1
|
Choi W, Fattah M, Shang Y, Thompson MP, Carrow KP, Hu D, Liu Z, Avram MJ, Bailey K, Berger O, Qi X, Gianneschi NC. Proteomimetic polymer blocks mitochondrial damage, rescues Huntington's neurons, and slows onset of neuropathology in vivo. SCIENCE ADVANCES 2024; 10:eado8307. [PMID: 39485846 PMCID: PMC11529722 DOI: 10.1126/sciadv.ado8307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024]
Abstract
Recently, it has been shown that blocking the binding of valosin-containing protein (VCP) to mutant huntingtin (mtHtt) can prevent neuronal mitochondrial autophagy in Huntington's disease (HD) models. Herein, we describe the development and efficacy of a protein-like polymer (PLP) for inhibiting this interaction in cellular and in vivo models of HD. PLPs exhibit bioactivity in HD mouse striatal cells by successfully inhibiting mitochondrial destruction. PLP is notably resilient to in vitro enzyme, serum, and liver microsome stability assays, which render analogous control oligopeptides ineffective. PLP demonstrates a 2000-fold increase in circulation half-life compared to peptides, exhibiting an elimination half-life of 152 hours. In vivo efficacy studies in HD transgenic mice (R6/2) confirm the superior bioactivity of PLP compared to free peptide through behavioral and neuropathological analyses. PLP functions by preventing pathologic VCP/mtHtt binding in HD animal models; exhibits enhanced efficacy over the parent, free peptide; and implicates the PLP as a platform with potential for translational central nervous system therapeutics.
Collapse
Affiliation(s)
- Wonmin Choi
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Mara Fattah
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Yutong Shang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, OH 44106, USA
| | - Matthew P. Thompson
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Kendal P. Carrow
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Di Hu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, OH 44106, USA
| | - Zunren Liu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, OH 44106, USA
| | - Michael J. Avram
- Department of Anesthesiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Keith Bailey
- Charles River Laboratories, Mattawan, MI 49071, USA
| | - Or Berger
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, OH 44106, USA
| | - Nathan C. Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Departments of Materials Science & Engineering, Biomedical Engineering, and Pharmacology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
2
|
Rakhe N, Bhatt LK. Valosin-containing protein: A potential therapeutic target for cardiovascular diseases. Ageing Res Rev 2024; 101:102511. [PMID: 39313037 DOI: 10.1016/j.arr.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Valosin-containing protein (VCP), also known as p97, plays a crucial role in various cellular processes, including protein degradation, endoplasmic reticulum-associated degradation, and cell cycle regulation. While extensive research has been focused on VCP's involvement in protein homeostasis and its implications in neurodegenerative diseases, emerging evidence suggests a potential link between VCP and cardiovascular health. VCP is a key regulator of mitochondrial function, and its overexpression or mutations lead to pathogenic diseases and cellular stress responses. The present review explores VCP's roles in numerous cardiovascular disorders including myocardial ischemia/reperfusion injury, cardiac hypertrophy, and heart failure. The review dwells on the roles of VCP in modifying mitochondrial activity, promoting S-nitrosylation, regulating mTOR signalling and demonstrating cardioprotective effects. Further research into VCP might lead to novel interventions for cardiovascular disease, particularly those involving ischemia/reperfusion injury and hypertrophy.
Collapse
Affiliation(s)
- Nameerah Rakhe
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
3
|
Chen L, Chen D, Pan Y, Mo Y, Lai B, Chen H, Zhang DW, Xia XD. Inhibition of mitochondrial OMA1 ameliorates osteosarcoma tumorigenesis. Cell Death Dis 2024; 15:786. [PMID: 39487118 PMCID: PMC11530700 DOI: 10.1038/s41419-024-07127-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 11/04/2024]
Abstract
OMA1 is an ATP-independent zinc metalloprotease essential for maintaining mitochondrial homeostasis and plays a vital role in tumorigenesis. Depending on the type of cancer, a decrease in OMA1 expression has been linked to a varying prognosis for patients. The role of OMA1 in human osteosarcoma (OS), one of the most prevalent malignant bone tumors, remains elusive. Here, we observed elevated OMA1 expression in OS tumor tissues from four patients with advanced OS. Knockout of OMA1 in OS cells significantly reduces OS tumor weight and size, and lung metastatic nodules in BALB/c nude mice. Immunohistochemistry analysis showed a significant decrease in Ki67 and an increase in Cleaved-caspase 3 in OMA1 knockout tumor samples. Mechanistically, we found that OMA1 deficiency increases the levels of PINK1 and Parkin and consequently induces excessive mitophagy, leading to increased apoptosis and reduced cell proliferation and invasion in OS cells. Specifically, OMA1 deficiency reduces the amount of cytosolic p53 and p53-associated cytosolic Parkin but increases mitochondrial p53, which may lead to enhanced apoptosis. Regarding the effect on cell proliferation and invasion, loss of OMA1 reduces mitochondrial ROS levels and increases cytosolic glycogen synthase kinase 3β (GSK3β) levels, thereby increasing interaction between GSK3β and β-catenin and then reducing cytosolic and nuclear β-catenin. This contributes to reduced cell proliferation and migration in OMA1-deficient cells. Moreover, we found that ciclopirox (CPX), an antifungal drug, induces OMA1 self-cleavage and L-OMA1 degradation in cultured OS cells. CPX also reduces tumor development of control OS cells but not OMA1-deficient OS cells in mice. These findings strongly support the important role of OMA1 in OS tumorigenesis and suggest that OMA1 may be a valuable prognostic marker and a promising therapeutic target for OS.
Collapse
Affiliation(s)
- Lingyan Chen
- Department of Orthopedics, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China.
| | - Dejian Chen
- Department of Orthopedics, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Yiming Pan
- Department of Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yimei Mo
- Department of Orthopedics, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Biyu Lai
- Department of Radiology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Huiguang Chen
- Department of Orthopedics, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Da-Wei Zhang
- Department of Pediatrics, Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| | - Xiao-Dan Xia
- Department of Orthopedics, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China.
| |
Collapse
|
4
|
Shao Z, Wang L, Cao L, Chen T, Jia XM, Sun W, Gao C, Xiao H. The protein segregase VCP/p97 promotes host antifungal defense via regulation of SYK activation. PLoS Pathog 2024; 20:e1012674. [PMID: 39471181 DOI: 10.1371/journal.ppat.1012674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024] Open
Abstract
C-type lectin receptors (CLRs) are essential to execute host defense against fungal infection. Nevertheless, a comprehensive understanding of the molecular underpinnings of CLR signaling remains a work in progress. Here, we searched for yet-to-be-identified tyrosine-phosphorylated proteins in Dectin-1 signaling and linked the stress-response protein valosin containing protein (VCP)/p97 to Dectin-1 signaling. Knockdown of VCP expression or chemical inhibition of VCP's segregase activity dampened Dectin-1-elicited SYK activation in BMDMs and BMDCs, leading to attenuated expression of proinflammatory cytokines/chemokines such as TNF-α, IL-6 and CXCL1. Biochemical analyses demonstrated that VCP and its cofactor UFD1 form a complex with SYK and its phosphatase SHP-1 following Dectin-1 ligation, and knockdown of VCP led to a more prominent SYK and SHP-1 association. Further, SHP-1 became polyubiquitinated upon Dectin-1 activation, and VCP or UFD1 overexpression accelerated SHP-1 degradation. Conceivably, VCP may promote Dectin-1 signaling by pulling the ubiquitinated SHP-1 out of the SYK complex for degradation. Finally, genetic ablation of VCP in the neutrophil and macrophage compartment rendered the mice highly susceptible to infection by Candida albicans, an observation also phenocopied by administering the VCP inhibitor. These results collectively demonstrate that VCP is a previously unappreciated signal transducer of the Dectin-1 pathway and a crucial component of antifungal defense, and suggest a new mechanism regulating SYK activation.
Collapse
Affiliation(s)
- Zhugui Shao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Li Wang
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Limin Cao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Tian Chen
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Xin-Ming Jia
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Wanwei Sun
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, P. R. China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Hui Xiao
- Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| |
Collapse
|
5
|
Fang S, Zhang H, Long H, Zhang D, Chen H, Yang X, Pan H, Pan X, Liu D, E G. Phylogenetic Relations and High-Altitude Adaptation in Wild Boar ( Sus scrofa), Identified Using Genome-Wide Data. Animals (Basel) 2024; 14:2984. [PMID: 39457914 PMCID: PMC11503864 DOI: 10.3390/ani14202984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
The Qinghai-Tibet Plateau (QTP) wild boar is an excellent model for investigating high-altitude adaptation. In this study, we analyzed genome-wide data from 93 wild boars compiled from various studies worldwide, including the QTP, southern and northern regions of China, Europe, Northeast Asia, and Southeast Asia, to explore their phylogenetic patterns and high-altitude adaptation based on genome-wide selection signal analysis and run of homozygosity (ROH) estimation. The findings demonstrate the alignment between the phylogenetic associations among wild boars and their geographical location. An ADMIXTURE analysis indicated a relatively close genetic relationship between QTP and southern Chinese wild boars. Analyses of the fixation index and cross-population extended haplotype homozygosity between populations revealed 295 candidate genes (CDGs) associated with high-altitude adaptation, such as TSC2, TELO2, SLC5A1, and SLC5A4. These CDGs were significantly overrepresented in pathways such as the mammalian target of rapamycin signaling and Fanconi anemia pathways. In addition, 39 ROH islands and numerous selective CDGs (e.g., SLC5A1, SLC5A4, and VCP), which are implicated in glucose metabolism and mitochondrial function, were discovered in QTP wild boars. This study not only assessed the phylogenetic history of QTP wild boars but also advanced our comprehension of the genetic mechanisms underlying the adaptation of wild boars to high altitudes.
Collapse
Affiliation(s)
- Shiyong Fang
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (S.F.); (H.Z.); (H.L.)
| | - Haoyuan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (S.F.); (H.Z.); (H.L.)
| | - Haoyuan Long
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (S.F.); (H.Z.); (H.L.)
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Hongyue Chen
- Chongqing Animal Husbandry Technology Extension Station, Chongqing 401121, China;
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China;
| | - Hongmei Pan
- Chongqing Academy of Animal Sciences, Chongqing 408599, China;
| | - Xiao Pan
- Chongqing Hechuan Animal Husbandry Station, Chongqing 401520, China;
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China; (S.F.); (H.Z.); (H.L.)
| |
Collapse
|
6
|
Giong HK, Hyeon SJ, Lee JG, Cho HJ, Park U, Stein TD, Lee J, Yu K, Ryu H, Lee JS. Tau accumulation is cleared by the induced expression of VCP via autophagy. Acta Neuropathol 2024; 148:46. [PMID: 39316141 PMCID: PMC11422276 DOI: 10.1007/s00401-024-02804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Tauopathy, including frontotemporal lobar dementia and Alzheimer's disease, describes a class of neurodegenerative diseases characterized by the aberrant accumulation of Tau protein due to defects in proteostasis. Upon generating and characterizing a stable transgenic zebrafish that expresses the human TAUP301L mutant in a neuron-specific manner, we found that accumulating Tau protein was efficiently cleared via an enhanced autophagy activity despite constant Tau mRNA expression; apparent tauopathy-like phenotypes were revealed only when the autophagy was genetically or chemically inhibited. We performed RNA-seq analysis, genetic knockdown, and rescue experiments with clinically relevant point mutations of valosin-containing protein (VCP), and showed that induced expression of VCP, an essential cytosolic chaperone for the protein quality system, was a key factor for Tau degradation via its facilitation of the autophagy flux. This novel function of VCP in Tau clearance was further confirmed in a tauopathy mouse model where VCP overexpression significantly decreased the level of phosphorylated and oligomeric/aggregate Tau and rescued Tau-induced cognitive behavioral phenotypes, which were reversed when the autophagy was blocked. Importantly, VCP expression in the brains of human Alzheimer's disease patients was severely downregulated, consistent with its proposed role in Tau clearance. Taken together, these results suggest that enhancing the expression and activity of VCP in a spatiotemporal manner to facilitate the autophagy pathway is a potential therapeutic approach for treating tauopathy.
Collapse
Affiliation(s)
- Hoi-Khoanh Giong
- Microbiome Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - Seung Jae Hyeon
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae-Geun Lee
- Microbiome Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hyun-Ju Cho
- Microbiome Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Uiyeol Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Thor D Stein
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Junghee Lee
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Kweon Yu
- Disease Target Structure Research Centre, KRIBB, Daejeon, 34141, Republic of Korea
- KRIBB School, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hoon Ryu
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jeong-Soo Lee
- Microbiome Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- KRIBB School, University of Science and Technology, Daejeon, 34113, Republic of Korea.
- Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
7
|
Wu Y, Wu S, Chen Z, Yang E, Yu H, Zhang G, Lian X, Xu J. Machine learning and single-cell analysis identify the mitophagy-associated gene TOMM22 as a potential diagnostic biomarker for intervertebral disc degeneration. Heliyon 2024; 10:e37378. [PMID: 39296040 PMCID: PMC11407931 DOI: 10.1016/j.heliyon.2024.e37378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Background Mitophagy selectively eliminates potentially cytotoxic and damaged mitochondria and effectively prevents excessive cytotoxicity from damaged mitochondria, thereby attenuating inflammatory and oxidative responses. However, the potential role of mitophagy in intervertebral disc degeneration remains to be elucidated. Methods The GSVA method, two machine learning methods (SVM-RFE algorithm and random forest), the CIBERSORT and MCPcounter methods, as well as the consensus clustering method and the WGCNA algorithm were used to analyze the involvement of mitophagy in intervertebral disc degeneration, the diagnostic value of mitophagy-associated genes in intervertebral disc degeneration, and the infiltration of immune cells, and identify the gene modules that were closely related to mitophagy. Single-cell analysis was used to detect mitophagy scores and TOMM22 expression, and pseudo-temporal analysis was used to explore the function of TOMM22 in nucleus pulposus cells. In addition, TOMM22 expression was compared between human normal and degenerated intervertebral disc tissue samples by immunohistochemistry and PCR. Results This study identified that the mitophagy pathway score was elevated in intervertebral disc degeneration compared with the normal condition. A strong link was present between mitophagy genes and immune cells, which may be used to typify intervertebral disc degeneration. The single-cell level showed that mitophagy-associated gene TOMM22 was highly expressed in medullary cells of the disease group. Further investigations indicated the upregulation of TOMM22 expression in late-stage nucleus pulposus cells and its role in cellular communication. In addition, human intervertebral disc tissue samples established that TOMM22 levels were higher in disc degeneration samples than in normal samples. Conclusions Our findings revealed that mitophagy may be used in the diagnosis of intervertebral disc degeneration and its typing, and TOMM22 is a molecule in this regard and may act as a potential diagnostic marker in intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yinghao Wu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Shengting Wu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Zhiheng Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Erzhu Yang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Haiyue Yu
- Bengbu Medical University, Anhui, 233030, PR China
| | - Guowang Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - XiaoFeng Lian
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - JianGuang Xu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| |
Collapse
|
8
|
Wankhede NL, Rajendra Kopalli S, Dhokne MD, Badnag DJ, Chandurkar PA, Mangrulkar SV, Shende PV, Taksande BG, Upaganlawar AB, Umekar MJ, Koppula S, Kale MB. Decoding mitochondrial quality control mechanisms: Identifying treatment targets for enhanced cellular health. Mitochondrion 2024; 78:101926. [PMID: 38944367 DOI: 10.1016/j.mito.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/09/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Mitochondria are singular cell organelles essential for many cellular functions, which includes responding to stress, regulating calcium levels, maintaining protein homeostasis, and coordinating apoptosis response. The vitality of cells, therefore, hinges on the optimal functioning of these dynamic organelles. Mitochondrial Quality Control Mechanisms (MQCM) play a pivotal role in ensuring the integrity and functionality of mitochondria. Perturbations in these mechanisms have been closely associated with the pathogenesis of neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Compelling evidence suggests that targeting specific pathways within the MQCM could potentially offer a therapeutic avenue for rescuing mitochondrial integrity and mitigating the progression of neurodegenerative diseases. The intricate interplay of cellular stress, protein misfolding, and impaired quality control mechanisms provides a nuanced understanding of the underlying pathology. Consequently, unravelling the specific MQCM dysregulation in neurodegenerative disorders becomes paramount for developing targeted therapeutic strategies. This review delves into the impaired MQCM pathways implicated in neurodegenerative disorders and explores emerging therapeutic interventions. By shedding light on pharmaceutical and genetic manipulations aimed at restoring MQCM efficiency, the discussion aims to provide insights into novel strategies for ameliorating the progression of neurodegenerative diseases. Understanding and addressing mitochondrial quality control mechanisms not only underscore their significance in cellular health but also offer a promising frontier for advancing therapeutic approaches in the realm of neurodegenerative disorders.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | - Mrunali D Dhokne
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh (UP) - 226002, India.
| | - Dishant J Badnag
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Pranali A Chandurkar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Shubhada V Mangrulkar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad- 423101, Nashik, Maharashtra, India.
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee- 441002, Nagpur, Maharashtra, India.
| |
Collapse
|
9
|
Mohamed Yusoff AA, Mohd Khair SZN. Unraveling mitochondrial dysfunction: comprehensive perspectives on its impact on neurodegenerative diseases. Rev Neurosci 2024:revneuro-2024-0080. [PMID: 39174305 DOI: 10.1515/revneuro-2024-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Neurodegenerative diseases represent a significant challenge to modern medicine, with their complex etiology and progressive nature posing hurdles to effective treatment strategies. Among the various contributing factors, mitochondrial dysfunction has emerged as a pivotal player in the pathogenesis of several neurodegenerative disorders. This review paper provides a comprehensive overview of how mitochondrial impairment contributes to the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, driven by bioenergetic defects, biogenesis impairment, alterations in mitochondrial dynamics (such as fusion or fission), disruptions in calcium buffering, lipid metabolism dysregulation and mitophagy dysfunction. It also covers current therapeutic interventions targeting mitochondrial dysfunction in these diseases.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
10
|
Üffing A, Weiergräber OH, Schwarten M, Hoffmann S, Willbold D. GABARAP interacts with EGFR - supporting the unique role of this hAtg8 protein during receptor trafficking. FEBS Lett 2024. [PMID: 39160442 DOI: 10.1002/1873-3468.14997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
The human Atg8 family member GABARAP is involved in numerous autophagy-related and -unrelated processes. We recently observed that specifically the deficiency of GABARAP enhances epidermal growth factor receptor (EGFR) degradation upon ligand stimulation. Here, we report on two putative LC3-interacting regions (LIRs) within EGFR, the first of which (LIR1) is selected as a GABARAP binding site in silico. Indeed, in vitro interaction studies reveal preferential binding of LIR1 to GABARAP and GABARAPL1. Our X-ray data demonstrate interaction of core LIR1 residues FLPV with both hydrophobic pockets of GABARAP suggesting canonical binding. Although LIR1 occupies the LIR docking site, GABARAP Y49 and L50 appear dispensable in this case. Our data support the hypothesis that GABARAP affects the fate of EGFR at least in part through direct binding.
Collapse
Affiliation(s)
- Alina Üffing
- Heinrich-Heine-Universität Düsseldorf, Mathematisch-Naturwissenschaftliche Fakultät, Institut für Physikalische Biologie, Düsseldorf, Germany
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| | - Oliver H Weiergräber
- Heinrich-Heine-Universität Düsseldorf, Mathematisch-Naturwissenschaftliche Fakultät, Institut für Physikalische Biologie, Düsseldorf, Germany
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| | - Melanie Schwarten
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| | - Silke Hoffmann
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| | - Dieter Willbold
- Heinrich-Heine-Universität Düsseldorf, Mathematisch-Naturwissenschaftliche Fakultät, Institut für Physikalische Biologie, Düsseldorf, Germany
- Forschungszentrum Jülich, Institut für Biologische Informationsprozesse: Strukturbiochemie (IBI-7), Jülich, Germany
| |
Collapse
|
11
|
Weber JJ, Czisch L, Pereira Sena P, Fath F, Huridou C, Schwarz N, Incebacak Eltemur RD, Würth A, Weishäupl D, Döcker M, Blumenstock G, Martins S, Sequeiros J, Rouleau GA, Jardim LB, Saraiva-Pereira ML, França MC, Gordon CR, Zaltzman R, Cornejo-Olivas MR, van de Warrenburg BPC, Durr A, Brice A, Bauer P, Klockgether T, Schöls L, Riess O, Schmidt T. The parkin V380L variant is a genetic modifier of Machado-Joseph disease with impact on mitophagy. Acta Neuropathol 2024; 148:14. [PMID: 39088078 PMCID: PMC11294389 DOI: 10.1007/s00401-024-02762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative spinocerebellar ataxia caused by a polyglutamine-coding CAG repeat expansion in the ATXN3 gene. While the CAG length correlates negatively with the age at onset, it accounts for approximately 50% of its variability only. Despite larger efforts in identifying contributing genetic factors, candidate genes with a robust and plausible impact on the molecular pathogenesis of MJD are scarce. Therefore, we analysed missense single nucleotide polymorphism variants in the PRKN gene encoding the Parkinson's disease-associated E3 ubiquitin ligase parkin, which is a well-described interaction partner of the MJD protein ataxin-3, a deubiquitinase. By performing a correlation analysis in the to-date largest MJD cohort of more than 900 individuals, we identified the V380L variant as a relevant factor, decreasing the age at onset by 3 years in homozygous carriers. Functional analysis in an MJD cell model demonstrated that parkin V380L did not modulate soluble or aggregate levels of ataxin-3 but reduced the interaction of the two proteins. Moreover, the presence of parkin V380L interfered with the execution of mitophagy-the autophagic removal of surplus or damaged mitochondria-thereby compromising cell viability. In summary, we identified the V380L variant in parkin as a genetic modifier of MJD, with negative repercussions on its molecular pathogenesis and disease age at onset.
Collapse
Affiliation(s)
- Jonasz J Weber
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
- Department of Human Genetics, Ruhr University Bochum, 44801, Bochum, Germany
| | - Leah Czisch
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Priscila Pereira Sena
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Florian Fath
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
- Department of Human Genetics, Ruhr University Bochum, 44801, Bochum, Germany
| | - Chrisovalantou Huridou
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
- Department of Human Genetics, Ruhr University Bochum, 44801, Bochum, Germany
| | - Natasa Schwarz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Rana D Incebacak Eltemur
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
- Department of Human Genetics, Ruhr University Bochum, 44801, Bochum, Germany
| | - Anna Würth
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Daniel Weishäupl
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Miriam Döcker
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Gunnar Blumenstock
- Department of Clinical Epidemiology and Applied Biometry, University of Tübingen, 72076, Tübingen, Germany
| | - Sandra Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135, Porto, Portugal
| | - Jorge Sequeiros
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery and The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, H3A 1A1, Canada
| | - Laura Bannach Jardim
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-903, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Brazil
| | - Maria-Luiza Saraiva-Pereira
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Marcondes C França
- Universidade Estadual de Campinas (UNICAMP), Campinas, 13083-970, Brazil
| | - Carlos R Gordon
- Department of Neurology, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Roy Zaltzman
- Department of Neurology, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Mario R Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, 15003, Lima, Peru
- Neurogenetics Working Group, Universidad Científica del Sur, 15067, Lima, Peru
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525, Nijmegen, The Netherlands
| | - Alexandra Durr
- Department of Genetics and Cytogenetics, 4 AP-HP, Groupe Hospitalier Pitié-Salpêtrière, 75013, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, University Hospital Pitié-Salpêtrière, 75013, Paris, France
| | - Alexis Brice
- Department of Genetics and Cytogenetics, 4 AP-HP, Groupe Hospitalier Pitié-Salpêtrière, 75013, Paris, France
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, University Hospital Pitié-Salpêtrière, 75013, Paris, France
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
- Centogene GmbH, 18055, Rostock, Germany
- Clinic for Internal Medicine, Department of Hematology, Oncology, Palliative Medicine, University Medicine Rostock, 18057, Rostock, Germany
| | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
- Department of Neurology, University Hospital Bonn, 53127, Bonn, Germany
| | - Ludger Schöls
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Thorsten Schmidt
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
12
|
Maduka AO, Manohar S, Foster MW, Silva GM. Localized K63 ubiquitin signaling is regulated by VCP/p97 during oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.598218. [PMID: 38948861 PMCID: PMC11213022 DOI: 10.1101/2024.06.20.598218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Under stress conditions, cells reprogram their molecular machineries to mitigate damage and promote survival. Ubiquitin signaling is globally increased during oxidative stress, controlling protein fate and supporting stress defenses at several subcellular compartments. However, the rules driving subcellular ubiquitin localization to promote these concerted response mechanisms remain understudied. Here, we show that K63-linked ubiquitin chains, known to promote proteasome-independent pathways, accumulate primarily in non-cytosolic compartments during oxidative stress induced by sodium arsenite in mammalian cells. Our subcellular ubiquitin proteomic analyses of non-cytosolic compartments expanded 10-fold the pool of proteins known to be ubiquitinated during arsenite stress (2,046) and revealed their involvement in pathways related to immune signaling and translation control. Moreover, subcellular proteome analyses revealed proteins that are recruited to non-cytosolic compartments under stress, including a significant enrichment of helper ubiquitin-binding adaptors of the ATPase VCP that processes ubiquitinated substrates for downstream signaling. We further show that VCP recruitment to non-cytosolic compartments under arsenite stress occurs in a ubiquitin-dependent manner mediated by its adaptor NPLOC4. Additionally, we show that VCP and NPLOC4 activities are critical to sustain low levels of non-cytosolic K63-linked ubiquitin chains, supporting a cyclical model of ubiquitin conjugation and removal that is disrupted by cellular exposure to reactive oxygen species. This work deepens our understanding of the role of localized ubiquitin and VCP signaling in the basic mechanisms of stress response and highlights new pathways and molecular players that are essential to reshape the composition and function of the human subcellular proteome under dynamic environments.
Collapse
Affiliation(s)
| | - Sandhya Manohar
- Institute for Biochemistry, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Matthew W. Foster
- Proteomics and Metabolomics Core Facility, Duke University, Durham, NC, 27708, USA
| | | |
Collapse
|
13
|
Magrinelli F, Tesson C, Angelova PR, Salazar-Villacorta A, Rodriguez JA, Scardamaglia A, Chung BHY, Jaconelli M, Vona B, Esteras N, Kwong AKY, Courtin T, Maroofian R, Alavi S, Nirujogi R, Severino M, Lewis PA, Efthymiou S, O’Callaghan B, Buchert R, Sofan L, Lis P, Pinon C, Breedveld GJ, Chui MMC, Murphy D, Pitz V, Makarious MB, Cassar M, Hassan BA, Iftikhar S, Rocca C, Bauer P, Tinazzi M, Svetel M, Samanci B, Hanağası HA, Bilgiç B, Obeso JA, Kurtis MM, Cogan G, Başak AN, Kiziltan G, Gül T, Yalçın G, Elibol B, Barišić N, Ng EWS, Fan SS, Hershkovitz T, Weiss K, Raza Alvi J, Sultan T, Azmi Alkhawaja I, Froukh T, E Alrukban HA, Fauth C, Schatz UA, Zöggeler T, Zech M, Stals K, Varghese V, Gandhi S, Blauwendraat C, Hardy JA, Lesage S, Bonifati V, Haack TB, Bertoli-Avella AM, Steinfeld R, Alessi DR, Steller H, Brice A, Abramov AY, Bhatia KP, Houlden H. PSMF1 variants cause a phenotypic spectrum from early-onset Parkinson's disease to perinatal lethality by disrupting mitochondrial pathways. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.19.24308302. [PMID: 39148840 PMCID: PMC11326324 DOI: 10.1101/2024.06.19.24308302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Dissecting biological pathways highlighted by Mendelian gene discovery has provided critical insights into the pathogenesis of Parkinson's disease (PD) and neurodegeneration. This approach ultimately catalyzes the identification of potential biomarkers and therapeutic targets. Here, we identify PSMF1 as a new gene implicated in PD and childhood neurodegeneration. We find that biallelic PSMF1 missense and loss-of-function variants co-segregate with phenotypes from early-onset PD and parkinsonism to perinatal lethality with neurological manifestations across 15 unrelated pedigrees with 22 affected subjects, showing clear genotype-phenotype correlation. PSMF1 encodes the proteasome regulator PSMF1/PI31, a highly conserved, ubiquitously expressed partner of the 20S proteasome and neurodegeneration-associated F-box-O 7 and valosin-containing proteins. We demonstrate that PSMF1 variants impair mitochondrial membrane potential, dynamics and mitophagy in patient-derived fibroblasts. Additionally, we develop models of psmf1 knockdown Drosophila and Psmf1 conditional knockout mouse exhibiting age-dependent motor impairment, with diffuse gliosis in mice. These findings unequivocally link defective PSMF1 to early-onset PD and neurodegeneration and suggest mitochondrial dysfunction as a mechanistic contributor.
Collapse
Affiliation(s)
- Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Christelle Tesson
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Plamena R. Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Ainara Salazar-Villacorta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jose A. Rodriguez
- Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Annarita Scardamaglia
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Brian Hon-Yin Chung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Hong Kong Genome Institute, Hong Kong SAR, China
| | - Matthew Jaconelli
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, Göttingen, Germany
| | - Noemi Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Neurochemistry Research Institute, Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | - Anna Ka-Yee Kwong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Thomas Courtin
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Shahryar Alavi
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Raja Nirujogi
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | - Patrick A. Lewis
- Royal Veterinary College, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Benjamin O’Callaghan
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Linda Sofan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Pawel Lis
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Chloé Pinon
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Guido J. Breedveld
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martin Man-Chun Chui
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Vanessa Pitz
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mary B. Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Marlene Cassar
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Bassem A. Hassan
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Sana Iftikhar
- Department of Real-World evidence studies, CENTOGENE GmbH, Rostock, Germany
| | - Clarissa Rocca
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Peter Bauer
- Department of Medical Genetics, CENTOGENE GmbH, Rostock, Germany
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marina Svetel
- Movement Disorders Department, Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Bedia Samanci
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Haşmet A. Hanağası
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Basar Bilgiç
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - José A. Obeso
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
- HM CINAC, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- University CEU-San Pablo, Madrid, Spain
| | - Monica M. Kurtis
- Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| | - Guillaume Cogan
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Ayşe Nazlı Başak
- Koç University, School of Medicine, Research Center for Translational Medicine KUTTAM-Neurodegeneration Research Laboratory NDAL, Istanbul, Turkey
| | - Güneş Kiziltan
- Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Tuğçe Gül
- Koç University, School of Medicine, Research Center for Translational Medicine KUTTAM-Neurodegeneration Research Laboratory NDAL, Istanbul, Turkey
| | - Gül Yalçın
- Department of Neurology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Bülent Elibol
- Department of Neurology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Nina Barišić
- Department of Pediatrics, University of Zagreb Medical School and University Hospital Center Zagreb, Zagreb, Croatia
| | - Earny Wei-Sen Ng
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sze-Shing Fan
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tova Hershkovitz
- The Genetics Institute, Galilee Medical Center, Nahariya, Israel
| | - Karin Weiss
- Genetics Institute, Rambam Health Care Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Javeria Raza Alvi
- Department of Paediatric Neurology, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab, Pakistan
| | - Tipu Sultan
- Department of Paediatric Neurology, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab, Pakistan
| | - Issam Azmi Alkhawaja
- Pediatric Neurology Unit, Pediatric Department, Albashir Hospital, Amman, Jordan
| | - Tawfiq Froukh
- Department of Biotechnology and Genetics Engineering, Philadelphia University, Jordan
| | | | - Christine Fauth
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Ulrich A. Schatz
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Thomas Zöggeler
- Department of Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Zech
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum Munich, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Karen Stals
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Vinod Varghese
- All Wales Medical Genomics Service, Cardiff, United Kingdom
| | - Sonia Gandhi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Cornelis Blauwendraat
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - John A. Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Suzanne Lesage
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Institute of Neurogenomics, Helmholtz Zentrum Munich, Munich, Germany
| | | | - Robert Steinfeld
- Department of Pediatrics and Pediatric Neurology, University of Göttingen, Göttingen, Germany
- Department of Pediatric Neurology, Charité University Medicine, Berlin, Germany
| | - Dario R. Alessi
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Hermann Steller
- Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Alexis Brice
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Andrey Y. Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kailash P. Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
14
|
Neueder A, Kojer K, Gu Z, Wang Y, Hering T, Tabrizi S, Taanman JW, Orth M. Huntington's disease affects mitochondrial network dynamics predisposing to pathogenic mitochondrial DNA mutations. Brain 2024; 147:2009-2022. [PMID: 38195181 PMCID: PMC11512592 DOI: 10.1093/brain/awae007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/27/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Huntington's disease (HD) predominantly affects the brain, causing a mixed movement disorder, cognitive decline and behavioural abnormalities. It also causes a peripheral phenotype involving skeletal muscle. Mitochondrial dysfunction has been reported in tissues of HD models, including skeletal muscle, and lymphoblast and fibroblast cultures from patients with HD. Mutant huntingtin protein (mutHTT) expression can impair mitochondrial quality control and accelerate mitochondrial ageing. Here, we obtained fresh human skeletal muscle, a post-mitotic tissue expressing the mutated HTT allele at physiological levels since birth, and primary cell lines from HTT CAG repeat expansion mutation carriers and matched healthy volunteers to examine whether such a mitochondrial phenotype exists in human HD. Using ultra-deep mitochondrial DNA (mtDNA) sequencing, we showed an accumulation of mtDNA mutations affecting oxidative phosphorylation. Tissue proteomics indicated impairments in mtDNA maintenance with increased mitochondrial biogenesis of less efficient oxidative phosphorylation (lower complex I and IV activity). In full-length mutHTT expressing primary human cell lines, fission-inducing mitochondrial stress resulted in normal mitophagy. In contrast, expression of high levels of N-terminal mutHTT fragments promoted mitochondrial fission and resulted in slower, less dynamic mitophagy. Expression of high levels of mutHTT fragments due to somatic nuclear HTT CAG instability can thus affect mitochondrial network dynamics and mitophagy, leading to pathogenic mtDNA mutations. We show that life-long expression of mutant HTT causes a mitochondrial phenotype indicative of mtDNA instability in fresh post-mitotic human skeletal muscle. Thus, genomic instability may not be limited to nuclear DNA, where it results in somatic expansion of the HTT CAG repeat length in particularly vulnerable cells such as striatal neurons. In addition to efforts targeting the causative mutation, promoting mitochondrial health may be a complementary strategy in treating diseases with DNA instability such as HD.
Collapse
Affiliation(s)
| | - Kerstin Kojer
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yiqin Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Tanja Hering
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Sarah Tabrizi
- UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Dementia Research Institute at UCL, London WC1N 3BG, UK
| | - Jan-Willem Taanman
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London NW3 2PF, UK
| | - Michael Orth
- Department of Neurology, Ulm University, 89081 Ulm, Germany
- Swiss Huntington Centre, Siloah AG, 3073 Gümligen, Switzerland
- University Hospital of Old Age Psychiatry and Psychotherapy, Bern University, CH-3000 Bern 60, Switzerland
| |
Collapse
|
15
|
Gu Y, Pope A, Smith C, Carmona C, Johnstone A, Shi L, Chen X, Santos S, Bacon-Brenes CC, Shoff T, Kleczko KM, Frydman J, Thompson LM, Mobley WC, Wu C. BDNF and TRiC-inspired reagent rescue cortical synaptic deficits in a mouse model of Huntington's disease. Neurobiol Dis 2024; 195:106502. [PMID: 38608784 DOI: 10.1016/j.nbd.2024.106502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Synaptic changes are early manifestations of neuronal dysfunction in Huntington's disease (HD). However, the mechanisms by which mutant HTT protein impacts synaptogenesis and function are not well understood. Herein we explored HD pathogenesis in the BACHD mouse model by examining synaptogenesis and function in long term primary cortical cultures. At DIV14 (days in vitro), BACHD cortical neurons showed no difference from WT neurons in synaptogenesis as revealed by colocalization of a pre-synaptic (Synapsin I) and a post-synaptic (PSD95) marker. From DIV21 to DIV35, BACHD neurons showed progressively reduced colocalization of Synapsin I and PSD95 relative to WT neurons. The deficits were effectively rescued by treatment of BACHD neurons with BDNF. The recombinant apical domain of CCT1 (ApiCCT1) yielded a partial rescuing effect. BACHD neurons also showed culture age-related significant functional deficits as revealed by multielectrode arrays (MEAs). These deficits were prevented by BDNF, whereas ApiCCT1 showed a less potent effect. These findings are evidence that deficits in BACHD synapse and function can be replicated in vitro and that BDNF or a TRiC-inspired reagent can potentially be protective against these changes in BACHD neurons. Our findings support the use of cellular models to further explicate HD pathogenesis and potential treatments.
Collapse
Affiliation(s)
- Yingli Gu
- Department of Neurology, The Fourth Hospital of Harbin Medical University, 150001, China; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Alexander Pope
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Charlene Smith
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America
| | - Christopher Carmona
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America; Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States of America; Beckman Laser Institute & Medical Clinic, University of California, Irvine, Irvine, CA, United States; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Aaron Johnstone
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Linda Shi
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, United States of America; Beckman Laser Institute & Medical Clinic, University of California, Irvine, Irvine, CA, United States; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Xuqiao Chen
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Sarai Santos
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | | | - Thomas Shoff
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Korbin M Kleczko
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305-5430, United States of America
| | - Judith Frydman
- Department of Biology and Genetics, Stanford University, Stanford, CA 94305-5430, United States of America
| | - Leslie M Thompson
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, United States of America; Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, United States of America; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, United States of America; Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA 92697, United States of America
| | - William C Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America.
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States of America.
| |
Collapse
|
16
|
D'Arcy MS. Mitophagy in health and disease. Molecular mechanisms, regulatory pathways, and therapeutic implications. Apoptosis 2024:10.1007/s10495-024-01977-y. [PMID: 38758472 DOI: 10.1007/s10495-024-01977-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Mitophagy, a specialised form of autophagy, selectively targeting damaged or dysfunctional mitochondria, and is crucial for maintaining cellular homeostasis and mitochondrial quality control. Dysregulation of mitophagy contributes to various pathological conditions, including cancer, neurodegenerative and cardiovascular diseases. This review presents a comprehensive analysis of the molecular mechanisms, regulatory pathways, and interplay with other cellular processes governing mitophagy, emphasizing its importance in physiological and pathological contexts. We explore the PINK1/Parkin-mediated and receptor-mediated mitophagy pathways, encompassing BNIP3/NIX, FUNDC1, and Bcl2-L-13. Additionally, we discuss post-translational modifications and cellular signalling pathways modulating mitophagy, as well as the connection between mitophagy and ageing, highlighting the decline in mitophagy efficiency and its impact on age-related pathologies. The review also investigates mitophagy's role in human diseases such as cancer, myocardial ischemia-reperfusion injury, Parkinson's, and Alzheimer's disease. We assess the potential of mitophagy-targeting therapeutic strategies, focusing on the development of dietary therapies, small molecules, drugs, and gene therapy approaches that modulate mitophagy levels and efficiency for treating these diseases and dysfunctions commonly observed in ageing individuals. In summary, this review offers an extensive overview of the molecular mechanisms and regulatory networks involved in mitophagy, its association with autophagy, and implications in human health and disease. By examining the potential of mitophagy-modulating therapies in disease and non-disease settings, we aim to inspire further research to develop innovative treatment strategies for various pathological conditions linked to mitochondrial dysfunction and to ageing.
Collapse
Affiliation(s)
- Mark S D'Arcy
- Hertfordshire International College, College Lane, Hatfield, AL10 9AB, UK.
| |
Collapse
|
17
|
Chen L, Qin Y, Guo T, Zhu W, Lin J, Xing T, Duan X, Zhang Y, Ruan E, Li X, Yin P, Li S, Li XJ, Yang S. HAP40 modulates mutant Huntingtin aggregation and toxicity in Huntington's disease mice. Cell Death Dis 2024; 15:337. [PMID: 38744826 PMCID: PMC11094052 DOI: 10.1038/s41419-024-06716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Huntington's disease (HD) is a monogenic neurodegenerative disease, caused by the CAG trinucleotide repeat expansion in exon 1 of the Huntingtin (HTT) gene. The HTT gene encodes a large protein known to interact with many proteins. Huntingtin-associated protein 40 (HAP40) is one that shows high binding affinity with HTT and functions to maintain HTT conformation in vitro. However, the potential role of HAP40 in HD pathogenesis remains unknown. In this study, we found that the expression level of HAP40 is in parallel with HTT but inversely correlates with mutant HTT aggregates in mouse brains. Depletion of endogenous HAP40 in the striatum of HD140Q knock-in (KI) mice leads to enhanced mutant HTT aggregation and neuronal loss. Consistently, overexpression of HAP40 in the striatum of HD140Q KI mice reduced mutant HTT aggregation and ameliorated the behavioral deficits. Mechanistically, HAP40 preferentially binds to mutant HTT and promotes Lysine 48-linked ubiquitination of mutant HTT. Our results revealed that HAP40 is an important regulator of HTT protein homeostasis in vivo and hinted at HAP40 as a therapeutic target in HD treatment.
Collapse
Affiliation(s)
- Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Yiyang Qin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Tingting Guo
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Wenzhen Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jingpan Lin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Tingting Xing
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xuezhi Duan
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yiran Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Eshu Ruan
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiang Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
| | - Su Yang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
| |
Collapse
|
18
|
Zimmermann A, Madeo F, Diwan A, Sadoshima J, Sedej S, Kroemer G, Abdellatif M. Metabolic control of mitophagy. Eur J Clin Invest 2024; 54:e14138. [PMID: 38041247 DOI: 10.1111/eci.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Mitochondrial dysfunction is a major hallmark of ageing and related chronic disorders. Controlled removal of damaged mitochondria by the autophagic machinery, a process known as mitophagy, is vital for mitochondrial homeostasis and cell survival. The central role of mitochondria in cellular metabolism places mitochondrial removal at the interface of key metabolic pathways affecting the biosynthesis or catabolism of acetyl-coenzyme A, nicotinamide adenine dinucleotide, polyamines, as well as fatty acids and amino acids. Molecular switches that integrate the metabolic status of the cell, like AMP-dependent protein kinase, protein kinase A, mechanistic target of rapamycin and sirtuins, have also emerged as important regulators of mitophagy. In this review, we discuss how metabolic regulation intersects with mitophagy. We place special emphasis on the metabolic regulatory circuits that may be therapeutically targeted to delay ageing and mitochondria-associated chronic diseases. Moreover, we identify outstanding knowledge gaps, such as the ill-defined distinction between basal and damage-induced mitophagy, which must be resolved to boost progress in this area.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth-University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth-University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Abhinav Diwan
- Division of Cardiology and Center for Cardiovascular Research, Washington University School of Medicine, and John Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Simon Sedej
- BioTechMed Graz, Graz, Austria
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Department of Biology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, Paris, France
| | - Mahmoud Abdellatif
- BioTechMed Graz, Graz, Austria
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
| |
Collapse
|
19
|
Dagar S, Sharma M, Tsaprailis G, Tapia CS, Crynen G, Joshi PS, Shahani N, Subramaniam S. Ribosome Profiling and Mass Spectrometry Reveal Widespread Mitochondrial Translation Defects in a Striatal Cell Model of Huntington Disease. Mol Cell Proteomics 2024; 23:100746. [PMID: 38447791 PMCID: PMC11040134 DOI: 10.1016/j.mcpro.2024.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024] Open
Abstract
Huntington disease (HD) is caused by an expanded polyglutamine mutation in huntingtin (mHTT) that promotes prominent atrophy in the striatum and subsequent psychiatric, cognitive deficits, and choreiform movements. Multiple lines of evidence point to an association between HD and aberrant striatal mitochondrial functions; however, the present knowledge about whether (or how) mitochondrial mRNA translation is differentially regulated in HD remains unclear. We found that protein synthesis is diminished in HD mitochondria compared to healthy control striatal cell models. We utilized ribosome profiling (Ribo-Seq) to analyze detailed snapshots of ribosome occupancy of the mitochondrial mRNA transcripts in control and HD striatal cell models. The Ribo-Seq data revealed almost unaltered ribosome occupancy on the nuclear-encoded mitochondrial transcripts involved in oxidative phosphorylation (SDHA, Ndufv1, Timm23, Tomm5, Mrps22) in HD cells. By contrast, ribosome occupancy was dramatically increased for mitochondrially encoded oxidative phosphorylation mRNAs (mt-Nd1, mt-Nd2, mt-Nd4, mt-Nd4l, mt-Nd5, mt-Nd6, mt-Co1, mt-Cytb, and mt-ATP8). We also applied tandem mass tag-based mass spectrometry identification of mitochondrial proteins to derive correlations between ribosome occupancy and actual mature mitochondrial protein products. We found many mitochondrial transcripts with comparable or higher ribosome occupancy, but diminished mitochondrial protein products, in HD. Thus, our study provides the first evidence of a widespread dichotomous effect on ribosome occupancy and protein abundance of mitochondria-related genes in HD.
Collapse
Affiliation(s)
- Sunayana Dagar
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Manish Sharma
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - George Tsaprailis
- Proteomics Core, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | | | - Gogce Crynen
- Bioinformatics and Statistics Core, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | - Preksha Sandipkumar Joshi
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Neelam Shahani
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California, USA; Norman Fixel Institute for Neurological Diseases, Gainesville, Florida, USA.
| |
Collapse
|
20
|
Liu YJ, Wang JY, Zhang XL, Jiang LL, Hu HY. Ataxin-2 sequesters Raptor into aggregates and impairs cellular mTORC1 signaling. FEBS J 2024; 291:1795-1812. [PMID: 38308810 DOI: 10.1111/febs.17081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/28/2023] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Ataxin-2 (Atx2) is a polyglutamine (polyQ) protein, in which abnormal expansion of the polyQ tract can trigger protein aggregation and consequently cause spinocerebellar ataxia type 2 (SCA2), but the mechanism underlying how Atx2 aggregation leads to proteinopathy remains elusive. Here, we investigate the molecular mechanism and cellular consequences of Atx2 aggregation by molecular cell biology approaches. We have revealed that either normal or polyQ-expanded Atx2 can sequester Raptor, a component of mammalian target of rapamycin complex 1 (mTORC1), into aggregates based on their specific interaction. Further research indicates that the polyQ tract and the N-terminal region (residues 1-784) of Atx2 are responsible for the specific sequestration. Moreover, this sequestration leads to suppression of the mTORC1 activity as represented by down-regulation of phosphorylated P70S6K, which can be reversed by overexpression of Raptor. As mTORC1 is a key regulator of autophagy, Atx2 aggregation and sequestration also induces autophagy by upregulating LC3-II and reducing phosphorylated ULK1 levels. This study proposes that Atx2 sequesters Raptor into aggregates, thereby impairing cellular mTORC1 signaling and inducing autophagy, and will be beneficial for a better understanding of the pathogenesis of SCA2 and other polyQ diseases.
Collapse
Affiliation(s)
- Ya-Jun Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Yang Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Le Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei-Lei Jiang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Su Z, Li J, Lin J, Li Z, Che Y, Zhang Z, Zheng G, Ye G, Yu W, Zeng Y, Xu P, Xu X, Xie Z, Wu Y, Shen H. TNF-α-Induced KAT2A Impedes BMMSC Quiescence by Mediating Succinylation of the Mitophagy-Related Protein VCP. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303388. [PMID: 38145956 PMCID: PMC10933659 DOI: 10.1002/advs.202303388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Regular quiescence and activation are important for the function of bone marrow mesenchymal stem cells (BMMSC), multipotent stem cells that are widely used in the clinic due to their capabilities in tissue repair and inflammatory disease treatment. TNF-α is previously reported to regulate BMMSC functions, including multilineage differentiation and immunoregulation. The present study demonstrates that TNF-α impedes quiescence and promotes the activation of BMMSC in vitro and in vivo. Mechanistically, the TNF-α-induced expression of KAT2A promotes the succinylation of VCP at K658, which inhibits the interaction between VCP and MFN1 and thus inhibits mitophagy. Furthermore, activated BMMSC exhibits stronger fracture repair and immunoregulation functions in vivo. This study contributes to a better understanding of the mechanisms of BMMSC quiescence and activation and to improving the effectiveness of BMMSC in clinical applications.
Collapse
Affiliation(s)
- Zepeng Su
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Jinteng Li
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Jiajie Lin
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Zhikun Li
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Yunshu Che
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Zhaoqiang Zhang
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Guan Zheng
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Guiwen Ye
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Wenhui Yu
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Yipeng Zeng
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Peitao Xu
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Xiaojun Xu
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Zhongyu Xie
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Yanfeng Wu
- Center for BiotherapyThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Huiyong Shen
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| |
Collapse
|
22
|
Yu G, Bai Y, Zhang ZY. Valosin-Containing Protein (VCP)/p97 Oligomerization. Subcell Biochem 2024; 104:485-501. [PMID: 38963497 DOI: 10.1007/978-3-031-58843-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Valosin-containing protein (VCP), also known as p97, is an evolutionarily conserved AAA+ ATPase essential for cellular homeostasis. Cooperating with different sets of cofactors, VCP is involved in multiple cellular processes through either the ubiquitin-proteasome system (UPS) or the autophagy/lysosomal route. Pathogenic mutations frequently found at the interface between the NTD domain and D1 ATPase domain have been shown to cause malfunction of VCP, leading to degenerative disorders including the inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD), amyotrophic lateral sclerosis (ALS), and cancers. Therefore, VCP has been considered as a potential therapeutic target for neurodegeneration and cancer. Most of previous studies found VCP predominantly exists and functions as a hexamer, which unfolds and extracts ubiquitinated substrates from protein complexes for degradation. However, recent studies have characterized a new VCP dodecameric state and revealed a controlling mechanism of VCP oligomeric states mediated by the D2 domain nucleotide occupancy. Here, we summarize our recent knowledge on VCP oligomerization, regulation, and potential implications of VCP in cellular function and pathogenic progression.
Collapse
Affiliation(s)
- Guimei Yu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
23
|
Wang S, Li G, Liang X, Wu Z, Chen C, Zhang F, Niu J, Li X, Yan J, Wang N, Li J, Wang Y. Small Extracellular Vesicles Derived from Altered Peptide Ligand-Loaded Dendritic Cell Act as A Therapeutic Vaccine for Spinal Cord Injury Through Eliciting CD4 + T cell-Mediated Neuroprotective Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304648. [PMID: 38037457 PMCID: PMC10797491 DOI: 10.1002/advs.202304648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/13/2023] [Indexed: 12/02/2023]
Abstract
The balance among different CD4+ T cell subsets is crucial for repairing the injured spinal cord. Dendritic cell (DC)-derived small extracellular vesicles (DsEVs) effectively activate T-cell immunity. Altered peptide ligands (APLs), derived from myelin basic protein (MBP), have been shown to affect CD4+ T cell subsets and reduce neuroinflammation levels. However, the application of APLs is challenging because of their poor stability and associated side effects. Herein, it is demonstrate that DsEVs can act as carriers for APL MBP87-99 A91 (A91-DsEVs) to induce the activation of 2 helper T (Th2) and regulatory T (Treg) cells for spinal cord injury (SCI) in mice. These stimulated CD4+ T cells can efficiently "home" to the lesion area and establish a beneficial microenvironment through inducing the activation of M2 macrophages/microglia, inhibiting the expression of inflammatory cytokines, and increasing the release of neurotrophic factors. The microenvironment mediated by A91-DsEVs may enhance axon regrowth, protect neurons, and promote remyelination, which may support the recovery of motor function in the SCI model mice. In conclusion, using A91-DsEVs as a therapeutic vaccine may help induce neuroprotective immunity in the treatment of SCI.
Collapse
Affiliation(s)
- Sikai Wang
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and RegenerationThe Second Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Guanglei Li
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Xiongjie Liang
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Zexuan Wu
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Chao Chen
- Faculty of Medicine and DentistryUniversity of AlbertaEdmontonT5C 0T2Canada
| | - Fawang Zhang
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Jiawen Niu
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and RegenerationThe Second Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Xuefeng Li
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Jinglong Yan
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Nanxiang Wang
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| | - Jing Li
- Department of Pathology and Electron MicroscopyFaculty of Basic Medical ScienceHarbin Medical UniversityNo. 157 Baojian RoadHarbin150086China
| | - Yufu Wang
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Baojian RoadHarbin150086China
| |
Collapse
|
24
|
Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Romero-Domínguez JM, Reche-López D, López-Cabrera A, Álvarez-Córdoba M, Munuera-Cabeza M, Talaverón-Rey M, Suárez-Carrillo A, Romero-González A, Sánchez-Alcázar JA. Mitochondrial Quality Control via Mitochondrial Unfolded Protein Response (mtUPR) in Ageing and Neurodegenerative Diseases. Biomolecules 2023; 13:1789. [PMID: 38136659 PMCID: PMC10741690 DOI: 10.3390/biom13121789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondria play a key role in cellular functions, including energy production and oxidative stress regulation. For this reason, maintaining mitochondrial homeostasis and proteostasis (homeostasis of the proteome) is essential for cellular health. Therefore, there are different mitochondrial quality control mechanisms, such as mitochondrial biogenesis, mitochondrial dynamics, mitochondrial-derived vesicles (MDVs), mitophagy, or mitochondrial unfolded protein response (mtUPR). The last item is a stress response that occurs when stress is present within mitochondria and, especially, when the accumulation of unfolded and misfolded proteins in the mitochondrial matrix surpasses the folding capacity of the mitochondrion. In response to this, molecular chaperones and proteases as well as the mitochondrial antioxidant system are activated to restore mitochondrial proteostasis and cellular function. In disease contexts, mtUPR modulation holds therapeutic potential by mitigating mitochondrial dysfunction. In particular, in the case of neurodegenerative diseases, such as primary mitochondrial diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), or Friedreich's Ataxia (FA), there is a wealth of evidence demonstrating that the modulation of mtUPR helps to reduce neurodegeneration and its associated symptoms in various cellular and animal models. These findings underscore mtUPR's role as a promising therapeutic target in combating these devastating disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jose Antonio Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (P.C.-H.); (D.G.-F.); (R.P.-P.); (J.M.R.-D.); (D.R.-L.); (A.L.-C.); (M.Á.-C.); (M.M.-C.); (M.T.-R.); (A.S.-C.); (A.R.-G.)
| |
Collapse
|
25
|
Wang Y, Dai X, Li H, Jiang H, Zhou J, Zhang S, Guo J, Shen L, Yang H, Lin J, Yan H. The role of mitochondrial dynamics in disease. MedComm (Beijing) 2023; 4:e462. [PMID: 38156294 PMCID: PMC10753647 DOI: 10.1002/mco2.462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023] Open
Abstract
Mitochondria are multifaceted and dynamic organelles regulating various important cellular processes from signal transduction to determining cell fate. As dynamic properties of mitochondria, fusion and fission accompanied with mitophagy, undergo constant changes in number and morphology to sustain mitochondrial homeostasis in response to cell context changes. Thus, the dysregulation of mitochondrial dynamics and mitophagy is unsurprisingly related with various diseases, but the unclear underlying mechanism hinders their clinical application. In this review, we summarize the recent developments in the molecular mechanism of mitochondrial dynamics and mitophagy, particularly the different roles of key components in mitochondrial dynamics in different context. We also summarize the roles of mitochondrial dynamics and target treatment in diseases related to the cardiovascular system, nervous system, respiratory system, and tumor cell metabolism demanding high-energy. In these diseases, it is common that excessive mitochondrial fission is dominant and accompanied by impaired fusion and mitophagy. But there have been many conflicting findings about them recently, which are specifically highlighted in this view. We look forward that these findings will help broaden our understanding of the roles of the mitochondrial dynamics in diseases and will be beneficial to the discovery of novel selective therapeutic targets.
Collapse
Affiliation(s)
- Yujuan Wang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Xinyan Dai
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Hui Li
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Huiling Jiang
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Junfu Zhou
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Shiying Zhang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Jiacheng Guo
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Lidu Shen
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Huantao Yang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Jie Lin
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Hengxiu Yan
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| |
Collapse
|
26
|
Huang Y, Liang B, Li Z, Zhong Y, Wang B, Zhang B, Du J, Ye R, Xian H, Min W, Yan X, Deng Y, Feng Y, Bai R, Fan B, Yang X, Huang Z. Polystyrene nanoplastic exposure induces excessive mitophagy by activating AMPK/ULK1 pathway in differentiated SH-SY5Y cells and dopaminergic neurons in vivo. Part Fibre Toxicol 2023; 20:44. [PMID: 37993864 PMCID: PMC10664492 DOI: 10.1186/s12989-023-00556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Microplastics and nanoplastics (MNPs) are emerging environmental contaminants detected in human samples, and have raised concerns regarding their potential risks to human health, particularly neurotoxicity. This study aimed to investigate the deleterious effects of polystyrene nanoplastics (PS-NPs, 50 nm) and understand their mechanisms in inducing Parkinson's disease (PD)-like neurodegeneration, along with exploring preventive strategies. METHODS Following exposure to PS-NPs (0.5-500 μg/mL), we assessed cytotoxicity, mitochondrial integrity, ATP levels, and mitochondrial respiration in dopaminergic-differentiated SH-SY5Y cells. Molecular docking and dynamic simulations explored PS-NPs' interactions with mitochondrial complexes. We further probed mitophagy's pivotal role in PS-NP-induced mitochondrial damage and examined melatonin's ameliorative potential in vitro. We validated melatonin's intervention (intraperitoneal, 10 mg/kg/d) in C57BL/6 J mice exposed to 250 mg/kg/d of PS-NPs for 28 days. RESULTS In our in vitro experiments, we observed PS-NP accumulation in cells, including mitochondria, leading to cell toxicity and reduced viability. Notably, antioxidant treatment failed to fully rescue viability, suggesting reactive oxygen species (ROS)-independent cytotoxicity. PS-NPs caused significant mitochondrial damage, characterized by altered morphology, reduced mitochondrial membrane potential, and decreased ATP production. Subsequent investigations pointed to PS-NP-induced disruption of mitochondrial respiration, potentially through interference with complex I (CI), a concept supported by molecular docking studies highlighting the influence of PS-NPs on CI. Rescue experiments using an AMPK pathway inhibitor (compound C) and an autophagy inhibitor (3-methyladenine) revealed that excessive mitophagy was induced through AMPK/ULK1 pathway activation, worsening mitochondrial damage and subsequent cell death in differentiated SH-SY5Y cells. Notably, we identified melatonin as a potential protective agent, capable of alleviating PS-NP-induced mitochondrial dysfunction. Lastly, our in vivo experiments demonstrated that melatonin could mitigate dopaminergic neuron loss and motor impairments by restoring mitophagy regulation in mice. CONCLUSIONS Our study demonstrated that PS-NPs disrupt mitochondrial function by affecting CI, leading to excessive mitophagy through the AMPK/ULK1 pathway, causing dopaminergic neuron death. Melatonin can counteract PS-NP-induced mitochondrial dysfunction and motor impairments by regulating mitochondrial autophagy. These findings offer novel insights into the MNP-induced PD-like neurodegenerative mechanisms, and highlight melatonin's protective potential in mitigating the MNP's environmental risk.
Collapse
Affiliation(s)
- Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Bo Wang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Bingli Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jiaxin Du
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Weicui Min
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Yanhong Deng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yu Feng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ruobing Bai
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Bingchi Fan
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
27
|
Thompson LM, Orr HT. HD and SCA1: Tales from two 30-year journeys since gene discovery. Neuron 2023; 111:3517-3530. [PMID: 37863037 PMCID: PMC10842341 DOI: 10.1016/j.neuron.2023.09.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023]
Abstract
One of the more transformative findings in human genetics was the discovery that the expansion of unstable nucleotide repeats underlies a group of inherited neurological diseases. A subset of these unstable repeat neurodegenerative diseases is due to the expansion of a CAG trinucleotide repeat encoding a stretch of glutamines, i.e., the polyglutamine (polyQ) repeat neurodegenerative diseases. Among the CAG/polyQ repeat diseases are Huntington's disease (HD) and spinocerebellar ataxia type 1 (SCA1), in which the expansions are within widely expressed proteins. Although both HD and SCA1 are autosomal dominantly inherited, and both typically cause mid- to late-life-onset movement disorders with cognitive decline, they each are characterized by distinct clinical characteristics and predominant sites of neuropathology. Importantly, the respective affected proteins, Huntingtin (HTT, HD) and Ataxin 1 (ATXN1, SCA1), have unique functions and biological properties. Here, we review HD and SCA1 with a focus on how their disease-specific and shared features may provide informative insights.
Collapse
Affiliation(s)
- Leslie M Thompson
- Department of Psychiatry and Human Behavior, Department of Neurobiology and Behavior, Department of Biological Chemistry, Institute of Memory Impairments and Neurological Disorders, Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis and Saint Paul, MN 55455, USA.
| |
Collapse
|
28
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
29
|
Dridi H, Yehya M, Barsotti R, Liu Y, Reiken S, Azria L, Yuan Q, Bahlouli L, Soni RK, Marks AR, Lacampagne A, Matecki S. Aberrant mitochondrial dynamics contributes to diaphragmatic weakness induced by mechanical ventilation. PNAS NEXUS 2023; 2:pgad336. [PMID: 37954156 PMCID: PMC10635656 DOI: 10.1093/pnasnexus/pgad336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023]
Abstract
In critical care patients, the ""temporary inactivity of the diaphragm caused by mechanical ventilation (MV) triggers a series of events leading to diaphragmatic dysfunction and atrophy, commonly known as ventilator-induced diaphragm dysfunction (VIDD). While mitochondrial dysfunction related to oxidative stress is recognized as a crucial factor in VIDD, the exact molecular mechanism remains poorly understood. In this study, we observe that 6 h of MV triggers aberrant mitochondrial dynamics, resulting in a reduction in mitochondrial size and interaction, associated with increased expression of dynamin-related protein 1 (DRP1). This effect can be prevented by P110, a molecule that inhibits the recruitment of DRP1 to the mitochondrial membrane. Furthermore, isolated mitochondria from the diaphragms of ventilated patients exhibited increased production of reactive oxygen species (ROS). These mitochondrial changes were associated with the rapid oxidation of type 1 ryanodine receptor (RyR1) and a decrease in the stabilizing subunit calstabin 1. Subsequently, we observed that the sarcoplasmic reticulum (SR) in the ventilated diaphragms showed increased calcium leakage and reduced contractile function. Importantly, the mitochondrial fission inhibitor P110 effectively prevented all of these alterations. Taken together, the results of our study illustrate that MV leads, in the diaphragm, to both mitochondrial fragmentation and dysfunction, linked to the up-/down-regulation of 320 proteins, as assessed through global comprehensive quantitative proteomics analysis, primarily associated with mitochondrial function. These outcomes underscore the significance of developing compounds aimed at modulating the balance between mitochondrial fission and fusion as potential interventions to mitigate VIDD in human patients.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Marc Yehya
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier 34000, France
| | - Robert Barsotti
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Lan Azria
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier 34000, France
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Laith Bahlouli
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, NewYork, NY 10032, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, NewYork, NY 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, NewYork, NY 10032, USA
| | - Alain Lacampagne
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier 34000, France
| | - Stefan Matecki
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier 34000, France
| |
Collapse
|
30
|
Tsioras K, Smith KC, Edassery SL, Garjani M, Li Y, Williams C, McKenna ED, Guo W, Wilen AP, Hark TJ, Marklund SL, Ostrow LW, Gilthorpe JD, Ichida JK, Kalb RG, Savas JN, Kiskinis E. Analysis of proteome-wide degradation dynamics in ALS SOD1 iPSC-derived patient neurons reveals disrupted VCP homeostasis. Cell Rep 2023; 42:113160. [PMID: 37776851 PMCID: PMC10785776 DOI: 10.1016/j.celrep.2023.113160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/18/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023] Open
Abstract
Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS) through gain-of-function effects, yet the mechanisms by which misfolded mutant SOD1 (mutSOD1) protein impairs human motor neurons (MNs) remain unclear. Here, we use induced-pluripotent-stem-cell-derived MNs coupled to metabolic stable isotope labeling and mass spectrometry to investigate proteome-wide degradation dynamics. We find several proteins, including the ALS-causal valosin-containing protein (VCP), which predominantly acts in proteasome degradation and autophagy, that degrade slower in mutSOD1 relative to isogenic control MNs. The interactome of VCP is altered in mutSOD1 MNs in vitro, while VCP selectively accumulates in the affected motor cortex of ALS-SOD1 patients. Overexpression of VCP rescues mutSOD1 toxicity in MNs in vitro and in a C. elegans model in vivo, in part due to its ability to modulate the degradation of insoluble mutSOD1. Our results demonstrate that VCP contributes to mutSOD1-dependent degeneration, link two distinct ALS-causal genes, and highlight selective protein degradation impairment in ALS pathophysiology.
Collapse
Affiliation(s)
- Konstantinos Tsioras
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kevin C Smith
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Seby L Edassery
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mehraveh Garjani
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yichen Li
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Chloe Williams
- Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden
| | - Elizabeth D McKenna
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wenxuan Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Anika P Wilen
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Timothy J Hark
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Stefan L Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Lyle W Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | | | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Robert G Kalb
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey N Savas
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
31
|
Genin EC, Abou-Ali M, Paquis-Flucklinger V. Mitochondria, a Key Target in Amyotrophic Lateral Sclerosis Pathogenesis. Genes (Basel) 2023; 14:1981. [PMID: 38002924 PMCID: PMC10671245 DOI: 10.3390/genes14111981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial dysfunction occurs in numerous neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS), where it contributes to motor neuron (MN) death. Of all the factors involved in ALS, mitochondria have been considered as a major player, as secondary mitochondrial dysfunction has been found in various models and patients. Abnormal mitochondrial morphology, defects in mitochondrial dynamics, altered activities of respiratory chain enzymes and increased production of reactive oxygen species have been described. Moreover, the identification of CHCHD10 variants in ALS patients was the first genetic evidence that a mitochondrial defect may be a primary cause of MN damage and directly links mitochondrial dysfunction to the pathogenesis of ALS. In this review, we focus on the role of mitochondria in ALS and highlight the pathogenic variants of ALS genes associated with impaired mitochondrial functions. The multiple pathways demonstrated in ALS pathogenesis suggest that all converge to a common endpoint leading to MN loss. This may explain the disappointing results obtained with treatments targeting a single pathological process. Fighting against mitochondrial dysfunction appears to be a promising avenue for developing combined therapies in the future.
Collapse
Affiliation(s)
- Emmanuelle C. Genin
- Institute for Research on Cancer and Aging, Nice (IRCAN), Université Côte d’Azur, Inserm U1081, CNRS UMR7284, Centre Hospitalier Universitaire (CHU) de Nice, 06200 Nice, France; (M.A.-A.); (V.P.-F.)
| | | | | |
Collapse
|
32
|
Bustamante-Barrientos FA, Luque-Campos N, Araya MJ, Lara-Barba E, de Solminihac J, Pradenas C, Molina L, Herrera-Luna Y, Utreras-Mendoza Y, Elizondo-Vega R, Vega-Letter AM, Luz-Crawford P. Mitochondrial dysfunction in neurodegenerative disorders: Potential therapeutic application of mitochondrial transfer to central nervous system-residing cells. J Transl Med 2023; 21:613. [PMID: 37689642 PMCID: PMC10493034 DOI: 10.1186/s12967-023-04493-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
Mitochondrial dysfunction is reiteratively involved in the pathogenesis of diverse neurodegenerative diseases. Current in vitro and in vivo approaches support that mitochondrial dysfunction is branded by several molecular and cellular defects, whose impact at different levels including the calcium and iron homeostasis, energetic balance and/or oxidative stress, makes it difficult to resolve them collectively given their multifactorial nature. Mitochondrial transfer offers an overall solution since it contains the replacement of damage mitochondria by healthy units. Therefore, this review provides an introducing view on the structure and energy-related functions of mitochondria as well as their dynamics. In turn, we summarize current knowledge on how these features are deregulated in different neurodegenerative diseases, including frontotemporal dementia, multiple sclerosis, amyotrophic lateral sclerosis, Friedreich ataxia, Alzheimer´s disease, Parkinson´s disease, and Huntington's disease. Finally, we analyzed current advances in mitochondrial transfer between diverse cell types that actively participate in neurodegenerative processes, and how they might be projected toward developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - María Jesús Araya
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Eliana Lara-Barba
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Javiera de Solminihac
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
| | - Carolina Pradenas
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Yeimi Herrera-Luna
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | | | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaiso, Valparaiso, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| |
Collapse
|
33
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 2023; 8:304. [PMID: 37582956 PMCID: PMC10427715 DOI: 10.1038/s41392-023-01503-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Shouliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Baorong Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zihong Ma
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Ying Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Yu Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jiahao Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China.
| |
Collapse
|
34
|
Chu S, Xie X, Payan C, Stochaj U. Valosin containing protein (VCP): initiator, modifier, and potential drug target for neurodegenerative diseases. Mol Neurodegener 2023; 18:52. [PMID: 37545006 PMCID: PMC10405438 DOI: 10.1186/s13024-023-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
The AAA+ ATPase valosin containing protein (VCP) is essential for cell and organ homeostasis, especially in cells of the nervous system. As part of a large network, VCP collaborates with many cofactors to ensure proteostasis under normal, stress, and disease conditions. A large number of mutations have revealed the importance of VCP for human health. In particular, VCP facilitates the dismantling of protein aggregates and the removal of dysfunctional organelles. These are critical events to prevent malfunction of the brain and other parts of the nervous system. In line with this idea, VCP mutants are linked to the onset and progression of neurodegeneration and other diseases. The intricate molecular mechanisms that connect VCP mutations to distinct brain pathologies continue to be uncovered. Emerging evidence supports the model that VCP controls cellular functions on multiple levels and in a cell type specific fashion. Accordingly, VCP mutants derail cellular homeostasis through several mechanisms that can instigate disease. Our review focuses on the association between VCP malfunction and neurodegeneration. We discuss the latest insights in the field, emphasize open questions, and speculate on the potential of VCP as a drug target for some of the most devastating forms of neurodegeneration.
Collapse
Affiliation(s)
- Siwei Chu
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Xinyi Xie
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Carla Payan
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada.
- Quantitative Life Sciences Program, McGill University, Montreal, Canada.
| |
Collapse
|
35
|
Luque-Campos N, Riquelme R, Molina L, Canedo-Marroquín G, Vega-Letter AM, Luz-Crawford P, Bustamante-Barrientos FA. Exploring the therapeutic potential of the mitochondrial transfer-associated enzymatic machinery in brain degeneration. Front Physiol 2023; 14:1217815. [PMID: 37576343 PMCID: PMC10416799 DOI: 10.3389/fphys.2023.1217815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Mitochondrial dysfunction is a central event in the pathogenesis of several degenerative brain disorders. It entails fission and fusion dynamics disruption, progressive decline in mitochondrial clearance, and uncontrolled oxidative stress. Many therapeutic strategies have been formulated to reverse these alterations, including replacing damaged mitochondria with healthy ones. Spontaneous mitochondrial transfer is a naturally occurring process with different biological functions. It comprises mitochondrial donation from one cell to another, carried out through different pathways, such as the formation and stabilization of tunneling nanotubules and Gap junctions and the release of extracellular vesicles with mitochondrial cargoes. Even though many aspects of regulating these mechanisms still need to be discovered, some key enzymatic regulators have been identified. This review summarizes the current knowledge on mitochondrial dysfunction in different neurodegenerative disorders. Besides, we analyzed the usage of mitochondrial transfer as an endogenous revitalization tool, emphasizing the enzyme regulators that govern this mechanism. Going deeper into this matter would be helpful to take advantage of the therapeutic potential of mitochondrial transfer.
Collapse
Affiliation(s)
- Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT-Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Ricardo Riquelme
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Gisela Canedo-Marroquín
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaiso, Valparaiso, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT-Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Felipe A. Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT-Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
36
|
Zhu H, Wang J, Xin T, Chen S, Hu R, Li Y, Zhang M, Zhou H. DUSP1 interacts with and dephosphorylates VCP to improve mitochondrial quality control against endotoxemia-induced myocardial dysfunction. Cell Mol Life Sci 2023; 80:213. [PMID: 37464072 PMCID: PMC11072740 DOI: 10.1007/s00018-023-04863-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
Dual specificity phosphatase 1 (DUSP1) and valosin-containing protein (VCP) have both been reported to regulate mitochondrial homeostasis. However, their impact on mitochondrial quality control (MQC) and myocardial function during LPS-induced endotoxemia remains unclear. We addressed this issue by modeling LPS-induced endotoxemia in DUSP1 transgenic (DUSP1TG) mice and in cultured DUSP1-overexpressing HL-1 cardiomyocytes. Accompanying characteristic structural and functional deficits, cardiac DUSP1 expression was significantly downregulated following endotoxemia induction in wild type mice. In contrast, markedly reduced myocardial inflammation, cardiomyocyte apoptosis, cardiac structural disorder, cardiac injury marker levels, and normalized systolic/diastolic function were observed in DUSP1TG mice. Furthermore, DUSP1 overexpression in HL-1 cells significantly attenuated LPS-mediated mitochondrial dysfunction by preserving MQC, as indicated by normalized mitochondrial dynamics, improved mitophagy, enhanced biogenesis, and attenuated mitochondrial unfolded protein response. Molecular assays showed that VCP was a substrate of DUSP1 and the interaction between DUSP1 and VCP primarily occurred on the mitochondria. Mechanistically, DUSP1 phosphatase domain promoted the physiological DUSP1/VCP interaction which prevented LPS-mediated VCP Ser784 phosphorylation. Accordingly, transfection with a phosphomimetic VCP mutant abolished the protective actions of DUSP1 on MQC and aggravated inflammation, apoptosis, and contractility/relaxation capacity in HL-1 cardiomyocytes. These findings support the involvement of the novel DUSP1/VCP/MQC pathway in the pathogenesis of endotoxemia-caused myocardial dysfunction.
Collapse
Affiliation(s)
- Hang Zhu
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China
| | - Jin Wang
- Department of Vascular Medicine, Peking University Shougang Hospital, Beijing, 100144, China
| | - Ting Xin
- Department of Cardiology, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Shanshan Chen
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China
| | - Ruiying Hu
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China
| | - Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China.
| |
Collapse
|
37
|
Wu S, Li X, Huang G, Guo J, Zhang X, Liao L, Zhi W, Li K, Wang Y, Chu Z, Shang L, Yu X, Yu K, Xu W. Dissecting Sperm Mitochondrial G-Quadruplex Structures Using a Fluorescent Probe Biomarker to Monitor and Regulate Fertilization Capability. ACS Sens 2023; 8:2186-2196. [PMID: 37224082 PMCID: PMC10295354 DOI: 10.1021/acssensors.3c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
To monitor the levels of mitochondrial DNA G-quadruplexes (mtDNA G4s) in spermatozoa and to explore the possibility using mtDNA G4s as a reliable marker in patients with multiple clinical insemination failures, a novel chemical TPE-mTO probe engineered in our previous work was used on both samples from the mice sperm and from patients with fertilization failure. Expression of valosin-containing protein and the zona-free hamster egg assay were used to evaluate mitophagy and human sperm penetration. RNA-sequencing was used to explore expression changes of key genes affected by mtDNA G4s. Results showed that the probe can track mtDNA G4s in spermatozoa easily and quickly with fewer backgrounds. Significantly increased mtDNA G4s were also found in patients with fertilization failure, using the flow-cytometry-based TPE-mTO probe detection method. A sperm-hamster egg penetration experiment showed that abnormal fertilization caused by increased mtDNA G4s can be effectively restored by a mitophagy inducer. This study provides a novel method for monitoring etiological biomarkers in patients with clinical infertility and treatment for patients with abnormal fertilization caused by mtDNA G4 dysfunction.
Collapse
Affiliation(s)
- Sixian Wu
- Joint
Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric,
Gynaecologic and Paediatric Diseases and Birth Defects of Ministry
of Education, West China Second University
Hospital, Med-X Centre for Manufacturing, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Xiaoliang Li
- Joint
Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric,
Gynaecologic and Paediatric Diseases and Birth Defects of Ministry
of Education, West China Second University
Hospital, Med-X Centre for Manufacturing, Sichuan University, Chengdu 610041, People’s Republic of China
- Reproduction
Medical Centre, West China Second University
Hospital, Sichuan University, Chengdu 610041, China
| | - Gelin Huang
- Joint
Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric,
Gynaecologic and Paediatric Diseases and Birth Defects of Ministry
of Education, West China Second University
Hospital, Med-X Centre for Manufacturing, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Juncen Guo
- Joint
Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric,
Gynaecologic and Paediatric Diseases and Birth Defects of Ministry
of Education, West China Second University
Hospital, Med-X Centre for Manufacturing, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Xueguang Zhang
- Joint
Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric,
Gynaecologic and Paediatric Diseases and Birth Defects of Ministry
of Education, West China Second University
Hospital, Med-X Centre for Manufacturing, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Lu Liao
- Puhua
Technology Co., Ltd., Chengdu 610200, China
| | - Weiwei Zhi
- Sichuan
Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China
| | - Kun Li
- Key
Laboratory of Green Chemistry and Technology (Ministry of Education),
College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yan Wang
- Reproduction
Medical Centre, West China Second University
Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiwen Chu
- West
China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Lijun Shang
- School of
Human Sciences, London Metropolitan University, London N7 8DB, U.K.
| | - Xiaoqi Yu
- Key
Laboratory of Green Chemistry and Technology (Ministry of Education),
College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Kangkang Yu
- Key
Laboratory of Bio-resources and Eco-environment (Ministry of Education),
College of Life Sciences, Sichuan University, Chengdu 610064, China
- Key
Laboratory of Green Chemistry and Technology (Ministry of Education),
College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wenming Xu
- Joint
Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric,
Gynaecologic and Paediatric Diseases and Birth Defects of Ministry
of Education, West China Second University
Hospital, Med-X Centre for Manufacturing, Sichuan University, Chengdu 610041, People’s Republic of China
| |
Collapse
|
38
|
Zheng Z, Han L, Li Y, Chen Z, Yang W, Liu C, Tao M, Jiang Y, Ke X, Liu Y, Guo X. Phospholipase A2-activating protein induces mitophagy trough anti-apoptotic MCL1-mediated NLRX1 oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023:119487. [PMID: 37211156 DOI: 10.1016/j.bbamcr.2023.119487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Mitochondrial protein homeostasis is fine-tuned by diverse physiological processes such as mitochondria-associated degradation (MAD), which is regulated by valosin-containing protein (VCP) and its cofactors. As a cofactor of VCP, the mutation of phospholipase A-2-activating protein (PLAA) is the genetic cause of PLAA-associated neurodevelopmental disorder (PLAAND). However, the physiological and pathological roles of PLAA in mitochondria remain unclear. Here, we demonstrate that PLAA partially associates with mitochondria. Deficiency in PLAA increases mitochondrial reactive oxygen species (ROS) production, reduces mitochondrial membrane potential, inhibits mitochondrial respiratory activity and causes excessive mitophagy. Mechanically, PLAA interacts with myeloid cell leukemia-1 (MCL1) and facilitates its retro-translocation and proteasome-dependent degradation. The upregulation of MCL1 promotes the oligomerization of NLR family member X1 (NLRX1) and activation of mitophagy. Whereas downregulating NLRX1 abolishes MCL1 induced mitophagy. In summary, our data identify PLAA as a novel mediator of mitophagy by regulating MCL1-NLRX1 axis. We propose mitophagy as a target for therapeutic intervention in PLAAND.
Collapse
Affiliation(s)
- Zhilong Zheng
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Lu Han
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China; Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanbo Li
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhen Chen
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wangju Yang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunyue Liu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengdan Tao
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yueqing Jiang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyan Ke
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xing Guo
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
39
|
Banarase TA, Sammeta SS, Wankhede NL, Mangrulkar SV, Rahangdale SR, Aglawe MM, Taksande BG, Upaganlawar AB, Umekar MJ, Kale MB. Mitophagy regulation in aging and neurodegenerative disease. Biophys Rev 2023; 15:239-255. [PMID: 37124925 PMCID: PMC10133433 DOI: 10.1007/s12551-023-01057-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are the primary cellular energy generators, supplying the majority of adenosine triphosphate through oxidative phosphorylation, which is necessary for neuron function and survival. Mitophagy is the metabolic process of eliminating dysfunctional or redundant mitochondria. It is a type of autophagy and it is crucial for maintaining mitochondrial and neuronal health. Impaired mitophagy leads to an accumulation of damaged mitochondria and proteins leading to the dysregulation of mitochondrial quality control processes. Recent research shows the vital role of mitophagy in neurons and the pathogenesis of major neurodegenerative diseases. Mitophagy also plays a major role in the process of aging. This review describes the alterations that are being caused in the mitophagy process at the molecular level in aging and in neurodegenerative diseases, particularly Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis, also looks at how mitophagy can be exploited as a therapeutic target for these diseases.
Collapse
Affiliation(s)
- Trupti A. Banarase
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Shivkumar S. Sammeta
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Nitu L. Wankhede
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Shubhada V. Mangrulkar
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Sandip R. Rahangdale
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Manish M. Aglawe
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Brijesh G. Taksande
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Aman B. Upaganlawar
- SNJB’s Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra India 423101
| | - Milind J. Umekar
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| | - Mayur B. Kale
- Division of Neuroscience, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra India 441002
| |
Collapse
|
40
|
Kim HN, Park HJ, Lin Y, Cho T, Ryu KS, Won HS, Jin HE, Kim JH, Baek SH, Lee YH, Seo MD. Coiled-coil structure mediated inhibition of the cytotoxic huntingtin amyloid fibrils by an IP3 receptor fragment. Int J Biol Macromol 2023; 232:123412. [PMID: 36706883 DOI: 10.1016/j.ijbiomac.2023.123412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Disruption of cellular homeostasis by the aggregation of polyglutamine (polyQ) in the huntingtin protein (Htt) leads Huntington's disease (HD). Effective drugs for treating HD have not been developed, as the molecular mechanism underlying HD pathogenesis remains unclear. To develop strategies for inhibiting HD pathogenesis, the intermolecular interaction of Htt with IP3 receptor 1 (IP3R1) was investigated. Peptide (termed ICT60) corresponding to a coiled-coil motif in the C-terminus of IP3R1 was designed. Several biophysical approaches revealed the strong and specific binding of ICT60 to the N-terminal part of HttEx1. ICT60 inhibited not only amyloid formation by HttEx1, but also the cytotoxicity and cell-penetration ability of the amyloid fibrils of HttEx1. The importance of coiled-coil structure was verified by charge-manipulated variants. The coiled-coil structures of ICT60-KK and -EE were partially and largely disrupted, respectively. ICT60 wild-type and -KK inhibited amyloid formation by HttEx1-46Q, whereas ICT60-EE did not block amyloidogenesis. Similarly, the cytotoxicity and cell-penetration ability of the amyloid fibrils of HttEx1-46Q were efficiently inhibited by ICT60 wild-type and ICT60-KK, but not by ICT60-EE. We propose a mechanical model explaining how an IP3 receptor-inspired molecule can modulate cytotoxic amyloid formation by Htt, providing a molecular basis for developing therapeutics to treat HD.
Collapse
Affiliation(s)
- Ha-Neul Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea
| | - Hye-Jin Park
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 28119, Republic of Korea
| | - Taehwan Cho
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea
| | - Kyoung-Seok Ryu
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 28119, Republic of Korea
| | - Hyung-Sik Won
- BK21 Project Team, Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 27478, Republic of Korea
| | - Hyo-Eon Jin
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea
| | - Ji-Hun Kim
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Seung-Hoon Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea.
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 28119, Republic of Korea.
| | - Min-Duk Seo
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea.
| |
Collapse
|
41
|
Li J, Yang D, Li Z, Zhao M, Wang D, Sun Z, Wen P, Dai Y, Gou F, Ji Y, Zhao D, Yang L. PINK1/Parkin-mediated mitophagy in neurodegenerative diseases. Ageing Res Rev 2023; 84:101817. [PMID: 36503124 DOI: 10.1016/j.arr.2022.101817] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Mitochondria play key roles in bioenergetics, metabolism, and signaling; therefore, stable mitochondrial function is essential for cell survival, particularly in energy-intensive neuronal cells. In neurodegenerative diseases, damaged mitochondria accumulate in neurons causing associated bioenergetics deficiency, impaired cell signaling, defective cytoplasmic calcium buffering, and other pathological changes. Mitochondrial quality control is an important mechanism to ensure the maintenance of mitochondrial health, homeostasis, and mitophagy, the latter of which is a pathway that delivers defective mitochondria to the lysosome for degradation. Defective mitophagy is thought to be responsible for the accumulation of damaged mitochondria, which leads to cellular dysfunction and/or death in neurodegenerative diseases. PINK1/Parkin mainly regulates ubiquitin-dependent mitophagy, which is crucial for many aspects of mitochondrial physiology, particularly the initiation of autophagic mechanisms. Therefore, in the present review, we summarize the current knowledge of the conventional mitophagy pathway, focusing on the molecular mechanisms underlying mitophagy dysregulation in prion disease and other age-related neurodegenerative diseases, especially in relation to the PINK1/Parkin pathway. Moreover, we list the inducers of mitophagy that possess neuroprotective effects, in addition to their mechanisms related to the PINK1/Parkin pathway. These mechanisms may provide potential interventions centered on the regulation of mitophagy and offer therapeutic strategies for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jie Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Dongming Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Zhiping Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Mengyang Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Dongdong Wang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Zhixin Sun
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Pei Wen
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yuexin Dai
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Fengting Gou
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yilan Ji
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China.
| |
Collapse
|
42
|
Bamshad C, Najafi-Ghalehlou N, Pourmohammadi-Bejarpasi Z, Tomita K, Kuwahara Y, Sato T, Feizkhah A, Roushnadeh AM, Roudkenar MH. Mitochondria: how eminent in ageing and neurodegenerative disorders? Hum Cell 2023; 36:41-61. [PMID: 36445534 DOI: 10.1007/s13577-022-00833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Numerous factors are implicated in the onset and progression of ageing and neurodegenerative disorders, with defects in cell energy supply and free radicals regulation designated as being the main functions of mitochondria and highly accentuated in plentiful studies. Hence, analysing the role of mitochondria as one of the main factors implicated in these disorders could undoubtedly come in handy with respect to disease prevention and treatment. In this review, first, we will explore how mitochondria account for neurodegenerative disorders and ageing and later will draw the various pathways contributing to mitochondrial dysfunction in their distinct way. Also, we will discuss the deviation-countering mechanisms, particularly mitophagy, a subset of autophagy known as a much larger cellular defence mechanism and regulatory system, along with its potential therapeutic effects. Last but not least, we will be highlighting the mitochondrial transfer experiments with animal models of neurodegenerative disorders.
Collapse
Affiliation(s)
- Chia Bamshad
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushnadeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
43
|
Rehman MU, Sehar N, Dar NJ, Khan A, Arafah A, Rashid S, Rashid SM, Ganaie MA. Mitochondrial dysfunctions, oxidative stress and neuroinflammation as therapeutic targets for neurodegenerative diseases: An update on current advances and impediments. Neurosci Biobehav Rev 2023; 144:104961. [PMID: 36395982 DOI: 10.1016/j.neubiorev.2022.104961] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer disease (AD), Parkinson disease (PD), and Huntington disease (HD) represent a major socio-economic challenge in view of their high prevalence yet poor treatment outcomes affecting quality of life. The major challenge in drug development for these NDs is insufficient clarity about the mechanisms involved in pathogenesis and pathophysiology. Mitochondrial dysfunction, oxidative stress and inflammation are common pathways that are linked to neuronal abnormalities and initiation of these diseases. Thus, elucidating the shared initial molecular and cellular mechanisms is crucial for recognizing novel remedial targets, and developing therapeutics to impede or stop disease progression. In this context, use of multifunctional compounds at early stages of disease development unclogs new avenues as it acts on act on multiple targets in comparison to single target concept. In this review, we summarize overview of the major findings and advancements in recent years focusing on shared mechanisms for better understanding might become beneficial in searching more potent pharmacological interventions thereby reducing the onset or severity of various NDs.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Nawab John Dar
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78992 USA
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Majid Ahmad Ganaie
- Department of Pharmacology & Toxicology, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah, Saudi Arabia
| |
Collapse
|
44
|
Kalra J. Crosslink between mutations in mitochondrial genes and brain disorders: implications for mitochondrial-targeted therapeutic interventions. Neural Regen Res 2023. [PMID: 35799515 PMCID: PMC9241418 DOI: 10.4103/1673-5374.343884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
|
45
|
Zhang A, Xu H, Huang J, Gong H, Guo S, Lei X, He D. Coexisting amyotrophic lateral sclerosis and chorea: A case report and literature review. Medicine (Baltimore) 2022; 101:e32452. [PMID: 36596053 PMCID: PMC9803431 DOI: 10.1097/md.0000000000032452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) coexisting with chorea is very rare. CASE REPORT We present the case of a 48-year-old man with ALS and chorea; the diagnostic certainty was high based on clinical examination results. Combining the data from literature, we analyzed the characteristics of patients with ALS and chorea. We found that ALS coexisting with chorea is very rare, but is often hereditary with a genetic mutation. Most patients with ALS and chorea are caused by abnormal amplification of a CAG sequence in the HTT gene, and these patients have a mild course of disease. The FUS, VCP, and SETX genes also have low mutation frequencies in patients with ALS and chorea. CONCLUSION The abnormal amplification of a CAG sequence in the HTT gene in ALS with chorea has an obvious familial genetic tendency, and most patients have a mild disease course.
Collapse
Affiliation(s)
- Anni Zhang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Hongbei Xu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Jing Huang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Huilan Gong
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Shipeng Guo
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Xiaoyang Lei
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Dian He
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
- *Correspondence: Dian He, Department of Neurology, Affiliated Hospital of Guizhou Medical University, No.28, Guiyi Street, Yunyan District, Guiyang, Guizhou 550004, China (e-mail: )
| |
Collapse
|
46
|
Hu HY, Liu YJ. Sequestration of cellular native factors by biomolecular assemblies: Physiological or pathological? BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119360. [PMID: 36087810 DOI: 10.1016/j.bbamcr.2022.119360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
In addition to native-state structures, biomolecules often form condensed supramolecular assemblies or cellular membraneless organelles that are critical for cell life. These biomolecular assemblies, generally including liquid-like droplets (condensates) and amyloid-like aggregates, can sequester or recruit their interacting partners, so as to either modulate various cellular behaviors or even cause disorders. This review article summarizes recent advances in the sequestration of native factors by biomolecular assemblies and discusses their potential consequences on cellular function, homeostasis, and disease pathology.
Collapse
Affiliation(s)
- Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PR China.
| | - Ya-Jun Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
47
|
Lu G, Tan HWS, Schmauck-Medina T, Wang L, Chen J, Cho YL, Chen K, Zhang JZ, He W, Wu Y, Xia D, Zhou J, Fang EF, Fang L, Liu W, Shen HM. WIPI2 positively regulates mitophagy by promoting mitochondrial recruitment of VCP. Autophagy 2022; 18:2865-2879. [PMID: 35389758 PMCID: PMC9673930 DOI: 10.1080/15548627.2022.2052461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mammalian Atg18 ortholog WIPI2 is a key regulator of LC3 lipidation to promote autophagosome biogenesis during nonselective macroautophagy, while its functions in selective autophagy such as mitophagy remain largely unexplored. In this study, we explored the role of WIPI2 in PINK1-PRKN/parkin-mediated mitophagy. First, we found that WIPI2 is recruited to damaged mitochondria upon mitophagy induction. Second, loss of WIPI2 impedes mitochondrial damaging agents-induced mitophagy. Third, at molecular level, WIPI2 binds to and promotes AAA-ATPase VCP/p97 (valosin containing protein) to damaged mitochondria; and WIPI2 depletion blunts the recruitment of VCP to damaged mitochondria, leading to reduction in degradation of outer mitochondrial membrane (OMM) proteins and mitophagy. Finally, WIPI2 is implicated in cell fate decision as cells deficient in WIPI2 are largely resistant to cell death induced by mitochondrial damage. In summary, our study reveals a critical regulatory role of WIPI2 in mitochondrial recruitment of VCP to promote OMM protein degradation and eventual mitophagy.Abbreviations: ATG, autophagy related; CALCOCO2/NDP52, calcium binding and coiled-coil domain 2; CCCP, carbonyl cyanide chlorophenylhydrazone; CYCS, cytochrome c, somatic; HSPD1/HSP60, heat shock protein family D (Hsp60) member 1; IMM, inner mitochondrial membrane; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; NPLOC4, NPL4 homolog, ubiquitin recognition factor; OMM, outer mitochondrial membrane; OPTN, optineurin; PtdIns3P, phosphatidylinositol-3-phosphate; PINK1, PTEN induced kinase 1; PRKN/Parkin, parkin RBR E3 ubiquitin protein ligase; UBXN6/UBXD1, UBX domain protein 6; UFD1, ubiquitin recognition factor in ER associated degradation 1; VCP/p97, valosin containing protein; WIPI2, WD repeat domain, phosphoinositide interacting 2.
Collapse
Affiliation(s)
- Guang Lu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hayden Weng Siong Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tomas Schmauck-Medina
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Jiaqing Chen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yik-Lam Cho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kelie Chen
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Jing-Zi Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School & Chemistry and Biomedicine Innovation Center of Nanjing University, Nanjing, Jiangsu, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yihua Wu
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Dajing Xia
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School & Chemistry and Biomedicine Innovation Center of Nanjing University, Nanjing, Jiangsu, China
| | - Wei Liu
- Department of Biochemistry, School of Medicine, Zhejiang University, Zhejiang, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China,CONTACT Han-Ming Shen Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
48
|
Tan Y, Xi D, Cai C, Jiang X, Chen S, Hu R, Xin T, Li Y, Wang S, Chang X, Zhou H. DUSP1 overexpression attenuates septic cardiomyopathy through reducing VCP phosphorylation and normalizing mitochondrial quality control. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
49
|
Zheng H, Huang S, Wei G, Sun Y, Li C, Si X, Chen Y, Tang Z, Li X, Chen Y, Liao W, Liao Y, Bin J. CircRNA Samd4 induces cardiac repair after myocardial infarction by blocking mitochondria-derived ROS output. Mol Ther 2022; 30:3477-3498. [PMID: 35791879 PMCID: PMC9637749 DOI: 10.1016/j.ymthe.2022.06.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/01/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Reactive oxygen species (ROS) derived from oxygen-dependent mitochondrial metabolism are the essential drivers of cardiomyocyte (CM) cell-cycle arrest in adulthood. Mitochondria-localized circular RNAs (circRNAs) play important roles in regulating mitochondria-derived ROS production, but their functions in cardiac regeneration are still unknown. Herein, we investigated the functions and underlying mechanism of mitochondria-localized circSamd4 in cardiac regeneration. We found that circSamd4 was selectively expressed in fetal and neonatal CMs. The transcription factor Nrf2 controlled circSamd4 expression by binding to the promoter of circSamd4 host gene. CircSamd4 overexpression reduced while circSamd4 silenced increased mitochondrial oxidative stress and subsequent oxidative DNA damage. Moreover, circSamd4 overexpression induced CM proliferation and prevented CM apoptosis, which reduced the size of the fibrotic area and improved cardiac function after myocardial infarction (MI). Mechanistically, circSamd4 reduced oxidative stress generation and maintained mitochondrial dynamics by inducing the mitochondrial translocation of the Vcp protein, which downregulated Vdac1 expression and prevented the mitochondrial permeability transition pore (mPTP) from opening. Our findings suggest that circSamd4 is a novel therapeutic target for heart failure after MI.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Yili Sun
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Chuling Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Xiaoyun Si
- Department of Cardiology, Guizhou Medical University, Affiliated Hospital, 550004 Guangzhou, China
| | - Yijin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Zhenquan Tang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, 510515 Guangzhou, China.
| |
Collapse
|
50
|
Braun MM, Puglielli L. Defective PTEN-induced kinase 1/Parkin mediated mitophagy and neurodegenerative diseases. Front Cell Neurosci 2022; 16:1031153. [PMID: 36339819 PMCID: PMC9630469 DOI: 10.3389/fncel.2022.1031153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/04/2022] [Indexed: 10/07/2023] Open
Abstract
The selective degradation of mitochondria through mitophagy is a crucial process for maintaining mitochondrial function and cellular health. Mitophagy is a specialized form of selective autophagy that uses unique machinery to recognize and target damaged mitochondria for mitophagosome- and lysosome-dependent degradation. This process is particularly important in cells with high metabolic activity like neurons, and the accumulation of defective mitochondria is a common feature among neurodegenerative disorders. Here, we describe essential steps involved in the induction and progression of mitophagy, and then highlight the various mechanisms that specifically contribute to defective mitophagy in highly prevalent neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- Megan M. Braun
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, United States
| |
Collapse
|