1
|
Guan F, Wen J. Flash Organometallic Catalysis Uncovered by Continuous Microfluidic Devices. Chempluschem 2024; 89:e202300646. [PMID: 38291001 DOI: 10.1002/cplu.202300646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
The flash organometallic catalysis is a new concept that refers to the study of fast and controlled organometallic catalytic reactions by using microfluidic devices. Flash reactions' kinetics (ms-s scale) is often ignored due to the lack of proper research tool in organometallic chemistry. The development of microfluidic systems offers the opportunity to discover under-studied mechanisms and new reactions. In this concept, the basic theory of kinetic measurement in a microreactor is briefly reviewed and then two examples on studying flash organometallic catalytic transformation are introduced. One example is the discovery of a highly active palladium catalytic species for Suzuki Coupling and the other example is the study of a neglected isomerization catalytic cycle with a time scale of seconds before isomerization-hydroformylation by customized microfluidic devices. The last part is summary and prospect of this new area. Customizing a microfluidic device with good engineering design for a target reaction supports flash reactions' kinetic experimentation and could become a general strategy in chemistry lab.
Collapse
Affiliation(s)
- Fanfu Guan
- Department of Chemical Process R&D, Lianyungang Institute of Research, Jiangsu Hengrui Pharmaceuticals Co., Ltd., 7 Kunlunshan Road, Lianyungang, 222000, China
| | - Jialin Wen
- Department of Chemical Process R&D, Lianyungang Institute of Research, Jiangsu Hengrui Pharmaceuticals Co., Ltd., 7 Kunlunshan Road, Lianyungang, 222000, China
| |
Collapse
|
2
|
Kang JH, Kim DP. Ultrafast Flow Synthesis of o-Functionalized Benzenesulfonyl Fluorides and Subsequent SuFEx Connections via Lithiated Chemistry. Org Lett 2024. [PMID: 38780078 DOI: 10.1021/acs.orglett.4c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Herein we present a flow-based, rapid, and straightforward approach to synthesize diverse functionalized sulfonyl fluorides by harnessing an aryllithium intermediate. The aryllithium intermediate was fully utilized under optimized conditions (0.016 s, -18 °C) to afford various functionalized sulfonyl fluorides and also intramolecular SuFEx cyclization products in high yields (27-94%). Furthermore, the integrated synthesis incorporating subsequent SuFEx connections with even unstable organolithium nucleophiles facilitated one-flow molecular assembly in high yields (42-72%).
Collapse
Affiliation(s)
- Ji-Ho Kang
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
3
|
Ashikari Y, Yoshioka R, Yonekura Y, Yoo DE, Okamoto K, Nagaki A. Flowmicro In-Line Analysis-Driven Design of Reactions mediated by Unstable Intermediates: Flash Monitoring Approach. Chemistry 2024:e202303774. [PMID: 38216535 DOI: 10.1002/chem.202303774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/14/2024]
Abstract
The direct observation of reactive intermediates is an important issue for organic synthesis. However, intermediates with an extreme instability are hard to be monitored by common spectroscopic methods such as FTIR. We have developed synthetic method utilizing flow microreactors, which enables a generation and reactions of unstable intermediates. Herein we report that, based on our flowmicro techniques, we developed an in-line analysis method for reactive intermediates in increments of milliseconds. We demonstrated the direct observation of the living and dead species of the anionic polymerization of alkyl methacrylates. The direct information of the living species enabled the anionic polymerization and copolymerization of oligo(ethylene glycol) methyl ether methacrylates, which is the important but difficult reaction in the conventional method.
Collapse
Affiliation(s)
- Yosuke Ashikari
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Rikako Yoshioka
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Yuya Yonekura
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
- TOHO Chemical Industry Co., Ltd., 5-2931 Urago-cho, Yokosuka, Kanagawa, 237-0062, Japan
| | - Dong-Eun Yoo
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Kazuhiro Okamoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
4
|
Ex-situ generation and synthetic utilization of bare trifluoromethyl anion in flow via rapid biphasic mixing. Nat Commun 2023; 14:1231. [PMID: 36869027 PMCID: PMC9984407 DOI: 10.1038/s41467-022-35611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/13/2022] [Indexed: 03/05/2023] Open
Abstract
Fluoroform (CF3H) is the simplest reagent for nucleophilic trifluoromethylation intermediated by trifluoromethyl anion (CF3-). However, it has been well-known that CF3- should be generated in presence of a stabilizer or reaction partner (in-situ method) due to its short lifetime, which results in the fundamental limitation on its synthetic utilization. We herein report a bare CF3- can be ex-situ generated and directly used for the synthesis of diverse trifluoromethylated compounds in a devised flow dissolver for rapid biphasic mixing of gaseous CF3H and liquid reagents that was designed and structurally optimized by computational fluid dynamics (CFD). In flow, various substrates including multi-functional compounds were chemoselectively reacted with CF3-, extending to the multi-gram-scale synthesis of valuable compounds by 1-hour operation of the integrated flow system.
Collapse
|
5
|
Monbaliu JCM, Legros J. Will the next generation of chemical plants be in miniaturized flow reactors? LAB ON A CHIP 2023; 23:1349-1357. [PMID: 36278262 DOI: 10.1039/d2lc00796g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
For decades, a production paradigm based on centralized, stepwise, large scale processes has dominated the chemical industry horizon. While effective to meet an ever increasing demand for high value-added chemicals, the so-called macroscopic batch reactors are also associated with inherent weaknesses and threats; some of the most obvious ones were tragically illustrated over the past decades with major industrial disasters and impactful disruptions of advanced chemical supplies. The COVID pandemic has further emphasized that a change in paradigm was necessary to sustain chemical production with an increased safety, reliable supply chains and adaptable productivities. More than a decade of research and technology development has led to alternative and effective chemical processes relying on miniaturised flow reactors (a.k.a. micro and mesofluidic reactors). Such miniaturised reactors bear the potential to solve safety concerns and to improve the reliability of chemical supply chains. Will they initiate a new paradigm for a more localized, safe and reliable chemical production?
Collapse
Affiliation(s)
- Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Liège (Sart Tilman), Belgium.
| | - Julien Legros
- COBRA Laboratory, CNRS, UNIROUEN, INSA Rouen, Normandie Université, 76000 Rouen, France.
| |
Collapse
|
6
|
Heretsch P. Modern flow chemistry - prospect and advantage. Beilstein J Org Chem 2023; 19:33-35. [PMID: 36686042 PMCID: PMC9830491 DOI: 10.3762/bjoc.19.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Affiliation(s)
- Philipp Heretsch
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| |
Collapse
|
7
|
Kremsmair A, Wilke HR, Harenberg JH, Bissinger BRG, Simon MM, Alandini N, Knochel P. In Situ Quench Reactions of Enantioenriched Secondary Alkyllithium Reagents in Batch and Continuous Flow Using an I/Li-Exchange. Angew Chem Int Ed Engl 2023; 62:e202214377. [PMID: 36269064 PMCID: PMC10100098 DOI: 10.1002/anie.202214377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 12/05/2022]
Abstract
We report a practical in situ quench (ISQ) procedure involving the generation of chiral secondary alkyllithiums from secondary alkyl iodides (including functionalized iodides bearing an ester or a nitrile) in the presence of various electrophiles such as aldehydes, ketones, Weinreb amides, isocyanates, sulfides, or boronates. This ISQ-reaction allowed the preparation of a broad range of optically enriched ketones, alcohols, amides, sulfides and boronic acid esters in typically 90-98 % ee. Remarkably, these reactions were performed at -78 °C or -40 °C in batch. A continuous flow set-up permitted reaction temperatures between -20 °C and 0 °C and allowed a scale-up up to a 40-fold without further optimization.
Collapse
Affiliation(s)
- Alexander Kremsmair
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Henrik R. Wilke
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Johannes H. Harenberg
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Benjamin R. G. Bissinger
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Matthias M. Simon
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Nurtalya Alandini
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
8
|
Mulks FF, Pinho B, Platten AW, Andalibi MR, Expósito AJ, Edler KJ, Hevia E, Torrente-Murciano L. Continuous, stable, and safe organometallic reactions in flow at room temperature assisted by deep eutectic solvents. Chem 2022. [DOI: 10.1016/j.chempr.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Jun M, Kwak C, Lee SY, Joo J, Kim JM, Im DJ, Cho MK, Baik H, Hwang YJ, Kim H, Lee K. Microfluidics-Assisted Synthesis of Hierarchical Cu 2 O Nanocrystal as C 2 -Selective CO 2 Reduction Electrocatalyst. SMALL METHODS 2022; 6:e2200074. [PMID: 35212468 DOI: 10.1002/smtd.202200074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Copper-based catalysts have attracted enormous attention due to their high selectivity for C2+ products during the electrochemical reduction of CO2 (CO2 RR). In particular, grain boundaries on the catalysts contribute to the generation of various Cu coordination environments, which have been found essential for C-C coupling. However, smooth-surfaced Cu2 O nanocrystals generally lack the ability for the surface reorganization to form multiple grain boundaries and desired Cu undercoordination sites. Flow chemistry armed with the unparalleled ability to mix reaction mixture can achieve a very high concentration of unstable reaction intermediates, which in turn are used up rapidly to lead to kinetics-driven nanocrystal growth. Herein, the synthesis of a unique hierarchical structure of Cu2 O with numerous steps (h-Cu2 O ONS) via flow chemistry-assisted modulation of nanocrystal growth kinetics is reported. The surface of h-Cu2 O ONS underwent rapid surface reconstruction under CO2 RR conditions to exhibit multiple heterointerfaces between Cu2 O and Cu phases, setting the preferable condition to facilitate C-C bond formation. Notably, the h-Cu2 O ONS obtained the increased C2 H4 Faradaic efficiency from 31.9% to 43.5% during electrocatalysis concurrent with the morphological reorganization, showing the role of the stepped surface. Also, the h-Cu2 O ONS demonstrated a 3.8-fold higher ethylene production rate as compared to the Cu2 O nanocube.
Collapse
Affiliation(s)
- Minki Jun
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul, 02841, Republic of Korea
| | - Changmo Kwak
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul, 02841, Republic of Korea
| | - Si Young Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Jinwhan Joo
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Min Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Do Jin Im
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Min Kyung Cho
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hionsuck Baik
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul, 02841, Republic of Korea
| | - Yun Jeong Hwang
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Heejin Kim
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
10
|
Ashikari Y, Maekawa K, Takumi M, Tomiyasu N, Fujita C, Matsuyama K, Miyamoto R, Bai H, Nagaki A. Flow grams-per-hour production enabled by hierarchical bimodal porous silica gel supported palladium column reactor having low pressure drop. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Hynds HM, Lemons HE, Willis JD, Bell MJ, Bottcher SE, Dye MLN, Echols ET, Garner EL, Hutchinson LE, Phillips CM, Stephens CP, Gilbert TM, Wilger DJ. Ni-Catalyzed Larock Indenone Annulation with Aliphatic- and Silyl-Substituted Alkynes Supported by Mechanistic Analysis. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hannah M. Hynds
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Holli E. Lemons
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Jasmine D. Willis
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - MarKayla J. Bell
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Sydney E. Bottcher
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Mei Lin N. Dye
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Emily T. Echols
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Edward L. Garner
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Lauren E. Hutchinson
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Caleb M. Phillips
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Claudia P. Stephens
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| | - Thomas M. Gilbert
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Dale J. Wilger
- Department of Chemistry and Biochemistry, Samford University, Birmingham, Alabama 35229, United States
| |
Collapse
|
12
|
Kang JH, Ahn GN, Lee H, Yim SJ, Lahore S, Lee HJ, Kim H, Kim JT, Kim DP. Scalable Subsecond Synthesis of Drug Scaffolds via Aryllithium Intermediates by Numbered-up 3D-Printed Metal Microreactors. ACS CENTRAL SCIENCE 2022; 8:43-50. [PMID: 35106371 PMCID: PMC8796307 DOI: 10.1021/acscentsci.1c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 05/10/2023]
Abstract
Continuous-flow microreactors enable ultrafast chemistry; however, their small capacity restricts industrial-level productivity of pharmaceutical compounds. In this work, scale-up subsecond synthesis of drug scaffolds was achieved via a 16 numbered-up printed metal microreactor (16N-PMR) assembly to render high productivity up to 20 g for 10 min operation. Initially, ultrafast synthetic chemistry of unstable lithiated intermediates in the halogen-lithium exchange reactions of three aryl halides and subsequent reactions with diverse electrophiles were carried out using a single microreactor (SMR). Larger production of the ultrafast synthesis was achieved by devising a monolithic module of 4 numbered-up 3D-printed metal microreactor (4N-PMR) that was integrated by laminating four SMRs and four bifurcation flow distributors in a compact manner. Eventually, the 16N-PMR system for the scalable subsecond synthesis of three drug scaffolds was assembled by stacking four monolithic modules of 4N-PMRs.
Collapse
Affiliation(s)
- Ji-Ho Kang
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Gwang-Noh Ahn
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Heekwon Lee
- Department
of Mechanical Engineering, The University
of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Se-Jun Yim
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Santosh Lahore
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Hyune-Jea Lee
- Department
of Chemistry, College of Science, Korea
University, Seoul 02841, Republic of Korea
| | - Heejin Kim
- Department
of Chemistry, College of Science, Korea
University, Seoul 02841, Republic of Korea
| | - Ji Tae Kim
- Department
of Mechanical Engineering, The University
of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dong-Pyo Kim
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| |
Collapse
|
13
|
Flash Electrochemical Approach to Carbocations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Takumi M, Sakaue H, Nagaki A. Flash Electrochemical Approach to Carbocations. Angew Chem Int Ed Engl 2021; 61:e202116177. [PMID: 34931424 DOI: 10.1002/anie.202116177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/07/2022]
Abstract
A novel flow electrochemical reactor that accomplishes electrolysis within a few seconds in a single passage was developed. By using the flow reactor system, the flash electrochemical generation of short-lived carbocations, including oxocarbenium ions, N -acyliminium ions, glycosyl cations, and Ferrier cations was achieved within a few seconds, enabling the subsequent reaction with nucleophiles before their decomposition. Moreover, continuous operation based on the present system enabled the rapid synthesis of pharmaceutical precursors on demand.
Collapse
Affiliation(s)
- Masahiro Takumi
- Graduate School of Engineering, Kyoto University, Department of Synthetic Chemistry and Biological Chemistry, JAPAN
| | - Hodaka Sakaue
- Graduate School of Engineering, Kyoto University, Department of Synthetic Chemistry and Biological Chemistry, JAPAN
| | - Aiichiro Nagaki
- Kyoto University, Graduate School of Engineering, Department of Synthetic Chemistry & Biological Chemistry, Katsura, 615-8510, Kyoto, JAPAN
| |
Collapse
|
15
|
Chen C, Zhao H, Pu Y, Tang L, Wang J, Shang Y. Palladium-catalysed alkenyl and carbonylative C-C bond activation of cyclobutanones. Chem Commun (Camb) 2021; 57:12944-12947. [PMID: 34763348 DOI: 10.1039/d1cc05286a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A palladium catalysed C-C bond activation of cyclobutanones for the construction of alkenyl and carbonylated indanones has been developed. The in situ generated σ-alkylpalladium intermediate VIA C-C bond cleavage of cyclobutanone could be trapped with N-tosylhydrazones and carbon monoxide, respectively. The reactions were carried out under mild conditions with excellent functional group tolerance.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Haixia Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Yue Pu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Lulu Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| |
Collapse
|
16
|
Ashikari Y, Tamaki T, Kawaguchi T, Furusawa M, Yonekura Y, Ishikawa S, Takahashi Y, Aizawa Y, Nagaki A. Switchable Chemoselectivity of Reactive Intermediates Formation and Their Direct Use in A Flow Microreactor. Chemistry 2021; 27:16107-16111. [PMID: 34549843 DOI: 10.1002/chem.202103183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 11/10/2022]
Abstract
A chemoselectivity switchable microflow reaction was developed to generate reactive and unstable intermediates. The switchable chemoselectivity of this reaction enables a selection for one of two different intermediates, an aryllithium or a benzyl lithium, at will from the same starting material. Starting from bromo-substituted styrenes, the aryllithium intermediates were converted to the substituted styrenes, whereas the benzyl lithium intermediates were engaged in an anionic polymerization. These chemoselectivity-switchable reactions can be integrated to produce polymers that cannot be formed during typical polymerization reactions.
Collapse
Affiliation(s)
- Yosuke Ashikari
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Takashi Tamaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Tomoko Kawaguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Mai Furusawa
- TOHO Chemical Industry Co., Ltd., 5-2931, Urago-cho, Yokosuka, Kanagawa, 237-0062, Japan
| | - Yuya Yonekura
- TOHO Chemical Industry Co., Ltd., 5-2931, Urago-cho, Yokosuka, Kanagawa, 237-0062, Japan
| | - Susumu Ishikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Yusuke Takahashi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Yoko Aizawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| |
Collapse
|
17
|
Konishi N, Shirahata T, Yoshida Y, Sato N, Kaji E, Kobayashi Y. Efficient synthesis of diverse C-3 monodesmosidic saponins by a continuous microfluidic glycosylation/batch deprotection method. Carbohydr Res 2021; 510:108437. [PMID: 34597978 DOI: 10.1016/j.carres.2021.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022]
Abstract
Triterpene and steroid saponins have various pharmacological activities but the synthesis of C-3 monodesmosidic saponins remains challenging. Herein, a series of C-3 glycosyl monodesmosidic saponins was synthesized via the microfluidic glycosylation of triterpenoids or steroids at the C-3 position, without the formation of orthoester byproducts, and subsequent deprotection of the benzoyl (Bz) group. This microfluidic glycosylation/batch deprotection sequence enabled the efficient synthesis of C-3 saponins with fewer purification steps and a shorter reaction time than conventional batch synthesis and stepwise microfluidic glycosylation. Furthermore, this system minimized the consumption of the imidate donor. Using this reaction system, 18 different C-3 saponins and 13 different C-28-benzyl-C-3 saponins, including 8 new compounds, were synthesized from various sugars and triterpenes or steroids. Our synthetic approach is expected to be suitable for further expanding the C-3 saponin library for pharmacological studies.
Collapse
Affiliation(s)
- Naruki Konishi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tatsuya Shirahata
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Yuki Yoshida
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Noriko Sato
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Eisuke Kaji
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
18
|
Knochel P, Djukanovic D, Heinz B, Mandrelli F, Mostarda S, Filipponi P, Martin B. Continuous Flow Acylation of (Hetero)aryllithiums with Polyfunctional N,N-Dimethylamides and Tetramethylurea in Toluene. Chemistry 2021; 27:13977-13981. [PMID: 34387898 PMCID: PMC8519161 DOI: 10.1002/chem.202102805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 11/05/2022]
Abstract
The continuous flow reaction of various aryl or heteroaryl bromides in toluene in the presence of THF (1.0 equiv) with sec -BuLi (1.1 equiv) provided at 25 °C within 40 sec the corresponding aryllithiums which were acylated with various functionalized N,N-dimethylamides including easily enolizable amides at -20 °C within 27 sec, producing highly functionalized ketones in 48-90% yield (36 examples). This method was well suited for the preparation of α-chiral ketones such as naproxene and ibuprofen derived ketones with 99% ee . A one-pot stepwise bis-addition of two different lithium organometallics to 1,1,3,3-tetramethyurea (TMU) provided unsymmetrical ketones in 69-79% yield (9 examples).
Collapse
Affiliation(s)
- Paul Knochel
- Ludwig-Maximilians-Universitat Munchen, Department of Chemistry, Butenandtstr. 5-13, 81377, München, GERMANY
| | - Dimitrije Djukanovic
- Ludwig Maximillians University Munich: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Benjamin Heinz
- Ludwig Maximillians University Munich: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | | | - Serena Mostarda
- Novartis Pharma Schweiz AG, Chemical Development, SWITZERLAND
| | - Paolo Filipponi
- Novartis Pharma Schweiz AG, Chemical Development, SWITZERLAND
| | - Benjamin Martin
- Novartis Pharma Schweiz AG, Chemical Development, SWITZERLAND
| |
Collapse
|
19
|
Kuhwald C, Kirschning A. Matteson Reaction under Flow Conditions: Iterative Homologations of Terpenes. Org Lett 2021; 23:4300-4304. [PMID: 33983747 DOI: 10.1021/acs.orglett.1c01222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Matteson reaction is ideally suited for flow chemistry since it allows iterative homologation of boronate esters. The present study provides accurate data on reaction times of the individual steps of the Matteson reaction, which occurs in less than 10 s in total. The protocol allows terpenes to be (per-)homologated in a controlled manner to yield homo-, bishomo-, and trishomo-terpenols after oxidative workup. The new terpene alcohols are validated with respect to their olfactoric properties.
Collapse
Affiliation(s)
- Conrad Kuhwald
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| |
Collapse
|
20
|
Manneveau M, Tanii S, Gens F, Legros J, Chataigner I. Dearomatization of 3-cyanoindoles by (3 + 2) cycloaddition: from batch to flow chemistry. Org Biomol Chem 2021; 18:3481-3486. [PMID: 32347286 DOI: 10.1039/d0ob00582g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
1,3-Dipolar dearomatizing cycloadditions between a non-stabilized azomethine ylide and 3-cyanoindoles or benzofuran afford the corresponding 3D-heterocycles bearing a quaternary carbon centre at the ring junction. While 6 equivalents of ylide precursor 1 are required for full conversion in a classical flask, working under flow conditions limits the excess (3 equiv., tR = 1 min) and leads to a cleaner process, affording cycloadducts that are easier to isolate.
Collapse
Affiliation(s)
- Maxime Manneveau
- Normandie Université, UNIROUEN, CNRS, INSA Rouen, COBRA laboratory, F-76000 Rouen, France.
| | | | | | | | | |
Collapse
|
21
|
Lima F, Meisenbach M, Schenkel B, Sedelmeier J. Continuous flow as an enabling technology: a fast and versatile entry to functionalized glyoxal derivatives. Org Biomol Chem 2021; 19:2420-2424. [PMID: 33646230 DOI: 10.1039/d1ob00288k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We herein report two complementary strategies employing organolithium chemistry for the synthesis of glyoxal derivatives. Micro-mixer technology allows for the generation of unstable organometallic intermediates and their instantaneous in-line quenching with esters as electrophiles. Selective mono-addition was observed via putative stabilized tetrahedral intermediates. Advantages offered by flow chemistry technologies facilitate direct and efficient access to masked 1,2-dicarbonyl compounds while mitigating undesired by-product formation. These two approaches enable the production of advanced and valuable synthetic building blocks for heterocyclic chemistry with throughputs of grams per minute.
Collapse
Affiliation(s)
- Fabio Lima
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland.
| | | | | | | |
Collapse
|
22
|
Ley SV, Chen Y, Robinson A, Otter B, Godineau E, Battilocchio C. A Comment on Continuous Flow Technologies within the Agrochemical Industry. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00534] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Steven V. Ley
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Yiding Chen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Alan Robinson
- Process Research, Syngenta Crop Protection, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Benjamin Otter
- Process Technology New Active Ingredients, Syngenta Crop Protection, CH-4333 Münchwilen, Switzerland
| | - Edouard Godineau
- Process Research, Syngenta Crop Protection, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Claudio Battilocchio
- Process Research, Syngenta Crop Protection, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| |
Collapse
|
23
|
Nagaki A, Ashikari Y, Takumi M, Tamaki T. Flash Chemistry Makes Impossible Organolithium Chemistry Possible. CHEM LETT 2021. [DOI: 10.1246/cl.200837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yosuke Ashikari
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masahiro Takumi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Tamaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
24
|
Harenberg JH, Weidmann N, Karaghiosoff K, Knochel P. Continuous Flow Sodiation of Substituted Acrylonitriles, Alkenyl Sulfides and Acrylates. Angew Chem Int Ed Engl 2021; 60:731-735. [PMID: 33026681 PMCID: PMC7821005 DOI: 10.1002/anie.202012085] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 12/14/2022]
Abstract
The sodiation of substituted acrylonitriles and alkenyl sulfides in a continuous flow set-up using NaDA (sodium diisopropylamide) in EtNMe2 or NaTMP (sodium 2,2,6,6-tetramethylpiperidide)⋅TMEDA in n-hexane provides sodiated acrylonitriles and alkenyl sulfides, which are subsequently trapped in batch with various electrophiles such as aldehydes, ketones, disulfides and allylic bromides affording functionalized acrylonitriles and alkenyl sulfides. This flow-procedure was successfully extended to other acrylates by using Barbier-type conditions.
Collapse
Affiliation(s)
- Johannes H. Harenberg
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Niels Weidmann
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Konstantin Karaghiosoff
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
25
|
Harenberg JH, Weidmann N, Karaghiosoff K, Knochel P. Natriierung von Substituierten Acrylonitrilen, Alkenylsulfiden und Acrylaten im Kontinuierlichen Durchfluss. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Johannes H. Harenberg
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Niels Weidmann
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Konstantin Karaghiosoff
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
26
|
Ashikari Y, Kawaguchi T, Mandai K, Aizawa Y, Nagaki A. A Synthetic Approach to Dimetalated Arenes Using Flow Microreactors and the Switchable Application to Chemoselective Cross-Coupling Reactions. J Am Chem Soc 2020; 142:17039-17047. [PMID: 32859131 DOI: 10.1021/jacs.0c06370] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In spite of their potential utility, the chemistry of dimetalated arenes is still in its infancy because they are extremely difficult to synthesize. We report a novel method of synthesizing arenes bearing a boryl group and a metallic substituent, such as boryl, silyl, stannyl, or zincyl groups, in an integrated flow microreactor based on the generation and reactions of aryllithiums bearing a trialkyl borate moiety. The bimetallic arenes showed a remarkable chemoselectivity in palladium-catalyzed cross-coupling reactions. The selectivity was switched by the selection of the metal species that constitutes the dimetalated arenes as well as appropriate catalysts.
Collapse
Affiliation(s)
- Yosuke Ashikari
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoko Kawaguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kyoko Mandai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoko Aizawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura Nishikyo-ku, Kyoto 615-8510, Japan
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigakukatsura Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
27
|
Affiliation(s)
- Kengo Inoue
- Department of Chemical Science and Engineering Kobe University Rokkodai, Nada, Kobe 657-8501 Japan
| | - Kentaro Okano
- Department of Chemical Science and Engineering Kobe University Rokkodai, Nada, Kobe 657-8501 Japan
| |
Collapse
|
28
|
Harenberg JH, Weidmann N, Knochel P. Preparation of Functionalized Aryl, Heteroaryl, and Benzylic Potassium Organometallics Using Potassium Diisopropylamide in Continuous Flow. Angew Chem Int Ed Engl 2020; 59:12321-12325. [PMID: 32216119 PMCID: PMC7383875 DOI: 10.1002/anie.202003392] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 12/19/2022]
Abstract
We report the preparation of lithium-salt-free KDA (potassium diisopropylamide; 0.6 m in hexane) complexed with TMEDA (N,N,N',N'-tetramethylethylenediamine) and its use for the flow-metalation of (hetero)arenes between -78 °C and 25 °C with reaction times between 0.2 s and 24 s and a combined flow rate of 10 mL min-1 using a commercial flow setup. The resulting potassium organometallics react instantaneously with various electrophiles, such as ketones, aldehydes, alkyl and allylic halides, disulfides, Weinreb amides, and Me3 SiCl, affording functionalized (hetero)arenes in high yields. This flow procedure is successfully extended to the lateral metalation of methyl-substituted arenes and heteroaromatics, resulting in the formation of various benzylic potassium organometallics. A metalation scale-up was possible without further optimization.
Collapse
Affiliation(s)
- Johannes H. Harenberg
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Niels Weidmann
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
29
|
Harenberg JH, Weidmann N, Knochel P. Herstellung funktioneller Aryl‐, Heteroaryl‐ und benzylischer Organokalium‐Spezies mittels Kaliumdiisopropylamid im kontinuierlichen Durchfluss. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Johannes H. Harenberg
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Niels Weidmann
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
30
|
Shibuya Y, Mori A. Dehalogenative or Deprotonative? The Preparation Pathway to the Organometallic Monomer for Transition-Metal-Catalyzed Catalyst-Transfer-Type Polymerization of Thiophene Derivatives. Chemistry 2020; 26:6976-6987. [PMID: 32086855 DOI: 10.1002/chem.201905653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Indexed: 11/07/2022]
Abstract
Due to a wide range of applications in electronic materials, polythiophenes attract considerable attention in organic and polymer syntheses as well as in materials science. For the purpose of developing the practical synthetic protocol, this review focuses on the deprotonative pathway in the preparation of thiophene organometallic monomer, which was shown to be effective employing 2-halo-3-substituted thiophene as a monomer precursor. The thus metallated thiophene monomer was shown to undergo polymerization by nickel(II) complex catalysis, with which highly regioregular head-to-tail (HT)-type polythiophenes were obtained with controlled molecular weight and molecular weight distribution. Several polythiophene derivatives with modified thiophene-ring and side-chain structures were shown to be designed in order to achieve the designed functionality as materials.
Collapse
Affiliation(s)
- Yushin Shibuya
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai Nada, Kobe, 657-8501, Japan
| | - Atsunori Mori
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai Nada, Kobe, 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai Nada, Kobe, 657-8501, Japan
| |
Collapse
|
31
|
Picard B, Pérez K, Lebleu T, Vuluga D, Burel F, Harrowven DC, Chataigner I, Maddaluno J, Legros J. Bromine-lithium exchange on gem-dibromoalkenes part 1: batch vs microflow conditions. J Flow Chem 2020. [DOI: 10.1007/s41981-019-00057-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Kleoff M, Schwan J, Boeser L, Hartmayer B, Christmann M, Sarkar B, Heretsch P. Scalable Synthesis of Functionalized Ferrocenyl Azides and Amines Enabled by Flow Chemistry. Org Lett 2020; 22:902-907. [PMID: 31939308 DOI: 10.1021/acs.orglett.9b04450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A scalable access to functionalized ferrocenyl azides has been realized in flow. By halogen-lithium exchange of ferrocenyl halides and trapping with tosyl azide, a variety of functionalized ferrocenyl azides were obtained in high yields. To allow a scalable preparation of these potentially explosive compounds, a flow protocol was developed accelerating the reaction time to minutes and circumventing accumulation of potentially hazardous intermediates. The corresponding ferrocenyl amines were then prepared by a reliable reduction process.
Collapse
Affiliation(s)
- Merlin Kleoff
- Institut für Chemie und Biochemie , Organische Chemie, Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Johannes Schwan
- Institut für Chemie und Biochemie , Organische Chemie, Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Lisa Boeser
- Institut für Chemie und Biochemie , Organische Chemie, Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Bence Hartmayer
- Institut für Chemie und Biochemie , Organische Chemie, Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Mathias Christmann
- Institut für Chemie und Biochemie , Organische Chemie, Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie , Anorganische Chemie, Freie Universität Berlin , Fabeckstr. 34/36 , 14195 Berlin , Germany
| | - Philipp Heretsch
- Institut für Chemie und Biochemie , Organische Chemie, Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| |
Collapse
|
33
|
Ichinari D, Ashikari Y, Mandai K, Aizawa Y, Yoshida JI, Nagaki A. A Novel Approach to Functionalization of Aryl Azides through the Generation and Reaction of Organolithium Species Bearing Masked Azides in Flow Microreactors. Angew Chem Int Ed Engl 2020; 59:1567-1571. [PMID: 31733010 DOI: 10.1002/anie.201912419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/13/2019] [Indexed: 01/04/2023]
Abstract
A novel straightforward method for aryl azides having functional groups based on generation and reactions of aryllithiums bearing a triazene group from polybromoarenes using flow microreactor systems was achieved. The present approach will serve as a powerful method in organolithium chemistry and open a new possibility in the synthesis of polyfunctional organic azides.
Collapse
Affiliation(s)
- Daisuke Ichinari
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yosuke Ashikari
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kyoko Mandai
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoko Aizawa
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Jun-Ichi Yoshida
- National Institute of Technology, Suzuka College, Shiroko-cho, Suzuka, Mie, 510-0294, Japan
| | - Aiichiro Nagaki
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
34
|
Sharma MK, Raval J, Ahn GN, Kim DP, Kulkarni AA. Assessing the impact of deviations in optimized multistep flow synthesis on the scale-up. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00025f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript highlights the unavoidable connection between manual and self-optimized flow synthesis protocols for multistep flow synthesis and its scale-up.
Collapse
Affiliation(s)
- M. K. Sharma
- Chemical Engineering and Process Development Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
- AcSIR
| | - J. Raval
- Chemical Engineering and Process Development Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
- AcSIR
| | - Gwang-Noh Ahn
- Center for Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Korea
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Korea
| | - A. A. Kulkarni
- Chemical Engineering and Process Development Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
- AcSIR
| |
Collapse
|
35
|
Ichinari D, Ashikari Y, Mandai K, Aizawa Y, Yoshida J, Nagaki A. A Novel Approach to Functionalization of Aryl Azides through the Generation and Reaction of Organolithium Species Bearing Masked Azides in Flow Microreactors. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daisuke Ichinari
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Yosuke Ashikari
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Kyoko Mandai
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoko Aizawa
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Jun‐ichi Yoshida
- National Institute of Technology Suzuka College Shiroko-cho, Suzuka Mie 510-0294 Japan
| | - Aiichiro Nagaki
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
36
|
Lee HJ, Roberts RC, Im DJ, Yim SJ, Kim H, Kim JT, Kim DP. Enhanced Controllability of Fries Rearrangements Using High-Resolution 3D-Printed Metal Microreactor with Circular Channel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1905005. [PMID: 31729122 DOI: 10.1002/smll.201905005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/27/2019] [Indexed: 05/12/2023]
Abstract
High-resolution 3D-printed stainless steel metal microreactors (3D-PMRs) with different cross-sectional geometry are fabricated to control ultrafast intramolecular rearrangement reactions in a comparative manner. The 3D-PMR with circular channel demonstrates the improved controllability in rapid Fries-type rearrangement reactions, because of the superior mixing efficiency to rectangular cross-section channels (250 µm × 125 µm) which is confirmed based on the computational flow dynamics simulation. Even in case of very rapid intramolecular rearrangement of sterically small acetyl group occurring in 333 µs of reaction time, the desired intermolecular reaction can outpace to the undesired intramolecular rearrangement using 3D-PMR to result in high conversion and yield.
Collapse
Affiliation(s)
- Hyune-Jea Lee
- Centre for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, POSTECH (Pohang University of Science and Technology), Pohang, 37673, South Korea
| | - Robert C Roberts
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Do Jin Im
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, South Korea
| | - Se-Jun Yim
- Centre for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, POSTECH (Pohang University of Science and Technology), Pohang, 37673, South Korea
| | - Heejin Kim
- Department of Chemistry, College of Science, Korea University, Seoul, 02841, South Korea
| | - Ji Tae Kim
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dong-Pyo Kim
- Centre for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, POSTECH (Pohang University of Science and Technology), Pohang, 37673, South Korea
| |
Collapse
|
37
|
Nagaki A, Yamashita H, Tsuchihashi Y, Hirose K, Takumi M, Yoshida JI. Generation and Reaction of Functional Alkyllithiums by Using Microreactors and Their Application to Heterotelechelic Polymer Synthesis. Chemistry 2019; 25:13719-13727. [PMID: 31400025 DOI: 10.1002/chem.201902867] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/04/2019] [Indexed: 12/29/2022]
Abstract
Flow microreactors enabled the successful generation of various functional alkyllithiums containing electrophilic functional groups, as well as the use of these alkyllithiums in subsequent reactions. The high reactivity of these series of reactions could be achieved by the extremely accurate and selective control of residence time. Moreover, integrated flow microreactor systems could be used to successfully synthesize heterotelechelic polymers with two functionalities, one at each end, via a process involving controlled anionic polymerization initiated by functional alkyllithium compounds, followed by trapping reactions with difunctional electrophiles.
Collapse
Affiliation(s)
- Aiichiro Nagaki
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Hiroki Yamashita
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yuta Tsuchihashi
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Katsuyuki Hirose
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Masahiro Takumi
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Jun-Ichi Yoshida
- National Institute of Technology, Suzuka College, Shiroko-cho, Suzuka, Mie, 510-0294, Japan
| |
Collapse
|
38
|
Affiliation(s)
- Tuan Zhao
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601CNRS-Université de Paris, Faculté des Sciences Fondamentales et Biomédicales 45 Rue des Saints-Pères FR-75006 Paris France
| | - Laurent Micouin
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601CNRS-Université de Paris, Faculté des Sciences Fondamentales et Biomédicales 45 Rue des Saints-Pères FR-75006 Paris France
| | - Riccardo Piccardi
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601CNRS-Université de Paris, Faculté des Sciences Fondamentales et Biomédicales 45 Rue des Saints-Pères FR-75006 Paris France
| |
Collapse
|
39
|
Miura S, Fukuda K, Masada S, Usutani H, Kanematsu M, Cork DG, Kawamoto T. Rapid and efficient synthesis of a novel cholinergic muscarinic M 1 receptor positive allosteric modulator using flash chemistry. Org Biomol Chem 2019; 17:8166-8174. [PMID: 31464336 DOI: 10.1039/c9ob01718f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Continuous flow-flash synthesis of a 2-bromobenzaldehyde derivative 18 as a key intermediate of a novel cholinergic muscarinic M1 positive allosteric modulator 1 bearing an isoindolin-1-one ring system as a pharmacophore has been achieved using flow microreactors through selective I/Li exchange of 1-bromo-2-iodobenzene derivative 17 with BuLi and subsequent formylation at -40 °C of the highly reactive 2-bromophenyllithium intermediate using DMF, which is difficult to achieve by a conventional batch process due to the conversion of the highly reactive 2-bromophenyllithium intermediate into benzyne even at -78 °C. Late-stage cyclization to give the isoindolin-1-one ring system, through reductive amination of 18 followed by palladium-catalyzed carbonylation with carbon monoxide and intramolecular cyclization, efficiently afforded 1 for its further research and development.
Collapse
Affiliation(s)
- Shotaro Miura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Koichiro Fukuda
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Shinichi Masada
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Hirotsugu Usutani
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Makoto Kanematsu
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - David G Cork
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tetsuji Kawamoto
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
40
|
Nakano M, Morimoto T, Noguchi J, Tanimoto H, Mori H, Tokumoto SI, Koishi H, Nishiyama Y, Kakiuchi K. Accelerated Organic Photoreactions in Flow Microreactors under Gas-Liquid Slug Flow Conditions Using N2 Gas as an Unreactive Substance. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Momoe Nakano
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Tsumoru Morimoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Jiro Noguchi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Hiroki Tanimoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Hajime Mori
- Department of Chemical Industry, Industrial Technology Center of Wakayama Prefecture (WINTEC), 60 Ogura, Wakayama 649-6261, Japan
| | - Shin-ichi Tokumoto
- Department of Chemical Industry, Industrial Technology Center of Wakayama Prefecture (WINTEC), 60 Ogura, Wakayama 649-6261, Japan
| | - Hideyuki Koishi
- Department of Chemical Industry, Industrial Technology Center of Wakayama Prefecture (WINTEC), 60 Ogura, Wakayama 649-6261, Japan
| | - Yasuhiro Nishiyama
- Department of Chemical Industry, Industrial Technology Center of Wakayama Prefecture (WINTEC), 60 Ogura, Wakayama 649-6261, Japan
| | - Kiyomi Kakiuchi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| |
Collapse
|
41
|
Orr SA, Border EC, Andrews PC, Blair VL. Lithium-Bromide Exchange versus Nucleophilic Addition of Schiff's base: Unprecedented Tandem Cyclisation Pathways. Chemistry 2019; 25:11876-11882. [PMID: 31282040 DOI: 10.1002/chem.201902140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/04/2019] [Indexed: 12/15/2022]
Abstract
By exploring lithium-bromide exchange reactivity of aromatic Schiff's bases with tert-butyllithium (tBuLi), we have revealed unprecedented competitive intermolecular and intramolecular cascade annulation pathways, leading to valuable compounds, such as iso-indolinones and N-substituted anthracene derivatives. A series of reaction parameters were probed, including solvent, stoichiometry, sterics and organolithium reagent choice, in order to understand the influences that limit such ring-closing pathways. With two viable reactivity options for the organolithium on the imine; namely, nucleophilic addition or lithium-bromide exchange, a surprising competitive nature was observed, where nucleophilic addition dominated, even under cryogenic conditions. Considering the most commonly used solvents for lithium-bromide exchange, tetrahydrofuran (THF) and diethyl ether (Et2 O), contrasting reactivity outcomes were revealed with nucleophilic addition promoted in THF, while Et2 O yielded almost double the conversion of cyclic products than in THF.
Collapse
Affiliation(s)
- Samantha A Orr
- School of Chemistry, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Emily C Border
- Science and Engineering Faculty, Queensland University of Technology, Australia
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Victoria L Blair
- School of Chemistry, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| |
Collapse
|
42
|
Lee H, Kim H, Kim D. From
p
‐Xylene to Ibuprofen in Flow: Three‐Step Synthesis by a Unified Sequence of Chemoselective C−H Metalations. Chemistry 2019; 25:11641-11645. [PMID: 31338883 DOI: 10.1002/chem.201903267] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Hyune‐Jea Lee
- Centre for Intelligent Microprocess of Pharmaceutical Synthesis Department of Chemical Engineering POSTECH (Pohang University of Science and Technology) Pohang 790-784 South Korea
| | - Heejin Kim
- Department of Chemistry College of Science Korea University Seoul 02841 South Korea
| | - Dong‐Pyo Kim
- Centre for Intelligent Microprocess of Pharmaceutical Synthesis Department of Chemical Engineering POSTECH (Pohang University of Science and Technology) Pohang 790-784 South Korea
| |
Collapse
|
43
|
Fath V, Szmais S, Lau P, Kockmann N, Röder T. Model-Based Scale-Up Predictions: From Micro- to Millireactors Using Inline Fourier Transform Infrared Spectroscopy. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Verena Fath
- Department of Biochemical and Chemical Engineering, Equipment Design, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
- Institute of Chemical Process Engineering, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| | | | - Philipp Lau
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Norbert Kockmann
- Department of Biochemical and Chemical Engineering, Equipment Design, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| | - Thorsten Röder
- Institute of Chemical Process Engineering, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| |
Collapse
|
44
|
Nagaki A. Recent topics of functionalized organolithiums using flow microreactor chemistry. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Nagaki A, Jiang Y, Yamashita H, Takabayashi N, Takahashi Y, Yoshida JI. Monolithiation of 5,5′‐Dibromo‐2,2′‐bithiophene Using Flow Microreactors: Mechanistic Implications and Synthetic Applications. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Aiichiro Nagaki
- Kyoto University Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering Nishikyo-ku 615-8510 Kyoto Japan
| | - Yiyuan Jiang
- Kyoto University Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering Nishikyo-ku 615-8510 Kyoto Japan
| | - Hiroki Yamashita
- Kyoto University Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering Nishikyo-ku 615-8510 Kyoto Japan
| | - Naoshi Takabayashi
- Kyoto University Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering Nishikyo-ku 615-8510 Kyoto Japan
| | - Yusuke Takahashi
- Kyoto University Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering Nishikyo-ku 615-8510 Kyoto Japan
| | - Jun-ichi Yoshida
- National Institute of Technology Suzuka College Shiroko-cho 510-0294 Suzuka, Mie Japan
| |
Collapse
|
46
|
Fath V, Kockmann N, Röder T. In Situ Reaction Monitoring of Unstable Lithiated Intermediates through Inline FTIR Spectroscopy. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Verena Fath
- TU Dortmund University, st>Emil-Figge-Strasse 70Department of Biochemical and Chemical Engineering, Equipment Design 44227 Dortmund Germany
- Mannheim University of Applied SciencesInstitute of Chemical Process Engineering Paul-Wittsack-Strasse 10 68163 Mannheim Germany
| | - Norbert Kockmann
- TU Dortmund University, st>Emil-Figge-Strasse 70Department of Biochemical and Chemical Engineering, Equipment Design 44227 Dortmund Germany
| | - Thorsten Röder
- Mannheim University of Applied SciencesInstitute of Chemical Process Engineering Paul-Wittsack-Strasse 10 68163 Mannheim Germany
| |
Collapse
|
47
|
Seto M, Masada S, Usutani H, Cork DG, Fukuda K, Kawamoto T. Application of Continuous Flow-Flash Chemistry to Scale-up Synthesis of 5-Cyano-2-formylbenzoic Acid. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Masaki Seto
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shinichi Masada
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hirotsugu Usutani
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - David G. Cork
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Koichiro Fukuda
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tetsuji Kawamoto
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
48
|
Beillard A, Bantreil X, Métro TX, Martinez J, Lamaty F. Alternative Technologies That Facilitate Access to Discrete Metal Complexes. Chem Rev 2019; 119:7529-7609. [PMID: 31059243 DOI: 10.1021/acs.chemrev.8b00479] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Organometallic complexes: these two words jump to the mind of the chemist and are directly associated with their utility in catalysis or as a pharmaceutical. Nevertheless, to be able to use them, it is necessary to synthesize them, and it is not always a small matter. Typically, synthesis is via solution chemistry, using a round-bottom flask and a magnetic or mechanical stirrer. This review takes stock of alternative technologies currently available in laboratories that facilitate the synthesis of such complexes. We highlight five such technologies: mechanochemistry, also known as solvent-free chemistry, uses a mortar and pestle or a ball mill; microwave activation can drastically reduce reaction times; ultrasonic activation promotes chemical reactions because of cavitation phenomena; photochemistry, which uses light radiation to initiate reactions; and continuous flow chemistry, which is increasingly used to simplify scale-up. While facilitating the synthesis of organometallic compounds, these enabling technologies also allow access to compounds that cannot be obtained in any other way. This shows how the paradigm is changing and evolving toward new technologies, without necessarily abandoning the round-bottom flask. A bright future is ahead of the organometallic chemist, thanks to these novel technologies.
Collapse
Affiliation(s)
- Audrey Beillard
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Xavier Bantreil
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Thomas-Xavier Métro
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Frédéric Lamaty
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| |
Collapse
|
49
|
Anionic Polymerization Using Flow Microreactors. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24081532. [PMID: 31003462 PMCID: PMC6514773 DOI: 10.3390/molecules24081532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 11/21/2022]
Abstract
Flow microreactors are expected to make a revolutionary change in chemical synthesis involving various fields of polymer synthesis. In fact, extensive flow microreactor studies have opened up new possibilities in polymer chemistry including cationic polymerization, anionic polymerization, radical polymerization, coordination polymerization, polycondensation and ring-opening polymerization. This review provides an overview of flow microreactors in anionic polymerization and their various applications.
Collapse
|
50
|
Asano S, Yatabe S, Maki T, Mae K. Numerical and Experimental Quantification of the Performance of Microreactors for Scaling-up Fast Chemical Reactions. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shusaku Asano
- Department of Chemical Engineering, Kyoto University, Kyoto 6158510, Japan
| | - Shota Yatabe
- Department of Chemical Engineering, Kyoto University, Kyoto 6158510, Japan
| | - Taisuke Maki
- Department of Chemical Engineering, Kyoto University, Kyoto 6158510, Japan
| | - Kazuhiro Mae
- Department of Chemical Engineering, Kyoto University, Kyoto 6158510, Japan
| |
Collapse
|