1
|
Chinn AF, Farzeen P, Li Z, Mase JD, Vu C, Schulz MD, Deshmukh S, Matson JB. Dextran-block-poly(benzyl glutamate) block copolymers via aqueous polymerization-induced self-assembly. Carbohydr Polym 2025; 352:123186. [PMID: 39843089 DOI: 10.1016/j.carbpol.2024.123186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/04/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025]
Abstract
Combining polysaccharides with polypeptides enables growth of diverse nanostructures with minimal toxicity, low immune response, and potential biodegradability. However, examples of nanostructures combining polysaccharides with polypeptides are limited due to synthetic difficulties and related issues of solubility, purification, and characterization, with previous reports of polysaccharide-block-polypeptide block copolymers requiring methods such as polymer-polymer coupling and post-polymerization modifications paired with difficult purification steps. Here, we synthesized dextran-block-poly(benzyl glutamate) block copolymers in water via polymerization-induced self-assembly (PISA) to form nanostructures in situ, studying their morphologies using experimental methods and molecular modeling. Transmission electron microscopy revealed globular but non-spherical nanostructures throughout the PISA process, in contrast to PISA processes using poly(ethylene glycol) (PEG) as the hydrophilic block, which have shown a range of well-defined nanostructures. Coarse-grained molecular dynamics simulations on several homopolymers and block copolymers revealed that dextran chains interacted more strongly with each other compared to PEG, and that water packed less densely around dextran than around PEG. The combined experimental and computational results indicated that while dextran is hydrophilic, its interactions with itself led to the formation of unexpected nanostructures in this dextran-block-polypeptide system, suggesting that these interactions may be exploited to form unique nanostructures compared with other common hydrophilic blocks.
Collapse
Affiliation(s)
- Abigail F Chinn
- Department of Chemistry, Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Parisa Farzeen
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhao Li
- Department of Chemistry, Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jonathan D Mase
- Department of Chemistry, Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Clark Vu
- Department of Chemistry, Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Michael D Schulz
- Department of Chemistry, Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sanket Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
2
|
Fang Y, Shi J, Liang J, Ma D, Wang H. Water-regulated viscosity-plasticity phase transitions in a peptide self-assembled muscle-like hydrogel. Nat Commun 2025; 16:1058. [PMID: 39865087 PMCID: PMC11770121 DOI: 10.1038/s41467-025-56415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025] Open
Abstract
The self-assembly of small molecules through non-covalent interactions is an emerging and promising strategy for building dynamic, stable, and large-scale structures. One remaining challenge is making the non-covalent interactions occur in the ideal positions to generate strength comparable to that of covalent bonds. This work shows that small molecule YAWF can self-assemble into a liquid-crystal hydrogel (LCH), the mechanical properties of which could be controlled by water. LCH can be used to construct stable solid threads with a length of over 1 meter by applying an external force on 2 µL of gel solution followed by water-regulated crystallization. These solid threads can support 250 times their weight. Cryogenic electron microscopy (Cryo-EM) analysis unravels the three-dimensional structure of the liquid-crystal fiber (elongated helix with C2 symmetry) at an atomic resolution. The multiscale mechanics of this material depend on the specificity of the molecular structure, and the water-controlled hierarchical and sophisticated self-assembly.
Collapse
Affiliation(s)
- Yu Fang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Junhui Shi
- Key Laboratory of Structure Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Juan Liang
- Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Dan Ma
- Key Laboratory of Structure Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
| | - Huaimin Wang
- Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
3
|
Piskorz T, Perez-Chirinos L, Qiao B, Sasselli IR. Tips and Tricks in the Modeling of Supramolecular Peptide Assemblies. ACS OMEGA 2024; 9:31254-31273. [PMID: 39072142 PMCID: PMC11270692 DOI: 10.1021/acsomega.4c02628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024]
Abstract
Supramolecular peptide assemblies (SPAs) hold promise as materials for nanotechnology and biomedicine. Although their investigation often entails adapting experimental techniques from their protein counterparts, SPAs are fundamentally distinct from proteins, posing unique challenges for their study. Computational methods have emerged as indispensable tools for gaining deeper insights into SPA structures at the molecular level, surpassing the limitations of experimental techniques, and as screening tools to reduce the experimental search space. However, computational studies have grappled with issues stemming from the absence of standardized procedures and relevant crystal structures. Fundamental disparities between SPAs and protein simulations, such as the absence of experimentally validated initial structures and the importance of the simulation size, number of molecules, and concentration, have compounded these challenges. Understanding the roles of various parameters and the capabilities of different models and simulation setups remains an ongoing endeavor. In this review, we aim to provide readers with guidance on the parameters to consider when conducting SPA simulations, elucidating their potential impact on outcomes and validity.
Collapse
Affiliation(s)
| | - Laura Perez-Chirinos
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Baofu Qiao
- Department
of Natural Sciences, Baruch College, City
University of New York, New York, New York 10010, United States
| | - Ivan R. Sasselli
- Centro
de Física de Materiales (CFM), CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| |
Collapse
|
4
|
Kehrein J, Bunker A, Luxenhofer R. POxload: Machine Learning Estimates Drug Loadings of Polymeric Micelles. Mol Pharm 2024; 21:3356-3374. [PMID: 38805643 PMCID: PMC11394009 DOI: 10.1021/acs.molpharmaceut.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Block copolymers, composed of poly(2-oxazoline)s and poly(2-oxazine)s, can serve as drug delivery systems; they form micelles that carry poorly water-soluble drugs. Many recent studies have investigated the effects of structural changes of the polymer and the hydrophobic cargo on drug loading. In this work, we combine these data to establish an extended formulation database. Different molecular properties and fingerprints are tested for their applicability to serve as formulation-specific mixture descriptors. A variety of classification and regression models are built for different descriptor subsets and thresholds of loading efficiency and loading capacity, with the best models achieving overall good statistics for both cross- and external validation (balanced accuracies of 0.8). Subsequently, important features are dissected for interpretation, and the DrugBank is screened for potential therapeutic use cases where these polymers could be used to develop novel formulations of hydrophobic drugs. The most promising models are provided as an open-source software tool for other researchers to test the applicability of these delivery systems for potential new drug candidates.
Collapse
Affiliation(s)
- Josef Kehrein
- Soft Matter Chemistry, Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 Helsinki, Finland
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 Helsinki, Finland
| | - Robert Luxenhofer
- Soft Matter Chemistry, Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| |
Collapse
|
5
|
Elizebath D, Vedhanarayanan B, Dhiman A, Mishra RK, Ramachandran CN, Lin TW, Praveen VK. Spontaneous Curvature Induction in an Artificial Bilayer Membrane. Angew Chem Int Ed Engl 2024; 63:e202403900. [PMID: 38459961 DOI: 10.1002/anie.202403900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/11/2024]
Abstract
Maintaining lipid asymmetry across membrane leaflets is critical for functions like vesicular traffic and organelle homeostasis. However, a lack of molecular-level understanding of the mechanisms underlying membrane fission and fusion processes in synthetic systems precludes their development as artificial analogs. Here, we report asymmetry induction of a bilayer membrane formed by an extended π-conjugated molecule with oxyalkylene side chains bearing terminal tertiary amine moieties (BA1) in water. Autogenous protonation of the tertiary amines in the periphery of the bilayer by water induces anisotropic curvature, resulting in membrane fission to form vesicles and can be monitored using time-dependent spectroscopy and microscopy. Interestingly, upon loss of the induced asymmetry by extensive protonation using an organic acid restored bilayer membrane. The mechanism leading to the compositional asymmetry in the leaflet and curvature induction in the membrane is validated by density functional theory (DFT) calculations. Studies extended to control molecules having changes in hydrophilic (BA2) and hydrophobic (BA3) segments provide insight into the delicate nature of molecular scale interactions in the dynamic transformation of supramolecular structures. The synergic effect of hydrophobic interaction and the hydrated state of BA1 aggregates provide dynamicity and unusual stability. Our study unveils mechanistic insight into the dynamic transformation of bilayer membranes into vesicles.
Collapse
Affiliation(s)
- Drishya Elizebath
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Balaraman Vedhanarayanan
- Department of Chemistry, Tunghai University, No. 1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 40704, Taiwan
| | - Angat Dhiman
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Rakesh K Mishra
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Department of Chemistry, National Institute of Technology Uttarakhand (NITUK), Srinagar (Garhwal), Uttarakhand, 246174, India
| | - C N Ramachandran
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No. 1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 40704, Taiwan
| | - Vakayil K Praveen
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
6
|
Sasselli IR, Coluzza I. Assessment of the MARTINI 3 Performance for Short Peptide Self-Assembly. J Chem Theory Comput 2024; 20:224-238. [PMID: 38113378 PMCID: PMC10782451 DOI: 10.1021/acs.jctc.3c01015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
The coarse-grained MARTINI force field, initially developed for membranes, has proven to be an exceptional tool for investigating supramolecular peptide assemblies. Over the years, the force field underwent refinements to enhance accuracy, enabling, for example, the reproduction of protein-ligand interactions and constant pH behavior. However, these protein-focused improvements seem to have compromised its ability to model short peptide self-assembly. In this study, we assess the performance of MARTINI 3 in reproducing peptide self-assembly using the well-established diphenylalanine (FF) as our test case. Unlike its success in version 2.1, FF does not even exhibit aggregation in version 3. By systematically exploring parameters for the aromatic side chains and charged backbone beads, we established a parameter set that effectively reproduces tube formation. Remarkably, these parameter adjustments also replicate the self-assembly of other di- and tripeptides and coassemblies. Furthermore, our analysis uncovers pivotal insights for enhancing the performance of MARTINI in modeling short peptide self-assembly. Specifically, we identify issues stemming from overestimated hydrophilicity arising from charged termini and disruptions in π-stacking interactions due to insufficient planarity in aromatic groups and a discrepancy in intermolecular distances between this and backbone-backbone interactions. This investigation demonstrates that strategic modifications can harness the advancements offered by MARTINI 3 for the realm of short peptide self-assembly.
Collapse
Affiliation(s)
- Ivan R. Sasselli
- Centro
de Física de Materiales (CFM), CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research
and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Ivan Coluzza
- Ikerbasque,
Basque Foundation for Science, Plaza de Euskadi 5, 48009 Bilbao, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
7
|
Mohammadi E, Joshi SY, Deshmukh SA. Development, Validation, and Applications of Nonbonded Interaction Parameters between Coarse-Grained Amino Acid and Water Models. Biomacromolecules 2023; 24:4078-4092. [PMID: 37603467 DOI: 10.1021/acs.biomac.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Interactions between amino acids and water play an important role in determining the stability and folding/unfolding, in aqueous solution, of many biological macromolecules, which affects their function. Thus, understanding the molecular-level interactions between water and amino acids is crucial to tune their function in aqueous solutions. Herein, we have developed nonbonded interaction parameters between the coarse-grained (CG) models of 20 amino acids and the one-site CG water model. The nonbonded parameters, represented using the 12-6 Lennard Jones (LJ) potential form, have been optimized using an artificial neural network (ANN)-assisted particle swarm optimization (PSO) (ANN-assisted PSO) method. All-atom (AA) molecular dynamics (MD) simulations of dipeptides in TIP3P water molecules were performed to calculate the Gibbs hydration free energies. The nonbonded force-field (FF) parameters between CG amino acids and the one-site CG water model were developed to accurately reproduce these energies. Furthermore, to test the transferability of these newly developed parameters, we calculated the hydration free energies of the analogues of the amino acid side chains, which showed good agreement with reported experimental data. Additionally, we show the applicability of these models by performing self-assembly simulations of peptide amphiphiles. Overall, these models are transferable and can be used to study the self-assembly of various biomaterials and biomolecules to develop a mechanistic understanding of these processes.
Collapse
Affiliation(s)
- Esmat Mohammadi
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Soumil Y Joshi
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sanket A Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
8
|
Hu Y, Fan Y, Chen B, Li H, Zhang G, Su J. Stimulus-responsive peptide hydrogels: a safe and least invasive administration approach for tumor treatment. J Drug Target 2023:1-17. [PMID: 37469142 DOI: 10.1080/1061186x.2023.2236332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
Tumours, with increasing mortality around the world, have bothered human beings for decades. Enhancing the targeting of antitumor drugs to tumour tissues is the key to enhancing their antitumor effects. The tumour microenvironment is characterised by a relatively low pH, overexpression of certain enzymes, redox imbalance, etc. Therefore, smart drug delivery systems that respond to the tumour microenvironment have been proposed to selectively release antitumor drugs. Among them, peptide hydrogels as a local drug delivery system have received much attention due to advantages such as high biocompatibility, degradability and high water-absorbing capacity. The combination of peptide segments with different physiological functions allows for tumour targeting, self-aggregation, responsiveness, etc. Morphological and microstructural changes in peptide hydrogels can occur when utilising the inherent pathological microenvironment of tumours to trigger drug release, which endows such systems with limited adverse effects and improved therapeutic efficiency. Herein, this review outlined the driving forces, impact factors, and sequence design in peptide hydrogels. We also discussed the triggers to induce the transformation of peptide-based hydrogels in the tumour microenvironment and described the advancements of peptide-based hydrogels for local drug delivery in tumour treatment. Finally, we gave a brief perspective on the prospects and challenges in this field.
Collapse
Affiliation(s)
- Yuchen Hu
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Ying Fan
- Chongqing University Jiangjin Hospital, Chongqing, P.R. China
| | - Ban Chen
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Hong Li
- School of Pharmacy, Guangxi Medical University, Nanning, P.R. China
| | - Gang Zhang
- Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan, P.R. China
| | - Jiangtao Su
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| |
Collapse
|
9
|
Rahman M, Almalki WH, Afzal O, Alfawaz Altamimi AS, Najib Ullah SNM, Abul Barkat M, Beg S. Chiral-engineered supraparticles: Emerging tools for drug delivery. Drug Discov Today 2023; 28:103420. [PMID: 36309193 DOI: 10.1016/j.drudis.2022.103420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 02/02/2023]
Abstract
The handedness of chiral-engineered supraparticles (CE-SPs) influences their interactions with cells and proteins, as evidenced by the increased penetration of breast, cervical, and myeloma cell membranes by d-chirality-coordinated SPs. Quartz crystal dissipation and isothermal titration calorimetry have been used to investigate such chiral-specific interactions. d-SPs are more thermodynamically stable compared with l-SPs in terms of their adhesion. Proteases and other endogenous proteins can be shielded by the opposite chirality of d-SPs, resulting in longer half-lives. Incorporating nanosystems with d-chirality increases uptake by cancer cells and prolongs in vivo stability, demonstrating the importance of chirality in biomaterials. Thus, as we discuss here, chiral nanosystems could enhance drug delivery systems, tumor markers, and biosensors, among other biomaterial-based technologies, by allowing for better control over their features.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Science, SIHAS, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India.
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | | | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Saudi Arabia
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
10
|
Ling P, Sun X, Gao X, Wang L, Yang P, Gao F. Multifunctional porphyrin-ionic liquid aggregate for highly sensitive electrochemical detection of protein. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Christopher Fry H, Divan R, Liu Y. Designing 1D multiheme peptide amphiphile assemblies reminiscent of natural systems. NANOSCALE 2022; 14:10082-10090. [PMID: 35792094 DOI: 10.1039/d2nr00473a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein assemblies that bind and organize ordered arrays of cofactors yield function structures. Multiheme assemblies found in nature yield electronically conductivity 1D nanoscale fibers and are employed in anaerobic respiration. To understand the fundamental characteristics of these organized arrays, the design of peptide amphiphiles that assemble into 1D nanostructures and yield metalloporphyrin binding sites is presented. One challenge with this class of peptide amphiphiles is identifying the correct sequence composition for high affinity binding with high heme density. Here, the peptide c16-AH(Kx)n-CO2H is explored to identify the impact of sequence length (n) and amino acid identity (x = L, I, or F) on binding affinity and midpoint potential. When n = 2, the peptide assembly yields the greatest affinity. The resulting nanoscale assemblies yield ordered arrays of the redox active molecule heme and have potential utility in the development of supramolecular bioelectronic materials useful in sensing as well as the development of enzymatic materials.
Collapse
Affiliation(s)
- H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA.
| | - Ralu Divan
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA.
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA.
| |
Collapse
|
12
|
Agarwala P, Bera T, Sasmal DK. Molecular Mechanism of Interaction of Curcumin with BSA, Surfactants and Live E. Coli Cell Membrane Revealed by Fluorescence Spectroscopy and Confocal Microscopy. Chemphyschem 2022; 23:e202200265. [DOI: 10.1002/cphc.202200265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Pratibha Agarwala
- Indian Institute of Technology Rajasthan: Indian Institute of Technology Jodhpur Department of chemistry 342037 Jodhpur INDIA
| | - Turban Bera
- Indian Institute of Technology Jodhpur Department of chemistry INDIA
| | - Dibyendu Kumar Sasmal
- Indian Institute of Technology Jodhpur Chemistry NH65, Surpura bypass roadkarwar 342037 Jodhpur INDIA
| |
Collapse
|
13
|
Weerakkody JS, El Kazzy M, Jacquier E, Elchinger PH, Mathey R, Ling WL, Herrier C, Livache T, Buhot A, Hou Y. Surfactant-like Peptide Self-Assembled into Hybrid Nanostructures for Electronic Nose Applications. ACS NANO 2022; 16:4444-4457. [PMID: 35174710 DOI: 10.1021/acsnano.1c10734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An electronic nose (e-nose) utilizes a multisensor array, which relies on the vector contrast of combinatorial responses, to effectively discriminate between volatile organic compounds (VOCs). In recent years, hierarchical structures made of nonbiological materials have been used to achieve the required sensor diversity. With the advent of self-assembling peptides, the ability to tune nanostructuration, surprisingly, has not been exploited for sensor array diversification. In this work, a designer surfactant-like peptide sequence, CG7-NH2, is used to fabricate morphologically and physicochemically heterogeneous "biohybrid" surfaces on Au-covered chips. These multistructural sensing surfaces, containing immobilized hierarchical nanostructures surrounded by self-assembled monolayers, are used for the detection and discrimination of VOCs. Through a simple and judicious design process, involving changes in pH and water content of peptide solutions, a five-element biohybrid sensor array coupled with a gas-phase surface plasmon resonance imaging system is shown to achieve sufficient discriminatory capabilities for four VOCs. Moreover, the limit of detection of the multiarray system is bench-marked at <1 and 6 ppbv for hexanoic acid and phenol (esophago-gastric biomarkers), respectively. Finally, the humidity effects are characterized, identifying the dissociation rate constant as a robust descriptor for classification, further exemplifying their efficacy as biomaterials in the field of artificial olfaction.
Collapse
Affiliation(s)
- Jonathan S Weerakkody
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| | - Marielle El Kazzy
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| | - Elise Jacquier
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| | - Pierre-Henri Elchinger
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| | - Raphael Mathey
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| | - Wai Li Ling
- Université Grenoble Alpes, CEA, CNRS, IRIG, IBS, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Cyril Herrier
- Aryballe, 7 Rue des Arts et Métiers, Grenoble 38000, France
| | | | - Arnaud Buhot
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| | - Yanxia Hou
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 17 Avenue des Martyrs, Grenoble 38000, France
| |
Collapse
|
14
|
Sasselli IR, Syrgiannis Z, Sather NA, Palmer LC, Stupp SI. Modeling Interactions within and between Peptide Amphiphile Supramolecular Filaments. J Phys Chem B 2022; 126:650-659. [PMID: 35029997 DOI: 10.1021/acs.jpcb.1c09258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many peptides are able to self-assemble into one-dimensional (1D) nanostructures, such as cylindrical fibers or ribbons of variable widths, but the relationship between the morphology of 1D objects and their molecular structure is not well understood. Here, we use coarse-grained molecular dynamics (CG-MD) simulations to study the nanostructures formed by self-assembly of different peptide amphiphiles (PAs). The results show that ribbons are hierarchical superstructures formed by laterally assembled cylindrical fibers. Simulations starting from bilayer structures demonstrate the formation of filaments, whereas other simulations starting from filaments indicate varying degrees of interaction among them depending on chemical structure. These interactions are verified by observations using atomic force microscopy of the various systems. The interfilament interactions are predicted to be strongest in supramolecular assemblies that display hydrophilic groups on their surfaces, while those with hydrophobic ones are predicted to interact more weakly as confirmed by viscosity measurements. The simulations also suggest that peptide amphiphiles with hydrophobic termini bend to reduce their interfacial energy with water, which may explain why these systems do not collapse into superstructures of bundled filaments. The simulations suggest that future experiments will need to address mechanistic questions about the self-assembly of these systems into hierarchical structures, namely, the preformation of interactive filaments vs equilibration of large assemblies into superstructures.
Collapse
Affiliation(s)
- Ivan R Sasselli
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zois Syrgiannis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nicholas A Sather
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, 11th Floor, Chicago, Illinois 60611, United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, 676 N St. Clair, Chicago, Illinois 60611, United States.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
15
|
Shen Y, Wang Y, Hamley IW, Qi W, Su R, He Z. Chiral self-assembly of peptides: Toward the design of supramolecular polymers with enhanced chemical and biological functions. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
|
17
|
Tyagi G, Seddon D, Khodaparast S, Sharratt WN, Robles ES, Cabral JT. Tensiometry and FTIR study of the synergy in mixed SDS:DDAO surfactant solutions at varying pH. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Xing Z, Chen Y, Qiu F. Alternative Causal Link between Peptide Fibrillization and β-Strand Conformation. ACS OMEGA 2021; 6:12904-12912. [PMID: 34056442 PMCID: PMC8154227 DOI: 10.1021/acsomega.1c01423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
In the prevailing phenomenon of peptide fibrillization, β-strand conformation has long been believed to be an important structural basis for peptide assembly. According to a widely accepted theory, in most peptide fibrillization processes, peptide monomers need to intrinsically take or transform to β-strand conformation before they can undergo ordered packing to form nanofibers. In this study, we reported our findings on an alternative peptide fibrillization pathway starting from a disordered secondary structure, which could then transform to β-strand after fibrillization. By using circular dichroism, thioflavin-T binding test, and transmission electron microscopy, we studied the secondary structure and assembly behavior of Ac-RADARADARADARADA-NH2 (RADA16-I) in a low concentration range. The effects of peptide concentration, solvent polarity, pH, and temperature were investigated in detail. Our results showed that at very low concentrations, even though the peptide was in a disordered secondary structure, it could still form nanofibers through intermolecular assembly, and under higher peptide concentrations, the transformation from the disordered structure to β-strand could happen with the growth of nanofibers. Our results indicated that even without ordered β-strand conformation, driving forces such as hydrophobic interaction and electrostatic interaction could still play a determinative role in the self-assembly of peptides. At least in some cases, the formation of β-strand might be the consequence rather than the cause of peptide fibrillization.
Collapse
Affiliation(s)
- Zhihua Xing
- Laboratory
of Anesthesia and Critical Care Medicine, Translational Neuroscience
Center and National Clinical Research Center for Geriatrics, West
China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory
of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongzhu Chen
- Laboratory
of Anesthesia and Critical Care Medicine, Translational Neuroscience
Center and National Clinical Research Center for Geriatrics, West
China Hospital, Sichuan University, Chengdu 610041, China
- Periodical
Press of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Qiu
- Laboratory
of Anesthesia and Critical Care Medicine, Translational Neuroscience
Center and National Clinical Research Center for Geriatrics, West
China Hospital, Sichuan University, Chengdu 610041, China
- National-Local
Joint Engineering Research Center of Translational Medicine of Anesthesiology,
West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Rani A, De Leon-Rodriguez LM, Kavianinia I, McGillivray DJ, Williams DE, Brimble MA. Synthesis and characterization of mono S-lipidated peptide hydrogels: a platform for the preparation of reactive oxygen species responsive materials. Org Biomol Chem 2021; 19:3665-3677. [PMID: 33908574 DOI: 10.1039/d1ob00355k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we report the synthesis of mono lipidated peptides containing a 3-mercaptopropionate linker in the N-terminus by means of a photoinitiated thiol-ene reaction (S-lipidation). We evaluate the self-assembling and hydrogelation properties of a library of mono S-lipidated peptides containing lipid chains of various lengths and demonstrate that hydrogelation was driven by a balance between the lipid chain's hydrophobicity and the peptide's facial hydrophobicity. We further postulate that a simple calculation using estimated values of log D could be used as a predictor of hydrogelation when designing similar systems. A mono S-lipidated peptide containing a short lipid chain that formed hydrogels was fully characterized and a mechanism for the peptide hydrogelation developed. Finally, we demonstrate that the presence of the thioether group in the mono S-lipidated peptide hydrogels, which is a feature lacking in conventional N-acyl lipidated systems, enables the controlled disassembly of the gel via oxidation to the sulfoxide by reactive oxygen species in accordance with a hydrophobicity-modulated strategy. Thus, we conclude that mono S-lipidated peptide hydrogels constitute a novel and simple tool for the development of tissue engineering and targeted drug delivery applications of diseases with overexpression of reactive oxygen species (e.g. degenerative and metabolic diseases, and cancers).
Collapse
Affiliation(s)
- Aakanksha Rani
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Luis M De Leon-Rodriguez
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| | - Iman Kavianinia
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| | - Duncan J McGillivray
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - David E Williams
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| |
Collapse
|
20
|
Panja S, Adams DJ. Stimuli responsive dynamic transformations in supramolecular gels. Chem Soc Rev 2021; 50:5165-5200. [PMID: 33646219 DOI: 10.1039/d0cs01166e] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supramolecular gels are formed by the self-assembly of small molecules under the influence of various non-covalent interactions. As the interactions are individually weak and reversible, it is possible to perturb the gels easily, which in turn enables fine tuning of their properties. Synthetic supramolecular gels are kinetically trapped and usually do not show time variable changes in material properties after formation. However, such materials potentially become switchable when exposed to external stimuli like temperature, pH, light, enzyme, redox, and chemical analytes resulting in reconfiguration of gel matrix into a different type of network. Such transformations allow gel-to-gel transitions while the changes in the molecular aggregation result in alteration of physical and chemical properties of the gel with time. Here, we discuss various methods that have been used to achieve gel-to-gel transitions by modifying a pre-formed gel material through external perturbation. We also describe methods that allow time-dependent autonomous switching of gels into different networks enabling synthesis of next generation functional materials. Dynamic modification of gels allows construction of an array of supramolecular gels with various properties from a single material which eventually extend the limit of applications of the gels. In some cases, gel-to-gel transitions lead to materials that cannot be accessed directly. Finally, we point out the necessity and possibility of further exploration of the field.
Collapse
Affiliation(s)
- Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
21
|
Fry HC, Peters BL, Ferguson AL. Pushing and Pulling: A Dual pH Trigger Controlled by Varying the Alkyl Tail Length in Heme Coordinating Peptide Amphiphiles. J Phys Chem B 2021; 125:1317-1330. [PMID: 33529038 DOI: 10.1021/acs.jpcb.0c07713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Some organisms in nature that undergo anaerobic respiration utilize 1D nanoscale arrays of densely packed cytochromes containing the molecule heme. The assemblies can be mimicked with 1D nanoscale fibrils composed of peptide amphiphiles designed to coordinate heme in dense arrays. To create such materials and assemblies, it is critical to understand the assembly process and what controls the various aspects of hierarchical assembly. MD simulations suggest that shorter alkyl chains on the peptide lead to more dynamic structures than the peptides with longer chains that yield kinetically trapped states. The hydration parameters manifest themselves experimentally through the observation of a dual pH trigger, which controls the peptide assembly rate, the heme binding affinity, and heme organization kinetics. Great strides in understanding the relative complexity of the self-assembly process in relation to incorporating a functional moiety like heme opens up many possibilities in developing abiotic assemblies for bioelectronic devices and assemblies.
Collapse
Affiliation(s)
- H Christopher Fry
- Center for Nansocale Materials, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, Argonne, Illinois 60712, United States
| | - Brandon L Peters
- Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, Argonne, Illinois 60712, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
22
|
Lacerda CD, Andrade MFC, Pessoa PDS, Prado FM, Pires PAR, Pinatto-Botelho MF, Wodtke F, Dos Santos AA, Dias LG, Lima FDS, Chaimovich H, Cuccovia IM. Experimental mapping of a pH gradient from a positively charged micellar interface to bulk solution. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Yang Y, Chen CY, Liu DP, Raj A, Hamaguchi HO, Qiu HB, Lin YJ, Wang CL, Wang XS. Vesicular Membrane with Structured Interstitial Water. J Phys Chem B 2020; 124:9239-9245. [DOI: 10.1021/acs.jpcb.0c06678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Waterloo Institute for Nanotechnology and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Chin Yi Chen
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| | - Da Peng Liu
- Waterloo Institute for Nanotechnology and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ankit Raj
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| | - Hiro-o. Hamaguchi
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| | - Hui Bin Qiu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Jun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chien Lung Wang
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30010, Taiwan
| | - Xiao Song Wang
- Waterloo Institute for Nanotechnology and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
24
|
Joshi SY, Deshmukh SA. A review of advancements in coarse-grained molecular dynamics simulations. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1828583] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Soumil Y. Joshi
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
25
|
Wang Y, An Y, Shmidov Y, Bitton R, Deshmukh SA, Matson JB. A combined experimental and computational approach reveals how aromatic peptide amphiphiles self-assemble to form ion-conducting nanohelices. MATERIALS CHEMISTRY FRONTIERS 2020; 4:3022-3031. [PMID: 33163198 PMCID: PMC7643854 DOI: 10.1039/d0qm00369g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Reported here is a combined experimental-computational strategy to determine structure-property-function relationships in persistent nanohelices formed by a set of aromatic peptide amphiphile (APA) tetramers with the general structure K S XEK S , where KS= S-aroylthiooxime modified lysine, X = glutamic acid or citrulline, and E = glutamic acid. In low phosphate buffer concentrations, the APAs self-assembled into flat nanoribbons, but in high phosphate buffer concentrations they formed nanohelices with regular twisting pitches ranging from 9-31 nm. Coarse-grained molecular dynamics simulations mimicking low and high salt concentrations matched experimental observations, and analysis of simulations revealed that increasing strength of hydrophobic interactions under high salt conditions compared with low salt conditions drove intramolecular collapse of the APAs, leading to nanohelix formation. Analysis of the radial distribution functions in the final self-assembled structures led to several insights. For example, comparing distances between water beads and beads representing hydrolysable KS units in the APAs indicated that the KS units in the nanohelices should undergo hydrolysis faster than those in the nanoribbons; experimental results verified this hypothesis. Simulation results also suggested that these nanohelices might display high ionic conductivity due to closer packing of carboxylate beads in the nanohelices than in the nanoribbons. Experimental results showed no conductivity increase over baseline buffer values for unassembled APAs, a slight increase (0.4 × 102 μS/cm) for self-assembled APAs under low salt conditions in their nanoribbon form, and a dramatic increase (8.6 × 102 μS/cm) under high salt conditions in their nanohelix form. Remarkably, under the same salt conditions, these self-assembled nanohelices conducted ions 5-10-fold more efficiently than several charged polymers, including alginate and DNA. These results highlight how experiments and simulations can be combined to provide insight into how molecular design affects self-assembly pathways; additionally, this work highlights how this approach can lead to discovery of unexpected properties of self-assembled nanostructures.
Collapse
Affiliation(s)
- Yin Wang
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yaxin An
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yulia Shmidov
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ronit Bitton
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Sanket A Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
26
|
Rani A, Kavianinia I, De Leon-Rodriguez LM, McGillivray DJ, Williams DE, Brimble MA. Nanoribbon self-assembly and hydrogel formation from an NOctanoyl octapeptide derived from the antiparallel β-Interface of a protein homotetramer. Acta Biomater 2020; 114:233-243. [PMID: 32682054 DOI: 10.1016/j.actbio.2020.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/26/2022]
Abstract
The effect of installing different lipid chains (C6, C8, C10, and C16) on the N-terminus of an octapeptide derived from the antiparallel β-interface of the diaminopimelate decarboxylase protein homotetramer has been investigated. Notably, the C8 peptide conjugate assembled into wide twisted nanoribbons and formed hydrogels, which to the best of our knowledge constitutes the first example of a peptide containing an eight carbon alkyl chain that demonstrates these properties, a space typically occupied by peptide amphiphiles with long lipid chains. Furthermore, this self-assembling lipopeptide exhibited pH and temperature stability with shear thinning properties suitable for biomedical applications. Importantly, in this work the application of the polystyrene-based sorbent Diaion™ HP20SS for the simple large-scale purification of self-assembling peptides is presented as an alternative to the use of time-consuming and labor-intensive reverse-phase high-performance liquid chromatography. STATEMENT OF SIGNIFICANCE: Peptides that can self-assemble into defined nanostructures are highly attractive for many biomedical applications given their unique physical and chemical properties. It is recognized that self-assembling peptides derived from naturally occurring proteins offer an unlimited source of functionalities and structures, which are hard to uncover with designed sequences. In this study, we have investigated the effect of installing different lipids chains on the N-terminus of an octapeptide derived from the antiparallel β-interface of the diaminopimelate decarboxylase protein homo tetramer. We also reported the use of polymeric DiaionⓇ HP20SS beads as an alternative solid support to purify self-assembling peptides.
Collapse
Affiliation(s)
- Aakanksha Rani
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Iman Kavianinia
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| | - Luis M De Leon-Rodriguez
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
| | - Duncan J McGillivray
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - David E Williams
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand.
| |
Collapse
|
27
|
Wang H, Liu Z, An C, Li H, Hu F, Dong S. Self-Assembling Glycopeptide Conjugate as a Versatile Platform for Mimicking Complex Polysaccharides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001264. [PMID: 32832369 PMCID: PMC7435236 DOI: 10.1002/advs.202001264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Polysaccharides are a class of carbohydrates that play pivotal roles in living systems such as being chemical messengers in many vital biological pathways. However, the complexity and heterogeneity of these natural structures have posed daunting challenges on their production, characterization, evaluation, and applications. While there have been various types of synthetic skeletons that could mimic some biological aspects of polysaccharides, a safer and more easily accessed system is still desired to avoid the unnatural components and difficulties in modifying the structures. In this work, conveniently accessible self-assembling glycopeptide conjugates are developed, where the natural O-glycosidic linkages and phosphoryl modifications assist the self-assembly and concurrently reduce the risk of toxicity. The generated nanoparticles in aqueous solution offer a multivalent display of structurally controllable carbohydrates as mimics of polysaccharides, among which a mannosylated version exhibits immunostimulatory effects in both cellular assays and vaccination of mice. The obtained results demonstrate the potential of this glycopeptide conjugate-derived platform in exploiting the intriguing properties of carbohydrates in a more structurally maneuverable fashion.
Collapse
Affiliation(s)
- Hanxuan Wang
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Zhichao Liu
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Chuanjing An
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Haoting Li
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Fanlei Hu
- Department of Rheumatology and ImmunologyPeking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135)Beijing100044China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| |
Collapse
|
28
|
Yang J, An HW, Wang H. Self-Assembled Peptide Drug Delivery Systems. ACS APPLIED BIO MATERIALS 2020; 4:24-46. [DOI: 10.1021/acsabm.0c00707] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jia Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
29
|
Wychowaniec J, Smith AM, Ligorio C, Mykhaylyk OO, Miller AF, Saiani A. Role of Sheet-Edge Interactions in β-sheet Self-Assembling Peptide Hydrogels. Biomacromolecules 2020; 21:2285-2297. [PMID: 32275138 PMCID: PMC7304824 DOI: 10.1021/acs.biomac.0c00229] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/08/2020] [Indexed: 12/11/2022]
Abstract
Hydrogels' hydrated fibrillar nature makes them the material of choice for the design and engineering of 3D scaffolds for cell culture, tissue engineering, and drug-delivery applications. One particular class of hydrogels which has been the focus of significant research is self-assembling peptide hydrogels. In the present work, we were interested in exploring how fiber-fiber edge interactions affect the self-assembly and gelation properties of amphipathic peptides. For this purpose, we investigated two β-sheet-forming peptides, FEFKFEFK (F8) and KFEFKFEFKK (KF8K), the latter one having the fiber edges covered by lysine residues. Our results showed that the addition of the two lysine residues did not affect the ability of the peptides to form β-sheet-rich fibers, provided that the overall charge carried by the two peptides was kept constant. However, it did significantly reduce edge-driven hydrophobic fiber-fiber associative interactions, resulting in reduced tendency for KF8K fibers to associate/aggregate laterally and form large fiber bundles and consequently network cross-links. This effect resulted in the formation of hydrogels with lower moduli but faster dynamics. As a result, KF8K fibers could be aligned only under high shear and at high concentration while F8 hydrogel fibers were found to align readily at low shear and low concentration. In addition, F8 hydrogels were found to fragment at high concentration because of the high aggregation state stabilizing the fiber bundles, resulting in fiber breakage rather than disentanglement and alignment.
Collapse
Affiliation(s)
- Jacek
K. Wychowaniec
- School
of Materials, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- Manchester
Institute of Biotechnology, The University
of Manchester, Oxford
Road, M13 9PL Manchester, U.K.
| | - Andrew M. Smith
- School
of Materials, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- Manchester
Institute of Biotechnology, The University
of Manchester, Oxford
Road, M13 9PL Manchester, U.K.
| | - Cosimo Ligorio
- School
of Materials, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- Manchester
Institute of Biotechnology, The University
of Manchester, Oxford
Road, M13 9PL Manchester, U.K.
| | - Oleksandr O. Mykhaylyk
- Soft
Matter Analytical Laboratory, Dainton Building, Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K.
| | - Aline F. Miller
- Manchester
Institute of Biotechnology, The University
of Manchester, Oxford
Road, M13 9PL Manchester, U.K.
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
| | - Alberto Saiani
- School
of Materials, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- Manchester
Institute of Biotechnology, The University
of Manchester, Oxford
Road, M13 9PL Manchester, U.K.
| |
Collapse
|
30
|
Roy S, Wu L, Goverapet Srinivasan S, Stack AG, Navrotsky A, Bryantsev VS. Hydration structure and water exchange kinetics at xenotime-water interfaces: implications for rare earth minerals separation. Phys Chem Chem Phys 2020; 22:7719-7727. [PMID: 32215419 DOI: 10.1039/d0cp00087f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydration of surface ions gives rise to structural heterogeneity and variable exchange kinetics of water at complex mineral-water interfaces. Here, we employ ab initio molecular dynamics (AIMD) simulations and water adsorption calorimetry to examine the aqueous interfaces of xenotime, a phosphate mineral that contains predominantly Y3+ and heavy rare earth elements. Consistent with natural crystal morphology, xenotime is predicted to have a tetragonal prismatic shape, dominated by the {100} surface. Hydration of this surface induces multilayer interfacial water structures with distinct OH orientations, which agrees with recent crystal truncation rod measurements. The exchange kinetics between two adjacent water layers exhibits a wide range of underlying timescales (5-180 picoseconds), dictated by ion-water electrostatics. Adsorption of a bidentate hydroxamate ligand reveals that {100} xenotime surface can only accommodate monodentate coordination with water exchange kinetics strongly depending on specific ligand orientation, prompting us to reconsider traditional strategies for selective separation of rare-earth minerals.
Collapse
Affiliation(s)
- Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37830, USA.
| | - Lili Wu
- Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | | | - Andrew G Stack
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37830, USA.
| | - Alexandra Navrotsky
- Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37830, USA.
| |
Collapse
|
31
|
Li C, Qin Z, Han W. Bottom-up derived flexible water model with dipole and quadrupole moments for coarse-grained molecular simulations. Phys Chem Chem Phys 2020; 22:27394-27412. [DOI: 10.1039/d0cp04185h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bottom-up CG water model is developed to capture the electrostatic multipoles, structural correlation and thermodynamics of water.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Zhongyuan Qin
- State Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Wei Han
- State Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| |
Collapse
|
32
|
An Y, Deshmukh SA. Machine learning approach for accurate backmapping of coarse-grained models to all-atom models. Chem Commun (Camb) 2020; 56:9312-9315. [PMID: 32667366 DOI: 10.1039/d0cc02651d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Four different machine learning (ML) regression models: artificial neural network, k-nearest neighbors, Gaussian process regression and random forest were built to backmap coarse-grained models to all-atom models.
Collapse
Affiliation(s)
- Yaxin An
- Department of Chemical Engineering
- Virginia Tech
- Blacksburg
- USA
| | | |
Collapse
|
33
|
Fry HC, Solomon LA, Diroll BT, Liu Y, Gosztola DJ, Cohn HM. Morphological Control of Chromophore Spin State in Zinc Porphyrin–Peptide Assemblies. J Am Chem Soc 2019; 142:233-241. [DOI: 10.1021/jacs.9b09935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- H. Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois60439, United States
| | - Lee A. Solomon
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois60439, United States
| | - Benjamin T. Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois60439, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois60439, United States
| | - David J. Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois60439, United States
| | - Hannah M. Cohn
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois60439, United States
| |
Collapse
|
34
|
Okesola B, Wu Y, Derkus B, Gani S, Wu D, Knani D, Smith DK, Adams DJ, Mata A. Supramolecular Self-Assembly To Control Structural and Biological Properties of Multicomponent Hydrogels. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:7883-7897. [PMID: 31631941 PMCID: PMC6792223 DOI: 10.1021/acs.chemmater.9b01882] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/08/2019] [Indexed: 05/07/2023]
Abstract
Self-assembled nanofibers are ubiquitous in nature and serve as inspiration for the design of supramolecular hydrogels. A multicomponent approach offers the possibility of enhancing the tunability and functionality of this class of materials. We report on the synergistic multicomponent self-assembly involving a peptide amphiphile (PA) and a 1,3:2,4-dibenzylidene-d-sorbitol (DBS) gelator to generate hydrogels with tunable nanoscale morphology, improved stiffness, enhanced self-healing, and stability to enzymatic degradation. Using induced circular dichroism of Thioflavin T (ThT), electron microscopy, small-angle neutron scattering, and molecular dynamics approaches, we confirm that the PA undergoes self-sorting, while the DBS gelator acts as an additive modifier for the PA nanofibers. The supramolecular interactions between the PA and DBS gelators result in improved bulk properties and cytocompatibility of the two-component hydrogels as compared to those of the single-component systems. The tunable mechanical properties, self-healing ability, resistance to proteolysis, and biocompatibility of the hydrogels suggest future opportunities for the hydrogels as scaffolds for tissue engineering and drug delivery vehicles.
Collapse
Affiliation(s)
- Babatunde
O. Okesola
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Yuanhao Wu
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Burak Derkus
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
- Biomedical
Engineering Department, Faculty of Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Samar Gani
- Department
of Biotechnology Engineering, ORT Braude
College, P.O. Box 78, Karmiel 2161002, Israel
| | - Dongsheng Wu
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Dafna Knani
- Department
of Biotechnology Engineering, ORT Braude
College, P.O. Box 78, Karmiel 2161002, Israel
| | - David K. Smith
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Dave J. Adams
- School
of
Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Alvaro Mata
- Institute
of Bioengineering, Queen Mary University
of London, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| |
Collapse
|
35
|
An Y, Singh S, Bejagam KK, Deshmukh SA. Development of an Accurate Coarse-Grained Model of Poly(acrylic acid) in Explicit Solvents. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00615] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yaxin An
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | | - Karteek K. Bejagam
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sanket A. Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
36
|
An Y, Bejagam KK, Deshmukh SA. Development of Transferable Nonbonded Interactions between Coarse-Grained Hydrocarbon and Water Models. J Phys Chem B 2019; 123:909-921. [DOI: 10.1021/acs.jpcb.8b07990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Sethi SK, Soni L, Manik G. Component compatibility study of poly(dimethyl siloxane) with poly(vinyl acetate) of varying hydrolysis content: An atomistic and mesoscale simulation approach. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
38
|
Bejagam KK, An Y, Singh S, Deshmukh SA. Machine-Learning Enabled New Insights into the Coil-to-Globule Transition of Thermosensitive Polymers Using a Coarse-Grained Model. J Phys Chem Lett 2018; 9:6480-6488. [PMID: 30372083 DOI: 10.1021/acs.jpclett.8b02956] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a computational framework that integrates coarse-grained (CG) molecular dynamics (MD) simulations and a data-driven machine-learning (ML) method to gain insights into the conformations of polymers in solutions. We employ this framework to study conformational transition of a model thermosensitive polymer, poly( N-isopropylacrylamide) (PNIPAM). Here, we have developed the first of its kind, a temperature-independent CG model of PNIPAM that can accurately predict its experimental lower critical solution temperature (LCST) while retaining the tacticity in the presence of an explicit water model. The CG model was extensively validated by performing CG MD simulations with different initial conformations, varying the radius of gyration of chain, the chain length, and the angle between the adjacent monomers of the initial configuration of PNIPAM (total simulation time = 90 μs). Moreover, for the first time, we utilize the nonmetric multidimensional scaling (NMDS) method, a data-driven ML approach, to gain further insights into the mechanisms and pathways of this coil-to-globule transition by analyzing CG MD simulation trajectories. NMDS analysis provides entirely new insights and shows multiple metastable states of PNIPAM during its coil-to-globule transition above the LCST.
Collapse
Affiliation(s)
- Karteek K Bejagam
- Department of Chemical Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Yaxin An
- Department of Chemical Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Samrendra Singh
- CNH Industrial , Burr Ridge , Illinois 60527 , United States
| | - Sanket A Deshmukh
- Department of Chemical Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
39
|
Custer GS, Xu H, Matysiak S, Das P. How Hydrophobic Hydration Destabilizes Surfactant Micelles at Low Temperature: A Coarse-Grained Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12590-12599. [PMID: 30247911 DOI: 10.1021/acs.langmuir.8b01994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Micelles are self-assembled aggregates of amphiphilic surfactant molecules that are important in a variety of applications, including drug delivery, detergency, and catalysis. It is known that the micellization process is driven by the same physiochemical forces that drive protein folding, aggregation, and biological membrane self-assembly. Nevertheless, the molecular details of how micelle stability changes in water at low temperature are not fully clear. We develop and use a coarse-grained model to investigate how the interplay between nonionic surfactants and the surrounding water at the nanoscale affects the stability of micelles at high and low temperatures. Simulations of preformed C12E5 micelles in explicit water at a range of temperatures reveal the existence of two distinct surfactant conformations within the micelle, a bent structure and an extended structure, the latter being more prevalent at low temperature. Favorable interactions of the surfactant with more ordered solvation water stabilizes the extended configuration, allowing nanoscale wetting of the dry, hydrophobic core of the micelle, leading to the micelle breaking. Taken together, our coarse-grained simulations unravel how energetic and structural changes of the surfactant and the surrounding water destabilize micelles at low temperature, which is a direct consequence of the weakened hydrophobicity. Our approach thus provides an effective mean for extracting the molecular-level changes during hydrophobicity-driven destabilization of molecular self-assembly, which is important in a wide range of fields, including biology, polymer science, and nanotechnology.
Collapse
Affiliation(s)
| | | | | | - Payel Das
- IBM Thomas J. Watson Research Center , Yorktown Heights, New York 10598 , United States
- Department of Applied Physics and Applied Mathematics , Columbia University , New York 10027 , United States
| |
Collapse
|
40
|
Yang Y, Zhong K, Chen T, Jin LY. Morphological Control of Coil-Rod-Coil Molecules Containing m-Terphenyl Group: Construction of Helical Fibers and Helical Nanorings in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10613-10621. [PMID: 30107734 DOI: 10.1021/acs.langmuir.8b01904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rod-coil molecules, composed of rigid segments and flexible coil chains, have a strong intrinsic ability to self-assemble into diverse supramolecular nanostructures. Herein, we report the synthesis and the morphological control of a new series of amphiphilic coil-rod-coil molecular isomers 1-2 containing flexible oligoether chains. These molecules are comprised of m-terphenyl and biphenyl groups, along with triple bonds, and possess lateral methyl or butyl groups at the coil or rod segments. The results of this study suggest that the morphology of supramolecular aggregates is significantly influenced by the lateral alkyl groups and by the sequence of the rigid fragments in the bulk and in aqueous solution. The molecules with different coils self-assemble into lamellar or oblique columnar structures in the bulk state. In aqueous solution, molecule 1a, with a lack of lateral groups, self-assembled into large strips of sheets, whereas exquisite nanostructures of helical fibers were obtained from molecule 1b, which incorporated lateral methyl groups between the rod and coil segments. Interestingly, molecule 1c with lateral butyl and methyl groups exhibited a strong self-organizing capacity to form helical nanorings. Nanoribbons, helical fibers, and small nanorings were simultaneously formed from the 2a-2c, which are structural isomers of 1a, 1b, and 1c. Accurate control of these supramolecular nanostructures can be achieved by tuning the synergistic interactions of the noncovalent driving force with hydrophilic-hydrophobic interactions in aqueous solution.
Collapse
Affiliation(s)
- Yuntian Yang
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science , Yanbian University , Yanji 133002 , China
| | - Keli Zhong
- College of Chemistry, Chemical Engineering and Food Safety, Bohai University , Jinzhou 121013 , China
| | - Tie Chen
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science , Yanbian University , Yanji 133002 , China
| | - Long Yi Jin
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules, Ministry of Education, and Department of Chemistry, College of Science , Yanbian University , Yanji 133002 , China
| |
Collapse
|
41
|
Wishard A, Gibb BC. Dynamic light scattering studies of the effects of salts on the diffusivity of cationic and anionic cavitands. Beilstein J Org Chem 2018; 14:2212-2219. [PMID: 30202474 PMCID: PMC6122325 DOI: 10.3762/bjoc.14.195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/15/2018] [Indexed: 11/23/2022] Open
Abstract
Although alkali halide salts play key roles in all living systems, the physical models used to describe the properties of aqueous solutions of salts do not take into account specific ion–ion interactions. To identify specific ion–ion interactions possibly contributing to the aggregation of proteins, we have used dynamic light scattering (DLS) to probe the aggregation of charged cavitands. DLS measurements of negatively charged 1 in the presence of a range of alkali metal halides reveal no significant aggregation of host 1 as a function of the nature of the cation of the added salt. Only at high concentrations could trace amounts of aggregation be detected by 1H NMR spectroscopy. Contrarily, 1 was readily aggregated and precipitated by ZnCl2. In contrast, although fluoride and chloride did not induce aggregation of positively charged host 2, this cavitand exhibited marked aggregation as a function of bromide and iodide concentration. Specifically, bromide induced small but significant amounts of dimerization, whilst iodide induced extreme aggregation. Moreover, in these cases aggregation of host 2 also exhibited a cationic dependence, with an observed trend Na+ > Li+ > K+ ≈ Cs+. In combination, these results reveal new details of specific ion pairings in aqueous solution and how this can influence the properties of dissolved organics.
Collapse
Affiliation(s)
- Anthony Wishard
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Bruce C Gibb
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
42
|
Song Z, Chen X, You X, Huang K, Dhinakar A, Gu Z, Wu J. Self-assembly of peptide amphiphiles for drug delivery: the role of peptide primary and secondary structures. Biomater Sci 2018; 5:2369-2380. [PMID: 29051950 DOI: 10.1039/c7bm00730b] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peptide amphiphiles (PAs), functionalized with alkyl chains, are capable of self-assembling into various nanostructures. Recently, PAs have been considered as ideal drug carriers due to their good biocompatibility, specific biological functions, and hypotoxicity to normal cells and tissues. Meanwhile, the nanocarriers formed by PAs are able to achieve controlled drug release and enhanced cell uptake in response to the stimulus of the physiological environment or specific biological factors in the location of the lesion. However, the underlying detailed drug delivery mechanism, especially from the aspect of primary and secondary structures of PAs, has not been systematically summarized or discussed. Focusing on the relationship between the primary and secondary structures of PAs and stimuli-responsive drug delivery applications, this review highlights the recent advances, challenges, and opportunities of PA-based functional drug nanocarriers, and their potential pharmaceutical applications are discussed.
Collapse
Affiliation(s)
- Zhenhua Song
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Frederix PWJM, Patmanidis I, Marrink SJ. Molecular simulations of self-assembling bio-inspired supramolecular systems and their connection to experiments. Chem Soc Rev 2018; 47:3470-3489. [PMID: 29688238 PMCID: PMC5961611 DOI: 10.1039/c8cs00040a] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Indexed: 01/01/2023]
Abstract
In bionanotechnology, the field of creating functional materials consisting of bio-inspired molecules, the function and shape of a nanostructure only appear through the assembly of many small molecules together. The large number of building blocks required to define a nanostructure combined with the many degrees of freedom in packing small molecules has long precluded molecular simulations, but recent advances in computational hardware as well as software have made classical simulations available to this strongly expanding field. Here, we review the state of the art in simulations of self-assembling bio-inspired supramolecular systems. We will first discuss progress in force fields, simulation protocols and enhanced sampling techniques using recent examples. Secondly, we will focus on efforts to enable the comparison of experimentally accessible observables and computational results. Experimental quantities that can be measured by microscopy, spectroscopy and scattering can be linked to simulation output either directly or indirectly, via quantum mechanical or semi-empirical techniques. Overall, we aim to provide an overview of the various computational approaches to understand not only the molecular architecture of nanostructures, but also the mechanism of their formation.
Collapse
Affiliation(s)
- Pim W. J. M. Frederix
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials , University of Groningen , Groningen , The Netherlands . ;
| | - Ilias Patmanidis
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials , University of Groningen , Groningen , The Netherlands . ;
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials , University of Groningen , Groningen , The Netherlands . ;
| |
Collapse
|
44
|
Bejagam KK, Singh S, An Y, Berry C, Deshmukh SA. PSO-Assisted Development of New Transferable Coarse-Grained Water Models. J Phys Chem B 2018; 122:1958-1971. [DOI: 10.1021/acs.jpcb.7b10542] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karteek K. Bejagam
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Samrendra Singh
- CNH Industrial, Burr Ridge, Chicago, Illinois 60527, United States
| | - Yaxin An
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Carter Berry
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sanket A. Deshmukh
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
45
|
Castillo HD, Espinosa-Duran JM, Dobscha JR, Ashley DC, Debnath S, Hirsch BE, Schrecke SR, Baik MH, Ortoleva PJ, Raghavachari K, Flood AH, Tait SL. Amphiphile self-assembly dynamics at the solution-solid interface reveal asymmetry in head/tail desorption. Chem Commun (Camb) 2018; 54:10076-10079. [DOI: 10.1039/c8cc04465a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Asymmetric dynamics in fundamental adsorption and desorption steps drive self-assembly at solution/solid interface.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mu-Hyun Baik
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | | | | | - Amar H. Flood
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | | |
Collapse
|
46
|
Singh AK, Das S, Karmakar A, Kumar A, Datta A. Solvation and hydrogen bonding aided efficient non-radiative deactivation of polar excited state of 5-aminoquinoline. Phys Chem Chem Phys 2018; 20:22320-22330. [PMID: 30124696 DOI: 10.1039/c8cp03590c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mechanism of efficient fluorescence quenching of 5-aminoquinoline in alcoholic solvents.
Collapse
Affiliation(s)
- Avinash Kumar Singh
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Sharmistha Das
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Abhoy Karmakar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Anuj Kumar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Anindya Datta
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| |
Collapse
|
47
|
Solomon LA, Sykes ME, Wu YA, Schaller RD, Wiederrecht GP, Fry HC. Tailorable Exciton Transport in Doped Peptide-Amphiphile Assemblies. ACS NANO 2017; 11:9112-9118. [PMID: 28817256 DOI: 10.1021/acsnano.7b03867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrin molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.
Collapse
Affiliation(s)
- Lee A Solomon
- Center for Nanoscale Materials, Argonne National Laboratory , Lemont, Illinois 60439, United States
| | - Matthew E Sykes
- Center for Nanoscale Materials, Argonne National Laboratory , Lemont, Illinois 60439, United States
| | - Yimin A Wu
- Center for Nanoscale Materials, Argonne National Laboratory , Lemont, Illinois 60439, United States
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory , Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Gary P Wiederrecht
- Center for Nanoscale Materials, Argonne National Laboratory , Lemont, Illinois 60439, United States
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory , Lemont, Illinois 60439, United States
| |
Collapse
|
48
|
Frederix PWJM, Idé J, Altay Y, Schaeffer G, Surin M, Beljonne D, Bondarenko AS, Jansen TLC, Otto S, Marrink SJ. Structural and Spectroscopic Properties of Assemblies of Self-Replicating Peptide Macrocycles. ACS NANO 2017; 11:7858-7868. [PMID: 28723067 PMCID: PMC5616102 DOI: 10.1021/acsnano.7b02211] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Self-replication at the molecular level is often seen as essential to the early origins of life. Recently a mechanism of self-replication has been discovered in which replicator self-assembly drives the process. We have studied one of the examples of such self-assembling self-replicating molecules to a high level of structural detail using a combination of computational and spectroscopic techniques. Molecular Dynamics simulations of self-assembled stacks of peptide-derived replicators provide insights into the structural characteristics of the system and serve as the basis for semiempirical calculations of the UV-vis, circular dichroism (CD) and infrared (IR) absorption spectra that reflect the chiral organization and peptide secondary structure of the stacks. Two proposed structural models are tested by comparing calculated spectra to experimental data from electron microscopy, CD and IR spectroscopy, resulting in a better insight into the specific supramolecular interactions that lead to self-replication. Specifically, we find a cooperative self-assembly process in which β-sheet formation leads to well-organized structures, while also the aromatic core of the macrocycles plays an important role in the stability of the resulting fibers.
Collapse
Affiliation(s)
- Pim W. J. M. Frederix
- University
of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747AG Groningen, The Netherlands
- University
of Groningen, Center for Systems Chemistry, Stratingh Institute for
Chemistry, Nijenborgh
4, 9747AG Groningen, The Netherlands
- E-mail:
| | - Julien Idé
- Laboratory
of Chemistry of Novel Materials, University
of Mons − UMONS, Place du Parc 20, B-7000 Mons, Belgium
| | - Yigit Altay
- University
of Groningen, Center for Systems Chemistry, Stratingh Institute for
Chemistry, Nijenborgh
4, 9747AG Groningen, The Netherlands
| | - Gaël Schaeffer
- University
of Groningen, Center for Systems Chemistry, Stratingh Institute for
Chemistry, Nijenborgh
4, 9747AG Groningen, The Netherlands
| | - Mathieu Surin
- Laboratory
of Chemistry of Novel Materials, University
of Mons − UMONS, Place du Parc 20, B-7000 Mons, Belgium
| | - David Beljonne
- Laboratory
of Chemistry of Novel Materials, University
of Mons − UMONS, Place du Parc 20, B-7000 Mons, Belgium
| | - Anna S. Bondarenko
- University
of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Thomas L. C. Jansen
- University
of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Sijbren Otto
- University
of Groningen, Center for Systems Chemistry, Stratingh Institute for
Chemistry, Nijenborgh
4, 9747AG Groningen, The Netherlands
- University
of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG Groningen, The Netherlands
- E-mail:
| | - Siewert J. Marrink
- University
of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747AG Groningen, The Netherlands
- University
of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747AG Groningen, The Netherlands
- E-mail:
| |
Collapse
|
49
|
Solomon LA, Kronenberg JB, Fry HC. Control of Heme Coordination and Catalytic Activity by Conformational Changes in Peptide-Amphiphile Assemblies. J Am Chem Soc 2017; 139:8497-8507. [PMID: 28505436 DOI: 10.1021/jacs.7b01588] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembling peptide materials have gained significant attention, due to well-demonstrated applications, but they are functionally underutilized. To advance their utility, we use noncovalent interactions to incorporate the biological cofactor heme-B for catalysis. Heme-proteins achieve differing functions through structural and coordinative variations. Here, we replicate this phenomenon by highlighting changes in heme reactivity as a function of coordination, sequence, and morphology (micelles versus fibers) in a series of simple peptide amphiphiles with the sequence c16-xyL3K3-CO2H where c16 is a palmitoyl moiety and xy represents the heme binding region: AA, AH, HH, and MH. The morphology of this peptide series is characterized using transmission electron and atomic force microscopies as well as dynamic light scattering. Within this small library of peptide constructs, we show that three spectroscopically (UV/visible and electron paramagnetic resonance) distinct heme environments were generated: noncoordinated/embedded high-spin, five-coordinate high-spin, and six-coordinate low-spin. The resulting material's functional dependence on sequence and supramolecular morphology is highlighted 2-fold. First, the heme active site binds carbon monoxide in both micelles and fibers, demonstrating that the heme active site in both morphologies is accessible to small molecules for catalysis. Second, peroxidase activity was observed in heme-containing micelles yet was significantly reduced in heme-containing fibers. We briefly discuss the implications these findings have in the production of functional, self-assembling peptide materials.
Collapse
Affiliation(s)
- Lee A Solomon
- Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Jacob B Kronenberg
- Illinois Math and Science Academy , 1500 West Sullivan Road, Aurora, Illinois 60506, United States
| | - H Christopher Fry
- Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| |
Collapse
|
50
|
Yuan C, Li S, Zou Q, Ren Y, Yan X. Multiscale simulations for understanding the evolution and mechanism of hierarchical peptide self-assembly. Phys Chem Chem Phys 2017; 19:23614-23631. [DOI: 10.1039/c7cp01923h] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multiscale molecular simulations that combine and systematically link several hierarchies can provide insights into the evolution and dynamics of hierarchical peptide self-assembly from the molecular level to the mesoscale.
Collapse
Affiliation(s)
- Chengqian Yuan
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Shukun Li
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Ying Ren
- Center for Mesoscience
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|