous and non-monotonic due to the mechanics associated with internal convection and capillary forces. Toward the end of drying, the influence of the mode of microstructure rearrangements remains evident.
Collapse
Affiliation(s)
- Thitiporn Kaewpetch
- Polymer Science and Engineering, Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, USA
| | - James F Gilchrist
- Polymer Science and Engineering, Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, USA.
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
28
|
Murphy RP, Hatch HW, Mahynski NA, Shen VK, Wagner NJ. Dynamic arrest of adhesive hard rod dispersions. SOFT MATTER 2020; 16:1279-1286. [PMID: 31913393 DOI: 10.1039/c9sm01877h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The phenomenon of dynamic arrest, more commonly referred to as gel and glass formation, originates as particle motion slows significantly. Current understanding of gels and glasses stems primarily from dispersions of spherical particles, but much less is known about how particle shape affects dynamic arrest transitions. To better understand the effects of particle shape anisotropy on gel and glass formation, we systematically measure the rheology, particle dynamics, and static microstructure of thermoreversible colloidal dispersions of adhesive hard rods (AHR). First, the dynamic arrest transitions are mapped as a function of temperature T, aspect ratio L/D≈ 3 to 7, and volume fraction φ≈ 0.1 to 0.5. The critical gel temperature Tgel and glass volume fraction φg are determined from the particle dynamics and rheology. Second, an effective orientation-averaged, short-range attraction between rods is quantified from small-angle scattering measurements and characterized by a reduced temperature τ. Similar τ is found at low rod concentrations, indicating that rod gelation occurs at similar effective attraction strength independent of L/D. Monte Carlo simulations reveal a similar convergence in τ when rods cluster and percolate with an average bond coordination number 〈nc〉≈ 2.4, supporting the link between physical gelation and rigidity percolation. Lastly, AHR results are mapped onto a dimensionless state diagram to compare with previous predictions of attraction-driven gels, repulsion-driven glasses, and liquid crystal phases.
Collapse
Affiliation(s)
- Ryan P Murphy
- Center for Neutron Science and Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA.
| | | | | | | | | |
Collapse
|
29
|
Tsurusawa H, Leocmach M, Russo J, Tanaka H. Direct link between mechanical stability in gels and percolation of isostatic particles. SCIENCE ADVANCES 2019; 5:eaav6090. [PMID: 31172025 PMCID: PMC6544450 DOI: 10.1126/sciadv.aav6090] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/23/2019] [Indexed: 05/28/2023]
Abstract
Colloidal gels have unique mechanical and transport properties that stem from their bicontinuous nature, in which a colloidal network is intertwined with a viscous solvent, and have found numerous applications in foods, cosmetics, and construction materials and for medical applications, such as cartilage replacements. So far, our understanding of the process of colloidal gelation is limited to long-time dynamical effects, where gelation is viewed as a phase separation process interrupted by the glass transition. However, this purely out-of-equilibrium thermodynamic picture does not address the emergence of mechanical stability. With confocal microscopy experiments, we reveal that mechanical metastability is reached only after isotropic percolation of locally isostatic environments, establishing a direct link between the load-bearing ability of gels and the isostaticity condition. Our work suggests an operative description of gels based on mechanical equilibrium and isostaticity, providing the physical basis for the stability and rheology of these materials.
Collapse
Affiliation(s)
- Hideyo Tsurusawa
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Mathieu Leocmach
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - John Russo
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- School of Mathematics, University of Bristol, Bristol BS8 1TW, UK
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
30
|
Maiti M, Schmiedeberg M. Temperature dependence of the transition packing fraction of thermal jamming in a harmonic soft sphere system. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:165101. [PMID: 30681976 DOI: 10.1088/1361-648x/ab01e9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The glassy dynamics of soft harmonic spheres are often mapped onto the dynamics of hard spheres by considering an effective diameter for the soft particles and therefore an effective packing fraction. While in this approach the thermal fluctuations within valleys of the energy landscape are covered, the crossing of energy barriers from one valley into another usually is neglected. Here we argue-motivated by studies of the glass transition based on explorations of the energy landscape-that the crossing of energy barriers can be attributed by an effective decrease of the glass transition packing fraction with increasing temperature T according to T 0.2. Furthermore, we reanalyzing data of soft sphere simulations. Since fitting scaling laws to simulation data always allows for some arbitrariness, we cannot prove based on the simulation data that our idea of a shift of the glass transition packing fraction due to barrier crossings is the only possible way to explain the discrepancies that have been observed previously. However, we show that a possible explanation of the simulation data is given by our approach to characterize the dynamics of soft spheres by both, the previously-considered temperature-dependent effective packing fraction due to the increase of the mean overlap between neighboring particles with stronger thermal fluctuations and the newly introduced increase of the glass transition packing with an increasing probability of barrier crossings.
Collapse
Affiliation(s)
- Moumita Maiti
- Institut für Physikalische Chemie, Westfälische Wilhelms-Universität (WWU), Corrensstr. 28/30, 48149 Münster, Germany
| | | |
Collapse
|
31
|
Maiti M, Schmiedeberg M. The thermal jamming transition of soft harmonic disks in two dimensions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:38. [PMID: 30915605 DOI: 10.1140/epje/i2019-11802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
By exploring the properties of the energy landscape of a bidisperse system of soft harmonic disks in two dimensions we determine the thermal jamming transition. To be specific, we study whether the ground state of the system where the particles do not overlap can be reached within a reasonable time. Starting with random initial configurations, the energy landscape is probed by energy minimization steps as in case of athermal jamming and in addition steps where an energy barrier can be crossed with a small but non-zero probability. For random initial conditions we find that as a function of packing fraction the thermal jamming transition, i.e. the transition from a state where all overlaps can be removed to an effectively non-ergodic state where one cannot get rid of the overlaps, occurs at a packing fraction of [Formula: see text], which is smaller than the transition packing fraction of athermal jamming at [Formula: see text]. Furthermore, we show that the thermal jamming transition is in the universality class of directed percolation and therefore is fundamentally different from the athermal jamming transition.
Collapse
Affiliation(s)
- Moumita Maiti
- Institut für Physikalische Chemie, Westfälische Wilhelms-Universität (WWU), Corrensstr. 28/30, 48149, Münster, Germany
| | - Michael Schmiedeberg
- Institut für Theoretische Physik I, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Staudtstraße 7, 91058, Erlangen, Germany.
| |
Collapse
|
32
|
Immink JN, Maris JJE, Crassous JJ, Stenhammar J, Schurtenberger P. Reversible Formation of Thermoresponsive Binary Particle Gels with Tunable Structural and Mechanical Properties. ACS NANO 2019; 13:3292-3300. [PMID: 30763513 DOI: 10.1021/acsnano.8b09139] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We investigate the collective behavior of suspended thermoresponsive microgels that expel solvent and subsequently decrease in size upon heating. Using a binary mixture of differently thermoresponsive microgels, we demonstrate how distinctly different gel structures form, depending on the heating profile used. Confocal laser scanning microscopy (CLSM) imaging shows that slow heating ramps yield a core-shell network through sequential gelation, while fast heating ramps yield a random binary network through homogelation. Here, secondary particles are shown to aggregate in a monolayer fashion upon the first gel, which can be qualitatively reproduced through Brownian dynamics simulations using a model based on a temperature-dependent interaction potential incorporating steric repulsion and van der Waals attraction. Through oscillatory rheology it is shown that secondary microgel deposition enhances the structural integrity of the previously formed single species gel, and the final structure exhibits higher elastic and loss moduli than its compositionally identical homogelled counterpart. Furthermore, we demonstrate that aging processes in the scaffold before secondary microgel deposition govern the final structural properties of the bigel, which allows a detailed control over these properties. Our results thus demonstrate how the temperature profile can be used to finely control the structural and mechanical properties of these highly tunable materials.
Collapse
Affiliation(s)
- Jasper N Immink
- Division of Physical Chemistry , Lund University , SE-22100 Lund , Sweden
| | - J J Erik Maris
- Inorganic Chemistry and Catalysis , Utrecht University , 3584CG Utrecht , The Netherlands
| | - Jérôme J Crassous
- Institute of Physical Chemistry , RWTH Aachen University , 52074 Aachen , Germany
| | - Joakim Stenhammar
- Division of Physical Chemistry , Lund University , SE-22100 Lund , Sweden
| | - Peter Schurtenberger
- Division of Physical Chemistry , Lund University , SE-22100 Lund , Sweden
- Lund Institute of advanced Neutron and X-ray Science (LINXS) , Lund University , SE-22100 Lund , Sweden
| |
Collapse
|
33
|
Richard D, Hallett J, Speck T, Royall CP. Coupling between criticality and gelation in "sticky" spheres: a structural analysis. SOFT MATTER 2018; 14:5554-5564. [PMID: 29809218 DOI: 10.1039/c8sm00389k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We combine experiments and simulations to study the link between criticality and gelation in sticky spheres. We employ confocal microscopy to image colloid-polymer mixtures and Monte Carlo simulations of the square-well (SW) potential as a reference model. To this end, we map our experimental samples onto the SW model. We find an excellent structural agreement between experiments and simulations, both for locally favored structures at the single particle level and large-scale fluctuations at criticality. We follow in detail the rapid structural change in the critical fluid when approaching the gas-liquid binodal and highlight the role of critical density fluctuations for this structural crossover. Our results link the arrested spinodal decomposition to long-lived energetically favored structures, which grow even away from the binodal due to the critical scaling of the bulk correlation length and static susceptibility.
Collapse
Affiliation(s)
- David Richard
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
34
|
Richard D, Royall CP, Speck T. Communication: Is directed percolation in colloid-polymer mixtures linked to dynamic arrest? J Chem Phys 2018; 148:241101. [DOI: 10.1063/1.5037680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- David Richard
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - C. Patrick Royall
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol, United Kingdom
| | - Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
35
|
Royall CP, Williams SR, Tanaka H. Vitrification and gelation in sticky spheres. J Chem Phys 2018; 148:044501. [PMID: 29390812 DOI: 10.1063/1.5000263] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Glasses and gels are the two dynamically arrested, disordered states of matter. Despite their importance, their similarities and differences remain elusive, especially at high density, where until now it has been impossible to distinguish them. We identify dynamical and structural signatures which distinguish the gel and glass transitions in a colloidal model system of hard and "sticky" spheres. It has been suggested that "spinodal" gelation is initiated by gas-liquid viscoelastic phase separation to a bicontinuous network and the resulting densification leads to vitrification of the colloid-rich phase, but whether this phase has sufficient density for arrest is unclear [M. A. Miller and D. Frenkel, Phys. Rev. Lett. 90, 135702 (2003) and P. J. Lu et al., Nature 435, 499-504 (2008)]. Moreover alternative mechanisms for arrest involving percolation have been proposed [A. P. R. Eberle et al., Phys. Rev. Lett. 106, 105704 (2011)]. Here we resolve these outstanding questions, beginning by determining the phase diagram. This, along with demonstrating that percolation plays no role in controlling the dynamics of our system, enables us to confirm spinodal decomposition as the mechanism for gelation. We are then able to show that gels can be formed even at much higher densities than previously supposed, at least to a volume fraction of ϕ = 0.59. Far from being networks, these gels apparently resemble glasses but are still clearly distinguished by the "discontinuous" nature of the transition and the resulting rapid solidification, which leads to the formation of inhomogeneous (with small voids) and far-from-equilibrium local structures. This is markedly different from the glass transition, whose continuous nature leads to the formation of homogeneous and locally equilibrated structures. We further reveal that the onset of the attractive glass transition in the form of a supercooled liquid is in fact interrupted by gelation. Our findings provide a general thermodynamic, dynamic, and structural basis upon which we can distinguish gelation from vitrification.
Collapse
Affiliation(s)
- C Patrick Royall
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Stephen R Williams
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
36
|
Royall CP. Hunting mermaids in real space: known knowns, known unknowns and unknown unknowns. SOFT MATTER 2018; 14:4020-4028. [PMID: 29767188 DOI: 10.1039/c8sm00400e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We review efforts to realise so-called mermaid (or short-ranged attraction/long ranged repulsion) interactions in 3d real space. The repulsive and attractive contributions to these interactions in charged colloids and colloid-polymer mixtures, may be accurately realised, by comparing particle-resolved studies with colloids to computer simulation. However, when we review work where these interactions have been combined, despite early indications of behaviour consistent with predictions, closer analysis reveals that in the non-aqueous systems used for particle-resolved studies, the idea of summing the attractive and repulsive components leads to wild deviations with experiment. We suggest that the origin lies in the weak ion dissociation in these systems with low dielectric constant solvents. Ultimately this leads even to non-centro-symmetric interactions and a new level of complexity in these systems.
Collapse
Affiliation(s)
- C Patrick Royall
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| |
Collapse
|
37
|
Ergodicity breaking transition in a glassy soft sphere system at small but non-zero temperatures. Sci Rep 2018; 8:1837. [PMID: 29382860 PMCID: PMC5789873 DOI: 10.1038/s41598-018-20152-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/15/2018] [Indexed: 11/30/2022] Open
Abstract
While the glass transition at non-zero temperature seems to be hard to access for experimental, theoretical, or simulation studies, jamming at zero temperature has been studied in great detail. Motivated by the exploration of the energy landscape that has been successfully used to investigate athermal jamming, we introduce a new method that includes the possibility of the thermally excited crossing of energy barriers. We then determine whether the ground state configurations of a soft sphere system are accessible or not and as a consequence whether the system is ergodic or effectively non-ergodic. Interestingly, we find an transition where the system becomes effectively non-ergodic if the density is increased. The transition density in the limit of small but non-zero temperatures is independent of temperature and below the transition density of athermal jamming. This confirms recent computer simulation studies where athermal jamming occurs deep inside the glass phase. In addition, we show that the ergodicity breaking transition is in the universality class of directed percolation. Therefore, our approach not only makes the transition from an ergodic to an effectively non-ergodic systems easily accessible and helps to reveal its universality class but also shows that it is fundamentally different from athermal jamming.
Collapse
|
38
|
Shireen Z, Babu SB. Lattice animals in diffusion limited binary colloidal system. J Chem Phys 2017; 147:054904. [PMID: 28789541 DOI: 10.1063/1.4996739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In a soft matter system, controlling the structure of the amorphous materials has been a key challenge. In this work, we have modeled irreversible diffusion limited cluster aggregation of binary colloids, which serves as a model for chemical gels. Irreversible aggregation of binary colloidal particles leads to the formation of a percolating cluster of one species or both species which are also called bigels. Before the formation of the percolating cluster, the system forms a self-similar structure defined by a fractal dimension. For a one component system when the volume fraction is very small, the clusters are far apart from each other and the system has a fractal dimension of 1.8. Contrary to this, we will show that for the binary system, we observe the presence of lattice animals which has a fractal dimension of 2 irrespective of the volume fraction. When the clusters start inter-penetrating, we observe a fractal dimension of 2.5, which is the same as in the case of the one component system. We were also able to predict the formation of bigels using a simple inequality relation. We have also shown that the growth of clusters follows the kinetic equations introduced by Smoluchowski for diffusion limited cluster aggregation. We will also show that the chemical distance of a cluster in the flocculation regime will follow the same scaling law as predicted for the lattice animals. Further, we will also show that irreversible binary aggregation comes under the universality class of the percolation theory.
Collapse
Affiliation(s)
- Zakiya Shireen
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sujin B Babu
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
39
|
Kohl M, Schmiedeberg M. Shear-induced slab-like domains in a directed percolated colloidal gel. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:71. [PMID: 28785865 DOI: 10.1140/epje/i2017-11560-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
We explore the structural changes of a gel-forming colloid polymer mixture under shear by employing Brownian dynamics simulations of a colloidal system with short-ranged attractive depletion interaction in a linear flow profile. While the structure of unpercolated systems changes only slightly under shearing, we discover the formation of slab-like clusters in sheared directed percolated gel networks that are confined between two walls. These gel-slabs are stable over a long time and seem to be related to the syneresis phenomena that can be observed in directed percolated colloidal gels. Only at large shear strength the slabs are destroyed and a homogeneous state with many unbounded particles can be observed. We also quantitatively analyze our results by determining void volumes.
Collapse
Affiliation(s)
- Matthias Kohl
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
| | - Michael Schmiedeberg
- Institut für Theoretische Physik 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany.
| |
Collapse
|
40
|
Park N, Conrad JC. Phase behavior of colloid-polymer depletion mixtures with unary or binary depletants. SOFT MATTER 2017; 13:2781-2792. [PMID: 28345105 DOI: 10.1039/c6sm02891h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Adding depletants to a colloidal suspension induces an attractive interparticle interaction that can be tuned to obtain desired structures or to probe phase behavior. When the depletant is not uniform in size, however, both the range and strength of the attraction become difficult to predict and hence control. We investigated the effects of depletant bidispersity on the non-equilibrium phase behavior of colloid-polymer mixtures. We added unary or binary mixtures of polystyrene as the depletant to suspensions of charged poly(methyl methacrylate) particles. The structure and dynamics of the particles were compared over three sets of samples with various mixtures of two different polystyrenes whose size varied by an order of magnitude. The structure and dynamics were nearly independent of depletant dispersity if the polymer concentration was represented as a sum of normalized concentrations of each species. Near the transition region between a fluid of clusters and an interconnected gel at intermediate volume fractions, partitioning of polymers in a binary mixture into colloid-rich and polymer-rich phase leads to a slightly different gelation pathway.
Collapse
Affiliation(s)
- Nayoung Park
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204-4004, USA.
| | | |
Collapse
|
41
|
Kartha MJ, Banpurkar AG. Why patchy diffusion-limited aggregation belongs to the directed-percolation universality class. Phys Rev E 2016; 94:062108. [PMID: 28085313 DOI: 10.1103/physreve.94.062108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Indexed: 11/07/2022]
Abstract
We present a possible link between nonequilibrium phase transition observed in patchy diffusion-limited aggregation (DLA) [M. J. Kartha and A. Sayeed, Phys. Lett. A 380, 2791 (2016)10.1016/j.physleta.2016.06.036] and directed bond percolation (DP). A system of directed percolation with patchy particles (patchy DP) in which the bond connectivity is established depending on patch size p is analyzed. It is observed that patchy DP starting from a single seed shows a nonequilibrium phase transition. Below a critical value of the patch size p_{c}, the system reaches an absorbing state above which is a fluctuating active state as observed in the DP system. The value of this nonuniversal parameter p_{c} is observed to be slightly higher than the value observed in patchy DLA. Close to the critical value, the order parameter P(∞)∼(p-p_{c})^{β} where β=0.272±0.010, which is consistent with the directed-percolation universality class. Therefore the intrinsic nature of patchy DP is responsible for the phase transition in patchy DLA. This study reveals that the estimated critical value of patch size p_{c}=0.80625±0.00020 in patchy DP is different from the critical bond probability p_{c}=0.6447 in the DP system. This elucidates that the bond probability in DP is not equivalent to the patch probability of a particular site. Our work also gives an insight into the problem related with formation of an extended network of pentagon subunits in connection with the virus capsid.
Collapse
Affiliation(s)
- Moses J Kartha
- Department of Physics, Savitribai Phule Pune University, Ganeshkhind, Pune-411007, India
| | - Arun G Banpurkar
- Department of Physics, Savitribai Phule Pune University, Ganeshkhind, Pune-411007, India
| |
Collapse
|
42
|
Capellmann RF, Valadez-Pérez NE, Simon B, Egelhaaf SU, Laurati M, Castañeda-Priego R. Structure of colloidal gels at intermediate concentrations: the role of competing interactions. SOFT MATTER 2016; 12:9303-9313. [PMID: 27801925 DOI: 10.1039/c6sm01822j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Colloidal gels formed by colloid-polymer mixtures with an intermediate volume fraction (ϕc ≈ 0.4) are investigated by confocal microscopy. In addition, we have performed Monte Carlo simulations based on a simple effective pair potential that includes a short-range attractive contribution representing depletion interactions, and a longer-range repulsive contribution describing the electrostatic interactions due to the presence of residual charges. Despite neglecting non-equilibrium effects, experiments and simulations yield similar gel structures, characterised by, e.g., the pair, angular and bond distribution functions. We find that the structure hardly depends on the strength of the attraction if the electrostatic contribution is fixed, but changes significantly if the electrostatic screening is changed. This delicate balance between attractions and repulsions, which we quantify by the second virial coefficient, also determines the location of the gelation boundary.
Collapse
Affiliation(s)
- Ronja F Capellmann
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Néstor E Valadez-Pérez
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, 37150 León, Guanajuato, Mexico.
| | - Benedikt Simon
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marco Laurati
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany and División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, 37150 León, Guanajuato, Mexico.
| | - Ramón Castañeda-Priego
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, Lomas del Campestre, 37150 León, Guanajuato, Mexico.
| |
Collapse
|