1
|
Xie ZL, Zhu Y, Du JY, Yang DY, Zhang N, Sun QQ, Huang G, Zhang XB. Reconfiguring the Hydrogen Networks of Aqueous Electrolyte to Stabilize Iron Hexacyanoferrate for High-Voltage pH-Decoupled Cell. Angew Chem Int Ed Engl 2024; 63:e202400916. [PMID: 38767752 DOI: 10.1002/anie.202400916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Prussian blue analogs (PBAs) are promising insertion-type cathode materials for different types of aqueous batteries, capable of accommodating metal or non-metal ions. However, their practical application is hindered by their susceptibility to dissolution, which leads to a shortened lifespan. Herein, we have revealed that the dissolution of PBAs primarily originates from the locally elevated pH of electrolytes, which is caused by the proton co-insertion during discharge. To address this issue, the water-locking strategy has been implemented, which interrupts the generation and Grotthuss diffusion of protons by breaking the well-connected hydrogen bonding network in aqueous electrolytes. As a result, the hybrid electrolyte enables the iron hexacyanoferrate to endure over 1000 cycles at a 1 C rate and supports a high-voltage pH-decoupled cell with an average voltage of 1.95 V. These findings provide insights for mitigating the dissolution of electrode materials, thereby enhancing the viability and performance of aqueous batteries.
Collapse
Affiliation(s)
- Zi-Long Xie
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yunhai Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China
| | - Jia-Yi Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dong-Yue Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ning Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qi-Qi Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xin-Bo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Wang S, Gu X. Effect of water molecules on the diffusion of alkali metal ions in CuHCF cathodes. Phys Chem Chem Phys 2024; 26:21598-21611. [PMID: 39083217 DOI: 10.1039/d4cp01873g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Prussian blue analogues have shown promise as cathode materials competing with sodium ion batteries, while the presence of water molecules severely affects their performance in batteries. Based on density functional theory, the effect of water molecules on the diffusion of alkali ions is revealed by employing CuHCF (copper hexacyanoferrate) as a cathode. The diffusions of alkali ions in CuHCF with or without inserted water molecules are investigated. It was found that Li+/Na+ forms hydrated ions with water molecules in the interstitial voids, while K+ cannot form hydrated ions due to spatial constraints. It would lead to a dramatic increase of diffusion barriers when Li+/Na+ ions carrying water molecules diffuse. The number of inserted water molecules significantly impacts the diffusion of Li+/Na+ ions.
Collapse
Affiliation(s)
- Silei Wang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Xiao Gu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
3
|
Zhang K, Liu Z, Khan NA, Ma Y, Xie Z, Xu J, Jiang T, Liu H, Zhu Z, Liu S, Wang W, Meng Y, Peng Q, Zheng X, Wang M, Chen W. An All-Climate Nonaqueous Hydrogen Gas-Proton Battery. NANO LETTERS 2024; 24:1729-1737. [PMID: 38289279 DOI: 10.1021/acs.nanolett.3c04566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Rechargeable hydrogen gas batteries, driven by hydrogen evolution and oxidation reactions (HER/HOR), are emerging grid-scale energy storage technologies owing to their low cost and superb cycle life. However, compared with aqueous electrolytes, the HER/HOR activities in nonaqueous electrolytes have rarely been studied. Here, for the first time, we develop a nonaqueous proton electrolyte (NAPE) for a high-performance hydrogen gas-proton battery for all-climate energy storage applications. The advanced nonaqueous hydrogen gas-proton battery (NAHPB) assembled with a representative V2(PO4)3 cathode and H2 anode in a NAPE exhibits a high discharge capacity of 165 mAh g-1 at 1 C at room temperature. It also efficiently operates under all-climate conditions (from -30 to +70 °C) with an excellent electrochemical performance. Our findings offer a new direction for designing nonaqueous proton batteries in a wide temperature range.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zaichun Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, People's Republic of China
| | - Nawab Ali Khan
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yirui Ma
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zehui Xie
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jingwen Xu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Taoli Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hongxu Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhengxin Zhu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Shuang Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Weiping Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Qia Peng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xinhua Zheng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Mingming Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
4
|
Huang M, He Q, Wang J, Liu X, Xiong F, Liu Y, Guo R, Zhao Y, Yang J, Mai L. NH 4 + Deprotonation at Interfaces Induced Reversible H 3 O + /NH 4 + Co-insertion/Extraction. Angew Chem Int Ed Engl 2023; 62:e202218922. [PMID: 36734650 DOI: 10.1002/anie.202218922] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Ion insertions always involve electrode-electrolyte interface process, desolvation for instance, which determines the electrochemical kinetics. However, it's still a challenge to achieve fast ion insertion and investigate ion transformation at interface. Herein, the interface deprotonation of NH4 + and the introduced dissociation of H2 O molecules to provide sufficient H3 O+ to insert into materials' structure for fast energy storages are revealed. Lewis acidic ion-NH4 + can, on one hand provide H3 O+ itself via deprotonation, and on the other hand hydrolyze with H2 O molecules to produce H3 O+ . In situ attenuated total reflection-Fourier transform infrared ray method probed the interface accumulation and deprotonation of NH4 + , and density functional theory calculations manifested that NH4 + tend to thermodynamically adsorb on the surface of monoclinic VO2 , and deprotonate to provide H3 O+ . In addition, the inserted NH4 + has a positive effect for stabilizing the VO2 (B) structure. Therefore, high specific capacity (>300 mAh g-1 ) and fast ionic insertion/extraction (<20 s) can be realized in VO2 (B) anode. This interface derivation proposes a new path for designing proton ion insertion/extraction in mild electrolyte.
Collapse
Affiliation(s)
- Meng Huang
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Qiu He
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Junjun Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiong Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Fangyu Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.,Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| | - Yu Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.,Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Ruiting Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Yan Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.,The Institute of Technological Sciences, Wuhan University, Hubei, Wuhan, 430072, China
| | - Jinlong Yang
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
5
|
Zhu Z, Jiang T, Ali M, Meng Y, Jin Y, Cui Y, Chen W. Rechargeable Batteries for Grid Scale Energy Storage. Chem Rev 2022; 122:16610-16751. [PMID: 36150378 DOI: 10.1021/acs.chemrev.2c00289] [Citation(s) in RCA: 201] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ever-increasing global energy consumption has driven the development of renewable energy technologies to reduce greenhouse gas emissions and air pollution. Battery energy storage systems (BESS) with high electrochemical performance are critical for enabling renewable yet intermittent sources of energy such as solar and wind. In recent years, numerous new battery technologies have been achieved and showed great potential for grid scale energy storage (GSES) applications. However, their practical applications have been greatly impeded due to the gap between the breakthroughs achieved in research laboratories and the industrial applications. In addition, various complex applications call for different battery performances. Matching of diverse batteries to various applications is required to promote practical energy storage research achievement. This review provides in-depth discussion and comprehensive consideration in the battery research field for GSES. The overall requirements of battery technologies for practical applications with key parameters are systematically analyzed by generating standards and measures for GSES. We also discuss recent progress and existing challenges for some representative battery technologies with great promise for GSES, including metal-ion batteries, lead-acid batteries, molten-salt batteries, alkaline batteries, redox-flow batteries, metal-air batteries, and hydrogen-gas batteries. Moreover, we emphasize the importance of bringing emerging battery technologies from academia to industry. Our perspectives on the future development of batteries for GSES applications are provided.
Collapse
Affiliation(s)
- Zhengxin Zhu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Taoli Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mohsin Ali
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Jin
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
6
|
Luo P, Huang Z, Zhang W, Liu C, Liu G, Huang M, Xiao Y, Luo H, Qu Z, Dong S, Xia L, Tang H, An Q. Incorporating Near-Pseudocapacitance Insertion Ni/Co-Based Hexacyanoferrate and Low-Cost Metallic Zn for Aqueous K-Ion Batteries. CHEMSUSCHEM 2022; 15:e202200706. [PMID: 35666035 DOI: 10.1002/cssc.202200706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The limited availability of cathode materials with high specific capacity and significant cycling stability for aqueous K-ion batteries (AKIBs) hinder their further development owing to the large radius of K+ (1.38 Å). Prussian blue and its analogs with a three-dimensional frame structure possessing special energy storage mechanism are promising candidates as cathode materials for AKIBs. In this study, K0.2 Ni0.68 Co0.77 Fe(CN)6 ⋅ 1.8H2 O (KNCHCF) was prepared as a cathode material for AKIBs. Both the electrochemical activity of Co ions and the near-pseudocapacitance intercalation of KNCHCF enhance K+ storage. Therefore, KNCHCF exhibits a superior capacity maintenance rate of 86 % after 1000 cycles at a high current density of 3.0 A g-1 . The storage mechanism of K+ in AKIBs was revealed through ex situ X-ray diffraction, ex situ Fourier transform infrared spectroscopy, and ex situ X-ray photoelectron spectroscopy measurements. Moreover, the assembled K-Zn hybrid battery showed good cycling stability with 93.1 % capacity maintenance at 0.1 A g-1 after 50 cycles and a high energy density of 96.81 W h kg-1 . Hence, KNCHCF may be a potential material for the development of AKIBs.
Collapse
Affiliation(s)
- Ping Luo
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
- Hubei Longzhong Laboratory, 441000, Xiangyang, Hubei, P. R. China
| | - Zhen Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
| | - Wenwei Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, Hubei, P. R. China
| | - Chang Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
| | - Gangyuan Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
| | - Meng Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, Hubei, P. R. China
- College of Materials Science and Engineering Shenzhen University, 1066 College Avenue, 518060, Shenzhen, Guangdong Province, P. R. China
| | - Yao Xiao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
| | - Hongyu Luo
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
| | - Zhuo Qu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
| | - Shijie Dong
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
- Hubei Longzhong Laboratory, 441000, Xiangyang, Hubei, P. R. China
- Wuhan Polytechnic University, 430023, Wuhan, P. R. China
| | - Lu Xia
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
| | - Han Tang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, 430068, Wuhan, P. R. China
| | - Qinyou An
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, Hubei, P. R. China
| |
Collapse
|
7
|
Xie B, Sun B, Gao T, Ma Y, Yin G, Zuo P. Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214478] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Zuo W, Fan Z, Chen L, Liu J, Wan Z, Xiao Z, Chen W, Wu L, Chen D, Zhu X. Copper-based theranostic nanocatalysts for synergetic photothermal-chemodynamic therapy. Acta Biomater 2022; 147:258-269. [PMID: 35605954 DOI: 10.1016/j.actbio.2022.05.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022]
Abstract
Chemodynamic therapy (CDT) has aroused extensive attention as a potent therapeutic modality. However, its practical application is severely restricted by the strong acidity requirement for Fenton reaction and upregulated antioxidant defense within metastatic breast cancer. Herein, a copper-based single-site nanocatalyst functionalized with carbonic anhydrase inhibitor (CAI) was constructed for magnetic resonance/photoacoustic imaging (MRI/PA)-guided synergetic photothermal therapy (PTT) and CDT. Once reaching tumor sites, the nanocatalyst can be recognized by tumor cell membranes-overexpressed carbonic anhydrase IX (CA IX). Subsequently, the single-site CuII can be reduced to CuI by the tumor-overexpressed glutathione (GSH), which simultaneously impaired the tumor antioxidant defense system and triggered CAI release for inducing intracellular H+ accumulation. Further, the decreased intracellular pH can accelerate the nanocatalyst biodegradation to release more CuII and CAI to participate in next-cycle GSH-depletion and cytoplasm acidification, respectively, thereby continuously supplying CuI and H+ for self-cyclically amplified CDT. Upon laser irradiation, the nanocatalyst can generate local heat, which not only permits PTT but also enhances the nanocatalyst-mediated CDT. Moreover, the suppression of CA IX can hinder the tumor extracellular matrix degradation to prevent tumor metastasis. Overall, this work highlighted the great application prospect in enhancing CDT via tumor acidic/redox microenvironment remodeling, and provides an insightful paradigm for inhibiting breast cancer metastasis. STATEMENT OF SIGNIFICANCE: The practical application of chemodynamic therapy (CDT) is severely restricted by the strong acidity requirement for Fenton reaction and upregulated antioxidant defense within cancer. Herein, we developed a carbonic anhydrase inhibitor (CAI)-functionalized Cu-based nanocatalyst. Once reaching tumor sites, the CuII can be reduced to CuI by the tumor-overexpressed glutathione (GSH), which simultaneously impaired the tumor antioxidant system and triggered CAI release for inducing intracellular H+ accumulation. Further, the decreased intracellular pH can accelerate the nanocatalyst biodegradation to release more CuII and CAI to participate in next-cycle GSH-depletion and cytoplasm acidification, respectively, thus continuously supplying CuI and H+ for self-cyclically amplified CDT. Upon laser irradiation, the nanocatalyst not only permits PTT but also enhances the CDT.
Collapse
Affiliation(s)
- Wenbao Zuo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Zhongxiong Fan
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, PR China
| | - Luping Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Jinxue Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Zheng Wan
- School of Medicine, Xiamen University, Xiamen 361102, PR China
| | - Zhimei Xiao
- School of Medicine, Xiamen University, Xiamen 361102, PR China
| | - Weibin Chen
- School of Medicine, Xiamen University, Xiamen 361102, PR China
| | - Liang Wu
- School of Medicine, Xiamen University, Xiamen 361102, PR China
| | - Dengyue Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China.
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
9
|
Zhang D, Sun L, Wang C, Xue Q, Feng J, Ran W, Yan T. An Open-Framework Structured Material: [Ni(en) 2] 3[Fe(CN) 6] 2 as a Cathode Material for Aqueous Sodium- and Potassium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16197-16203. [PMID: 35362955 DOI: 10.1021/acsami.2c00143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Open-framework structured materials such as Prussian blue analogues and sodium superionic conductor (NASICON) materials have been regarded as promising electrode candidates for aqueous batteries. These materials exhibit outstanding long cycle stability and high rate capacity retention, due to their high ion diffusive rate in the crystal and the stable structure maintenance in the electrochemical reaction process. Herein, an open-framework structured material [Ni(en)2]3[Fe(CN)6]2 (NienHCF) is prepared and first used as a cathode material for aqueous sodium- and potassium-ion batteries. The resultant material exhibits a high output potential and outstanding cycle performance (93.4% after 500 cycles at 1 A g-1) in K-ion batteries. Meanwhile, the electrochemical reaction mechanism is investigated. After coupling with the activated carbon anode, the K-ion full cell has 91.5% capacity retention at 5 A g-1 and retains 77.2% after 1000 cycles at 0.5 A g-1, exhibiting the potential as an electrode material for rechargeable aqueous K-ion and Na-ion batteries.
Collapse
Affiliation(s)
- Dapeng Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lianhang Sun
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Changhao Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Qing Xue
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jin Feng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Weiguang Ran
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Tingjiang Yan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
10
|
Hu J, Tao H, Chen M, Zhang Z, Cao S, Shen Y, Jiang K, Zhou M. Interstitial Water Improves Structural Stability of Iron Hexacyanoferrate for High-Performance Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12234-12242. [PMID: 35234035 DOI: 10.1021/acsami.1c23762] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Prussian blue analogues (PBAs) are considered one of the promising cathodes for sodium-ion batteries because of their low cost and tunable structure. As an intrinsic characteristic, the influence of structured water in PBAs on the electrochemical properties is still controversial. Herein, low-vacancy iron hexacyanoferrate with different interstitial water contents is synthesized through the citric acid-assisted single iron source method. Ex situ Fourier transform infrared and X-ray diffraction characterization reveals that the interstitial water can stably exist in the Prussian blue framework during repeated cycling. The long-standing interstitial water can reduce the volume change during the Na+ insertion/extraction process, resulting in improved cycling stability. Thanks to the low Fe(CN)64- vacancies and pillar role of interstitial water in the crystal framework, the HW-PB exhibits a high reversible capacity of 117 mAh g-1 and excellent long cycle performance with a capacity retention of 91% after 1380 cycles. This work broadens the understanding of the relationship between the interstitial water in PBAs and Na-storage performances, providing guidance for the precise synthesis of high-quality PBAs.
Collapse
Affiliation(s)
- Jianwei Hu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Hongwei Tao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Manlin Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Zhuchan Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Shengling Cao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Yi Shen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Kai Jiang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Min Zhou
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430070, China
| |
Collapse
|
11
|
Huang M, Wang X, Liu X, Mai L. Fast Ionic Storage in Aqueous Rechargeable Batteries: From Fundamentals to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105611. [PMID: 34845772 DOI: 10.1002/adma.202105611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The highly dynamic nature of grid-scale energy systems necessitates fast kinetics in energy storage and conversion systems. Rechargeable aqueous batteries are a promising energy-storage solution for renewable-energy grids as the ionic diffusivity in aqueous electrolytes can be up to 1-2 orders of magnitude higher than in organic systems, in addition to being highly safe and low cost. Recent research in this regard has focussed on developing suitable electrode materials for fast ionic storage in aqueous electrolytes. In this review, breakthroughs in the field of fast ionic storage in aqueous battery materials, and 1D/2D/3D and over-3D-tunnel materials are summarized, and tunnels in over-3D materials are not oriented in any direction in particular. Various materials with different tunnel sizes are developed to be suitable for the different ionic radii of Li+ , Na+ , K+ , H+ , NH4 + , and Zn2+ , which show significant differences in the reaction kinetics of ionic storage. New topochemical paths for ion insertion/extraction, which provide superfast ionic storage, are also discussed.
Collapse
Affiliation(s)
- Meng Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xuanpeng Wang
- Department of Physical Science and Technology, School of Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200, P. R. China
| | - Xiong Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200, P. R. China
| |
Collapse
|
12
|
Li W, Xu C, Yang Z, Yu H, Li W, Zhang L, Shui M, Shu J. Sodium manganese hexacyanoferrate as ultra-high rate host for aqueous proton storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Yu H, Fan L, Yan H, Deng C, Yan L, Shu J, Wang Z. Nickel Ferrocyanides for Aqueous Ammonium Ion Batteries. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00265e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, we design a structural optimization in Ni2Fe(CN)6 through a partial substitution of nickel by sodium, and investigate the electrochemical performance of a series of Na2xNi2-xFe(CN)6 (x =...
Collapse
|
14
|
Yuan D, Dou Y, Wu Z, Tian Y, Ye KH, Lin Z, Dou SX, Zhang S. Atomically Thin Materials for Next-Generation Rechargeable Batteries. Chem Rev 2021; 122:957-999. [PMID: 34709781 DOI: 10.1021/acs.chemrev.1c00636] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Atomically thin materials (ATMs) with thicknesses in the atomic scale (typically <5 nm) offer inherent advantages of large specific surface areas, proper crystal lattice distortion, abundant surface dangling bonds, and strong in-plane chemical bonds, making them ideal 2D platforms to construct high-performance electrode materials for rechargeable metal-ion batteries, metal-sulfur batteries, and metal-air batteries. This work reviews the synthesis and electronic property tuning of state-of-the-art ATMs, including graphene and graphene derivatives (GE/GO/rGO), graphitic carbon nitride (g-C3N4), phosphorene, covalent organic frameworks (COFs), layered transition metal dichalcogenides (TMDs), transition metal carbides, carbonitrides, and nitrides (MXenes), transition metal oxides (TMOs), and metal-organic frameworks (MOFs) for constructing next-generation high-energy-density and high-power-density rechargeable batteries to meet the needs of the rapid developments in portable electronics, electric vehicles, and smart electricity grids. We also present our viewpoints on future challenges and opportunities of constructing efficient ATMs for next-generation rechargeable batteries.
Collapse
Affiliation(s)
- Ding Yuan
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| | - Yuhai Dou
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia.,Shandong Institute of Advanced Technology, Jinan 250100, China
| | - Zhenzhen Wu
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| | - Yuhui Tian
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia.,Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou, Henan 450002, China
| | - Kai-Hang Ye
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhan Lin
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong 2500, Australia
| | - Shanqing Zhang
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| |
Collapse
|
15
|
Saeed S, Boyd S, Tsai WY, Wang R, Balke N, Augustyn V. Understanding electrochemical cation insertion into prussian blue from electrode deformation and mass changes. Chem Commun (Camb) 2021; 57:6744-6747. [PMID: 34137403 DOI: 10.1039/d1cc01681d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkali ion insertion into Prussian blue from aqueous electrolytes is characterized with operando AFM and EQCM, showing coupling of current with deformation and mass change rates. Stable cycling occurs only with K+, attributed to its lower hydration energy. The (de)insertion of K+ results in reversible deformation even in the open framework structure.
Collapse
Affiliation(s)
- Saeed Saeed
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Shelby Boyd
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Wan-Yu Tsai
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Ruocun Wang
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Nina Balke
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Veronica Augustyn
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
16
|
Ao H, Zhu W, Liu M, Zhang W, Hou Z, Wu X, Zhu Y, Qian Y. High-Voltage and Super-Stable Aqueous Sodium-Zinc Hybrid Ion Batteries Enabled by Double Solvation Structures in Concentrated Electrolyte. SMALL METHODS 2021; 5:e2100418. [PMID: 34928003 DOI: 10.1002/smtd.202100418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 06/14/2023]
Abstract
Aqueous sodium-zinc hybrid ion batteries are attracting extensive attention due to high energy density, low cost, and environmental friendliness. Unfortunately, there are still some drawbacks associated with the low voltage and cycle performance degradation that limit their practical application. Here, a concentrated aqueous electrolyte with solvation-modulated Zn2+ is reported that reduces the hydrogen evolution reaction on the surface of Zn metal, avoiding the generation of ZnO and uneven deposition. Accordingly, the Zn anode exhibits 1600 h Zn plating/stripping and ≈99.96% Coulombic efficiency after 700 cycles. In addition, solvation-modulated Na+ promotes the excellent structural stability of zinc hexacyanoferrate (ZnHCF) due to the rhombohedral-rhombohedral rather than rhombohedral-cubic phase transition. A ZnHCF//Zn full cell delivers an average voltage of 1.76 V and 98% capacity retention after 2000 cycles at 5 C rates.
Collapse
Affiliation(s)
- Huaisheng Ao
- Hefei National Laboratory for Physical Science at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Weiduo Zhu
- Hefei National Laboratory for Physical Science at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Mengke Liu
- Hefei National Laboratory for Physical Science at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Wanqun Zhang
- Hefei National Laboratory for Physical Science at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Zhiguo Hou
- Hefei National Laboratory for Physical Science at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Science at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Yongchun Zhu
- Hefei National Laboratory for Physical Science at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Yitai Qian
- Hefei National Laboratory for Physical Science at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
17
|
Zhang X, Xia M, Yu H, Zhang J, Yang Z, Zhang L, Shu J. Hydrogen Bond-Assisted Ultra-Stable and Fast Aqueous NH 4+ Storage. NANO-MICRO LETTERS 2021; 13:139. [PMID: 34138392 PMCID: PMC8192672 DOI: 10.1007/s40820-021-00671-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/12/2021] [Indexed: 05/04/2023]
Abstract
Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH4+ in aqueous solution is always in the process of development. On the basis of density functional theory calculations, the excellent performance of NH4+ insertion in Prussian blue analogues (PBAs) is proposed, especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses. More importantly, we propose the NH4+ diffusion mechanism in CuHCF based on continuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for rapid charge transfer and superior NH4+ storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF. In brief, the outstanding aqueous NH4+ storage in cubic PBAs creates a blueprint for fast and sustainable energy storage.
Collapse
Affiliation(s)
- Xikun Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Maoting Xia
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Haoxiang Yu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Junwei Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Zhengwei Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Liyuan Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Jie Shu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China.
| |
Collapse
|
18
|
Abstract
Aqueous electrolytes are the leading candidate to meet the surging demand for safe and low-cost storage batteries. Aqueous electrolytes facilitate more sustainable battery technologies due to the attributes of being nonflammable, environmentally benign, and cost effective. Yet, water's narrow electrochemical stability window remains the primary bottleneck for the development of high-energy aqueous batteries with long cycle life and infallible safety. Water's electrolysis leads to either hydrogen evolution reaction (HER) or oxygen evolution reaction (OER), which causes a series of dire consequences, including poor Coulombic efficiency, short device longevity, and safety issues. These are often showstoppers of a new aqueous battery technology besides the low energy density. Prolific progress has been made in the understanding of HER and OER from both catalysis and battery fields. Unfortunately, a systematic review on these advances from a battery chemistry standpoint is lacking. This review provides in-depth discussions on the mechanisms of water electrolysis on electrodes, where we summarize the critical influencing factors applicable for a broad spectrum of aqueous battery systems. Recent progress and existing challenges on suppressing water electrolysis are discussed, and our perspectives on the future development of this field are provided.
Collapse
Affiliation(s)
- Yiming Sui
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| |
Collapse
|
19
|
Qiao J, Qin M, Shen YM, Cao J, Chen Z, Xu J. A rechargeable aqueous proton battery based on a dipyridophenazine anode and an indium hexacyanoferrate cathode. Chem Commun (Camb) 2021; 57:4307-4310. [PMID: 33913965 DOI: 10.1039/d1cc01486b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rocking-chair aqueous proton battery is assembled by using dipyridophenazine and indium hexacyanoferrate as the anode and cathode materials, respectively. The reversible amination of redox-active phenazine moieties in dipyridophenazine and fast intercalation-deintercalation of protons in hexacyanoferrate enable the aqueous proton battery to achieve a reversible specific capacity of 37 mA h g-1 at 1 A g-1, good cycling stability with 76.1% capacity retention over 3000 cycles and excellent rate capability.
Collapse
Affiliation(s)
- Jun Qiao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Meng Qin
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Yong-Miao Shen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianyu Cao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Juan Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
20
|
Li Q, Zheng Y, Xiao D, Or T, Gao R, Li Z, Feng M, Shui L, Zhou G, Wang X, Chen Z. Faradaic Electrodes Open a New Era for Capacitive Deionization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002213. [PMID: 33240769 PMCID: PMC7675053 DOI: 10.1002/advs.202002213] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Indexed: 05/02/2023]
Abstract
Capacitive deionization (CDI) is an emerging desalination technology for effective removal of ionic species from aqueous solutions. Compared to conventional CDI, which is based on carbon electrodes and struggles with high salinity streams due to a limited salt removal capacity by ion electrosorption and excessive co-ion expulsion, the emerging Faradaic electrodes provide unique opportunities to upgrade the CDI performance, i.e., achieving much higher salt removal capacities and energy-efficient desalination for high salinity streams, due to the Faradaic reaction for ion capture. This article presents a comprehensive overview on the current developments of Faradaic electrode materials for CDI. Here, the fundamentals of Faradaic electrode-based CDI are first introduced in detail, including novel CDI cell architectures, key CDI performance metrics, ion capture mechanisms, and the design principles of Faradaic electrode materials. Three main categories of Faradaic electrode materials are summarized and discussed regarding their crystal structure, physicochemical characteristics, and desalination performance. In particular, the ion capture mechanisms in Faradaic electrode materials are highlighted to obtain a better understanding of the CDI process. Moreover, novel tailored applications, including selective ion removal and contaminant removal, are specifically introduced. Finally, the remaining challenges and research directions are also outlined to provide guidelines for future research.
Collapse
Affiliation(s)
- Qian Li
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityGuangdong510631P. R. China
- Department of Chemical EngineeringWaterloo Institute of NanotechnologyUniversity of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Yun Zheng
- Department of Chemical EngineeringWaterloo Institute of NanotechnologyUniversity of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Dengji Xiao
- Department of Chemical EngineeringWaterloo Institute of NanotechnologyUniversity of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Tyler Or
- Department of Chemical EngineeringWaterloo Institute of NanotechnologyUniversity of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Rui Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversityChangchun130103P. R. China
| | - Zhaoqiang Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversityChangchun130103P. R. China
| | - Ming Feng
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversityChangchun130103P. R. China
| | - Lingling Shui
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityGuangdong510631P. R. China
| | - Guofu Zhou
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityGuangdong510631P. R. China
| | - Xin Wang
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityGuangdong510631P. R. China
| | - Zhongwei Chen
- Department of Chemical EngineeringWaterloo Institute of NanotechnologyUniversity of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| |
Collapse
|
21
|
Recent Advances in Atomic-scale Storage Mechanism Studies of Two-dimensional Nanomaterials for Rechargeable Batteries Beyond Li-ion. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0187-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Chao D, Zhou W, Xie F, Ye C, Li H, Jaroniec M, Qiao SZ. Roadmap for advanced aqueous batteries: From design of materials to applications. SCIENCE ADVANCES 2020; 6:eaba4098. [PMID: 32494749 PMCID: PMC7244306 DOI: 10.1126/sciadv.aba4098] [Citation(s) in RCA: 446] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/10/2020] [Indexed: 05/18/2023]
Abstract
Safety concerns about organic media-based batteries are the key public arguments against their widespread usage. Aqueous batteries (ABs), based on water which is environmentally benign, provide a promising alternative for safe, cost-effective, and scalable energy storage, with high power density and tolerance against mishandling. Research interests and achievements in ABs have surged globally in the past 5 years. However, their large-scale application is plagued by the limited output voltage and inadequate energy density. We present the challenges in AB fundamental research, focusing on the design of advanced materials and practical applications of whole devices. Potential interactions of the challenges in different AB systems are established. A critical appraisal of recent advances in ABs is presented for addressing the key issues, with special emphasis on the connection between advanced materials and emerging electrochemistry. Last, we provide a roadmap starting with material design and ending with the commercialization of next-generation reliable ABs.
Collapse
Affiliation(s)
- Dongliang Chao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Wanhai Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Fangxi Xie
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chao Ye
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Huan Li
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
23
|
Su X. Electrochemical interfaces for chemical and biomolecular separations. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Abstract
Li-ion batteries (LIBs), commercialized in 1991, have the highest energy density among practical secondary batteries and are widely utilized in electronics, electric vehicles, and even stationary energy storage systems. Along with the expansion of their demand and application, concern about the resources of Li and Co is growing. Therefore, secondary batteries composed of earth-abundant elements are desired to complement LIBs. In recent years, K-ion batteries (KIBs) have attracted significant attention as potential alternatives to LIBs. Previous studies have developed positive and negative electrode materials for KIBs and demonstrated several unique advantages of KIBs over LIBs and Na-ion batteries (NIBs). Thus, besides being free from any scarce/toxic elements, the low standard electrode potentials of K/K+ electrodes lead to high operation voltages competitive to those observed in LIBs. Moreover, K+ ions exhibit faster ionic diffusion in electrolytes due to weaker interaction with solvents and anions than that of Li+ ions; this is essential to realize high-power KIBs. This review comprehensively covers the studies on electrochemical materials for KIBs, including electrode and electrolyte materials and a discussion on recent achievements and remaining/emerging issues. The review also includes insights into electrode reactions and solid-state ionics and nonaqueous solution chemistry as well as perspectives on the research-based development of KIBs compared to those of LIBs and NIBs.
Collapse
Affiliation(s)
- Tomooki Hosaka
- Department of Applied Chemistry, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Kei Kubota
- Department of Applied Chemistry, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - A Shahul Hameed
- Department of Applied Chemistry, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Shinichi Komaba
- Department of Applied Chemistry, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| |
Collapse
|
25
|
Jiang L, Liu L, Yue J, Zhang Q, Zhou A, Borodin O, Suo L, Li H, Chen L, Xu K, Hu YS. High-Voltage Aqueous Na-Ion Battery Enabled by Inert-Cation-Assisted Water-in-Salt Electrolyte. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904427. [PMID: 31782981 DOI: 10.1002/adma.201904427] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Water-in-salt (WiS) electrolytes provide a new pathway to widen the electrochemical window of aqueous electrolytes. However, their formulation strongly depends on the solubility of the chosen salts, imposing a stringent restriction on the number of possible WiS systems. This issue becomes more severe for aqueous Na-ion batteries (ANIBs) owing to the relatively lower solubility of sodium salts compared to its alkaline cousins (Li, K, and Cs). A new class of the inert-cation-assisted WiS (IC-WiS) electrolytes containing the tetraethylammonium (TEA+ ) inert cation is reported. The Na IC-WiS electrolyte at a superhigh concentration of 31 mol kg-1 exhibits a wide electrochemical window of 3.3 V, suppresses transition metal dissolution from the cathode, and ensures singular intercalation of Na into both cathode and anode electrodes during cycling, which is often problematic in mixed alkali cation systems such as K-Na and Li-Na. Owing to these unique advantages of the IC-WiS electrolyte, the NaTiOPO4 anode and Prussian blue analog Na1.88 Mn[Fe(CN)6 ]0.97 ·1.35H2 O cathode can be coupled to construct a full ANIB, delivering an average voltage of 1.74 V and a high energy density of 71 Wh kg-1 with a capacity retention of 90% after 200 cycles at 0.25C and of 76% over 800 cycles at 1C.
Collapse
Affiliation(s)
- Liwei Jiang
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lilu Liu
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinming Yue
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiangqiang Zhang
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anxing Zhou
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Oleg Borodin
- Electrochemistry Branch, Sensor and Electron Devices Directorate, Combat Capabilities Development Command U.S. Army Research Laboratory, Adelphi, MD, 20783, USA
| | - Liumin Suo
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Yangtze River Delta Physics Research Center Co. Ltd, Liyang, 213300, China
| | - Hong Li
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Yangtze River Delta Physics Research Center Co. Ltd, Liyang, 213300, China
| | - Liquan Chen
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kang Xu
- Electrochemistry Branch, Sensor and Electron Devices Directorate, Combat Capabilities Development Command U.S. Army Research Laboratory, Adelphi, MD, 20783, USA
| | - Yong-Sheng Hu
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Yangtze River Delta Physics Research Center Co. Ltd, Liyang, 213300, China
| |
Collapse
|
26
|
Erinmwingbovo C, Koster D, Brogioli D, La Mantia F. Dynamic Impedance Spectroscopy of Nickel Hexacyanoferrate Thin Films. ChemElectroChem 2019; 6:5387-5395. [PMID: 31894198 PMCID: PMC6919401 DOI: 10.1002/celc.201900805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/12/2019] [Indexed: 11/21/2022]
Abstract
Dynamic multi-frequency analysis (DMFA) is capable of acquiring high-quality frequency response of electrochemical systems under non-stationary conditions in a broad range of frequencies. In this work, we used DMFA to study the kinetics of (de-)intercalation of univalent cations (Na+ and K+) in thin films of nickel hexacyanoferrate (NiHCF) during cyclic voltammetry. For this system, the classic stationary electrochemical impedance spectroscopy fails due to the instability of the oxidized form of NiHCF. We are showing that such spectra can be fitted with a physical model described by a simple two-step intercalation mechanism: an adsorption step followed by an insertion step. The extracted kinetic parameters are depending on the state of charge as well on the nature of the inserted cation.
Collapse
Affiliation(s)
- Collins Erinmwingbovo
- Universität Bremen, Energiespeicher- und EnergiewandlersystemeBibliothekstr. 128359BremenGermany
| | - Dominique Koster
- Universität Bremen, Energiespeicher- und EnergiewandlersystemeBibliothekstr. 128359BremenGermany
| | - Doriano Brogioli
- Universität Bremen, Energiespeicher- und EnergiewandlersystemeBibliothekstr. 128359BremenGermany
| | - Fabio La Mantia
- Universität Bremen, Energiespeicher- und EnergiewandlersystemeBibliothekstr. 128359BremenGermany
| |
Collapse
|
27
|
Li C, Zhang D, Ma F, Ma T, Wang J, Chen Y, Zhu Y, Fu L, Wu Y, Huang W. A High-Rate and Long-Life Aqueous Rechargeable Ammonium Zinc Hybrid Battery. CHEMSUSCHEM 2019; 12:3732-3736. [PMID: 31328386 DOI: 10.1002/cssc.201901622] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/12/2019] [Indexed: 05/06/2023]
Abstract
Unlike traditional metal-ion insertion, the emerging aqueous rechargeable ammonium-ion batteries (ARABs) brings new battery chemistries for future stationary energy storage. However, low energy density and low durability hinder the further development of ARABs because of the lack of suitable and cost-efficient anodes. In this study, an aqueous rechargeable ammonium zinc hybrid battery is fabricated from durable corner-truncated sodium iron hexacyanoferrate nanocubes as the cathode and low-cost zinc as the anode. This novel hybrid battery demonstrates an average working voltage of 1.3 V, excellent rate capability, and a high energy density of 81.7 Wh kg-1 at 286 W kg-1 (based on two electrodes' active mass), as well as a long lifespan with 92.1 % capacity retention after 2000 cycles, outperforming the reported ARABs and many aqueous hybrid batteries. The strategy to assemble the ammonium zinc hybrid battery provides guidance for improving the feasibility of ARABs for practical application.
Collapse
Affiliation(s)
- Chunyang Li
- State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 210009, China
| | - Dexin Zhang
- Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 210009, China
| | - Fuxiang Ma
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Tianyi Ma
- Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 210009, China
| | - Jing Wang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yuhui Chen
- State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yusong Zhu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lijun Fu
- State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yuping Wu
- State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 210009, China
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Wei Huang
- Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 210009, China
| |
Collapse
|
28
|
Jiang P, Lei Z, Chen L, Shao X, Liang X, Zhang J, Wang Y, Zhang J, Liu Z, Feng J. Polyethylene Glycol-Na + Interface of Vanadium Hexacyanoferrate Cathode for Highly Stable Rechargeable Aqueous Sodium-Ion Battery. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28762-28768. [PMID: 31318190 DOI: 10.1021/acsami.9b04849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vanadium hexacyanoferrate (VHCF) with an open-framework crystal structure is a promising cathode material for rechargeable aqueous metal-ion batteries owing to its high electrochemical performance and easy synthesis. In this paper, vanadium hexacyanoferrate cathodes were first used for constructing rechargeable aqueous sodium-ion batteries (VHCF/WO3) and tested in the new-type electrolyte (NaP-4.6) consisting of a polyethylene glycol (PEG)/H2O/NaClO4 electrolyte with a low H+ concentration (molar ratio of [H2O]/[Na+] is 4.6), which has high stability at a high current density as high as 1000 mA g-1 with a capacity retention of 90.3% after 2000 cycles at high coulombic efficiency (above 97.8%). To understand their outstanding performance, the proton-assisted sodium-ion storage mechanism and interphase chemistry of VHCF are investigated by solid-state NMR (ssNMR) technology. It is suggested that the H+ storage reaction is accompanied by the redox of vanadium atoms and Na+ intercalation is accompanied by the redox of iron atoms. It is also observed that the complex of polyethylene glycol (PEG) with Na+ (PEG-Na+) exists on the VHCF surface, which facilitates the stability of VHCF and promotes the alkali-ion transfer at a high current density. The results of the ssNMR study offer new insights into the intercalation chemistry of Prussian blue analogues with open-framework-structured compounds, which can greatly broaden our horizons for battery research.
Collapse
Affiliation(s)
- Ping Jiang
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , P.R. China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100000 , P.R. China
| | - Zhenyu Lei
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , P.R. China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China
| | - Xuecheng Shao
- State Key Laboratory of Superhard Materials, College of Physics , Jilin University , Changchun 130012 , P.R. China
| | - Xinmiao Liang
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , P.R. China
| | - Jun Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China
| | - Yanchao Wang
- State Key Laboratory of Superhard Materials, College of Physics , Jilin University , Changchun 130012 , P.R. China
| | - Jiujun Zhang
- Institute for Sustainable Energy/College of Sciences , Shanghai University , Shanghai 200444 , P.R. China
| | - Zhaoping Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China
| | - Jiwen Feng
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , P.R. China
| |
Collapse
|
29
|
Zhang Q, Li C, Li Q, Pan Z, Sun J, Zhou Z, He B, Man P, Xie L, Kang L, Wang X, Yang J, Zhang T, Shum PP, Li Q, Yao Y, Wei L. Flexible and High-Voltage Coaxial-Fiber Aqueous Rechargeable Zinc-Ion Battery. NANO LETTERS 2019; 19:4035-4042. [PMID: 31082244 DOI: 10.1021/acs.nanolett.9b01403] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Extensive efforts have been devoted to construct a fiber-shaped energy-storage device to fulfill the increasing demand for power consumption of textile-based wearable electronics. Despite the myriad of available material selections and device architectures, it is still fundamentally challenging to develop eco-friendly fiber-shaped aqueous rechargeable batteries (FARBs) on a single-fiber architecture with high energy density and long-term stability. Here, we demonstrate flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion batteries (CARZIBs). By utilizing a novel spherical zinc hexacyanoferrate with prominent electrochemical performance as cathode material, the assembled CARZIB offers a large capacity of 100.2 mAh cm-3 and a high energy density of 195.39 mWh cm-3, outperforming the state-of-the-art FARBs. Moreover, the resulting CARZIB delivers outstanding flexibility with the capacity retention of 93.2% after bending 3000 times. Last, high operating voltage and output current are achieved by the serial and parallel connection of CARZIBs woven into the flexible textile to power high-energy-consuming devices. Thus, this work provides proof-of-concept design for next-generation wearable energy-storage devices.
Collapse
Affiliation(s)
- Qichong Zhang
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Chaowei Li
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , China
| | - Qiulong Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Zhenghui Pan
- Department of Materials Science and Engineering , National University of Singapore , 117574 , Singapore
| | - Juan Sun
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , China
| | - Zhenyu Zhou
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , China
| | - Bing He
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , China
| | - Ping Man
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , China
| | - Liyan Xie
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , China
| | - Lixing Kang
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Xiaona Wang
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , China
| | - Jiao Yang
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Ting Zhang
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Perry Ping Shum
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Qingwen Li
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , China
| | - Yagang Yao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Joint Key Laboratory of Functional Nanomaterials and Devices, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-tech and Nano-bionics , Chinese Academy of Sciences , Suzhou 215123 , China
| | - Lei Wei
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| |
Collapse
|
30
|
Wu M, Ni W, Hu J, Ma J. NASICON-Structured NaTi 2(PO 4) 3 for Sustainable Energy Storage. NANO-MICRO LETTERS 2019; 11:44. [PMID: 34138016 PMCID: PMC7770786 DOI: 10.1007/s40820-019-0273-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 05/22/2023]
Abstract
Several emerging energy storage technologies and systems have been demonstrated that feature low cost, high rate capability, and durability for potential use in large-scale grid and high-power applications. Owing to its outstanding ion conductivity, ultrafast Na-ion insertion kinetics, excellent structural stability, and large theoretical capacity, the sodium superionic conductor (NASICON)-structured insertion material NaTi2(PO4)3 (NTP) has attracted considerable attention as the optimal electrode material for sodium-ion batteries (SIBs) and Na-ion hybrid capacitors (NHCs). On the basis of recent studies, NaTi2(PO4)3 has raised the rate capabilities, cycling stability, and mass loading of rechargeable SIBs and NHCs to commercially acceptable levels. In this comprehensive review, starting with the structures and electrochemical properties of NTP, we present recent progress in the application of NTP to SIBs, including non-aqueous batteries, aqueous batteries, aqueous batteries with desalination, and sodium-ion hybrid capacitors. After a thorough discussion of the unique NASICON structure of NTP, various strategies for improving the performance of NTP electrode have been presented and summarized in detail. Further, the major challenges and perspectives regarding the prospects for the use of NTP-based electrodes in energy storage systems have also been summarized to offer a guideline for further improving the performance of NTP-based electrodes.
Collapse
Affiliation(s)
- Mingguang Wu
- School of Physics and Electronics, Hunan University, Changsha, 410082, People's Republic of China
| | - Wei Ni
- Faculty of Technology, University of Oulu, 90014, Oulu, Finland.
- Panzhihua University, Panzhihua, 617000, People's Republic of China.
| | - Jin Hu
- School of Physics and Electronics, Hunan University, Changsha, 410082, People's Republic of China.
| | - Jianmin Ma
- School of Physics and Electronics, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
31
|
Activated Carbon/Transition Metal (Ni, In, Cu) Hexacyanoferrate Nanocomposites for Cesium Adsorption. MATERIALS 2019; 12:ma12081253. [PMID: 30995768 PMCID: PMC6514891 DOI: 10.3390/ma12081253] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 11/23/2022]
Abstract
Transition metal hexacyanoferrate/microporous activated carbon composites were obtained using a simple successive impregnation approach. The effect of metal type (nickel, indium, or copper), and the carbon oxidation on the composite characteristics (porosity, metal structure, and particle size), as well as on the removal efficiency of cesium from aqueous solution was investigated. Successful formation of the desired metal hexacyanoferrate phase was achieved and the size of the metallic nanoparticles and their dispersion in the carbon network was found to depend on the metal type, with the indium and nickel-based materials exhibiting the smallest particle size distribution (< 10 nm). Adsorption tests performed under batch conditions demonstrate that the copper hexacyanoferrate/activated carbon composite present the highest cesium removal capacity from aqueous solution (74.7 mg·g−1) among the three studied metal-based nanocomposites. The carbon oxidation treatment leads to the increase in the number of functional groups to the detriment of the porosity but allows for an improvement in the Cs adsorption capacity. This indicates that the Cs adsorption process is governed by the carbon surface chemistry and not its porosity. Moreover, combining oxidized carbon support with copper hexacyanoferrate induces the highest cesium adsorption capacity (101.5 mg·g−1). This could be related to synergistic effects through two absorption mechanisms, i.e., a cation exchange mechanism of Cs with the metallic hexacyanoferrate phase and Cs adsorption via carbon oxygen surface groups, as demonstrated using X-ray photoelectron spectroscopy (XPS) analyses.
Collapse
|
32
|
Differences in NH3 gas adsorption behaviors of metal-hexacyanoferrate nanoparticles (M [FeII(CN)6] ·zH2O:M = In3+, Fe3+, and Mn2+). J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Grad E, Zolotarevsky K, Danenberg HD, Nordling-David MM, Gutman D, Golomb G. The role of monocyte subpopulations in vascular injury following partial and transient depletion. Drug Deliv Transl Res 2018; 8:945-953. [PMID: 28656488 DOI: 10.1007/s13346-017-0404-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The innate immunity system plays a critical role in vascular repair and restenosis development. Liposomes encapsulating bisphosphonates (LipBPs), but not free BPs, suppress neointima formation following vascular injury mediated in part by monocytes. The objective of this study was to elucidate the role of monocyte subpopulations on vascular healing following LipBP treatment. The potency- and dose-dependent treatment effect of clodronate (CLOD) and alendronate (ALN) liposomes on restenosis inhibition, total monocyte depletion, and monocytes subpopulation was studied. Rats subjected to carotid injury were treated by a single IV injection of LipBPs at the time of injury. Low- and high-dose LipALN treatment (3 and 10 mg/kg, respectively) resulted in a dose-dependent effect on restenosis development after 30 days. Both doses of LipALN resulted in a dose-dependent inhibition of restenosis, but only high dose of LipALN depleted monocytes (-60.1 ± 4.4%, 48 h post injury). Although LipCLOD treatment (at an equivalent potency to 3 mg/kg alendronate) significantly reduced monocyte levels (72.1 ± 6%), no restenosis inhibition was observed. The major finding of this study is the correlation found between monocyte subclasses and restenosis inhibition. Non-classical monocyte (NCM) levels were found higher in LipALN-treated rats, but lower in LipCLOD-treated rats, 24 h after injury and treatment. We suggest that the inhibition of circulating monocyte subpopulations is the predominant mechanism by which LipBPs prevent restenosis. The effect of LipBP treatment on the monocyte subpopulation correlates with the dose and potency of LipBPs.
Collapse
Affiliation(s)
- Etty Grad
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 12065 Ein Kerem Medical Cenre, 91120, Jerusalem, Israel
| | - Ksenia Zolotarevsky
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 12065 Ein Kerem Medical Cenre, 91120, Jerusalem, Israel
| | - Haim D Danenberg
- Cardiovascular Research Center, Hadassah Hebrew University Medical Center, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Mirjam M Nordling-David
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 12065 Ein Kerem Medical Cenre, 91120, Jerusalem, Israel
| | - Dikla Gutman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 12065 Ein Kerem Medical Cenre, 91120, Jerusalem, Israel
| | - Gershon Golomb
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 12065 Ein Kerem Medical Cenre, 91120, Jerusalem, Israel.
| |
Collapse
|
34
|
Husmann S, Zarbin AJ. Cation effect on the structure and properties of hexacyanometallates-based nanocomposites: Improving cathode performance in aqueous metal-ions batteries. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Jia H, Cai Y, Lin J, Liang H, Qi J, Cao J, Feng J, Fei W. Heterostructural Graphene Quantum Dot/MnO 2 Nanosheets toward High-Potential Window Electrodes for High-Performance Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700887. [PMID: 29876214 PMCID: PMC5979621 DOI: 10.1002/advs.201700887] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/31/2018] [Indexed: 05/23/2023]
Abstract
The potential window of aqueous supercapacitors is limited by the theoretical value (≈1.23 V) and is usually lower than ≈1 V, which hinders further improvements for energy density. Here, a simple and scalable method is developed to fabricate unique graphene quantum dot (GQD)/MnO2 heterostructural electrodes to extend the potential window to 0-1.3 V for high-performance aqueous supercapacitor. The GQD/MnO2 heterostructural electrode is fabricated by GQDs in situ formed on the surface of MnO2 nanosheet arrays with good interface bonding by the formation of Mn-O-C bonds. Further, it is interesting to find that the potential window can be extended to 1.3 V by a potential drop in the built-in electric field of the GQD/MnO2 heterostructural region. Additionally, the specific capacitance up to 1170 F g-1 at a scan rate of 5 mV s-1 (1094 F g-1 at 0-1 V) and cycle performance (92.7%@10 000 cycles) between 0 and 1.3 V are observed. A 2.3 V aqueous GQD/MnO2-3//nitrogen-doped graphene ASC is assembled, which exhibits the high energy density of 118 Wh kg-1 at the power density of 923 W kg-1. This work opens new opportunities for developing high-voltage aqueous supercapacitors using in situ formed heterostructures to further increase energy density.
Collapse
Affiliation(s)
- Henan Jia
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
| | - Yifei Cai
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
| | - Jinghuang Lin
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
| | - Haoyan Liang
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
| | - Junlei Qi
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
| | - Jian Cao
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
| | - Jicai Feng
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
| | - WeiDong Fei
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
| |
Collapse
|
36
|
Liu C, Wang X, Deng W, Li C, Chen J, Xue M, Li R, Pan F. Engineering Fast Ion Conduction and Selective Cation Channels for a High-Rate and High-Voltage Hybrid Aqueous Battery. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chunyi Liu
- School of Advanced Materials; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Xusheng Wang
- Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- Beijing National Laboratory for Molecular Sciences; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Wenjun Deng
- School of Advanced Materials; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Chang Li
- School of Advanced Materials; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Jitao Chen
- Beijing National Laboratory for Molecular Sciences; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Mianqi Xue
- School of Advanced Materials; Peking University Shenzhen Graduate School; Shenzhen 518055 China
- Institute of Physics; Chinese Academy of Sciences; Beijing 100190 China
| | - Rui Li
- School of Advanced Materials; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Feng Pan
- School of Advanced Materials; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| |
Collapse
|
37
|
Liu C, Wang X, Deng W, Li C, Chen J, Xue M, Li R, Pan F. Engineering Fast Ion Conduction and Selective Cation Channels for a High-Rate and High-Voltage Hybrid Aqueous Battery. Angew Chem Int Ed Engl 2018. [PMID: 29537645 DOI: 10.1002/anie.201800479] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The rechargeable aqueous metal-ion battery (RAMB) has attracted considerable attention due to its safety, low costs, and environmental friendliness. Yet the poor-performance electrode materials lead to a low feasibility of practical application. A hybrid aqueous battery (HAB) built from electrode materials with selective cation channels could increase the electrode applicability and thus enlarge the application of RAMB. Herein, we construct a high-voltage K-Na HAB based on K2 FeFe(CN)6 cathode and carbon-coated NaTi2 (PO4 )3 (NTP/C) anode. Due to the unique cation selectivity of both materials and ultrafast ion conduction of NTP/C, the hybrid battery delivers a high capacity of 160 mAh g-1 at a 0.5 C rate. Considerable capacity retention of 94.3 % is also obtained after 1000 cycles at even 60 C rate. Meanwhile, high energy density of 69.6 Wh kg-1 based on the total mass of active electrode materials is obtained, which is comparable and even superior to that of the lead acid, Ni/Cd, and Ni/MH batteries.
Collapse
Affiliation(s)
- Chunyi Liu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xusheng Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wenjun Deng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chang Li
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jitao Chen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Mianqi Xue
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Rui Li
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
38
|
Manakasettharn S, Takahashi A, Kawamoto T, Noda K, Sugiyama Y, Nakamura T. Highly Sensitive and Exceptionally Wide Dynamic Range Detection of Ammonia Gas by Indium Hexacyanoferrate Nanoparticles Using FTIR Spectroscopy. Anal Chem 2018; 90:4856-4862. [DOI: 10.1021/acs.analchem.8b00359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Supone Manakasettharn
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Akira Takahashi
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Tohru Kawamoto
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Keiko Noda
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Yutaka Sugiyama
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Tohru Nakamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan
| |
Collapse
|
39
|
Luo J, Sun S, Peng J, Liu B, Huang Y, Wang K, Zhang Q, Li Y, Jin Y, Liu Y, Qiu Y, Li Q, Han J, Huang Y. Graphene-Roll-Wrapped Prussian Blue Nanospheres as a High-Performance Binder-Free Cathode for Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25317-25322. [PMID: 28691793 DOI: 10.1021/acsami.7b06334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sodium iron hexacyanoferrate (Fe-HCF) has been proposed as a promising cathode material for sodium-ion batteries (SIBs) because of its desirable advantages, including high theoretical capacity (∼170 mAh g-1), eco-friendliness, and low cost of worldwide rich sodium and iron resources. Nonetheless, its application faces a number of obstacles due to poor electronic conductivity and structural instability. In this work, Fe-HCF nanospheres (NSs) were first synthesized and fabricated by an in situ graphene rolls (GRs) wrapping method, forming a 1D tubular hierarchical structure of Fe-HCF NSs@GRs. GRs not only provide fast electronic conduction path for Fe-HCF NSs but also effectively prevent organic electrolyte from reaching active materials and inhibit the occurrence of side reactions. The Fe-HCF NSs@GRs composite has been used as a binder-free cathode with a capacity of ∼110 mAh g-1 at a current density of 150 mA g-1 (∼1C), the capacity retention of ∼90% after 500 cycles. Moreover, the Fe-HCF NSs@GRs cathode displays a super high rate capability with ∼95 mAh g-1 at 1500 mA g-1 (∼10C). The results suggest that the 1D tubular structure of 2D GRs-wrapped Fe-HCF NSs is promising as a high-performance cathode for SIBs.
Collapse
Affiliation(s)
- Jiahuan Luo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Shixiong Sun
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Jian Peng
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Bo Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Yangyang Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Kun Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Qin Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Yuyu Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Yu Jin
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Yi Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Yuegang Qiu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Jiantao Han
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| |
Collapse
|
40
|
Zhang D, Zhang J, Yang Z, Ren X, Mao H, Yang X, Yang J, Qian Y. Nickel hexacyanoferrate/carbon composite as a high-rate and long-life cathode material for aqueous hybrid energy storage. Chem Commun (Camb) 2017; 53:10556-10559. [DOI: 10.1039/c7cc04914e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel hexacyanoferrate (NiHCF)/carbon composite is prepared to realize reduced structure vacancies and enhanced conductivity simultaneously.
Collapse
Affiliation(s)
- Dapeng Zhang
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| | - Junshu Zhang
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| | - Zengxu Yang
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| | - Xiaochuan Ren
- Wuhan National Laboratory for Optoelectronics (WNLO)
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Hongzhi Mao
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| | - Xianfeng Yang
- Analytical and Testing Centre
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Jian Yang
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| | - Yitai Qian
- Key Laboratory of Colloid and Interface Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
| |
Collapse
|