1
|
Oldemeyer S, La Greca M, Langner P, Lê Công KL, Schlesinger R, Heberle J. Nanosecond Transient IR Spectroscopy of Halorhodopsin in Living Cells. J Am Chem Soc 2024; 146:19118-19127. [PMID: 38950551 PMCID: PMC11258790 DOI: 10.1021/jacs.4c03891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
The ability to track minute changes of a single amino acid residue in a cellular environment is causing a paradigm shift in the attempt to fully understand the responses of biomolecules that are highly sensitive to their environment. Detecting early protein dynamics in living cells is crucial to understanding their mechanisms, such as those of photosynthetic proteins. Here, we elucidate the light response of the microbial chloride pump NmHR from the marine bacterium Nonlabens marinus, located in the membrane of living Escherichia coli cells, using nanosecond time-resolved UV/vis and IR absorption spectroscopy over the time range from nanoseconds to seconds. Transient structural changes of the retinal cofactor and the surrounding apoprotein are recorded using light-induced time-resolved UV/vis and IR difference spectroscopy. Of particular note, we have resolved the kinetics of the transient deprotonation of a single cysteine residue during the photocycle of NmHR out of the manifold of molecular vibrations of the cells. These findings are of high general relevance, given the successful development of optogenetic tools from photoreceptors to interfere with enzymatic and neuronal pathways in living organisms using light pulses as a noninvasive trigger.
Collapse
Affiliation(s)
- Sabine Oldemeyer
- Experimental
Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Mariafrancesca La Greca
- Genetic
Biophysics, Department of Physics, Freie
Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Pit Langner
- Experimental
Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Karoline-Luisa Lê Công
- Experimental
Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Ramona Schlesinger
- Genetic
Biophysics, Department of Physics, Freie
Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- Experimental
Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
2
|
Yang Q, Chen D. Na + Binding and Transport: Insights from Light-Driven Na +-Pumping Rhodopsin. Molecules 2023; 28:7135. [PMID: 37894614 PMCID: PMC10608830 DOI: 10.3390/molecules28207135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Na+ plays a vital role in numerous physiological processes across humans and animals, necessitating a comprehensive understanding of Na+ transmembrane transport. Among the various Na+ pumps and channels, light-driven Na+-pumping rhodopsin (NaR) has emerged as a noteworthy model in this field. This review offers a concise overview of the structural and functional studies conducted on NaR, encompassing ground/intermediate-state structures and photocycle kinetics. The primary focus lies in addressing key inquiries: (1) unraveling the translocation pathway of Na+; (2) examining the role of structural changes within the photocycle, particularly in the O state, in facilitating Na+ transport; and (3) investigating the timing of Na+ uptake/release. By delving into these unresolved issues and existing debates, this review aims to shed light on the future direction of Na+ pump research.
Collapse
Affiliation(s)
- Qifan Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Deliang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Ohya M, Kikukawa T, Matsuo J, Tsukamoto T, Nagaura R, Fujisawa T, Unno M. Structure and Heterogeneity of Retinal Chromophore in Chloride Pump Rhodopsins Revealed by Raman Optical Activity. J Phys Chem B 2023. [PMID: 37201188 DOI: 10.1021/acs.jpcb.3c01801] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chloride transport by microbial rhodopsins is actively being researched to understand how light energy is converted to drive ion pumping across cell membranes. Chloride pumps have been identified in archaea and eubacteria, and there are similarities and differences in the active site structures between these groups. Thus, it has not been clarified whether a common mechanism underlies the ion pump processes for all chloride-pumping rhodopsins. Here, we applied Raman optical activity (ROA) spectroscopy to two chloride pumps, Nonlabens marinus rhodopsin-3 (NM-R3) and halorhodopsin from the cyanobacterium Mastigocladopsis repens (MrHR). ROA is a vibrational spectroscopy that provides chiral sensitivity, and the sign of ROA signals can reveal twisting of cofactor molecules within proteins. Our ROA analysis revealed that the retinal Schiff base NH group orients toward the C helix and forms a direct hydrogen bond with a nearby chloride ion in NM-R3. In contrast, MrHR is suggested to contain two retinal conformations twisted in opposite directions; one conformation has a hydrogen bond with a chloride ion like NM-R3, while the other forms a hydrogen bond with a water molecule anchored by a G helix residue. These results suggest a general pump mechanism in which the chloride ion is "dragged" by the flipping Schiff base NH group upon photoisomerization.
Collapse
Affiliation(s)
- Masaiku Ohya
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Junpei Matsuo
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takashi Tsukamoto
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Ryota Nagaura
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
4
|
Phan LX, Chamorro VC, Martinez-Seara H, Crain J, Sansom MSP, Tucker SJ. Influence of electronic polarization on the binding of anions to a chloride-pumping rhodopsin. Biophys J 2023; 122:1548-1556. [PMID: 36945777 PMCID: PMC10147828 DOI: 10.1016/j.bpj.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
The functional properties of some biological ion channels and membrane transport proteins are proposed to exploit anion-hydrophobic interactions. Here, we investigate a chloride-pumping rhodopsin as an example of a membrane protein known to contain a defined anion binding site composed predominantly of hydrophobic residues. Using molecular dynamics simulations, we explore Cl- binding to this hydrophobic site and compare the dynamics arising when electronic polarization is neglected (CHARMM36 [c36] fixed-charge force field), included implicitly (via the prosECCo force field), or included explicitly (through the polarizable force field, AMOEBA). Free energy landscapes of Cl- moving out of the binding site and into bulk solution demonstrate that the inclusion of polarization results in stronger ion binding and a second metastable binding site in chloride-pumping rhodopsin. Simulations focused on this hydrophobic binding site also indicate longer binding durations and closer ion proximity when polarization is included. Furthermore, simulations reveal that Cl- within this binding site interacts with an adjacent loop to facilitate rebinding events that are not observed when polarization is neglected. These results demonstrate how the inclusion of polarization can influence the behavior of anions within protein binding sites and can yield results comparable with more accurate and computationally demanding methods.
Collapse
Affiliation(s)
- Linda X Phan
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; Department of Biochemistry, University of Oxford, Oxford, UK
| | - Victor Cruces Chamorro
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, Czech Republic
| | - Jason Crain
- Department of Biochemistry, University of Oxford, Oxford, UK; IBM Research Europe, Hartree Centre, Daresbury, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Astashkin R, Kovalev K, Bukhdruker S, Vaganova S, Kuzmin A, Alekseev A, Balandin T, Zabelskii D, Gushchin I, Royant A, Volkov D, Bourenkov G, Koonin E, Engelhard M, Bamberg E, Gordeliy V. Structural insights into light-driven anion pumping in cyanobacteria. Nat Commun 2022; 13:6460. [PMID: 36309497 PMCID: PMC9617919 DOI: 10.1038/s41467-022-34019-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
Transmembrane ion transport is a key process in living cells. Active transport of ions is carried out by various ion transporters including microbial rhodopsins (MRs). MRs perform diverse functions such as active and passive ion transport, photo-sensing, and others. In particular, MRs can pump various monovalent ions like Na+, K+, Cl-, I-, NO3-. The only characterized MR proposed to pump sulfate in addition to halides belongs to the cyanobacterium Synechocystis sp. PCC 7509 and is named Synechocystis halorhodopsin (SyHR). The structural study of SyHR may help to understand what makes an MR pump divalent ions. Here we present the crystal structure of SyHR in the ground state, the structure of its sulfate-bound form as well as two photoreaction intermediates, the K and O states. These data reveal the molecular origin of the unique properties of the protein (exceptionally strong chloride binding and proposed pumping of divalent anions) and sheds light on the mechanism of anion release and uptake in cyanobacterial halorhodopsins. The unique properties of SyHR highlight its potential as an optogenetics tool and may help engineer different types of anion pumps with applications in optogenetics.
Collapse
Affiliation(s)
- R Astashkin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - K Kovalev
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - S Bukhdruker
- European Synchrotron Radiation Facility Grenoble, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - S Vaganova
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - A Kuzmin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - A Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - T Balandin
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | | | - I Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - A Royant
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- European Synchrotron Radiation Facility Grenoble, Grenoble, France
| | - D Volkov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - G Bourenkov
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - E Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - M Engelhard
- Department Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - E Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - V Gordeliy
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany.
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
6
|
RTA1 Is Involved in Resistance to 7-Aminocholesterol and Secretion of Fungal Proteins in Cryptococcus neoformans. Pathogens 2022; 11:pathogens11111239. [PMID: 36364991 PMCID: PMC9697666 DOI: 10.3390/pathogens11111239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Cryptococcus neoformans (Cn) is a pathogenic yeast that is the leading cause of fungal meningitis in immunocompromised patients. Various Cn virulence factors, such as the enzyme laccase and its product melanin, phospholipase, and capsular polysaccharide have been identified. During a screen of knockout mutants, the gene resistance to aminocholesterol 1 (RTA1) was identified, the function of which is currently unknown in Cn. Rta1 homologs in S. cerevisiae belong to a lipid-translocating exporter family of fungal proteins with transmembrane regions and confer resistance to the antimicrobial agent 7-aminocholesterol when overexpressed. To determine the role of RTA1 in Cn, the knock-out (rta1Δ) and reconstituted (rta1Δ+RTA1) strains were created and phenotypically tested. RTA1 was involved in resistance to 7-aminocholesterol, and also in exocyst complex component 3 (Sec6)-mediated secretion of urease, laccase, and the major capsule component, glucuronoxylomannan (GXM), which coincided with significantly smaller capsules in the rta1Δ and rta1Δ+RTA1 strains compared to the wild-type H99 strain. Furthermore, RTA1 expression was reduced in a secretory 14 mutant (sec14Δ) and increased in an RNAi Sec6 mutant. Transmission electron microscopy demonstrated vesicle accumulation inside the rta1Δ strain, predominantly near the cell membrane. Given that Rta1 is likely to be a transmembrane protein located at the plasma membrane, these data suggest that Rta1 may be involved in both secretion of various fungal virulence factors and resistance to 7-aminocholesterol in Cn.
Collapse
|
7
|
Gomez DT, Pratt LR, Asthagiri DN, Rempe SB. Hydrated Anions: From Clusters to Bulk Solution with Quasi-Chemical Theory. Acc Chem Res 2022; 55:2201-2212. [PMID: 35829622 PMCID: PMC9386901 DOI: 10.1021/acs.accounts.2c00078] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The interactions of hydrated ions with molecular and macromolecular solution and interface partners are strong on a chemical energy scale. Here, we recount the foremost ab initio theory for the evaluation of the hydration free energies of ions, namely, quasi-chemical theory (QCT). We focus on anions, particularly halides but also the hydroxide anion, because they have been outstanding challenges for all theories. For example, this work supports understanding the high selectivity for F- over Cl- in fluoride-selective ion channels despite the identical charge and the size similarity of these ions. QCT is built by the identification of inner-shell clusters, separate treatment of those clusters, and then the integration of those results into the broader-scale solution environment. Recent work has focused on a close comparison with mass-spectrometric measurements of ion-hydration equilibria. We delineate how ab initio molecular dynamics (AIMD) calculations on ion-hydration clusters, elementary statistical thermodynamics, and electronic structure calculations on cluster structures sampled from the AIMD calculations obtain just the free energies extracted from the cluster experiments. That theory-experiment comparison has not been attempted before the work discussed here, but the agreement is excellent with moderate computational effort. This agreement reinforces both theory and experiment and provides a numerically accurate inner-shell contribution to QCT. The inner-shell complexes involving heavier halides display strikingly asymmetric hydration clusters. Asymmetric hydration structures can be problematic for the evaluation of the QCT outer-shell contribution with the polarizable continuum model (PCM). Nevertheless, QCT provides a favorable setting for the exploitation of PCM when the inner-shell material shields the ion from the outer solution environment. For the more asymmetrically hydrated, and thus less effectively shielded, heavier halide ions clustered with waters, the PCM is less satisfactory. We therefore investigate an inverse procedure in which the inner-shell structures are sampled from readily available AIMD calculations on the bulk solutions. This inverse procedure is a remarkable improvement; our final results are in close agreement with a standard tabulation of hydration free energies, and the final composite results are independent of the coordination number on the chemical energy scale of relevance, as they should be. Finally, a comparison of anion hydration structure in clusters and bulk solutions from AIMD simulations emphasize some differences: the asymmetries of bulk solution inner-shell structures are moderated compared with clusters but are still present, and inner hydration shells fill to slightly higher average coordination numbers in bulk solution than in clusters.
Collapse
Affiliation(s)
- Diego T. Gomez
- Department
of Chemical & Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States,
| | - Lawrence R. Pratt
- Department
of Chemical & Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States,
| | - Dilipkumar N. Asthagiri
- Department
of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States,
| | - Susan B. Rempe
- Center
for Integrated Nanotechnologies, Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States,
| |
Collapse
|
8
|
Phan LX, Lynch CI, Crain J, Sansom MS, Tucker SJ. Influence of effective polarization on ion and water interactions within a biomimetic nanopore. Biophys J 2022; 121:2014-2026. [DOI: 10.1016/j.bpj.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/25/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
|
9
|
Conformational alterations in unidirectional ion transport of a light-driven chloride pump revealed using X-ray free electron lasers. Proc Natl Acad Sci U S A 2022; 119:2117433119. [PMID: 35197289 PMCID: PMC8892520 DOI: 10.1073/pnas.2117433119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 01/06/2023] Open
Abstract
Light-driven chloride pumps have been identified in various species, including archaea and marine flavobacteria. The function of ion transportation controllable by light is utilized for optogenetics tools in neuroscience. Chloride pumps differ among species, in terms of amino acid homology and structural similarity. Our time-resolved crystallographic studies using X-ray free electron lasers reveal the molecular mechanism of halide ion transfer in a light-driven chloride pump from a marine flavobacterium. Our data indicate a common mechanism in chloride pumping rhodopsins, as compared to previous low-temperature trapping studies of chloride pumps. These findings are significant not only for further improvements of optogenetic tools but also for a general understanding of the ion pumping mechanisms of microbial rhodopsins. Light-driven chloride-pumping rhodopsins actively transport anions, including various halide ions, across cell membranes. Recent studies using time-resolved serial femtosecond crystallography (TR-SFX) have uncovered the structural changes and ion transfer mechanisms in light-driven cation-pumping rhodopsins. However, the mechanism by which the conformational changes pump an anion to achieve unidirectional ion transport, from the extracellular side to the cytoplasmic side, in anion-pumping rhodopsins remains enigmatic. We have collected TR-SFX data of Nonlabens marinus rhodopsin-3 (NM-R3), derived from a marine flavobacterium, at 10-µs and 1-ms time points after photoexcitation. Our structural analysis reveals the conformational alterations during ion transfer and after ion release. Movements of the retinal chromophore initially displace a conserved tryptophan to the cytoplasmic side of NM-R3, accompanied by a slight shift of the halide ion bound to the retinal. After ion release, the inward movements of helix C and helix G and the lateral displacements of the retinal block access to the extracellular side of NM-R3. Anomalous signal data have also been obtained from NM-R3 crystals containing iodide ions. The anomalous density maps provide insight into the halide binding site for ion transfer in NM-R3.
Collapse
|
10
|
Mous S, Gotthard G, Ehrenberg D, Sen S, Weinert T, Johnson PJM, James D, Nass K, Furrer A, Kekilli D, Ma P, Brünle S, Casadei CM, Martiel I, Dworkowski F, Gashi D, Skopintsev P, Wranik M, Knopp G, Panepucci E, Panneels V, Cirelli C, Ozerov D, Schertler GFX, Wang M, Milne C, Standfuss J, Schapiro I, Heberle J, Nogly P. Dynamics and mechanism of a light-driven chloride pump. Science 2022; 375:845-851. [PMID: 35113649 DOI: 10.1126/science.abj6663] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chloride transport by microbial rhodopsins is an essential process for which molecular details such as the mechanisms that convert light energy to drive ion pumping and ensure the unidirectionality of the transport have remained elusive. We combined time-resolved serial crystallography with time-resolved spectroscopy and multiscale simulations to elucidate the molecular mechanism of a chloride-pumping rhodopsin and the structural dynamics throughout the transport cycle. We traced transient anion-binding sites, obtained evidence for how light energy is used in the pumping mechanism, and identified steric and electrostatic molecular gates ensuring unidirectional transport. An interaction with the π-electron system of the retinal supports transient chloride ion binding across a major bottleneck in the transport pathway. These results allow us to propose key mechanistic features enabling finely controlled chloride transport across the cell membrane in this light-powered chloride ion pump.
Collapse
Affiliation(s)
- Sandra Mous
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Guillaume Gotthard
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland.,Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - David Ehrenberg
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Saumik Sen
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Philip J M Johnson
- Laboratory of Nonlinear Optics, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Daniel James
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Karol Nass
- Laboratory of Femtochemistry, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Antonia Furrer
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Demet Kekilli
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Pikyee Ma
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Steffen Brünle
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Cecilia Maria Casadei
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland.,Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Isabelle Martiel
- Laboratory for Macromolecules and Bioimaging, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Florian Dworkowski
- Laboratory for Macromolecules and Bioimaging, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Dardan Gashi
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland.,Laboratory of Femtochemistry, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Petr Skopintsev
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Maximilian Wranik
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Gregor Knopp
- Laboratory of Femtochemistry, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Ezequiel Panepucci
- Laboratory for Macromolecules and Bioimaging, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Valerie Panneels
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Claudio Cirelli
- Laboratory of Femtochemistry, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Dmitry Ozerov
- Science IT, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Gebhard F X Schertler
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland.,Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Meitian Wang
- Laboratory for Macromolecules and Bioimaging, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Chris Milne
- Laboratory of Femtochemistry, Photon Science Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Joerg Standfuss
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Przemyslaw Nogly
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Bondar AN. Mechanisms of long-distance allosteric couplings in proton-binding membrane transporters. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:199-239. [PMID: 35034719 DOI: 10.1016/bs.apcsb.2021.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Membrane transporters that use proton binding and proton transfer for function couple local protonation change with changes in protein conformation and water dynamics. Changes of protein conformation might be required to allow transient formation of hydrogen-bond networks that bridge proton donor and acceptor pairs separated by long distances. Inter-helical hydrogen-bond networks adjust rapidly to protonation change, and ensure rapid response of the protein structure and dynamics. Membrane transporters with known three-dimensional structures and proton-binding groups inform on general principles of protonation-coupled protein conformational dynamics. Inter-helical hydrogen bond motifs between proton-binding carboxylate groups and a polar sidechain are observed in unrelated membrane transporters, suggesting common principles of coupling protonation change with protein conformational dynamics.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Măgurele, Romania; Forschungszentrum Jülich, Institute of Computational Biomedicine, Jülich, Germany.
| |
Collapse
|
12
|
Gordeliy V, Kovalev K, Bamberg E, Rodriguez-Valera F, Zinovev E, Zabelskii D, Alekseev A, Rosselli R, Gushchin I, Okhrimenko I. Microbial Rhodopsins. Methods Mol Biol 2022; 2501:1-52. [PMID: 35857221 DOI: 10.1007/978-1-0716-2329-9_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The first microbial rhodopsin, a light-driven proton pump bacteriorhodopsin from Halobacterium salinarum (HsBR), was discovered in 1971. Since then, this seven-α-helical protein, comprising a retinal molecule as a cofactor, became a major driver of groundbreaking developments in membrane protein research. However, until 1999 only a few archaeal rhodopsins, acting as light-driven proton and chloride pumps and also photosensors, were known. A new microbial rhodopsin era started in 2000 when the first bacterial rhodopsin, a proton pump, was discovered. Later it became clear that there are unexpectedly many rhodopsins, and they are present in all the domains of life and even in viruses. It turned out that they execute such a diversity of functions while being "nearly the same." The incredible evolution of the research area of rhodopsins and the scientific and technological potential of the proteins is described in the review with a focus on their function-structure relationships.
Collapse
Affiliation(s)
- Valentin Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
| | - Kirill Kovalev
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Francisco Rodriguez-Valera
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Egor Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Dmitrii Zabelskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Alexey Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Riccardo Rosselli
- Departamento de Fisiología, Genetica y Microbiología. Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Ivan Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| |
Collapse
|
13
|
Abstract
Research on type 1 rhodopsins spans now a history of 50 years. Originally, just archaeal ion pumps and sensors have been discovered. However, with modern genetic techniques and gene sequencing tools, more and more proteins were identified in all kingdoms of life. Spectroscopic and other biophysical studies revealed quite diverse functions. Ion pumps, sensors, and channels are imprinted in the same seven-helix transmembrane protein scaffold carrying a retinal prosthetic group. In this review, molecular biology methods are described, which enabled the elucidation of their function and structure leading to optogenetic applications.
Collapse
Affiliation(s)
- Martin Engelhard
- Department Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
14
|
KHURANA RAMAN, Yang F, Khurana R, Liu J, Keinan E, Reany O. semiaza-Bambusurils are Anion-Specific Transmembrane Transporters . Chem Commun (Camb) 2022; 58:3150-3153. [DOI: 10.1039/d2cc00144f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
semiaza-Bambus[6]urils efficiently transport anions across lipid membranes. A systematic modification of their lipophilic side chains to include various alkyl groups and thioethers reveal that the most efficient chloride transporters are...
Collapse
|
15
|
Abstract
Microbial rhodopsins are light-sensitive transmembrane proteins, evolutionary adapted by various organisms like archaea, bacteria, simple eukaryote, and viruses to utilize solar energy for their survival. A complete understanding of functional mechanisms of these proteins is not possible without the knowledge of their high-resolution structures, which can be primarily obtained by X-ray crystallography. This technique, however, requires high-quality crystals, growing of which is a great challenge especially in case of membrane proteins. In this chapter, we summarize methods applied for crystallization of microbial rhodopsins with the emphasis on crystallization in lipidic mesophases, also known as in meso approach. In particular, we describe in detail the methods of crystallization using lipidic cubic phase to grow both large crystals optimized for traditional crystallographic data collection and microcrystals for serial crystallography.
Collapse
Affiliation(s)
- Kirill Kovalev
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - Roman Astashkin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Valentin Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Kikukawa T. Unique Cl - pump rhodopsin with close similarity to H + pump rhodopsin. Biophys Physicobiol 2021; 18:317-326. [PMID: 35087698 PMCID: PMC8756000 DOI: 10.2142/biophysico.bppb-v18.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/20/2021] [Indexed: 12/01/2022] Open
Abstract
Microbial rhodopsin is a ubiquitous membrane protein in unicellular microorganisms. Similar to animal rhodopsin, this protein consists of seven transmembrane helices and the chromophore retinal. However, unlike animal rhodopsin, microbial rhodopsin acts as not only a photosignal receptor but also a light-activated ion transporter and light-switchable enzyme. In this article, the third Cl- pump microbial rhodopsin will be introduced. The physiological importance of Cl- pumps has not been clarified. Despite this, their mechanisms, especially that of the first Cl- pump halorhodopsin (HR), have been studied to characterize them as model proteins for membrane anion transporters. The third Cl- pump defines a phylogenetic cluster distinct from other microbial rhodopsins. However, this Cl- pump conserves characteristic residues for not only the Cl- pump HR but also the H+ pump bacteriorhodopsin (BR). Reflecting close similarity to BR, the third Cl- pump begins to pump H+ outwardly after single amino acid replacement. This mutation activates several residues that have no roles in the original Cl- pump function but act as important H+ relay residues in the H+ pump mutant. Thus, the third Cl- pump might be the model protein for functional differentiation because this rhodopsin seems to be the Cl- pump occurring immediately after functional differentiation from the BR-type H+ pump.
Collapse
Affiliation(s)
- Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060–0810, Japan
| |
Collapse
|
17
|
Tsujimura M, Kojima K, Kawanishi S, Sudo Y, Ishikita H. Proton transfer pathway in anion channelrhodopsin-1. eLife 2021; 10:72264. [PMID: 34930528 PMCID: PMC8691836 DOI: 10.7554/elife.72264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Anion channelrhodopsin from Guillardia theta (GtACR1) has Asp234 (3.2 Å) and Glu68 (5.3 Å) near the protonated Schiff base. Here, we investigate mutant GtACR1s (e.g., E68Q/D234N) expressed in HEK293 cells. The influence of the acidic residues on the absorption wavelengths was also analyzed using a quantum mechanical/molecular mechanical approach. The calculated protonation pattern indicates that Asp234 is deprotonated and Glu68 is protonated in the original crystal structures. The D234E mutation and the E68Q/D234N mutation shorten and lengthen the measured and calculated absorption wavelengths, respectively, which suggests that Asp234 is deprotonated in the wild-type GtACR1. Molecular dynamics simulations show that upon mutation of deprotonated Asp234 to asparagine, deprotonated Glu68 reorients toward the Schiff base and the calculated absorption wavelength remains unchanged. The formation of the proton transfer pathway via Asp234 toward Glu68 and the disconnection of the anion conducting channel are likely a basis of the gating mechanism.
Collapse
Affiliation(s)
- Masaki Tsujimura
- Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shiho Kawanishi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Abstract
Rhodopsins are photoreceptive membrane proteins consisting of a common heptahelical transmembrane architecture that contains a retinal chromophore. Rhodopsin was first discovered in the animal retina in 1876, but a different type of rhodopsin, bacteriorhodopsin, was reported to be present in the cell membrane of an extreme halophilic archaeon, Halobacterium salinarum, 95 years later. Although these findings were made by physiological observation of pigmented tissue and cell bodies, recent progress in genomic and metagenomic analyses has revealed that there are more than 10,000 microbial rhodopsins and 9000 animal rhodopsins with large diversity and tremendous new functionality. In this Cell Science at a Glance article and accompanying poster, we provide an overview of the diversity of functions, structures, color discrimination mechanisms and optogenetic applications of these two rhodopsin families, and will also highlight the third distinctive rhodopsin family, heliorhodopsin.
Collapse
Affiliation(s)
- Takashi Nagata
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
19
|
Chen Y, Zhu Z, Tian Y, Jiang L. Rational ion transport management mediated through membrane structures. EXPLORATION (BEIJING, CHINA) 2021; 1:20210101. [PMID: 37323215 PMCID: PMC10190948 DOI: 10.1002/exp.20210101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Unique membrane structures endow membranes with controlled ion transport properties in both biological and artificial systems, and they have shown broad application prospects from industrial production to biological interfaces. Herein, current advances in nanochannel-structured membranes for manipulating ion transport are reviewed from the perspective of membrane structures. First, the controllability of ion transport through ion selectivity, ion gating, ion rectification, and ion storage is introduced. Second, nanochannel-structured membranes are highlighted according to the nanochannel dimensions, including single-dimensional nanochannels (i.e., 1D, 2D, and 3D) functioning by the controllable geometrical parameters of 1D nanochannels, the adjustable interlayer spacing of 2D nanochannels, and the interconnected ion diffusion pathways of 3D nanochannels, and mixed-dimensional nanochannels (i.e., 1D/1D, 1D/2D, 1D/3D, 2D/2D, 2D/3D, and 3D/3D) tuned through asymmetric factors (e.g., components, geometric parameters, and interface properties). Then, ultrathin membranes with short ion transport distances and sandwich-like membranes with more delicate nanochannels and combination structures are reviewed, and stimulus-responsive nanochannels are discussed. Construction methods for nanochannel-structured membranes are briefly introduced, and a variety of applications of these membranes are summarized. Finally, future perspectives to developing nanochannel-structured membranes with unique structures (e.g., combinations of external macro/micro/nanostructures and the internal nanochannel arrangement) for mediating ion transport are presented.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
20
|
Roy A, Shen J, Joshi H, Song W, Tu YM, Chowdhury R, Ye R, Li N, Ren C, Kumar M, Aksimentiev A, Zeng H. Foldamer-based ultrapermeable and highly selective artificial water channels that exclude protons. NATURE NANOTECHNOLOGY 2021; 16:911-917. [PMID: 34017100 DOI: 10.1038/s41565-021-00915-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The outstanding capacity of aquaporins (AQPs) for mediating highly selective superfast water transport1-7 has inspired recent development of supramolecular monovalent ion-excluding artificial water channels (AWCs). AWC-based bioinspired membranes are proposed for desalination, water purification and other separation applications8-18. While some recent progress has been made in synthesizing AWCs that approach the water permeability and ion selectivity of AQPs, a hallmark feature of AQPs-high water transport while excluding protons-has not been reproduced. We report a class of biomimetic, helically folded pore-forming polymeric foldamers that can serve as long-sought-after highly selective ultrafast water-conducting channels with performance exceeding those of AQPs (1.1 × 1010 water molecules per second for AQP1), with high water-over-monovalent-ion transport selectivity (~108 water molecules over Cl- ion) conferred by the modularly tunable hydrophobicity of the interior pore surface. The best-performing AWC reported here delivers water transport at an exceptionally high rate, namely, 2.5 times that of AQP1, while concurrently rejecting salts (NaCl and KCl) and even protons.
Collapse
Affiliation(s)
- Arundhati Roy
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore
| | - Jie Shen
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
| | - Himanshu Joshi
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Woochul Song
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yu-Ming Tu
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Ruijuan Ye
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
| | - Ning Li
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore
| | | | - Manish Kumar
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huaqiang Zeng
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China.
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
21
|
Li H, Huang CY, Govorunova EG, Sineshchekov OA, Yi A, Rothschild KJ, Wang M, Zheng L, Spudich JL. The crystal structure of bromide-bound GtACR1 reveals a pre-activated state in the transmembrane anion tunnel. eLife 2021; 10:65903. [PMID: 33998458 PMCID: PMC8172240 DOI: 10.7554/elife.65903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/16/2021] [Indexed: 12/16/2022] Open
Abstract
The crystal structure of the light-gated anion channel GtACR1 reported in our previous Research Article (Li et al., 2019) revealed a continuous tunnel traversing the protein from extracellular to intracellular pores. We proposed the tunnel as the conductance channel closed by three constrictions: C1 in the extracellular half, mid-membrane C2 containing the photoactive site, and C3 on the cytoplasmic side. Reported here, the crystal structure of bromide-bound GtACR1 reveals structural changes that relax the C1 and C3 constrictions, including a novel salt-bridge switch mechanism involving C1 and the photoactive site. These findings indicate that substrate binding induces a transition from an inactivated state to a pre-activated state in the dark that facilitates channel opening by reducing free energy in the tunnel constrictions. The results provide direct evidence that the tunnel is the closed form of the channel of GtACR1 and shed light on the light-gated channel activation mechanism.
Collapse
Affiliation(s)
- Hai Li
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Elena G Govorunova
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - Oleg A Sineshchekov
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - Adrian Yi
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, United States
| | - Kenneth J Rothschild
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, United States
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Lei Zheng
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - John L Spudich
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| |
Collapse
|
22
|
Early-stage dynamics of chloride ion-pumping rhodopsin revealed by a femtosecond X-ray laser. Proc Natl Acad Sci U S A 2021; 118:2020486118. [PMID: 33753488 PMCID: PMC8020794 DOI: 10.1073/pnas.2020486118] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Light-driven rhodopsin proteins pump ions across cell membranes. They have applications in optogenetics and can potentially be used to develop solar energy–harvesting devices. A detailed understanding of rhodopsin dynamics and functions may therefore assist research in medicine, health, and clean energy. This time-resolved crystallography study carried out with X-ray free-electron lasers reveals detailed dynamics of chloride ion–pumping rhodopsin (ClR) within 100 ps of light activation. It shows the dissociation of Cl− from the Schiff base binding site upon light-triggered retinal isomerization. This Cl− dissociation is followed by diffusion toward the intracellular direction. The results hint at a common ion-pumping mechanism across rhodopsin families. Chloride ion–pumping rhodopsin (ClR) in some marine bacteria utilizes light energy to actively transport Cl− into cells. How the ClR initiates the transport is elusive. Here, we show the dynamics of ion transport observed with time-resolved serial femtosecond (fs) crystallography using the Linac Coherent Light Source. X-ray pulses captured structural changes in ClR upon flash illumination with a 550 nm fs-pumping laser. High-resolution structures for five time points (dark to 100 ps after flashing) reveal complex and coordinated dynamics comprising retinal isomerization, water molecule rearrangement, and conformational changes of various residues. Combining data from time-resolved spectroscopy experiments and molecular dynamics simulations, this study reveals that the chloride ion close to the Schiff base undergoes a dissociation–diffusion process upon light-triggered retinal isomerization.
Collapse
|
23
|
Rao S, Klesse G, Lynch CI, Tucker SJ, Sansom MSP. Molecular Simulations of Hydrophobic Gating of Pentameric Ligand Gated Ion Channels: Insights into Water and Ions. J Phys Chem B 2021; 125:981-994. [PMID: 33439645 PMCID: PMC7869105 DOI: 10.1021/acs.jpcb.0c09285] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/13/2020] [Indexed: 12/30/2022]
Abstract
Ion channels are proteins which form gated nanopores in biological membranes. Many channels exhibit hydrophobic gating, whereby functional closure of a pore occurs by local dewetting. The pentameric ligand gated ion channels (pLGICs) provide a biologically important example of hydrophobic gating. Molecular simulation studies comparing additive vs polarizable models indicate predictions of hydrophobic gating are robust to the model employed. However, polarizable models suggest favorable interactions of hydrophobic pore-lining regions with chloride ions, of relevance to both synthetic carriers and channel proteins. Electrowetting of a closed pLGIC hydrophobic gate requires too high a voltage to occur physiologically but may inform designs for switchable nanopores. Global analysis of ∼200 channels yields a simple heuristic for structure-based prediction of (closed) hydrophobic gates. Simulation-based analysis is shown to provide an aid to interpretation of functional states of new channel structures. These studies indicate the importance of understanding the behavior of water and ions within the nanoconfined environment presented by ion channels.
Collapse
Affiliation(s)
- Shanlin Rao
- Department
of Biochemistry, University of Oxford, Oxford, U.K.
| | - Gianni Klesse
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford, U.K.
| | | | - Stephen J. Tucker
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford, U.K.
| | | |
Collapse
|
24
|
Inoue K. Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:89-126. [PMID: 33398809 DOI: 10.1007/978-981-15-8763-4_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ion-transporting microbial rhodopsins are widely used as major molecular tools in optogenetics. They are categorized into light-gated ion channels and light-driven ion pumps. While the former passively transport various types of cations and anions in a light-dependent manner, light-driven ion pumps actively transport specific ions, such as H+, Na+, Cl-, against electrophysiological potential by using light energy. Since the ion transport by these pumps induces hyperpolarization of membrane potential and inhibit neural firing, light-driven ion-pumping rhodopsins are mostly applied as inhibitory optogenetics tools. Recent progress in genome and metagenome sequencing identified more than several thousands of ion-pumping rhodopsins from a wide variety of microbes, and functional characterization studies has been revealing many new types of light-driven ion pumps one after another. Since light-gated channels were reviewed in other chapters in this book, here the rapid progress in functional characterization, molecular mechanism study, and optogenetic application of ion-pumping rhodopsins were reviewed.
Collapse
Affiliation(s)
- Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
25
|
Functional Mechanism of Cl --Pump Rhodopsin and Its Conversion into H + Pump. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:55-71. [PMID: 33398807 DOI: 10.1007/978-981-15-8763-4_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cl--pump rhodopsin is the second discovered microbial rhodopsin. Although its physiological role has not been fully clarified, its functional mechanism has been studied as a model for anion transporters. After the success of neural activation by channel rhodopsin, the first Cl--pump halorhodopsin (HR) had become widely used as a neural silencer. The emergence of artificial and natural anion channel rhodopsins lowered the importance of HRs. However, the longer absorption maxima of approximately 585-600 nm for HRs are still advantageous for applications in mammalian brains and collaborations with neural activators possessing shorter absorption maxima. In this chapter, the variation and functional mechanisms of Cl- pumps are summarized. After the discovery of HR, Cl--pump rhodopsins were confined to only extremely halophilic haloarchaea. However, after 2014, two Cl--pump groups were newly discovered in marine and terrestrial bacteria. These Cl- pumps are phylogenetically distinct from HRs and have unique characteristics. In particular, the most recently identified Cl- pump has close similarity with the H+ pump bacteriorhodopsin and was converted into the H+ pump by a single amino acid replacement.
Collapse
|
26
|
Tsujimura M, Ishikita H. Insights into the Protein Functions and Absorption Wavelengths of Microbial Rhodopsins. J Phys Chem B 2020; 124:11819-11826. [PMID: 33236904 DOI: 10.1021/acs.jpcb.0c08910] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using a quantum mechanical/molecular mechanical approach, the absorption wavelength of the retinal Schiff base was calculated based on 13 microbial rhodopsin crystal structures. The results showed that the protein electrostatic environment decreases the absorption wavelength significantly in the cation-conducting rhodopsin but only slightly in the sensory rhodopsin. Among the microbial rhodopsins with different functions, the differences in the absorption wavelengths are caused by differences in the arrangement of the charged residues at the retinal Schiff base binding moiety, namely, one or two counterions at the three common positions. Among the microbial rhodopsins with similar functions, the differences in the polar residues at the retinal Schiff base binding site are responsible for the differences in the absorption wavelengths. Counterions contribute to an absorption wavelength shift of 50-120 nm, whereas polar groups contribute to a shift of up to ∼10 nm. It seems likely that protein function is directly associated with the absorption wavelength in microbial rhodopsins.
Collapse
Affiliation(s)
- Masaki Tsujimura
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
27
|
Yun JH, Park JH, Jin Z, Ohki M, Wang Y, Lupala CS, Liu H, Park SY, Lee W. Structure-Based Functional Modification Study of a Cyanobacterial Chloride Pump for Transporting Multiple Anions. J Mol Biol 2020; 432:5273-5286. [PMID: 32721401 DOI: 10.1016/j.jmb.2020.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022]
Abstract
Understanding the structure and functional mechanisms of cyanobacterial halorhodopsin has become increasingly important, given the report that Synechocystis halorhodopsin (SyHR), a homolog of the cyanobacterial halorhodopsin from Mastigocladopsis repens (MrHR), can take up divalent ions, such as SO42-, as well as chloride ions. Here, the crystal structure of MrHR, containing a unique "TSD" chloride ion conduction motif, was determined as a homotrimer at a resolution of 1.9 Å. The detailed structure of MrHR revealed a unique trimeric topology of the light-driven chloride pump, with peculiar coordination of two water molecules and hydrogen-mediated bonds near the TSD motif, as well as a short B-C loop. Structural and functional analyses of MrHR revealed key residues responsible for the anion selectivity of cyanobacterial halorhodopsin and the involvement of two chloride ion-binding sites in the ion conduction pathway. Alanine mutant of Asn63, Pro118, and Glu182 locating in the anion inlet induce multifunctional uptake of chloride, nitrate, and sulfate ions. Moreover, the structure of N63A/P118A provides information on how SyHR promotes divalent ion transport. Our findings significantly advance the structural understanding of microbial rhodopsins with different motifs. They also provide insight into the general structural framework underlying the molecular mechanisms of the cyanobacterial chloride pump containing SyHR, the only molecule known to transport both sulfate and chloride ions.
Collapse
Affiliation(s)
- Ji-Hye Yun
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Jae-Hyun Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Zeyu Jin
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Mio Ohki
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Yang Wang
- Complex Systems Division, Beijing Computational Science Research Center, 10 E. Xibeiwang Rd., Haidian District, Beijing 100193, China
| | - Cecylia Severin Lupala
- Complex Systems Division, Beijing Computational Science Research Center, 10 E. Xibeiwang Rd., Haidian District, Beijing 100193, China
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, 10 E. Xibeiwang Rd., Haidian District, Beijing 100193, China; Department of Physics, Beijing Normal University, Haidian, Beijing, 100875, China
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan.
| | - Weontae Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea.
| |
Collapse
|
28
|
Besaw JE, Ou WL, Morizumi T, Eger BT, Sanchez Vasquez JD, Chu JHY, Harris A, Brown LS, Miller RJD, Ernst OP. The crystal structures of a chloride-pumping microbial rhodopsin and its proton-pumping mutant illuminate proton transfer determinants. J Biol Chem 2020; 295:14793-14804. [PMID: 32703899 DOI: 10.1074/jbc.ra120.014118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/14/2020] [Indexed: 01/25/2023] Open
Abstract
Microbial rhodopsins are versatile and ubiquitous retinal-binding proteins that function as light-driven ion pumps, light-gated ion channels, and photosensors, with potential utility as optogenetic tools for altering membrane potential in target cells. Insights from crystal structures have been central for understanding proton, sodium, and chloride transport mechanisms of microbial rhodopsins. Two of three known groups of anion pumps, the archaeal halorhodopsins (HRs) and bacterial chloride-pumping rhodopsins, have been structurally characterized. Here we report the structure of a representative of a recently discovered third group consisting of cyanobacterial chloride and sulfate ion-pumping rhodopsins, the Mastigocladopsis repens rhodopsin (MastR). Chloride-pumping MastR contains in its ion transport pathway a unique Thr-Ser-Asp (TSD) motif, which is involved in the binding of a chloride ion. The structure reveals that the chloride-binding mode is more similar to HRs than chloride-pumping rhodopsins, but the overall structure most closely resembles bacteriorhodopsin (BR), an archaeal proton pump. The MastR structure shows a trimer arrangement reminiscent of BR-like proton pumps and shows features at the extracellular side more similar to BR than the other chloride pumps. We further solved the structure of the MastR-T74D mutant, which contains a single amino acid replacement in the TSD motif. We provide insights into why this point mutation can convert the MastR chloride pump into a proton pump but cannot in HRs. Our study points at the importance of precise coordination and exact location of the water molecule in the active center of proton pumps, which serves as a bridge for the key proton transfer.
Collapse
Affiliation(s)
- Jessica E Besaw
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Wei-Lin Ou
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Bryan T Eger
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Juan D Sanchez Vasquez
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jessica H Y Chu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Harris
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - R J Dwayne Miller
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
29
|
Abstract
The light-driven sodium pump KR2, found in 2013 in the marine bacteria Krokinobacter eikastus, serves as a model protein for the studies of the sodium-pumping microbial rhodopsins (NaRs). KR2 possesses a unique NDQ (N112, D116, and Q123) set of the amino acid residues in the functionally relevant positions, named the NDQ motif. The N112 was shown to determine the Na+/H+ selectivity and pumping efficiency of the protein. Thus, N112A mutation converts KR2 into an outward proton pump. However, no structural data on the functional conversions of the light-driven sodium pumps are available at the moment. Here we present the crystal structure of the N112A mutant of KR2 in the ground state at the resolution of 2.4 Å. The structure revealed a minor deflection in the central part of the helix C and a double conformation of the L74 residue in the mutant. The organization of the retinal Schiff base and neighboring water molecules is preserved in the ground state of KR2-N112A. The presented data provide structural insights into the effects of the alterations of the characteristic NDQ motif of NaRs. Our findings also demonstrate that for the rational design of the KR2 variants with modified ion selectivity for optogenetic applications, the structures of the intermediate states of both the protein and its functional variants are required.
Collapse
|
30
|
Kwon SK, Jun SH, Kim JF. Omega Rhodopsins: A Versatile Class of Microbial Rhodopsins. J Microbiol Biotechnol 2020; 30:633-641. [PMID: 32482928 PMCID: PMC9728251 DOI: 10.4014/jmb.1912.12010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022]
Abstract
Microbial rhodopsins are a superfamily of photoactive membrane proteins with covalently bound retinal cofactor. Isomerization of the retinal chromophore upon absorption of a photon triggers conformational changes of the protein to function as ion pumps or sensors. After the discovery of proteorhodopsin in an uncultivated γ-proteobacterium, light-activated proton pumps have been widely detected among marine bacteria and, together with chlorophyll-based photosynthesis, are considered as an important axis responsible for primary production in the biosphere. Rhodopsins and related proteins show a high level of phylogenetic diversity; we focus on a specific class of bacterial rhodopsins containing the 3 omega motif. This motif forms a stack of three nonconsecutive aromatic amino acids that correlates with the B-C loop orientation, and is shared among the phylogenetically close ion pumps such as the NDQ motif-containing sodium-pumping rhodopsin, the NTQ motif-containing chloride-pumping rhodopsin, and some proton-pumping rhodopsins including xanthorhodopsin. Here, we reviewed the recent research progress on these omega rhodopsins, and speculated on their evolutionary origin of functional diversity..
Collapse
Affiliation(s)
- Soon-Kyeong Kwon
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sung-Hoon Jun
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju 8119, Republic of Korea
| | - Jihyun F. Kim
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul 0722, Republic of Korea
| |
Collapse
|
31
|
Klesse G, Rao S, Tucker SJ, Sansom MS. Induced Polarization in Molecular Dynamics Simulations of the 5-HT 3 Receptor Channel. J Am Chem Soc 2020; 142:9415-9427. [PMID: 32336093 PMCID: PMC7243253 DOI: 10.1021/jacs.0c02394] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Indexed: 12/30/2022]
Abstract
Ion channel proteins form water-filled nanoscale pores within lipid bilayers, and their properties are dependent on the complex behavior of water in a nanoconfined environment. Using a simplified model of the pore of the 5-HT3 receptor (5HT3R) which restrains the backbone structure to that of the parent channel protein from which it is derived, we compare additive with polarizable models in describing the behavior of water in nanopores. Molecular dynamics simulations were performed with four conformations of the channel: two closed state structures, an intermediate state, and an open state, each embedded in a phosphatidylcholine bilayer. Water density profiles revealed that for all water models, the closed and intermediate states exhibited strong dewetting within the central hydrophobic gate region of the pore. However, the open state conformation exhibited varying degrees of hydration, ranging from partial wetting for the TIP4P/2005 water model to complete wetting for the polarizable AMOEBA14 model. Water dipole moments calculated using polarizable force fields also revealed that water molecules remaining within dewetted sections of the pore resemble gas phase water. Free energy profiles for Na+ and for Cl- ions within the open state pore revealed more rugged energy landscapes using polarizable force fields, and the hydration number profiles of these ions were also sensitive to induced polarization resulting in a substantive reduction of the number of waters within the first hydration shell of Cl- while it permeates the pore. These results demonstrate that induced polarization can influence the complex behavior of water and ions within nanoscale pores and provides important new insights into their chemical properties.
Collapse
Affiliation(s)
- Gianni Klesse
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
- Clarendon
Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, U.K.
| | - Shanlin Rao
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| | - Stephen J. Tucker
- Clarendon
Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, U.K.
- OXION
Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, U.K.
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| |
Collapse
|
32
|
Michou M, Stergios A, Skretas G. SuptoxD2.0: A second-generation engineered Escherichia coli strain achieving further enhanced levels of recombinant membrane protein production. Biotechnol Bioeng 2020; 117:2434-2445. [PMID: 32383198 DOI: 10.1002/bit.27378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 11/10/2022]
Abstract
The bacterium Escherichia coli is among the most popular hosts for recombinant protein production, including that of membrane proteins (MPs). We have recently generated the specialized MP-producing E. coli strain SuptoxD, which upon co-expression of the effector gene djlA, is capable of alleviating two major bottlenecks in bacterial recombinant MP production: it suppresses the toxicity that frequently accompanies the MP-overexpression process and it markedly increases the cellular accumulation of membrane incorporated and properly folded recombinant MP. Combined, these two positive effects result in dramatically enhanced volumetric yields for various recombinant MPs of both prokaryotic and eukaryotic origin. Based on the observation that djlA is found in the genomes of various pathogenic bacteria, the aim of the present work was to investigate (a) whether other naturally occurring DjlA variants can exert the MP toxicity-suppressing and production-promoting effects similarly to the E. coli DjlA and (b) if we can identify a DjlA variant whose efficiency surpasses that of the E. coli DjlA of SuptoxD. We report that a quite surprisingly broad variety of homologous DjlA proteins exert beneficial effects on recombinant MP when overexpressed in E. coli. Furthermore, we demonstrate that the Salmonella enterica DjlA is an even more potent enhancer of MP productivity compared with the E. coli DjlA of SuptoxD. Based on this, we constructed a second-generation SuptoxD strain, termed SuptoxD2.0, whose MP-production capabilities surpass significantly those of the original SuptoxD, and we anticipate that SuptoxD2.0 will become a broadly utilized expression host for recombinant MP production in bacteria.
Collapse
Affiliation(s)
- Myrsini Michou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.,Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, Greece
| | - Angelos Stergios
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.,Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
33
|
Yun JH, Ohki M, Park JH, Ishimoto N, Sato-Tomita A, Lee W, Jin Z, Tame JRH, Shibayama N, Park SY, Lee W. Pumping mechanism of NM-R3, a light-driven bacterial chloride importer in the rhodopsin family. SCIENCE ADVANCES 2020; 6:eaay2042. [PMID: 32083178 PMCID: PMC7007266 DOI: 10.1126/sciadv.aay2042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
A newly identified microbial rhodopsin, NM-R3, from the marine flavobacterium Nonlabens marinus, was recently shown to drive chloride ion uptake, extending our understanding of the diversity of mechanisms for biological energy conversion. To clarify the mechanism underlying its function, we characterized the crystal structures of NM-R3 in both the dark state and early intermediate photoexcited states produced by laser pulses of different intensities and temperatures. The displacement of chloride ions at five different locations in the model reflected the detailed anion-conduction pathway, and the activity-related key residues-Cys105, Ser60, Gln224, and Phe90-were identified by mutation assays and spectroscopy. Comparisons with other proteins, including a closely related outward sodium ion pump, revealed key motifs and provided structural insights into light-driven ion transport across membranes by the NQ subfamily of rhodopsins. Unexpectedly, the response of the retinal in NM-R3 to photostimulation appears to be substantially different from that seen in bacteriorhodopsin.
Collapse
Affiliation(s)
- Ji-Hye Yun
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Mio Ohki
- Research Complex at Harwell, Rutherford Appleton Laboratory, OX11 0FA Didcot, UK
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Jae-Hyun Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Naito Ishimoto
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Ayana Sato-Tomita
- Division of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Wonbin Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Zeyu Jin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Jeremy R. H. Tame
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Naoya Shibayama
- Division of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
34
|
Zheng J, Zheng J, Ma Y, Zuo G, Feng Y. The role of Lys2-Cl - -Lys2 salt linkages in oligomeric intermediates of RbsD protein in Escherichia coli. J Basic Microbiol 2019; 60:185-194. [PMID: 31588591 DOI: 10.1002/jobm.201900337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 11/06/2022]
Abstract
As a homo-oligomeric protein, the disassembly of Escherichia coli RbsD decamer produces a urea-unfolded oligomeric intermediate structure, as the dissociation speed of the protein is lower than that of the unfolding process. There are five Lys2-Cl- -Lys2 salt linkages to connect these subunits. To explore the role of the salt linkages in these oligomeric intermediates, the Lys2Ala mutated in the N-terminal of E. coli RbsD protein subunit was designed. It was found that the RbsD mutation protein (RbsD:K2A) loses its minor larger oligomers, which exist in RbsD, and displays other several oligomeric states (less than decamers), meanwhile the state of the oligomers depends on the protein concentration. It was also found that compared with RbsD, the crosslinking capability of the subunits of RbsD:K2A is weaker, while the crosslinking rate of dimers is higher, RbsD:K2A needs to substantially adjust its conformation to meet the space requirements when combined with d-ribose. On the basis of these results, we suggest that Lys2-Cl- -Lys2 salt linkages in E. coli RbsD protein play an important role in stabilizing the intermediate products of oligomers and maintaining interaction between the intermediate products of oligomers, which may shed light on the study of these oligomeric proteins.
Collapse
Affiliation(s)
- Jing Zheng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jie Zheng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yuanwu Ma
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Guocai Zuo
- School of Software and Information Engineering, Hunan Software Vocational Institute, Xiangtan, China
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
35
|
Michou M, Kapsalis C, Pliotas C, Skretas G. Optimization of Recombinant Membrane Protein Production in the Engineered Escherichia coli Strains SuptoxD and SuptoxR. ACS Synth Biol 2019; 8:1631-1641. [PMID: 31243979 DOI: 10.1021/acssynbio.9b00120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane proteins (MPs) execute a wide variety of critical biological functions in all living organisms and constitute approximately half of current targets for drug discovery. As in the case of soluble proteins, the bacterium Escherichia coli has served as a very popular overexpression host for biochemical/structural studies of membrane proteins as well. Bacterial recombinant membrane protein production, however, is typically hampered by poor cellular accumulation and severe toxicity for the host, which leads to low levels of final biomass and minute volumetric yields. In previous work, we generated the engineered E. coli strains SuptoxD and SuptoxR, which upon coexpression of the effector genes djlA or rraA, respectively, can suppress the cytotoxicity caused by MP overexpression and produce enhanced MP yields. Here, we systematically looked for gene overexpression and culturing conditions that maximize the accumulation of membrane-integrated and well-folded recombinant MPs in these strains. We have found that, under optimal conditions, SuptoxD and SuptoxR achieve greatly enhanced recombinant production for a variety of MP, irrespective of their archaeal, eubacterial, or eukaryotic origin. Furthermore, we demonstrate that the use of these engineered strains enables the production of well-folded recombinant MPs of high quality and at high yields, which are suitable for functional and structural studies. We anticipate that SuptoxD and SuptoxR will become broadly utilized expression hosts for recombinant MP production in bacteria.
Collapse
Affiliation(s)
- Myrsini Michou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Larisa 41500, Greece
| | - Charalampos Kapsalis
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY169ST, United Kingdom
| | - Christos Pliotas
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews KY169ST, United Kingdom
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens 11635, Greece
| |
Collapse
|
36
|
Pedraza-González L, De Vico L, del Carmen Marín M, Fanelli F, Olivucci M. a-ARM: Automatic Rhodopsin Modeling with Chromophore Cavity Generation, Ionization State Selection, and External Counterion Placement. J Chem Theory Comput 2019; 15:3134-3152. [PMID: 30916955 PMCID: PMC7141608 DOI: 10.1021/acs.jctc.9b00061] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Automatic Rhodopsin Modeling (ARM) protocol has recently been proposed as a tool for the fast and parallel generation of basic hybrid quantum mechanics/molecular mechanics (QM/MM) models of wild type and mutant rhodopsins. However, in its present version, input preparation requires a few hours long user's manipulation of the template protein structure, which also impairs the reproducibility of the generated models. This limitation, which makes model building semiautomatic rather than fully automatic, comprises four tasks: definition of the retinal chromophore cavity, assignment of protonation states of the ionizable residues, neutralization of the protein with external counterions, and finally congruous generation of single or multiple mutations. In this work, we show that the automation of the original ARM protocol can be extended to a level suitable for performing the above tasks without user's manipulation and with an input preparation time of minutes. The new protocol, called a-ARM, delivers fully reproducible (i.e., user independent) rhodopsin QM/MM models as well as an improved model quality. More specifically, we show that the trend in vertical excitation energies observed for a set of 25 wild type and 14 mutant rhodopsins is predicted by the new protocol better than when using the original. Such an agreement is reflected by an estimated (relative to the probed set) trend deviation of 0.7 ± 0.5 kcal mol-1 (0.03 ± 0.02 eV) and mean absolute error of 1.0 kcal mol-1 (0.04 eV).
Collapse
Affiliation(s)
- Laura Pedraza-González
- Department of Biotechnologies, Chemistry and Pharmacy, Università degli Studi di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Luca De Vico
- Department of Biotechnologies, Chemistry and Pharmacy, Università degli Studi di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - María del Carmen Marín
- Department of Biotechnologies, Chemistry and Pharmacy, Università degli Studi di Siena, via A. Moro 2, I-53100 Siena, Italy
| | - Francesca Fanelli
- Department of Life Sciences, Center for Neuroscience and Neurotechnology, Università degli Studi di Modena e Reggio Emilia, I-41125 Modena, Italy
| | - Massimo Olivucci
- Department of Biotechnologies, Chemistry and Pharmacy, Università degli Studi di Siena, via A. Moro 2, I-53100 Siena, Italy
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
37
|
Singh M, Katayama K, Béjà O, Kandori H. Anion binding to mutants of the Schiff base counterion in heliorhodopsin 48C12. Phys Chem Chem Phys 2019; 21:23663-23671. [DOI: 10.1039/c9cp04102h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The anion binds as the direct H-bonding acceptor of the Schiff base in E107A, while E107Q indirectly accommodates an anion.
Collapse
Affiliation(s)
- Manish Singh
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
- OptoBioTechnology Research Center
| | - Oded Béjà
- Faculty of Biology
- Technion – Israel Institute of Technology
- Haifa
- Israel
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
- OptoBioTechnology Research Center
| |
Collapse
|
38
|
Yun JH, Li X, Park JH, Wang Y, Ohki M, Jin Z, Lee W, Park SY, Hu H, Li C, Zatsepin N, Hunter MS, Sierra RG, Koralek J, Yoon CH, Cho HS, Weierstall U, Tang L, Liu H, Lee W. Non-cryogenic structure of a chloride pump provides crucial clues to temperature-dependent channel transport efficiency. J Biol Chem 2018; 294:794-804. [PMID: 30455349 DOI: 10.1074/jbc.ra118.004038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/12/2018] [Indexed: 11/06/2022] Open
Abstract
Non-cryogenic protein structures determined at ambient temperature may disclose significant information about protein activity. Chloride-pumping rhodopsin (ClR) exhibits a trend to hyperactivity induced by a change in the photoreaction rate because of a gradual decrease in temperature. Here, to track the structural changes that explain the differences in CIR activity resulting from these temperature changes, we used serial femtosecond crystallography (SFX) with an X-ray free electron laser (XFEL) to determine the non-cryogenic structure of ClR at a resolution of 1.85 Å, and compared this structure with a cryogenic ClR structure obtained with synchrotron X-ray crystallography. The XFEL-derived ClR structure revealed that the all-trans retinal (ATR) region and positions of two coordinated chloride ions slightly differed from those of the synchrotron-derived structure. Moreover, the XFEL structure enabled identification of one additional water molecule forming a hydrogen bond network with a chloride ion. Analysis of the channel cavity and a difference distance matrix plot (DDMP) clearly revealed additional structural differences. B-factor information obtained from the non-cryogenic structure supported a motility change on the residual main and side chains as well as of chloride and water molecules because of temperature effects. Our results indicate that non-cryogenic structures and time-resolved XFEL experiments could contribute to a better understanding of the chloride-pumping mechanism of ClR and other ion pumps.
Collapse
Affiliation(s)
- Ji-Hye Yun
- From the Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Xuanxuan Li
- Complex Systems Division, Beijing Computational Science Research Center, 10 East Xibeiwang Road, Haidian District, Beijing 100193, China.,Department of Engineering Physics, Tsinghua University, Beijing 100086, China
| | - Jae-Hyun Park
- From the Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Yang Wang
- Complex Systems Division, Beijing Computational Science Research Center, 10 East Xibeiwang Road, Haidian District, Beijing 100193, China
| | - Mio Ohki
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Zeyu Jin
- From the Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Wonbin Lee
- From the Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Hao Hu
- Physics Department, and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287
| | - Chufeng Li
- Physics Department, and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287
| | - Nadia Zatsepin
- Physics Department, and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, and
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, and
| | - Jake Koralek
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, and
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, and
| | - Hyun-Soo Cho
- Department of Systems Biology and Division of Life Sciences, Yonsei University, Seoul 03722, South Korea
| | - Uwe Weierstall
- Physics Department, and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287
| | - Leihan Tang
- Complex Systems Division, Beijing Computational Science Research Center, 10 East Xibeiwang Road, Haidian District, Beijing 100193, China
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, 10 East Xibeiwang Road, Haidian District, Beijing 100193, China,
| | - Weontae Lee
- From the Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, South Korea,
| |
Collapse
|
39
|
Kouyama T, Ihara K, Maki K, Chan SK. Three-Step Isomerization of the Retinal Chromophore during the Anion Pumping Cycle of Halorhodopsin. Biochemistry 2018; 57:6013-6026. [PMID: 30211543 DOI: 10.1021/acs.biochem.8b00631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The anion pumping cycle of halorhodopsin from Natronomonas pharaonis ( pHR) is initiated when the all- trans/15- anti isomer of retinal is photoisomerized into the 13- cis/15- anti configuration. A recent crystallographic study suggested that a reaction state with 13- cis/15- syn retinal occurred during the anion release process, i.e., after the N state with the 13- cis/15- anti retinal and before the O state with all- trans/15- anti retinal. In this study, we investigated the retinal isomeric composition in a long-living reaction state at various bromide ion concentrations. It was found that the 13- cis isomer (csHR'), in which the absorption spectrum was blue-shifted by ∼8 nm compared with that of the trans isomer (taHR), accumulated significantly when a cold suspension of pHR-rich claret membranes in 4 M NaBr was illuminated with continuous light. Analysis of flash-induced absorption changes suggested that the branching of the trans photocycle into the 13- cis isomer (csHR') occurs during the decay of an O-like state (O') with 13- cis/15- syn retinal; i.e., O' can decay to either csHR' or O with all- trans/15- anti retinal. The efficiency of the branching reaction was found to be dependent on the bromide ion concentration. At a very high bromide ion concentration, the anion pumping cycle is described by the scheme taHR -( hν) → K → L1a ↔ L1b ↔ N ↔ N' ↔ O' ↔ csHR' ↔ taHR. At a low bromide ion concentration, on the other hand, O' decays into taHR via O.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Department of Physics, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602 , Japan
| | - Kunio Ihara
- Center for Gene Research , Nagoya University , Nagoya 464-8602 , Japan
| | - Kosuke Maki
- Department of Physics, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602 , Japan
| | - Siu Kit Chan
- Department of Physics, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602 , Japan
| |
Collapse
|
40
|
Singh M, Inoue K, Pushkarev A, Béjà O, Kandori H. Mutation Study of Heliorhodopsin 48C12. Biochemistry 2018; 57:5041-5049. [PMID: 30036039 DOI: 10.1021/acs.biochem.8b00637] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rhodopsins are heptahelical transmembrane photoactive protein families: type 1 (microbial rhodopsins) and type 2 (animal rhodopsins). Both families share similar topologies and chromophore retinal, which is linked covalently as a protonated Schiff base to a Lys at the transmembrane 7 helix. Recently, through functional metagenomics analysis, we reported an unnoticed diverse family, heliorhodopsins (HeRs), which are abundant and distributed globally in archaea, bacteria, eukarya, and viruses. The sequence identity is <15% between HeRs and type 1 rhodopsins, so that many aspects of the molecular properties of HeRs remain unknown. Herein, to gain information about the residues responsible for the interaction with the chromophore, we applied Ala scanning to 30 candidate residues in HeR 48C12. As a result, 12 mutants showed no absorption change, eight exhibited a spectral blue-shift, six exhibited a spectral red-shift, and four did not form a pigment. R104, Y108, G145, and K241 play crucial roles in pigment formation. A combination of single mutants successfully engineered pigments absorbing at 523 nm (S112A/M141A) and 571 nm (H80A/S237A), covering more than ∼50 nm. These results provide fundamental knowledge about the molecular properties of HeRs.
Collapse
Affiliation(s)
- Manish Singh
- Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan.,OptoBioTechnology Research Center , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan.,Frontier Research Institute for Material Science , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan.,PRESTO , Japan Science and Technology Agency , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| | - Alina Pushkarev
- Faculty of Biology , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| | - Oded Béjà
- Faculty of Biology , Technion-Israel Institute of Technology , Haifa 32000 , Israel
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan.,OptoBioTechnology Research Center , Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555 , Japan
| |
Collapse
|
41
|
Engelhard C, Chizhov I, Siebert F, Engelhard M. Microbial Halorhodopsins: Light-Driven Chloride Pumps. Chem Rev 2018; 118:10629-10645. [DOI: 10.1021/acs.chemrev.7b00715] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, OE8830 Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Friedrich Siebert
- Institut für Molekulare Medizin und Zellforschung, Sektion Biophysik, Albert-Ludwigs-Universität Freiburg, Hermann-Herderstr. 9, 79104 Freiburg, Germany
| | - Martin Engelhard
- Max Planck Institute for Molecular Physiology, Otto Hahn Str. 11, 44227 Dortmund, Germany
| |
Collapse
|
42
|
Tomida S, Ito S, Inoue K, Kandori H. Hydrogen-bonding network at the cytoplasmic region of a light-driven sodium pump rhodopsin KR2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:684-691. [PMID: 29852143 DOI: 10.1016/j.bbabio.2018.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/11/2018] [Accepted: 05/24/2018] [Indexed: 01/15/2023]
Abstract
Light-driven sodium-pumping rhodopsins are able to actively transport sodium ions. Structure/function studies of Krokinobacter eikastus rhodopsin 2 (KR2) identified N61 and G263 at the cytoplasmic surface constituting the "Ion-selectivity filter" for sodium ions, while retinal Schiff base acts as the light "Switch and Gate" for transport of sodium ions. Q123 is located between the two regions, and plays an important role for the pump function, which was implicated by functional, spectroscopic, X-ray crystallographic and computational studies. According to the atomic structure of KR2, Q123 is involved in the hydrogen-bonding network at the cytoplasmic region, together with S64, protein-bound waters, and peptide carbonyl of K255 bound to the chromophore. To gain the detailed structural information around Q123, here we compared light-induced difference Fourier-transform infrared (FTIR) spectra at 77 K between the wild-type (WT) and mutant proteins of KR2, such as Q123A, Q123V, and S64A. The obtained spectra were very similar between WT and these mutants, whereas the observed mutation effects enabled us to identify vibrations of the hydrogen-bonding network at the Q123 and S64 region. This is unique for KR2, not for the corresponding mutations in a light-driven proton-pump bacteriorhodopsin (BR). Hydrogen-bonding alteration is absent for the mutants of KR2, suggesting that proper inter-helical connectivity of helices B, C, and G is important for protein structural changes for sodium-pump function, which is controlled by the region around Q123.
Collapse
Affiliation(s)
- Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; Frontier Research Institute for Material Science, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
43
|
Kandori H, Inoue K, Tsunoda SP. Light-Driven Sodium-Pumping Rhodopsin: A New Concept of Active Transport. Chem Rev 2018. [DOI: 10.1021/acs.chemrev.7b00548] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Keiichi Inoue
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Satoshi P. Tsunoda
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
44
|
Harris A, Saita M, Resler T, Hughes-Visentin A, Maia R, Pranga-Sellnau F, Bondar AN, Heberle J, Brown LS. Molecular details of the unique mechanism of chloride transport by a cyanobacterial rhodopsin. Phys Chem Chem Phys 2018; 20:3184-3199. [PMID: 29057415 DOI: 10.1039/c7cp06068h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microbial rhodopsins are well known as versatile and ubiquitous light-driven ion transporters and photosensors. While the proton transport mechanism has been studied in great detail, much less is known about various modes of anion transport. Until recently, only two main groups of light-driven anion pumps were known, archaeal halorhodopsins (HRs) and bacterial chloride pumps (known as ClRs or NTQs). Last year, another group of cyanobacterial anion pumps with a very distinct primary structure was reported. Here, we studied the chloride-transporting photocycle of a representative of this new group, Mastigocladopsis repens rhodopsin (MastR), using time-resolved spectroscopy in the infrared and visible ranges and site-directed mutagenesis. We found that, in accordance with its unique amino acid sequence containing many polar residues in the transmembrane region of the protein, its photocycle features a number of unusual molecular events not known for other anion-pumping rhodopsins. It appears that light-driven chloride ion transfers by MastR are coupled with translocation of protons and water molecules as well as perturbation of several polar sidechains. Of particular interest is transient deprotonation of Asp-85, homologous to the cytoplasmic proton donor of light-driven proton pumps (such as Asp-96 of bacteriorhodopsin), which may serve as a regulatory mechanism.
Collapse
Affiliation(s)
- Andrew Harris
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nomura Y, Ito S, Teranishi M, Ono H, Inoue K, Kandori H. Low-temperature FTIR spectroscopy provides evidence for protein-bound water molecules in eubacterial light-driven ion pumps. Phys Chem Chem Phys 2018; 20:3165-3171. [DOI: 10.1039/c7cp05674e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The present FTIR study showed that eubacterial light-driven H+, Na+ and Cl− pump rhodopsins contain strongly hydrogen-bonded water molecule, the functional determinant of light-driven proton pump. This explains well the asymmetric functional conversions of light-driven ion pumps.
Collapse
Affiliation(s)
- Yurika Nomura
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Miwako Teranishi
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Hikaru Ono
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Showa-ku
- Japan
- OptoBioTechnology Research Center
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Showa-ku
- Japan
- OptoBioTechnology Research Center
| |
Collapse
|
46
|
Abstract
Microbial rhodopsins (MRs) are a large family of photoactive membrane proteins, found in microorganisms belonging to all kingdoms of life, with new members being constantly discovered. Among the MRs are light-driven proton, cation and anion pumps, light-gated cation and anion channels, and various photoreceptors. Due to their abundance and amenability to studies, MRs served as model systems for a great variety of biophysical techniques, and recently found a great application as optogenetic tools. While the basic aspects of microbial rhodopsins functioning have been known for some time, there is still a plenty of unanswered questions. This chapter presents and summarizes the available knowledge, focusing on the functional and structural studies.
Collapse
Affiliation(s)
- Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
47
|
Abstract
The conversion of light energy into ion gradients across biological membranes is one of the most fundamental reactions in primary biological energy transduction. Recently, the structure of the first light-activated Na+ pump, Krokinobacter eikastus rhodopsin 2 (KR2), was resolved at atomic resolution [Kato HE, et al. (2015) Nature 521:48-53]. To elucidate its molecular mechanism for Na+ pumping, we perform here extensive classical and quantum molecular dynamics (MD) simulations of transient photocycle states. Our simulations show how the dynamics of key residues regulate water and ion access between the bulk and the buried light-triggered retinal site. We identify putative Na+ binding sites and show how protonation and conformational changes gate the ion through these sites toward the extracellular side. We further show by correlated ab initio quantum chemical calculations that the obtained putative photocycle intermediates are in close agreement with experimental transient optical spectroscopic data. The combined results of the ion translocation and gating mechanisms in KR2 may provide a basis for the rational design of novel light-driven ion pumps with optogenetic applications.
Collapse
|
48
|
Tsukamoto T, Yoshizawa S, Kikukawa T, Demura M, Sudo Y. Implications for the Light-Driven Chloride Ion Transport Mechanism of Nonlabens marinus Rhodopsin 3 by Its Photochemical Characteristics. J Phys Chem B 2017; 121:2027-2038. [PMID: 28194973 DOI: 10.1021/acs.jpcb.6b11101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several new retinal-based photoreceptor proteins that act as light-driven electrogenic halide ion pumps have recently been discovered. Some of them, called "NTQ" rhodopsins, contain a conserved Asn-Thr-Gln motif in the third or C-helix. In this study, we investigated the photochemical characteristics of an NTQ rhodopsin, Nonlabens marinus rhodopsin 3 (NM-R3), which was discovered in the N. marinus S1-08T strain, using static and time-resolved spectroscopic techniques. We demonstrate that NM-R3 binds a Cl- in the vicinity of the retinal chromophore accompanied by a spectral blueshift from 568 nm in the absence of Cl- to 534 nm in the presence of Cl-. From the Cl- concentration dependence, we estimated the affinity (dissociation constant, Kd) for Cl- in the original state as 24 mM, which is ca. 10 times weaker than that of archaeal halorhodopsins but ca. 3 times stronger than that of a marine bacterial Cl- pumping rhodopsin (C1R). NM-R3 showed no dark-light adaptation of the retinal chromophore and predominantly possessed an all-trans-retinal, which is responsible for the light-driven Cl- pump function. Flash-photolysis experiments suggest that NM-R3 passes through five or six photochemically distinct intermediates (K, L(N), O1, O2, and NM-R3'). From these results, we assume that the Cl- is released and taken up during the L(N)-O1 transition from a transiently formed cytoplasmic (CP) binding site and the O2-NM-R3' or the NM-R3'-original NM-R3 transitions from the extracellular (EC) side, respectively. We propose a mechanism for the Cl- transport by NM-R3 based on our results and its recently reported crystal structure.
Collapse
Affiliation(s)
- Takashi Tsukamoto
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University , 700-8530 Okayama, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo , Chiba 277-8564, Japan
| | | | | | - Yuki Sudo
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University , 700-8530 Okayama, Japan
| |
Collapse
|