1
|
Wang C, Choi HJ, Woodbury L, Lee K. Interpretable Fine-Grained Phenotypes of Subcellular Dynamics via Unsupervised Deep Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403547. [PMID: 39239705 PMCID: PMC11538677 DOI: 10.1002/advs.202403547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Uncovering fine-grained phenotypes of live cell dynamics is pivotal for a comprehensive understanding of the heterogeneity in healthy and diseased biological processes. However, this endeavor poses significant technical challenges for unsupervised machine learning, requiring the extraction of features that not only faithfully preserve this heterogeneity but also effectively discriminate between established biological states, all while remaining interpretable. To tackle these challenges, a self-training deep learning framework designed for fine-grained and interpretable phenotyping is presented. This framework incorporates an unsupervised teacher model with interpretable features to facilitate feature learning in a student deep neural network (DNN). Significantly, an autoencoder-based regularizer is designed to encourage the student DNN to maximize the heterogeneity associated with molecular perturbations. This method enables the acquisition of features with enhanced discriminatory power, while simultaneously preserving the heterogeneity associated with molecular perturbations. This study successfully delineated fine-grained phenotypes within the heterogeneous protrusion dynamics of migrating epithelial cells, revealing specific responses to pharmacological perturbations. Remarkably, this framework adeptly captured a concise set of highly interpretable features uniquely linked to these fine-grained phenotypes, each corresponding to specific temporal intervals crucial for their manifestation. This unique capability establishes it as a valuable tool for investigating diverse cellular dynamics and their heterogeneity.
Collapse
Affiliation(s)
- Chuangqi Wang
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCO80045USA
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
| | - Hee June Choi
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
- Vascular Biology Program and Department of SurgeryBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Lucy Woodbury
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
- Department of Biomedical EngineeringUniversity of ArkansasFayettevilleAR72701USA
| | - Kwonmoo Lee
- Department of Biomedical EngineeringWorcester Polytechnic InstituteWorcesterMA01609USA
- Vascular Biology Program and Department of SurgeryBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
2
|
Fernández‐Colino A, Kiessling F, Slabu I, De Laporte L, Akhyari P, Nagel SK, Stingl J, Reese S, Jockenhoevel S. Lifelike Transformative Materials for Biohybrid Implants: Inspired by Nature, Driven by Technology. Adv Healthc Mater 2023; 12:e2300991. [PMID: 37290055 PMCID: PMC11469152 DOI: 10.1002/adhm.202300991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Today's living world is enriched with a myriad of natural biological designs, shaped by billions of years of evolution. Unraveling the construction rules of living organisms offers the potential to create new materials and systems for biomedicine. From the close examination of living organisms, several concepts emerge: hierarchy, pattern repetition, adaptation, and irreducible complexity. All these aspects must be tackled to develop transformative materials with lifelike behavior. This perspective article highlights recent progress in the development of transformative biohybrid systems for applications in the fields of tissue regeneration and biomedicine. Advances in computational simulations and data-driven predictions are also discussed. These tools enable the virtual high-throughput screening of implant design and performance before committing to fabrication, thus reducing the development time and cost of biomimetic and biohybrid constructs. The ongoing progress of imaging methods also constitutes an essential part of this matter in order to validate the computation models and enable longitudinal monitoring. Finally, the current challenges of lifelike biohybrid materials, including reproducibility, ethical considerations, and translation, are discussed. Advances in the development of lifelike materials will open new biomedical horizons, where perhaps what is currently envisioned as science fiction will become a science-driven reality in the future.
Collapse
Affiliation(s)
- Alicia Fernández‐Colino
- Department of Biohybrid & Medical Textiles (BioTex)AME‐Institute of Applied Medical EngineeringHelmholtz InstituteRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| | - Fabian Kiessling
- Institute for Experimental Molecular ImagingFaculty of MedicineRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| | - Ioana Slabu
- Institute of Applied Medical EngineeringHelmholtz InstituteMedical FacultyRWTH Aachen UniversityPauwelsstraße 2052074AachenGermany
| | - Laura De Laporte
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringerweg 252074AachenGermany
- Advanced Materials for Biomedicine (AMB)Institute of Applied Medical Engineering (AME)University Hospital RWTH AachenCenter for Biohybrid Medical Systems (CMBS)Forckenbeckstraße 5552074AachenGermany
| | - Payam Akhyari
- Clinic for Cardiac SurgeryUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Saskia K. Nagel
- Applied Ethics GroupRWTH Aachen UniversityTheaterplatz 1452062AachenGermany
| | - Julia Stingl
- Institute of Clinical PharmacologyUniversity Hospital RWTH AachenWendlingweg 252074AachenGermany
| | - Stefanie Reese
- Institute of Applied MechanicsRWTH Aachen UniversityMies‐van‐der‐Rohe‐Str. 152074AachenGermany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex)AME‐Institute of Applied Medical EngineeringHelmholtz InstituteRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| |
Collapse
|
3
|
Li S, Sun Y, Chen Y, Lu J, Jiang G, Yu K, Wu Y, Mao Y, Jin H, Luo J, Dong S, Hu B, Ding Y, Liu A, Shen Y, Feng G, Yan S, He Y, Yan R. Sandwich Biomimetic Scaffold Based Tendon Stem/Progenitor Cell Alignment in a 3D Microenvironment for Functional Tendon Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4652-4667. [PMID: 36698266 DOI: 10.1021/acsami.2c16584] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tendon injuries are some of the most commonly diagnosed musculoskeletal diseases. Tendon regeneration is sensitive to the topology of the substitute as it affects the cellular microenvironment and homeostasis. To bionic in vivo three-dimensional (3D) aligned microenvironment, an ordered 3D sandwich model was used to investigate the cell response in the tendon. First, high-resolution 3D printing provided parallel-grooved topographical cues on the hydrogel surface. Then the cells were seeded on its surface to acquire a 2D model. Afterward, an additional hydrogel coating layer was applied to the cells to create the 3D model. The interaction between cells and order structures in three-dimensions is yet to be explored. The study found that the tendon stem/progenitor cells (TSPCs) still maintain their ordering growth in the 3D model as in the 2D model. The study also found that the 3D-aligned TSPCs exhibited enhanced tenogenic differentiation through the PI3K-AKT signaling pathway and presented a less inflammatory phenotype than those in the 2D model. The in vivo implantation of such a 3D-aligned TSPC composite promoted tendon regeneration and mitigated heterotopic ossification in an Achilles defect model. These findings demonstrated that 3D-aligned TSPCs within a biomimetic topology environment are promising for functional tendon regeneration.
Collapse
Affiliation(s)
- Sihao Li
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Yuan Sun
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China
| | - Yazhou Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Jinwei Lu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Guangyao Jiang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China
| | - Yifan Wu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Yufei Mao
- Medical College of Tianjin University, Tianjin University, Tianjin, 300072, China
| | - Hao Jin
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Jikui Luo
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Shurong Dong
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Bin Hu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Yi Ding
- Basic Medical College, Naval Medical University, Shanghai, 200433, China
| | - An Liu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Yu Shen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Gang Feng
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Shigui Yan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ruijian Yan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310000, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, 310000, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
4
|
Liu H, Liu Y, Wang H, Zhao Q, Zhang T, Xie S, Liu Y, Tang Y, Peng Q, Pang W, Yao W, Zhou J. Geometric Constraints Regulate Energy Metabolism and Cellular Contractility in Vascular Smooth Muscle Cells by Coordinating Mitochondrial DNA Methylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203995. [PMID: 36106364 PMCID: PMC9661866 DOI: 10.1002/advs.202203995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Vascular smooth muscle cells (SMCs) can adapt to changes in cellular geometric cues; however, the underlying mechanisms remain elusive. Using 2D micropatterned substrates to engineer cell geometry, it is found that in comparison with an elongated geometry, a square-shaped geometry causes the nuclear-to-cytoplasmic redistribution of DNA methyltransferase 1 (DNMT1), hypermethylation of mitochondrial DNA (mtDNA), repression of mtDNA gene transcription, and impairment of mitochondrial function. Using irregularly arranged versus circumferentially aligned vascular grafts to control cell geometry in 3D growth, it is demonstrated that cell geometry, mtDNA methylation, and vessel contractility are closely related. DNMT1 redistribution is found to be dependent on the phosphoinositide 3-kinase and protein kinase B (AKT) signaling pathways. Cell elongation activates cytosolic phospholipase A2, a nuclear mechanosensor that, when inhibited, hinders AKT phosphorylation, DNMT1 nuclear accumulation, and energy production. The findings of this study provide insights into the effects of cell geometry on SMC function and its potential implications in the optimization of vascular grafts.
Collapse
Affiliation(s)
- Han Liu
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Key Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191P. R. China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191P. R. China
| | - Yuefeng Liu
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Key Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191P. R. China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191P. R. China
| | - He Wang
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of EducationCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjin300071P. R. China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of EducationCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjin300071P. R. China
| | - Tao Zhang
- Department of Vascular SurgeryPeking University People's HospitalBeijing100044P. R. China
| | - Si‐an Xie
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Key Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191P. R. China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191P. R. China
| | - Yueqi Liu
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Key Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191P. R. China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191P. R. China
| | - Yuanjun Tang
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Key Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191P. R. China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191P. R. China
| | - Qin Peng
- Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhen518132P. R. China
| | - Wei Pang
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Weijuan Yao
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Jing Zhou
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Key Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191P. R. China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191P. R. China
| |
Collapse
|
5
|
Post JN, Loerakker S, Merks R, Carlier A. Implementing computational modeling in tissue engineering: where disciplines meet. Tissue Eng Part A 2022; 28:542-554. [PMID: 35345902 DOI: 10.1089/ten.tea.2021.0215] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In recent years, the mathematical and computational sciences have developed novel methodologies and insights that can aid in designing advanced bioreactors, microfluidic set-ups or organ-on-chip devices, in optimizing culture conditions, or predicting long-term behavior of engineered tissues in vivo. In this review, we introduce the concept of computational models and how they can be integrated in an interdisciplinary workflow for Tissue Engineering and Regenerative Medicine (TERM). We specifically aim this review of general concepts and examples at experimental scientists with little or no computational modeling experience. We also describe the contribution of computational models in understanding TERM processes and in advancing the TERM field by providing novel insights.
Collapse
Affiliation(s)
- Janine Nicole Post
- University of Twente, 3230, Tissue Regeneration, Enschede, Overijssel, Netherlands;
| | - Sandra Loerakker
- Eindhoven University of Technology, 3169, Department of Biomedical Engineering, Eindhoven, Noord-Brabant, Netherlands.,Eindhoven University of Technology, 3169, Institute for Complex Molecular Systems, Eindhoven, Noord-Brabant, Netherlands;
| | - Roeland Merks
- Leiden University, 4496, Institute for Biology Leiden and Mathematical Institute, Leiden, Zuid-Holland, Netherlands;
| | - Aurélie Carlier
- Maastricht University, 5211, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER Maastricht, Maastricht, Netherlands, 6200 MD;
| |
Collapse
|
6
|
Karakaya C, van Asten JGM, Ristori T, Sahlgren CM, Loerakker S. Mechano-regulated cell-cell signaling in the context of cardiovascular tissue engineering. Biomech Model Mechanobiol 2022; 21:5-54. [PMID: 34613528 PMCID: PMC8807458 DOI: 10.1007/s10237-021-01521-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
Cardiovascular tissue engineering (CVTE) aims to create living tissues, with the ability to grow and remodel, as replacements for diseased blood vessels and heart valves. Despite promising results, the (long-term) functionality of these engineered tissues still needs improvement to reach broad clinical application. The functionality of native tissues is ensured by their specific mechanical properties directly arising from tissue organization. We therefore hypothesize that establishing a native-like tissue organization is vital to overcome the limitations of current CVTE approaches. To achieve this aim, a better understanding of the growth and remodeling (G&R) mechanisms of cardiovascular tissues is necessary. Cells are the main mediators of tissue G&R, and their behavior is strongly influenced by both mechanical stimuli and cell-cell signaling. An increasing number of signaling pathways has also been identified as mechanosensitive. As such, they may have a key underlying role in regulating the G&R of tissues in response to mechanical stimuli. A more detailed understanding of mechano-regulated cell-cell signaling may thus be crucial to advance CVTE, as it could inspire new methods to control tissue G&R and improve the organization and functionality of engineered tissues, thereby accelerating clinical translation. In this review, we discuss the organization and biomechanics of native cardiovascular tissues; recent CVTE studies emphasizing the obtained engineered tissue organization; and the interplay between mechanical stimuli, cell behavior, and cell-cell signaling. In addition, we review past contributions of computational models in understanding and predicting mechano-regulated tissue G&R and cell-cell signaling to highlight their potential role in future CVTE strategies.
Collapse
Affiliation(s)
- Cansu Karakaya
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
7
|
Saleh S, Ullah M, Naveed H. Role of Cell Morphology in Classical Delta-Notch Pattern Formation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4139-4142. [PMID: 34892137 DOI: 10.1109/embc46164.2021.9630053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Notch signaling is responsible for creating contrasting states of differentiation among neighboring cells during organism's early development. Various factors can affect this highly conserved intercellular signaling pathway, for the formation of fine-grained pattern in cell tissues. As cells undergo dramatic structural changes during development, one of the factors that can influence cell-cell communication is cell morphology. In this study, we elucidate the role of cell morphology on mosaic pattern formation in a realistic epithelial layer cell model. We discovered that cell signaling strength is inversely related to the cell area, such that smaller cells have higher probability/tendency of becoming signal producing cells as compared to larger cells during early embryonic days. In a nutshell, our work highlights the role of cell morphology on the stochastic cell fate decision process in the epithelial layer of multicellular organisms.
Collapse
|
8
|
Choi HJ, Wang C, Pan X, Jang J, Cao M, Brazzo JA, Bae Y, Lee K. Emerging machine learning approaches to phenotyping cellular motility and morphodynamics. Phys Biol 2021; 18:10.1088/1478-3975/abffbe. [PMID: 33971636 PMCID: PMC9131244 DOI: 10.1088/1478-3975/abffbe] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
Cells respond heterogeneously to molecular and environmental perturbations. Phenotypic heterogeneity, wherein multiple phenotypes coexist in the same conditions, presents challenges when interpreting the observed heterogeneity. Advances in live cell microscopy allow researchers to acquire an unprecedented amount of live cell image data at high spatiotemporal resolutions. Phenotyping cellular dynamics, however, is a nontrivial task and requires machine learning (ML) approaches to discern phenotypic heterogeneity from live cell images. In recent years, ML has proven instrumental in biomedical research, allowing scientists to implement sophisticated computation in which computers learn and effectively perform specific analyses with minimal human instruction or intervention. In this review, we discuss how ML has been recently employed in the study of cell motility and morphodynamics to identify phenotypes from computer vision analysis. We focus on new approaches to extract and learn meaningful spatiotemporal features from complex live cell images for cellular and subcellular phenotyping.
Collapse
Affiliation(s)
- Hee June Choi
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Chuangqi Wang
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
- Present address. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiang Pan
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Junbong Jang
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Mengzhi Cao
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
| | - Joseph A Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America
| | - Kwonmoo Lee
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
9
|
Taubenberger AV, Baum B, Matthews HK. The Mechanics of Mitotic Cell Rounding. Front Cell Dev Biol 2020; 8:687. [PMID: 32850812 PMCID: PMC7423972 DOI: 10.3389/fcell.2020.00687] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
When animal cells enter mitosis, they round up to become spherical. This shape change is accompanied by changes in mechanical properties. Multiple studies using different measurement methods have revealed that cell surface tension, intracellular pressure and cortical stiffness increase upon entry into mitosis. These cell-scale, biophysical changes are driven by alterations in the composition and architecture of the contractile acto-myosin cortex together with osmotic swelling and enable a mitotic cell to exert force against the environment. When the ability of cells to round is limited, for example by physical confinement, cells suffer severe defects in spindle assembly and cell division. The requirement to push against the environment to create space for spindle formation is especially important for cells dividing in tissues. Here we summarize the evidence and the tools used to show that cells exert rounding forces in mitosis in vitro and in vivo, review the molecular basis for this force generation and discuss its function for ensuring successful cell division in single cells and for cells dividing in normal or diseased tissues.
Collapse
Affiliation(s)
- Anna V. Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Helen K. Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
10
|
Prediction and quantification of bacterial biofilm detachment using Glazier-Graner-Hogeweg method based model simulations. J Theor Biol 2019; 482:109994. [PMID: 31487498 DOI: 10.1016/j.jtbi.2019.109994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/01/2019] [Accepted: 09/02/2019] [Indexed: 11/22/2022]
Abstract
Morphological changes in bacterial biofilm structures arise from the fluid-structure interactions between the biofilm and the surrounding fluid. Depending on the magnitude of the force acting on the structure, the bacteria rearrange to attain an equilibrium shape or get washed away by the moving fluid. Understanding the dynamics behind the evolution of such equilibrium or failed states can aid in development of tools for biofilm removal or eradication. We develop a Glazier-Graner-Hogeweg method-based model to explore the collective evolution of biofilm morphology arising from cell-cell and cell-fluid interactions. We show that low adherence and high motility of the cells leads to sloughing of biofilms. Also, streamers are found to form under laminar flow conditions in tightly packed biofilms. In mixed species biofilms, we found that a species with less cell-cell binding affinity gets eroded faster than its counterpart. Therefore, we hypothesize that in nature these less-adherent species should be present encapsulated within the biofilm structure to maximize their chances of survival.
Collapse
|
11
|
Nishimoto S, Tokuoka Y, Yamada TG, Hiroi NF, Funahashi A. Predicting the future direction of cell movement with convolutional neural networks. PLoS One 2019; 14:e0221245. [PMID: 31483827 PMCID: PMC6726366 DOI: 10.1371/journal.pone.0221245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Image-based deep learning systems, such as convolutional neural networks (CNNs), have recently been applied to cell classification, producing impressive results; however, application of CNNs has been confined to classification of the current cell state from the image. Here, we focused on cell movement where current and/or past cell shape can influence the future cell movement. We demonstrate that CNNs prospectively predicted the future direction of cell movement with high accuracy from a single image patch of a cell at a certain time. Furthermore, by visualizing the image features that were learned by the CNNs, we could identify morphological features, e.g., the protrusions and trailing edge that have been experimentally reported to determine the direction of cell movement. Our results indicate that CNNs have the potential to predict the future direction of cell movement from current cell shape, and can be used to automatically identify those morphological features that influence future cell movement.
Collapse
Affiliation(s)
- Shori Nishimoto
- Department of Biosciences and Informatics, Keio University, Yokohama-shi, Kanagawa, Japan
| | - Yuta Tokuoka
- Department of Biosciences and Informatics, Keio University, Yokohama-shi, Kanagawa, Japan
| | - Takahiro G. Yamada
- Department of Biosciences and Informatics, Keio University, Yokohama-shi, Kanagawa, Japan
| | - Noriko F. Hiroi
- Department of Biosciences and Informatics, Keio University, Yokohama-shi, Kanagawa, Japan
- Faculty of Pharmacy, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Akira Funahashi
- Department of Biosciences and Informatics, Keio University, Yokohama-shi, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
12
|
Prasad A, Alizadeh E. Cell Form and Function: Interpreting and Controlling the Shape of Adherent Cells. Trends Biotechnol 2019; 37:347-357. [DOI: 10.1016/j.tibtech.2018.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
|
13
|
Chen YC, Liao BK, Lu YF, Liu YH, Hsieh FC, Hwang PP, Hwang SPL. Zebrafish Klf4 maintains the ionocyte progenitor population by regulating epidermal stem cell proliferation and lateral inhibition. PLoS Genet 2019; 15:e1008058. [PMID: 30933982 PMCID: PMC6459544 DOI: 10.1371/journal.pgen.1008058] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/11/2019] [Accepted: 02/28/2019] [Indexed: 01/06/2023] Open
Abstract
In the skin and gill epidermis of fish, ionocytes develop alongside keratinocytes and maintain body fluid ionic homeostasis that is essential for adaptation to environmental fluctuations. It is known that ionocyte progenitors in zebrafish embryos are specified from p63+ epidermal stem cells through a patterning process involving DeltaC (Dlc)-Notch-mediated lateral inhibition, which selects scattered dlc+ cells into the ionocyte progenitor fate. However, mechanisms by which the ionocyte progenitor population is modulated remain unclear. Krüppel-like factor 4 (Klf4) transcription factor was previously implicated in the terminal differentiation of mammalian skin epidermis and is known for its bifunctional regulation of cell proliferation in a tissue context-dependent manner. Here, we report novel roles for zebrafish Klf4 in the ventral ectoderm during embryonic skin development. We found that Klf4 was expressed in p63+ epidermal stem cells of the ventral ectoderm from 90% epiboly onward. Knockdown or knockout of klf4 expression reduced the proliferation rate of p63+ stem cells, resulting in decreased numbers of p63+ stem cells, dlc-p63+ keratinocyte progenitors and dlc+ p63+ ionocyte progenitor cells. These reductions subsequently led to diminished keratinocyte and ionocyte densities and resulted from upregulation of the well-known cell cycle regulators, p53 and cdkn1a/p21. Moreover, mutation analyses of the KLF motif in the dlc promoter, combined with VP16-klf4 or engrailed-klf4 mRNA overexpression analyses, showed that Klf4 can bind the dlc promoter and modulate lateral inhibition by directly repressing dlc expression. This idea was further supported by observing the lateral inhibition outcomes in klf4-overexpressing or knockdown embryos. Overall, our experiments delineate novel roles for zebrafish Klf4 in regulating the ionocyte progenitor population throughout early stem cell stage to initiation of terminal differentiation, which is dependent on Dlc-Notch-mediated lateral inhibition.
Collapse
Affiliation(s)
- Yi-Chung Chen
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China
| | - Bo-Kai Liao
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Yu-Fen Lu
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yu-Hsiu Liu
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China
- Department of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Fang-Chi Hsieh
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China
- Graduate Institute of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China
| | - Sheng-Ping L. Hwang
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China
- Department of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
- Graduate Institute of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
14
|
Shuzui E, Kim MH, Kino-oka M. Anomalous cell migration triggers a switch to deviation from the undifferentiated state in colonies of human induced pluripotent stems on feeder layers. J Biosci Bioeng 2019; 127:246-255. [DOI: 10.1016/j.jbiosc.2018.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/02/2018] [Accepted: 07/24/2018] [Indexed: 01/07/2023]
|
15
|
Lock JG, Jones MC, Askari JA, Gong X, Oddone A, Olofsson H, Göransson S, Lakadamyali M, Humphries MJ, Strömblad S. Reticular adhesions are a distinct class of cell-matrix adhesions that mediate attachment during mitosis. Nat Cell Biol 2018; 20:1290-1302. [PMID: 30361699 DOI: 10.1038/s41556-018-0220-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 09/21/2018] [Indexed: 12/13/2022]
Abstract
Adhesion to the extracellular matrix persists during mitosis in most cell types. However, while classical adhesion complexes, such as focal adhesions, do and must disassemble to enable mitotic rounding, the mechanisms of residual mitotic cell-extracellular matrix adhesion remain undefined. Here, we identify 'reticular adhesions', a class of adhesion complex that is mediated by integrin αvβ5, formed during interphase, and preserved at cell-extracellular matrix attachment sites throughout cell division. Consistent with this role, integrin β5 depletion perturbs mitosis and disrupts spatial memory transmission between cell generations. Reticular adhesions are morphologically and dynamically distinct from classical focal adhesions. Mass spectrometry defines their unique composition, enriched in phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2)-binding proteins but lacking virtually all consensus adhesome components. Indeed, reticular adhesions are promoted by PtdIns(4,5)P2, and form independently of talin and F-actin. The distinct characteristics of reticular adhesions provide a solution to the problem of maintaining cell-extracellular matrix attachment during mitotic rounding and division.
Collapse
Affiliation(s)
- John G Lock
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, Australia.
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| | - Matthew C Jones
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Janet A Askari
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Xiaowei Gong
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Anna Oddone
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- ICFO, Institut de Ciencies Fotoniques, Mediterranean Technology Park, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Helene Olofsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Sara Göransson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Melike Lakadamyali
- ICFO, Institut de Ciencies Fotoniques, Mediterranean Technology Park, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Perelman School of Medicine, Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
16
|
Binshtok U, Sprinzak D. Modeling the Notch Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:79-98. [PMID: 30030823 DOI: 10.1007/978-3-319-89512-3_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NOTCH signaling regulates developmental processes in all tissues and all organisms across the animal kingdom. It is often involved in coordinating the differentiation of neighboring cells into different cell types. As our knowledge on the structural, molecular and cellular properties of the NOTCH pathway expands, there is a greater need for quantitative methodologies to get a better understanding of the processes controlled by NOTCH signaling. In recent years, theoretical and computational approaches to NOTCH signaling and NOTCH mediated patterning are gaining popularity. Mathematical models of NOTCH mediated patterning provide insight into complex and counterintuitive behaviors and can help generate predictions that can guide experiments. In this chapter, we review the recent advances in modeling NOTCH mediated patterning processes. We discuss new modeling approaches to lateral inhibition patterning that take into account cis-interactions between NOTCH receptors and ligands, signaling through long cellular protrusions, cell division processes, and coupling to external signals. We also describe models of somitogenesis, where NOTCH signaling is used for synchronizing cellular oscillations. We then discuss modeling approaches that consider the effect of cell morphology on NOTCH signaling and NOTCH mediated patterning. Finally, we consider models of boundary formation and how they are influenced by the combinatorial action of multiple ligands. Together, these topics cover the main advances in the field of modeling the NOTCH response.
Collapse
Affiliation(s)
- Udi Binshtok
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - David Sprinzak
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Lejeune E, Linder C. Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids. Biomech Model Mechanobiol 2017; 17:727-743. [PMID: 29197990 DOI: 10.1007/s10237-017-0989-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/16/2017] [Indexed: 12/28/2022]
Abstract
Understanding the mechanical behavior of multicellular monolayers and spheroids is fundamental to tissue culture, organism development, and the early stages of tumor growth. Proliferating cells in monolayers and spheroids experience mechanical forces as they grow and divide and local inhomogeneities in the mechanical microenvironment can cause individual cells within the multicellular system to grow and divide at different rates. This differential growth, combined with cell division and reorganization, leads to residual stress. Multiple different modeling approaches have been taken to understand and predict the residual stresses that arise in growing multicellular systems, particularly tumor spheroids. Here, we show that by using a mechanically robust agent-based model constructed with the peridynamic framework, we gain a better understanding of residual stresses in multicellular systems as they grow from a single cell. In particular, we focus on small populations of cells (1-100 s) where population behavior is highly stochastic and prior investigation has been limited. We compare the average strain energy density of cells in monolayers and spheroids using different growth and division rules and find that, on average, cells in spheroids have a higher strain energy density than cells in monolayers. We also find that cells in the interior of a growing spheroid are, on average, in compression. Finally, we demonstrate the importance of accounting for stochastic fluctuations in the mechanical environment, particularly when the cellular response to mechanical cues is nonlinear. The results presented here serve as a starting point for both further investigation with agent-based models, and for the incorporation of major findings from agent-based models into continuum scale models when explicit representation of individual cells is not computationally feasible.
Collapse
Affiliation(s)
- Emma Lejeune
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Christian Linder
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
18
|
Fujita Y, Seekaki P, Ogata N, Chiba K. Physiological effects of a novel artificially synthesized antimalarial cyclic peptide: Mahafacyclin B. PLoS One 2017; 12:e0188415. [PMID: 29190661 PMCID: PMC5708726 DOI: 10.1371/journal.pone.0188415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/06/2017] [Indexed: 11/19/2022] Open
Abstract
Mahafacyclin B is a cyclic peptide isolated from the latex of Jatropha mahafalensis and is an antimalarial agent. However, the physiological effects of mahafacyclin B in mammalian cells are not known. Here, we assessed the growth, morphology, and alterations in the transcriptome of CHO-K1 cells exposed to mahafacyclin B (0-22 μM). Mahafacyclin B at 2.2 μM did not affect the proliferation or death of CHO-K1 cells. Mahafacyclin B was not toxic to mammalian cells at 2.2 μM, which represents a normal physiological concentration at which mahafacyclin B retains its antimalarial properties. Interestingly, mahafacyclin B altered the size and morphology of CHO-K1 cells. Comparative transcriptomics revealed that mahafacyclin B modulated the expression of a specific subset of genes.
Collapse
Affiliation(s)
- Yuko Fujita
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Panpaki Seekaki
- Nihon BioData Corporation, Takatsu-ku, Kawasaki, Kanagawa, Japan
| | - Norichika Ogata
- Chitose Bio Evolution Pte. Ltd. The Central Singapore, Singapore
- * E-mail: (NO); (KC)
| | - Kazuhiro Chiba
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- * E-mail: (NO); (KC)
| |
Collapse
|
19
|
Bentley K, Chakravartula S. The temporal basis of angiogenesis. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0522. [PMID: 28348255 PMCID: PMC5379027 DOI: 10.1098/rstb.2015.0522] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2017] [Indexed: 12/12/2022] Open
Abstract
The process of new blood vessel growth (angiogenesis) is highly dynamic, involving complex coordination of multiple cell types. Though the process must carefully unfold over time to generate functional, well-adapted branching networks, we seldom hear about the time-based properties of angiogenesis, despite timing being central to other areas of biology. Here, we present a novel, time-based formulation of endothelial cell behaviour during angiogenesis and discuss a flurry of our recent, integrated in silico/in vivo studies, put in context to the wider literature, which demonstrate that tissue conditions can locally adapt the timing of collective cell behaviours/decisions to grow different vascular network architectures. A growing array of seemingly unrelated ‘temporal regulators’ have recently been uncovered, including tissue derived factors (e.g. semaphorins or the high levels of VEGF found in cancer) and cellular processes (e.g. asymmetric cell division or filopodia extension) that act to alter the speed of cellular decisions to migrate. We will argue that ‘temporal adaptation’ provides a novel account of organ/disease-specific vascular morphology and reveals ‘timing’ as a new target for therapeutics. We therefore propose and explain a conceptual shift towards a ‘temporal adaptation’ perspective in vascular biology, and indeed other areas of biology where timing remains elusive. This article is part of the themed issue ‘Systems morphodynamics: understanding the development of tissue hardware’.
Collapse
Affiliation(s)
- Katie Bentley
- Computational Biology Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA .,Cellular Adaptive Behaviour Laboratory, Rudbeck Laboratories, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Shilpa Chakravartula
- Computational Biology Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
The Canonical Notch Signaling Pathway: Structural and Biochemical Insights into Shape, Sugar, and Force. Dev Cell 2017; 41:228-241. [PMID: 28486129 DOI: 10.1016/j.devcel.2017.04.001] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/04/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023]
Abstract
The Notch signaling pathway relies on a proteolytic cascade to release its transcriptionally active intracellular domain, on force to unfold a protective domain and permit proteolysis, on extracellular domain glycosylation to tune the forces exerted by endocytosed ligands, and on a motley crew of nuclear proteins, chromatin modifiers, ubiquitin ligases, and a few kinases to regulate activity and half-life. Herein we provide a review of recent molecular insights into how Notch signals are triggered and how cell shape affects these events, and we use the new insights to illuminate a few perplexing observations.
Collapse
|
21
|
Kudryashova N, Tsvelaya V, Agladze K, Panfilov A. Virtual cardiac monolayers for electrical wave propagation. Sci Rep 2017; 7:7887. [PMID: 28801548 PMCID: PMC5554264 DOI: 10.1038/s41598-017-07653-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/28/2017] [Indexed: 11/08/2022] Open
Abstract
The complex structure of cardiac tissue is considered to be one of the main determinants of an arrhythmogenic substrate. This study is aimed at developing the first mathematical model to describe the formation of cardiac tissue, using a joint in silico-in vitro approach. First, we performed experiments under various conditions to carefully characterise the morphology of cardiac tissue in a culture of neonatal rat ventricular cells. We considered two cell types, namely, cardiomyocytes and fibroblasts. Next, we proposed a mathematical model, based on the Glazier-Graner-Hogeweg model, which is widely used in tissue growth studies. The resultant tissue morphology was coupled to the detailed electrophysiological Korhonen-Majumder model for neonatal rat ventricular cardiomyocytes, in order to study wave propagation. The simulated waves had the same anisotropy ratio and wavefront complexity as those in the experiment. Thus, we conclude that our approach allows us to reproduce the morphological and physiological properties of cardiac tissue.
Collapse
Affiliation(s)
- Nina Kudryashova
- Department of Physics and Astronomy, Gent University, Gent, 9000, Belgium
- Laboratory of Biophysics of Excitable Systems, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Moscow Region, Russia
| | - Valeriya Tsvelaya
- Laboratory of Biophysics of Excitable Systems, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Moscow Region, Russia
| | - Konstantin Agladze
- Laboratory of Biophysics of Excitable Systems, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Moscow Region, Russia.
| | - Alexander Panfilov
- Department of Physics and Astronomy, Gent University, Gent, 9000, Belgium.
| |
Collapse
|
22
|
Boubakar L, Falk J, Ducuing H, Thoinet K, Reynaud F, Derrington E, Castellani V. Molecular Memory of Morphologies by Septins during Neuron Generation Allows Early Polarity Inheritance. Neuron 2017; 95:834-851.e5. [DOI: 10.1016/j.neuron.2017.07.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 05/23/2017] [Accepted: 07/24/2017] [Indexed: 01/22/2023]
|
23
|
Shaya O, Binshtok U, Hersch M, Rivkin D, Weinreb S, Amir-Zilberstein L, Khamaisi B, Oppenheim O, Desai RA, Goodyear RJ, Richardson GP, Chen CS, Sprinzak D. Cell-Cell Contact Area Affects Notch Signaling and Notch-Dependent Patterning. Dev Cell 2017; 40:505-511.e6. [PMID: 28292428 PMCID: PMC5435110 DOI: 10.1016/j.devcel.2017.02.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 12/12/2016] [Accepted: 02/10/2017] [Indexed: 12/18/2022]
Abstract
During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from microns to tens of microns. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes.
Collapse
Affiliation(s)
- Oren Shaya
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Udi Binshtok
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Micha Hersch
- Department of Medical Genetics, University of Lausanne, Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Dmitri Rivkin
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Sheila Weinreb
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Liat Amir-Zilberstein
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Bassma Khamaisi
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Olya Oppenheim
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ravi A Desai
- University College London, Department of Cell and Developmental Biology and Institute for Physics of Living Systems, London WC1E 6BT, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Richard J Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Christopher S Chen
- The Biological Design Center and Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David Sprinzak
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
24
|
Hirashima T, Rens EG, Merks RMH. Cellular Potts modeling of complex multicellular behaviors in tissue morphogenesis. Dev Growth Differ 2017; 59:329-339. [DOI: 10.1111/dgd.12358] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/24/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Tsuyoshi Hirashima
- Institute for Frontier Life and Medical Sciences Kyoto University 53 Kawahara, Shogoin, Sakyo‐ku Kyoto 606‐8507 Japan
| | - Elisabeth G. Rens
- Centrum Wiskunde & Informatica Life Sciences Group Science Park 123 1098 XG Amsterdam the Netherlands
- Mathematical Institute Leiden University Niels Bohrweg 1 2333 CA Leiden the Netherlands
| | - Roeland M. H. Merks
- Centrum Wiskunde & Informatica Life Sciences Group Science Park 123 1098 XG Amsterdam the Netherlands
- Mathematical Institute Leiden University Niels Bohrweg 1 2333 CA Leiden the Netherlands
| |
Collapse
|
25
|
Affiliation(s)
- Thomas N. Sato
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
- ERATO Sato Live Bio-Forecasting Project, Japan Science and Technology Agency, Kyoto, Japan
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Centenary Institute, Sydney, New South Wales, Australia
| | - Roeland M. H. Merks
- Centrum Wiskunde & Informatica, Life Sciences Group, Amsterdam, The Netherlands
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| |
Collapse
|
26
|
Real-time prediction of cell division timing in developing zebrafish embryo. Sci Rep 2016; 6:32962. [PMID: 27597656 PMCID: PMC5011986 DOI: 10.1038/srep32962] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 08/18/2016] [Indexed: 01/16/2023] Open
Abstract
Combination of live-imaging and live-manipulation of developing embryos in vivo provides a useful tool to study developmental processes. Identification and selection of target cells for an in vivo live-manipulation are generally performed by experience- and knowledge-based decision-making of the observer. Computer-assisted live-prediction method would be an additional approach to facilitate the identification and selection of the appropriate target cells. Herein we report such a method using developing zebrafish embryos. We choose V2 neural progenitor cells in developing zebrafish embryo as their successive shape changes can be visualized in real-time in vivo. We developed a relatively simple mathematical method of describing cellular geometry of V2 cells to predict cell division-timing based on their successively changing shapes in vivo. Using quantitatively measured 4D live-imaging data, features of V2 cell-shape at each time point prior to division were extracted and a statistical model capturing the successive changes of the V2 cell-shape was developed. By applying sequential Bayesian inference method to the model, we successfully predicted division-timing of randomly selected individual V2 cells while the cell behavior was being live-imaged. This system could assist pre-selecting target cells desirable for real-time manipulation–thus, presenting a new opportunity for in vivo experimental systems.
Collapse
|