1
|
Jilani SB, Alahuhta M, Bomble YJ, Olson DG. Cell-Free Systems Biology: Characterizing Central Metabolism of Clostridium thermocellum with a Three-Enzyme Cascade Reaction. ACS Synth Biol 2024. [PMID: 39387698 DOI: 10.1021/acssynbio.4c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Genetic approaches have been traditionally used to understand microbial metabolism, but this process can be slow in nonmodel organisms due to limited genetic tools. An alternative approach is to study metabolism directly in the cell lysate. This avoids the need for genetic tools and is routinely used to study individual enzymatic reactions but is not generally used to study systems-level properties of metabolism. Here we demonstrate a new approach that we call "cell-free systems biology", where we use well-characterized enzymes and multienzyme cascades to serve as sources or sinks of intermediate metabolites. This allows us to isolate subnetworks within metabolism and study their systems-level properties. To demonstrate this, we worked with a three-enzyme cascade reaction that converts pyruvate to 2,3-butanediol. Although it has been previously used in cell-free systems, its pH dependence was not well characterized, limiting its utility as a sink for pyruvate. We showed that improved proton accounting allowed better prediction of pH changes and that active pH control allowed 2,3-butanediol titers of up to 2.1 M (189 g/L) from acetoin and 1.6 M (144 g/L) from pyruvate. The improved proton accounting provided a crucial insight that preventing the escape of CO2 from the system largely eliminated the need for active pH control, dramatically simplifying our experimental setup. We then used this cascade reaction to understand limits to product formation in Clostridium thermocellum, an organism with potential applications for cellulosic biofuel production. We showed that the fate of pyruvate is largely controlled by electron availability and that reactions upstream of pyruvate limit overall product formation.
Collapse
Affiliation(s)
- S Bilal Jilani
- Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Markus Alahuhta
- National Renewable Energy Laboratory, Biosciences Center, Golden, Colorado 80401, United States
| | - Yannick J Bomble
- National Renewable Energy Laboratory, Biosciences Center, Golden, Colorado 80401, United States
| | - Daniel G Olson
- Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
2
|
Sun M, Gao AX, Liu X, Bai Z, Wang P, Ledesma-Amaro R. Microbial conversion of ethanol to high-value products: progress and challenges. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:115. [PMID: 39160588 PMCID: PMC11334397 DOI: 10.1186/s13068-024-02546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024]
Abstract
Industrial biotechnology heavily relies on the microbial conversion of carbohydrate substrates derived from sugar- or starch-rich crops. This dependency poses significant challenges in the face of a rising population and food scarcity. Consequently, exploring renewable, non-competing carbon sources for sustainable bioprocessing becomes increasingly important. Ethanol, a key C2 feedstock, presents a promising alternative, especially for producing acetyl-CoA derivatives. In this review, we offer an in-depth analysis of ethanol's potential as an alternative carbon source, summarizing its distinctive characteristics when utilized by microbes, microbial ethanol metabolism pathway, and microbial responses and tolerance mechanisms to ethanol stress. We provide an update on recent progress in ethanol-based biomanufacturing and ethanol biosynthesis, discuss current challenges, and outline potential research directions to guide future advancements in this field. The insights presented here could serve as valuable theoretical support for researchers and industry professionals seeking to harness ethanol's potential for the production of high-value products.
Collapse
Affiliation(s)
- Manman Sun
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Hefei Artificial Intelligence Breeding Accelerator, Hefei, 230000, China
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China.
| | - Peng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Institute of Hefei Artificial Intelligence Breeding Accelerator, Hefei, 230000, China.
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
3
|
Duez Q, van de Wiel J, van Sluijs B, Ghosh S, Baltussen MG, Derks MTGM, Roithová J, Huck WTS. Quantitative Online Monitoring of an Immobilized Enzymatic Network by Ion Mobility-Mass Spectrometry. J Am Chem Soc 2024; 146:20778-20787. [PMID: 39013149 PMCID: PMC11295183 DOI: 10.1021/jacs.4c04218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
The forward design of in vitro enzymatic reaction networks (ERNs) requires a detailed analysis of network kinetics and potentially hidden interactions between the substrates and enzymes. Although flow chemistry allows for a systematic exploration of how the networks adapt to continuously changing conditions, the analysis of the reaction products is often a bottleneck. Here, we report on the interface between a continuous stirred-tank reactor, in which an immobilized enzymatic network made of 12 enzymes is compartmentalized, and an ion mobility-mass spectrometer. Feeding uniformly 13C-labeled inputs to the enzymatic network generates all isotopically labeled reaction intermediates and products, which are individually detected by ion mobility-mass spectrometry (IMS-MS) based on their mass-to-charge ratios and inverse ion mobilities. The metabolic flux can be continuously and quantitatively monitored by diluting the ERN output with nonlabeled standards of known concentrations. The real-time quantitative data obtained by IMS-MS are then harnessed to train a model of network kinetics, which proves sufficiently predictive to control the ERN output after a single optimally designed experiment. The high resolution of the time-course data provided by this approach is an important stepping stone to design and control sizable and intricate ERNs.
Collapse
Affiliation(s)
| | | | - Bob van Sluijs
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Souvik Ghosh
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Mathieu G. Baltussen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Max T. G. M. Derks
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Jana Roithová
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
4
|
Ghosh S, Baltussen MG, Ivanov NM, Haije R, Jakštaitė M, Zhou T, Huck WTS. Exploring Emergent Properties in Enzymatic Reaction Networks: Design and Control of Dynamic Functional Systems. Chem Rev 2024; 124:2553-2582. [PMID: 38476077 PMCID: PMC10941194 DOI: 10.1021/acs.chemrev.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The intricate and complex features of enzymatic reaction networks (ERNs) play a key role in the emergence and sustenance of life. Constructing such networks in vitro enables stepwise build up in complexity and introduces the opportunity to control enzymatic activity using physicochemical stimuli. Rational design and modulation of network motifs enable the engineering of artificial systems with emergent functionalities. Such functional systems are useful for a variety of reasons such as creating new-to-nature dynamic materials, producing value-added chemicals, constructing metabolic modules for synthetic cells, and even enabling molecular computation. In this review, we offer insights into the chemical characteristics of ERNs while also delving into their potential applications and associated challenges.
Collapse
Affiliation(s)
- Souvik Ghosh
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mathieu G. Baltussen
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Nikita M. Ivanov
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Rianne Haije
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Miglė Jakštaitė
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Tao Zhou
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
5
|
van Sluijs B, Zhou T, Helwig B, Baltussen MG, Nelissen FHT, Heus HA, Huck WTS. Iterative design of training data to control intricate enzymatic reaction networks. Nat Commun 2024; 15:1602. [PMID: 38383500 PMCID: PMC10881569 DOI: 10.1038/s41467-024-45886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
Kinetic modeling of in vitro enzymatic reaction networks is vital to understand and control the complex behaviors emerging from the nonlinear interactions inside. However, modeling is severely hampered by the lack of training data. Here, we introduce a methodology that combines an active learning-like approach and flow chemistry to efficiently create optimized datasets for a highly interconnected enzymatic reactions network with multiple sub-pathways. The optimal experimental design (OED) algorithm designs a sequence of out-of-equilibrium perturbations to maximize the information about the reaction kinetics, yielding a descriptive model that allows control of the output of the network towards any cost function. We experimentally validate the model by forcing the network to produce different product ratios while maintaining a minimum level of overall conversion efficiency. Our workflow scales with the complexity of the system and enables the optimization of previously unobtainable network outputs.
Collapse
Affiliation(s)
- Bob van Sluijs
- Institute for Molecules and Materials, Radboud University, Nijmegen, AJ, The Netherlands
| | - Tao Zhou
- Institute for Molecules and Materials, Radboud University, Nijmegen, AJ, The Netherlands.
| | - Britta Helwig
- Institute for Molecules and Materials, Radboud University, Nijmegen, AJ, The Netherlands
| | - Mathieu G Baltussen
- Institute for Molecules and Materials, Radboud University, Nijmegen, AJ, The Netherlands
| | - Frank H T Nelissen
- Institute for Molecules and Materials, Radboud University, Nijmegen, AJ, The Netherlands
| | - Hans A Heus
- Institute for Molecules and Materials, Radboud University, Nijmegen, AJ, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Nijmegen, AJ, The Netherlands.
| |
Collapse
|
6
|
Sigg A, Klimacek M, Nidetzky B. Pushing the boundaries of phosphorylase cascade reaction for cellobiose production I: Kinetic model development. Biotechnol Bioeng 2024; 121:580-592. [PMID: 37983971 DOI: 10.1002/bit.28602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
One-pot cascade reactions of coupled disaccharide phosphorylases enable an efficient transglycosylation via intermediary α-d-glucose 1-phosphate (G1P). Such transformations have promising applications in the production of carbohydrate commodities, including the disaccharide cellobiose for food and feed use. Several studies have shown sucrose and cellobiose phosphorylase for cellobiose synthesis from sucrose, but the boundaries on transformation efficiency that result from kinetic and thermodynamic characteristics of the individual enzyme reactions are not known. Here, we assessed in a step-by-step systematic fashion the practical requirements of a kinetic model to describe cellobiose production at industrially relevant substrate concentrations of up to 600 mM sucrose and glucose each. Mechanistic initial-rate models of the two-substrate reactions of sucrose phosphorylase (sucrose + phosphate → G1P + fructose) and cellobiose phosphorylase (G1P + glucose → cellobiose + phosphate) were needed and additionally required expansion by terms of glucose inhibition, in particular a distinctive two-site glucose substrate inhibition of the cellobiose phosphorylase (from Cellulumonas uda). Combined with mass action terms accounting for the approach to equilibrium, the kinetic model gave an excellent fit and a robust prediction of the full reaction time courses for a wide range of enzyme activities as well as substrate concentrations, including the variable substoichiometric concentration of phosphate. The model thus provides the essential engineering tool to disentangle the highly interrelated factors of conversion efficiency in the coupled enzyme reaction; and it establishes the necessary basis of window of operation calculations for targeted optimizations toward different process tasks.
Collapse
Affiliation(s)
- Alexander Sigg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Mario Klimacek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| |
Collapse
|
7
|
Heid E, Probst D, Green WH, Madsen GKH. EnzymeMap: curation, validation and data-driven prediction of enzymatic reactions. Chem Sci 2023; 14:14229-14242. [PMID: 38098707 PMCID: PMC10718068 DOI: 10.1039/d3sc02048g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Enzymatic reactions are an ecofriendly, selective, and versatile addition, sometimes even alternative to organic reactions for the synthesis of chemical compounds such as pharmaceuticals or fine chemicals. To identify suitable reactions, computational models to predict the activity of enzymes on non-native substrates, to perform retrosynthetic pathway searches, or to predict the outcomes of reactions including regio- and stereoselectivity are becoming increasingly important. However, current approaches are substantially hindered by the limited amount of available data, especially if balanced and atom mapped reactions are needed and if the models feature machine learning components. We therefore constructed a high-quality dataset (EnzymeMap) by developing a large set of correction and validation algorithms for recorded reactions in the literature and showcase its significant positive impact on machine learning models of retrosynthesis, forward prediction, and regioselectivity prediction, outperforming previous approaches by a large margin. Our dataset allows for deep learning models of enzymatic reactions with unprecedented accuracy, and is freely available online.
Collapse
Affiliation(s)
- Esther Heid
- Institute of Materials Chemistry, TU Wien 1060 Vienna Austria
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | | | - William H Green
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | | |
Collapse
|
8
|
Qiao Y, Ma W, Zhang S, Guo F, Liu K, Jiang Y, Wang Y, Xin F, Zhang W, Jiang M. Artificial multi-enzyme cascades and whole-cell transformation for bioconversion of C1 compounds: Advances, challenge and perspectives. Synth Syst Biotechnol 2023; 8:578-583. [PMID: 37706206 PMCID: PMC10495606 DOI: 10.1016/j.synbio.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Artificial multi-enzyme cascades bear great potential for bioconversion of C1 compounds to value-added chemicals. Over the past decade, massive efforts have been devoted to constructing multi-enzyme cascades to produce glycolic acid, rare functional sugars and even starch from C1 compounds. However, in contrast to traditional fermentation utilizing C1 compounds with the expectation of competitive economic performance in future industrialization, multi-enzyme cascades systems in the proof-of-concept phase are facing the challenges of upscaling. Here, we offered an overview of the recent advances in the construction of in vitro multi-enzyme cascades and whole-cell transformation using C1 compounds as substrate. In addition, the existing challenges and possible solutions were also discussed aiming to combine the strengths of in vitro and in vivo multi-enzyme cascades systems for upscaling.
Collapse
Affiliation(s)
- Yangyi Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Wenyue Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Shangjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Feng Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Kang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Yanxia Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| |
Collapse
|
9
|
Sun Q, Shi J, Sun H, Zhu Y, Du J. Membrane and Lumen-Compartmentalized Polymersomes for Biocatalysis and Cell Mimics. Biomacromolecules 2023; 24:4587-4604. [PMID: 37842883 DOI: 10.1021/acs.biomac.3c00726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Compartmentalization is a crucial feature of a natural cell, manifested in cell membrane and inner lumen. Inspired by the cellular structure, multicompartment polymersomes (MCPs), including membrane-compartmentalized polymersomes and lumen-compartmentalized polymersomes (polymersomes-in-polymersomes), have aroused great expectations for biological applications such as biocatalysis and cell mimics in the past decades. Compared with traditional polymersomes, MCPs have advantages in encapsulating multiple enzymes separately for multistep enzymatic cascade reactions. In this review, first, the design principles and preparation methods of membrane-compartmentalized and lumen-compartmentalized polymersomes are summarized. Next, recent advances of MCPs as nanoreactors and cell mimics to mimic subcellular organelles or artificial cells are discussed. Finally, the future research directions of MCPs are prospected.
Collapse
Affiliation(s)
- Qingmei Sun
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Junqiu Shi
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yunqing Zhu
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
10
|
Alberto Alcalá-Orozco E, Grote V, Fiebig T, Klamt S, Reichl U, Rexer T. A Cell-Free Multi-enzyme Cascade Reaction for the Synthesis of CDP-Glycerol. Chembiochem 2023; 24:e202300463. [PMID: 37578628 DOI: 10.1002/cbic.202300463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
CDP-glycerol is a nucleotide-diphosphate-activated version of glycerol. In nature, it is required for the biosynthesis of teichoic acid in Gram-positive bacteria, which is an appealing target epitope for the development of new vaccines. Here, a cell-free multi-enzyme cascade was developed to synthetize nucleotide-activated glycerol from the inexpensive and readily available substrates cytidine and glycerol. The cascade comprises five recombinant enzymes expressed in Escherichia coli that were purified by immobilized metal affinity chromatography. As part of the cascade, ATP is regenerated in situ from polyphosphate to reduce synthesis costs. The enzymatic cascade was characterized at the laboratory scale, and the products were analyzed by high-performance anion-exchange chromatography (HPAEC)-UV and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). After the successful synthesis had been confirmed, a design-of-experiments approach was used to screen for optimal operation conditions (temperature, pH value and MgCl2 concentration). Overall, a substrate conversion of 89 % was achieved with respect to the substrate cytidine.
Collapse
Affiliation(s)
- E Alberto Alcalá-Orozco
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Valerian Grote
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto-von-Guericke University Magdeburg, 39104, Magdeburg, Germany
| | - Thomas Rexer
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| |
Collapse
|
11
|
Huber N, Alcalá-Orozco EA, Rexer T, Reichl U, Klamt S. Model-based optimization of cell-free enzyme cascades exemplified for the production of GDP-fucose. Metab Eng 2023; 81:S1096-7176(23)00147-7. [PMID: 39492471 DOI: 10.1016/j.ymben.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Cell-free production systems are increasingly used for the synthesis of industrially relevant chemicals and biopharmaceuticals. Cell-free systems often utilize cell lysates, but biocatalytic cascades based on recombinant enzymes have emerged as a promising alternative strategy. However, implementing efficient enzyme cascades is a non-trivial task and mathematical modeling and optimization has become a key tool to improve their performance. In this work, we introduce a generic framework for the model-based optimization of cell-free enzyme cascades based on a given kinetic model of the system. We first formulate and systematize seven optimization problems relevant in the context of cell-free production processes including, for example, the maximization of productivity or product yield and the minimization of overall costs. We then present an approach that accounts for parameter uncertainties, not only during model calibration and model analysis but also when performing the actual optimization. After constructing a kinetic model of the enzyme cascade, experimental data are used to generate an ensemble of kinetic parameter sets reflecting their variabilities. For every parameter set, systems optimization is then performed and the resulting solution subsequently cross-validated for all other parameterizations to identify the solution with the highest overall performance under parameter uncertainty. We exemplify our approach for the cell-free synthesis of GDP-fucose, an important sugar nucleotide with various applications. We selected and solved three optimization problems based on a constructed dynamic model and validated two of them experimentally leading to significant improvements of the process (e.g., 50% increase of titer under identical total enzyme load). Overall, our results demonstrate the potential of model-driven optimization for the rational design and improvement of cell-free production systems. The developed approach for systems optimization under parameter uncertainty could also be relevant for the metabolic design of cell factories.
Collapse
Affiliation(s)
- Nicolas Huber
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | | | - Thomas Rexer
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany; eversyn, 39106, Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany.
| |
Collapse
|
12
|
Wang X, Xia B, Hao Z, Kang H, Liu W, Chen Y, Jiang Q, Liu J, Gou J, Dong B, Wee ATS, Liu Y, Wei D. A closed-loop catalytic nanoreactor system on a transistor. SCIENCE ADVANCES 2023; 9:eadj0839. [PMID: 37729411 PMCID: PMC10511191 DOI: 10.1126/sciadv.adj0839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023]
Abstract
Precision chemistry demands miniaturized catalytic systems for sophisticated reactions with well-defined pathways. An ideal solution is to construct a nanoreactor system functioning as a chemistry laboratory to execute a full chemical process with molecular precision. However, existing nanoscale catalytic systems fail to in situ control reaction kinetics in a closed-loop manner, lacking the precision toward ultimate reaction efficiency. We find an inter-electrochemical gating effect when operating DNA framework-constructed enzyme cascade nanoreactors on a transistor, enabling in situ closed-loop reaction monitoring and modulation electrically. Therefore, a comprehensive system is developed, encapsulating nanoreactors, analyzers, and modulators, where the gate potential modulates enzyme activity and switches cascade reaction "ON" or "OFF." Such electric field-effect property enhances catalytic efficiency of enzyme by 343.4-fold and enables sensitive sarcosine assay for prostate cancer diagnoses, with a limit of detection five orders of magnitude lower than methodologies in clinical laboratory. By coupling with solid-state electronics, this work provides a perspective to construct intelligent nano-systems for precision chemistry.
Collapse
Affiliation(s)
- Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Binbin Xia
- Institute of Molecular Medicine, Department of Urology, Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhuang Hao
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hua Kang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Wentao Liu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Qunfeng Jiang
- Department of Physics, Fudan University, Shanghai 200433, China
| | - Jingyuan Liu
- Global Clinical Operation, Johnson & Johnson, Shanghai 200233, China
| | - Jian Gou
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Baijun Dong
- Institute of Molecular Medicine, Department of Urology, Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
13
|
Liu M, Song Y, Zhang YHPJ, You C. Carrier-Free Immobilization of Multi-Enzyme Complex Facilitates In Vitro Synthetic Enzymatic Biosystem for Biomanufacturing. CHEMSUSCHEM 2023; 16:e202202153. [PMID: 36538347 DOI: 10.1002/cssc.202202153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
A method is developed for carrier-free immobilization of multi-enzyme complexes with more than four enzymes by utilization of polypeptide interactions (SpyCatcher-SpyTag and dockerin-cohesin) and enzyme component self-oligomerization. Two pairs of scaffoldins with different arrangements of SpyCatcher-SpyTag and cohesins are prepared to recruit the four dockerin-containing cascade enzymes (i. e., alpha-glucan phosphorylase, phosphoglucomutase, inositol 1-phosphate synthase, and inositol 1-phosphatase) that can convert starch into inositol, forming multi-enzyme complexes. These self-assembled enzyme complexes show higher initial reaction rates than the four-enzyme cocktail. Moreover, water-insoluble self-assembled multi-enzyme complexes are observed, being the carrier-free immobilized multi-enzyme complex aggregates. These immobilized enzyme complexes can be recycled easily by simple centrifuging followed by resuspension for another round of reaction. Not only can these immobilized enzyme complexes be obtained by mixing the purified enzyme components, but also by the mixing of crude cell extracts. Therefore, the strategy for the carrier-free immobilization of enzyme complex sheds light on improving the catalytic capability of in vitro synthetic enzymatic biosystems.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Yunhong Song
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| |
Collapse
|
14
|
Current status and future prospects in cannabinoid production through in vitro culture and synthetic biology. Biotechnol Adv 2023; 62:108074. [PMID: 36481387 DOI: 10.1016/j.biotechadv.2022.108074] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
For centuries, cannabis has been a rich source of fibrous, pharmaceutical, and recreational ingredients. Phytocannabinoids are the most important and well-known class of cannabis-derived secondary metabolites and display a broad range of health-promoting and psychoactive effects. The unique characteristics of phytocannabinoids (e.g., metabolite likeness, multi-target spectrum, and safety profile) have resulted in the development and approval of several cannabis-derived drugs. While most work has focused on the two main cannabinoids produced in the plant, over 150 unique cannabinoids have been identified. To meet the rapidly growing phytocannabinoid demand, particularly many of the minor cannabinoids found in low amounts in planta, biotechnology offers promising alternatives for biosynthesis through in vitro culture and heterologous systems. In recent years, the engineered production of phytocannabinoids has been obtained through synthetic biology both in vitro (cell suspension culture and hairy root culture) and heterologous systems. However, there are still several bottlenecks (e.g., the complexity of the cannabinoid biosynthetic pathway and optimizing the bioprocess), hampering biosynthesis and scaling up the biotechnological process. The current study reviews recent advances related to in vitro culture-mediated cannabinoid production. Additionally, an integrated overview of promising conventional approaches to cannabinoid production is presented. Progress toward cannabinoid production in heterologous systems and possible avenues for avoiding autotoxicity are also reviewed and highlighted. Machine learning is then introduced as a powerful tool to model, and optimize bioprocesses related to cannabinoid production. Finally, regulation and manipulation of the cannabinoid biosynthetic pathway using CRISPR- mediated metabolic engineering is discussed.
Collapse
|
15
|
Tadi SRR, Nehru G, Sivaprakasam S. One-Pot Biosynthesis of 3-Aminopropionic Acid from Fumaric Acid Using Recombinant Bacillus megaterium Containing a Linear Dual-Enzyme Cascade. Appl Biochem Biotechnol 2022; 194:1740-1754. [DOI: 10.1007/s12010-021-03783-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 01/12/2023]
|
16
|
Jung J, Schachtschabel D, Speitling M, Nidetzky B. Controllable Iterative β-Glucosylation from UDP-Glucose by Bacillus cereus Glycosyltransferase GT1: Application for the Synthesis of Disaccharide-Modified Xenobiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14630-14642. [PMID: 34817995 PMCID: PMC8662728 DOI: 10.1021/acs.jafc.1c05788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Glycosylation in natural product metabolism and xenobiotic detoxification often leads to disaccharide-modified metabolites. The chemical synthesis of such glycosides typically separates the glycosylation steps in space and time. The option to perform the two-step glycosylation in one pot, and catalyzed by a single permissive enzyme, is interesting for a facile access to disaccharide-modified products. Here, we reveal the glycosyltransferase GT1 from Bacillus cereus (BcGT1; gene identifier: KT821092) for iterative O-β-glucosylation from uridine 5'-diphosphate (UDP)-glucose to form a β-linked disaccharide of different metabolites, including a C15 hydroxylated detoxification intermediate of the agricultural herbicide cinmethylin (15HCM). We identify thermodynamic and kinetic requirements for the selective formation of the disaccharide compared to the monosaccharide-modified 15HCM. As shown by NMR and high-resolution MS, β-cellobiosyl and β-gentiobiosyl groups are attached to the aglycone's O15 in a 2:1 ratio. Glucosylation reactions on methylumbelliferone and 4-nitrophenol involve reversible glycosyl transfer from and to UDP as well as UDP-glucose hydrolysis, both catalyzed by BcGT1. Collectively, this study delineates the iterative β-d-glucosylation of aglycones by BcGT1 and demonstrates applicability for the programmable one-pot synthesis of disaccharide-modified 15HCM.
Collapse
Affiliation(s)
- Jihye Jung
- Austrian
Centre of Industrial Biotechnology, A-8010 Graz, Austria
- Institute
of Biotechnology and Biochemical Engineering, NAWI Graz, TU Graz, A-8010 Graz, Austria
| | | | | | - Bernd Nidetzky
- Austrian
Centre of Industrial Biotechnology, A-8010 Graz, Austria
- Institute
of Biotechnology and Biochemical Engineering, NAWI Graz, TU Graz, A-8010 Graz, Austria
| |
Collapse
|
17
|
Kuschmierz L, Shen L, Bräsen C, Snoep J, Siebers B. Workflows for optimization of enzyme cascades and whole cell catalysis based on enzyme kinetic characterization and pathway modelling. Curr Opin Biotechnol 2021; 74:55-60. [PMID: 34794111 DOI: 10.1016/j.copbio.2021.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
To move towards a circular bioeconomy, sustainable strategies for the utilization of renewable, non-food biomass wastes such as lignocellulose, are needed. To this end, an efficient bioconversion of d-xylose - after d-glucose the most abundant sugar in lignocellulose - is highly desirable. Most standard organisms used in biotechnology are limited in metabolising d-xylose, and also in vitro enzymatic strategies for its conversion have not been very successful. We herein discuss that bioconversion of d-xylose is mostly hampered by missing knowledge on the kinetic properties of the enzymes involved in its metabolism. We propose a combination of classical enzyme characterizations and mathematical modelling approaches as a workflow for rational, model-based design to optimize enzyme cascades and/or whole cell biocatalysts for efficient d-xylose metabolism.
Collapse
Affiliation(s)
- Laura Kuschmierz
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Lu Shen
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - Jacky Snoep
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa; Department of Molecular Cell Physiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany.
| |
Collapse
|
18
|
Heid E, Goldman S, Sankaranarayanan K, Coley CW, Flamm C, Green WH. EHreact: Extended Hasse Diagrams for the Extraction and Scoring of Enzymatic Reaction Templates. J Chem Inf Model 2021; 61:4949-4961. [PMID: 34587449 PMCID: PMC8549070 DOI: 10.1021/acs.jcim.1c00921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/29/2022]
Abstract
Data-driven computer-aided synthesis planning utilizing organic or biocatalyzed reactions from large databases has gained increasing interest in the last decade, sparking the development of numerous tools to extract, apply, and score general reaction templates. The generation of reaction rules for enzymatic reactions is especially challenging since substrate promiscuity varies between enzymes, causing the optimal levels of rule specificity and optimal number of included atoms to differ between enzymes. This complicates an automated extraction from databases and has promoted the creation of manually curated reaction rule sets. Here, we present EHreact, a purely data-driven open-source software tool, to extract and score reaction rules from sets of reactions known to be catalyzed by an enzyme at appropriate levels of specificity without expert knowledge. EHreact extracts and groups reaction rules into tree-like structures, Hasse diagrams, based on common substructures in the imaginary transition structures. Each diagram can be utilized to output a single or a set of reaction rules, as well as calculate the probability of a new substrate to be processed by the given enzyme by inferring information about the reactive site of the enzyme from the known reactions and their grouping in the template tree. EHreact heuristically predicts the activity of a given enzyme on a new substrate, outperforming current approaches in accuracy and functionality.
Collapse
Affiliation(s)
- Esther Heid
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel Goldman
- Computational
and Systems Biology, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Karthik Sankaranarayanan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Connor W. Coley
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Christoph Flamm
- Department
of Theoretical Chemistry, University of
Vienna, 1090 Vienna, Austria
| | - William H. Green
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Getting the Most Out of Enzyme Cascades: Strategies to Optimize In Vitro Multi-Enzymatic Reactions. Catalysts 2021. [DOI: 10.3390/catal11101183] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In vitro enzyme cascades possess great benefits, such as their synthetic capabilities for complex molecules, no need for intermediate isolation, and the shift of unfavorable equilibria towards the products. Their performance, however, can be impaired by, for example, destabilizing or inhibitory interactions between the cascade components or incongruous reaction conditions. The optimization of such systems is therefore often inevitable but not an easy task. Many parameters such as the design of the synthesis route, the choice of enzymes, reaction conditions, or process design can alter the performance of an in vitro enzymatic cascade. Many strategies to tackle this complex task exist, ranging from experimental to in silico approaches and combinations of both. This review collates examples of various optimization strategies and their success. The feasibility of optimization goals, the influence of certain parameters and the usage of algorithm-based optimizations are discussed.
Collapse
|
20
|
Ivanov I, Castellanos SL, Balasbas S, Otrin L, Marušič N, Vidaković-Koch T, Sundmacher K. Bottom-Up Synthesis of Artificial Cells: Recent Highlights and Future Challenges. Annu Rev Chem Biomol Eng 2021; 12:287-308. [PMID: 34097845 DOI: 10.1146/annurev-chembioeng-092220-085918] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The bottom-up approach in synthetic biology aims to create molecular ensembles that reproduce the organization and functions of living organisms and strives to integrate them in a modular and hierarchical fashion toward the basic unit of life-the cell-and beyond. This young field stands on the shoulders of fundamental research in molecular biology and biochemistry, next to synthetic chemistry, and, augmented by an engineering framework, has seen tremendous progress in recent years thanks to multiple technological and scientific advancements. In this timely review of the research over the past decade, we focus on three essential features of living cells: the ability to self-reproduce via recursive cycles of growth and division, the harnessing of energy to drive cellular processes, and the assembly of metabolic pathways. In addition, we cover the increasing efforts to establish multicellular systems via different communication strategies and critically evaluate the potential applications.
Collapse
Affiliation(s)
- Ivan Ivanov
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , ,
| | - Sebastián López Castellanos
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , ,
| | - Severo Balasbas
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , ,
| | - Lado Otrin
- Electrochemical Energy Conversion, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; ,
| | - Nika Marušič
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , ,
| | - Tanja Vidaković-Koch
- Electrochemical Energy Conversion, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; ,
| | - Kai Sundmacher
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , , .,Department of Process Systems Engineering, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
21
|
Rollin JA, Bomble YJ, St. John PC, Stark AK. Biochemical Production with Purified Cell-Free Systems. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2018.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Toward sustainable, cell-free biomanufacturing. Curr Opin Biotechnol 2021; 69:136-144. [PMID: 33453438 DOI: 10.1016/j.copbio.2020.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
Industrial biotechnology is an attractive approach to address the need for low-cost fuels and products from sustainable resources. Unfortunately, cells impose inherent limitations on the effective synthesis and release of target products. One key constraint is that cellular survival objectives often work against the production objectives of biochemical engineers. Additionally, industrial strains release CO2 and struggle to utilize sustainable, potentially profitable feedstocks. Cell-free biotechnology, which uses biological machinery harvested from cells, can address these challenges with advantages including: (i) shorter development times, (ii) higher volumetric production rates, and (iii) tolerance to otherwise toxic molecules. In this review, we highlight recent advances in cell-free technologies toward the production of non-protein products beyond lab-scale demonstrations and describe guiding principles for designing cell-free systems. Specifically, we discuss carbon and energy sources, reaction homeostasis, and scale-up. Expanding the scope of cell-free biomanufacturing practice could enable innovative approaches for the industrial production of green chemicals.
Collapse
|
23
|
Dos Santos EC, Belluati A, Necula D, Scherrer D, Meyer CE, Wehr RP, Lörtscher E, Palivan CG, Meier W. Combinatorial Strategy for Studying Biochemical Pathways in Double Emulsion Templated Cell-Sized Compartments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004804. [PMID: 33107187 DOI: 10.1002/adma.202004804] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/08/2020] [Indexed: 05/16/2023]
Abstract
Cells rely upon producing enzymes at precise rates and stoichiometry for maximizing functionalities. The reasons for this optimal control are unknown, primarily because of the interconnectivity of the enzymatic cascade effects within multi-step pathways. Here, an elegant strategy for studying such behavior, by controlling segregation/combination of enzymes/metabolites in synthetic cell-sized compartments, while preserving vital cellular elements is presented. Therefore, compartments shaped into polymer GUVs are developed, producing via high-precision double-emulsion microfluidics that enable: i) tight control over the absolute and relative enzymatic contents inside the GUVs, reaching nearly 100% encapsulation and co-encapsulation efficiencies, and ii) functional reconstitution of biopores and membrane proteins in the GUVs polymeric membrane, thus supporting in situ reactions. GUVs equipped with biopores/membrane proteins and loaded with one or more enzymes are arranged in a variety of combinations that allow the study of a three-step cascade in multiple topologies. Due to the spatiotemporal control provided, optimum conditions for decreasing the accumulation of inhibitors are unveiled, and benefited from reactive intermediates to maximize the overall cascade efficiency in compartments. The non-system-specific feature of the novel strategy makes this system an ideal candidate for the development of new synthetic routes as well as for screening natural and more complex pathways.
Collapse
Affiliation(s)
- Elena C Dos Santos
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Andrea Belluati
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Danut Necula
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Dominik Scherrer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
- IBM Research Europe, Saeumerstrasse 4, 8803, Rueschlikon, Switzerland
| | - Claire E Meyer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Riccardo P Wehr
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Emanuel Lörtscher
- IBM Research Europe, Saeumerstrasse 4, 8803, Rueschlikon, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| |
Collapse
|
24
|
Mizuno H, Tsuge Y. Elevated, non-proliferative temperatures change the profile of fermentation products in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2020; 105:367-377. [PMID: 33242127 DOI: 10.1007/s00253-020-11024-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
Although temperature is a crucial factor affecting enzymatic activity on biochemical and biofuel production, the reaction temperature for the generation of these products is usually set at the optimal growth temperature of the host strain, even under non-proliferative conditions. Given that the production of fermentation products only requires a fraction of the cell's metabolic pathways, the optimal temperatures for microbial growth and the fermentative production of a target compound may be different. Here, we investigated the effect of temperature on lactic and succinic acids production, and related enzymatic activities, in wild-type and succinic acid-overproducing strains of Corynebacterium glutamicum. Interestingly, fermentative production of lactic acid increased with the temperature in wild-type: production was 69% higher at 42.5 °C, a temperature that exceeded the upper limit for growth, than that at the optimal growth temperature (30 °C). Conversely, succinic acid production was decreased by 13% under the same conditions in wild-type. The specific activity of phosphoenolpyruvate carboxylase decreased with the increase in temperature. In contrast, the other glycolytic and reductive TCA cycle enzymes demonstrated increased or constant activity as the temperature was increased. When using a succinic acid over-producing strain, succinic acid production was increased by 34% at 42.5 °C. Our findings demonstrate that the profile of fermentation products is dependent upon temperature, which could be caused by the modulation of enzymatic activities. Moreover, we report that elevated temperatures, exceeding the upper limit for cell growth, can be used to increase the production of target compounds in C. glutamicum. KEY POINTS: • Lactate productivity was increased by temperature elevation. • Succinate productivity was increased by temperature elevation when lactate pathway was deleted. • Specific activity of phosphoenolpyruvate carboxylase was decreased by temperature elevation.
Collapse
Affiliation(s)
- Hikaru Mizuno
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yota Tsuge
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan. .,Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
25
|
Bacterial sialyltransferases and their use in biocatalytic cascades for sialo-oligosaccharide production. Biotechnol Adv 2020; 44:107613. [DOI: 10.1016/j.biotechadv.2020.107613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
|
26
|
Tian R, Wang M, Shi J, Qin X, Guo H, Jia X, Li J, Liu L, Du G, Chen J, Liu Y. Cell-free synthesis system-assisted pathway bottleneck diagnosis and engineering in Bacillus subtilis. Synth Syst Biotechnol 2020; 5:131-136. [PMID: 32637666 PMCID: PMC7320236 DOI: 10.1016/j.synbio.2020.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
Metabolic engineering is a key technology for cell factories construction by rewiring cellular resources to achieve efficient production of target chemicals. However, the existence of bottlenecks in synthetic pathway can seriously affect production efficiency, which is also one of the core issues for metabolic engineers to solve. Therefore, developing an approach for diagnosing potential metabolic bottlenecks in a faster and simpler manner is of great significance to accelerate cell factories construction. The cell-free reaction system based on cell lysates can transfer metabolic reactions from in vivo to in vitro, providing a flexible access to directly change protein and metabolite variables, thus provides a potential solution for rapid identification of bottlenecks. Here, bottleneck diagnosis of the N-acetylneuraminic acid (NeuAc) biosynthesis pathway in industrially important chassis microorganism Bacillus subtilis was performed using cell-free synthesis system. Specifically, a highly efficient B. subtilis cell-free system for NeuAc de novo synthesis was firstly constructed, which had a 305-fold NeuAc synthesis rate than that in vivo and enabled fast pathway dynamics analysis. Next, through the addition of all potential key intermediates in combination with substrate glucose respectively, it was found that insufficient phosphoenolpyruvate supply was one of the NeuAc pathway bottlenecks. Rational in vivo metabolic engineering of NeuAc-producing B. subtilis was further performed to eliminate the bottleneck. By down-regulating the expression level of pyruvate kinase throughout the growth phase or only in the stationary phase using inhibitory N-terminal coding sequences (NCSs) and growth-dependent regulatory NCSs respectively, the maximal NeuAc titer increased 2.0-fold. Our study provides a rapid method for bottleneck diagnosis, which may help to accelerate the cycle of design, build, test and learn cycle for metabolic engineering.
Collapse
Affiliation(s)
- Rongzhen Tian
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Minghu Wang
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jintian Shi
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xiaolong Qin
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Haoyu Guo
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xuanjie Jia
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
27
|
2-Ketoglutarate-Generated In Vitro Enzymatic Biosystem Facilitates Fe(II)/2-Ketoglutarate-Dependent Dioxygenase-Mediated C-H Bond Oxidation for (2 s,3 r,4 s)-4-Hydroxyisoleucine Synthesis. Int J Mol Sci 2020; 21:ijms21155347. [PMID: 32731373 PMCID: PMC7432852 DOI: 10.3390/ijms21155347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022] Open
Abstract
Fe(II)/2-ketoglutarate-dependent dioxygenase (Fe(II)/2-KG DO)-mediated hydroxylation is a critical type of C-H bond functionalization for synthesizing hydroxy amino acids used as pharmaceutical raw materials and precursors. However, DO activity requires 2-ketoglutarate (2-KG), lack of which reduces the efficiency of Fe(II)/2-KG DO-mediated hydroxylation. Here, we conducted multi-enzymatic syntheses of hydroxy amino acids. Using (2s,3r,4s)-4-hydroxyisoleucine (4-HIL) as a model product, we coupled regio- and stereo-selective hydroxylation of l-Ile by the dioxygenase IDO with 2-KG generation from readily available l-Glu by l-glutamate oxidase (LGOX) and catalase (CAT). In the one-pot system, H2O2 significantly inhibited IDO activity and elevated Fe2+ concentrations of severely repressed LGOX. A sequential cascade reaction was preferable to a single-step process as CAT in the former system hydrolyzed H2O2. We obtained 465 mM 4-HIL at 93% yield in the two-step system. Moreover, this process facilitated C-H hydroxylation of several hydrophobic aliphatic amino acids to produce hydroxy amino acids, and C-H sulfoxidation of sulfur-containing l-amino acids to yield l-amino acid sulfoxides. Thus, we constructed an efficient cascade reaction to produce 4-HIL by providing prerequisite 2-KG from cheap and plentiful l-Glu and developed a strategy for creating enzymatic systems catalyzing 2-KG-dependent reactions in sustainable bioprocesses that synthesize other functional compounds.
Collapse
|
28
|
Abstract
Metabolic engineering is crucial in the development of production strains for platform chemicals, pharmaceuticals and biomaterials from renewable resources. The central carbon metabolism (CCM) of heterotrophs plays an essential role in the conversion of biomass to the cellular building blocks required for growth. Yet, engineering the CCM ultimately aims toward a maximization of flux toward products of interest. The most abundant dissimilative carbohydrate pathways amongst prokaryotes (and eukaryotes) are the Embden-Meyerhof-Parnas (EMP) and the Entner-Doudoroff (ED) pathways, which build the basics for heterotrophic metabolic chassis strains. Although the EMP is regarded as the textbook example of a carbohydrate pathway owing to its central role in production strains like Escherichia coli, Saccharomyces cerevisiae and Bacillus subtilis, it is either modified, complemented or even replaced by alternative carbohydrate pathways in different organisms. The ED pathway also plays key roles in biotechnological relevant bacteria, like Zymomonas mobilis and Pseudomonas putida, and its importance was recently discovered in photoautotrophs and marine microorganisms. In contrast to the EMP, the ED pathway and its variations are not evolutionary optimized for high ATP production and it differs in key principles such as protein cost, energetics and thermodynamics, which can be exploited in the construction of unique metabolic designs. Single ED pathway enzymes and complete ED pathway modules have been used to rewire carbon metabolisms in production strains and for the construction of cell-free enzymatic pathways. This review focuses on the differences of the ED and EMP pathways including their variations and discusses the use of alternative pathway strategies for in vivo and cell-free metabolic engineering.
Collapse
Affiliation(s)
- Dominik Kopp
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
29
|
Karim AS, Dudley QM, Juminaga A, Yuan Y, Crowe SA, Heggestad JT, Garg S, Abdalla T, Grubbe WS, Rasor BJ, Coar DN, Torculas M, Krein M, Liew F, Quattlebaum A, Jensen RO, Stuart JA, Simpson SD, Köpke M, Jewett MC. In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design. Nat Chem Biol 2020; 16:912-919. [DOI: 10.1038/s41589-020-0559-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/10/2020] [Accepted: 05/06/2020] [Indexed: 01/27/2023]
|
30
|
Biswas PK, Saha S, Gaikwad S, Schmittel M. Reversible Multicomponent AND Gate Triggered by Stoichiometric Chemical Pulses Commands the Self-Assembly and Actuation of Catalytic Machinery. J Am Chem Soc 2020; 142:7889-7897. [DOI: 10.1021/jacs.0c01315] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Sudhakar Gaikwad
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
31
|
Buddingh' BC, Elzinga J, van Hest JCM. Intercellular communication between artificial cells by allosteric amplification of a molecular signal. Nat Commun 2020; 11:1652. [PMID: 32246068 PMCID: PMC7125153 DOI: 10.1038/s41467-020-15482-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/13/2020] [Indexed: 11/13/2022] Open
Abstract
Multicellular organisms rely on intercellular communication to coordinate the behaviour of individual cells, which enables their differentiation and hierarchical organization. Various cell mimics have been developed to establish fundamental engineering principles for the construction of artificial cells displaying cell-like organization, behaviour and complexity. However, collective phenomena, although of great importance for a better understanding of life-like behaviour, are underexplored. Here, we construct collectives of giant vesicles that can communicate with each other through diffusing chemical signals that are recognized and processed by synthetic enzymatic cascades. Similar to biological cells, the Receiver vesicles can transduce a weak signal originating from Sender vesicles into a strong response by virtue of a signal amplification step, which facilitates the propagation of signals over long distances within the artificial cell consortia. This design advances the development of interconnected artificial cells that can exchange metabolic and positional information to coordinate their higher-order organization.
Collapse
Affiliation(s)
- Bastiaan C Buddingh'
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Janneke Elzinga
- Radboud University, PO Box 9102, 6500 HC, Nijmegen, the Netherlands
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands.
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, the Netherlands.
| |
Collapse
|
32
|
Burgener S, Luo S, McLean R, Miller TE, Erb TJ. A roadmap towards integrated catalytic systems of the future. Nat Catal 2020. [DOI: 10.1038/s41929-020-0429-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Yelgaonkar SP, Swenson DC, MacGillivray LR. Supramolecular chemistry under mechanochemical conditions: a small molecule template generated and integrated into a molecular-to-supramolecular and back-to-molecular cascade reaction. Chem Sci 2020; 11:3569-3573. [PMID: 34109029 PMCID: PMC8152585 DOI: 10.1039/c9sc05823k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/07/2020] [Indexed: 01/23/2023] Open
Abstract
We describe the integration of a small-molecule hydrogen-bond-donor template into a cascade reaction that is comprised of a combination of molecular and supramolecular events. The cascade is performed mechanochemically and in the presence of μL amounts of water. The small-molecule template is generated (molecular) using water-assisted vortex grinding and is then used to assemble an alkene (supramolecular) to undergo an intermolecular [2 + 2] photodimerization reaction (molecular). The chemical cascade results in a cyclobutane photoproduct that we show serves as a building block of a hydrogen-bonded network with a topology that conforms to T-silica. Remarkably, the molecular-supramolecular-molecular chemical cascade occurs stepwise and entirely regioselectively within the continuous mechanochemical conditions employed.
Collapse
Affiliation(s)
| | - Dale C Swenson
- Department of Chemistry, University of Iowa Iowa City IA 52242 USA
| | | |
Collapse
|
34
|
A combined experimental and modelling approach for the Weimberg pathway optimisation. Nat Commun 2020; 11:1098. [PMID: 32107375 PMCID: PMC7046635 DOI: 10.1038/s41467-020-14830-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
The oxidative Weimberg pathway for the five-step pentose degradation to α-ketoglutarate is a key route for sustainable bioconversion of lignocellulosic biomass to added-value products and biofuels. The oxidative pathway from Caulobacter crescentus has been employed in in-vivo metabolic engineering with intact cells and in in-vitro enzyme cascades. The performance of such engineering approaches is often hampered by systems complexity, caused by non-linear kinetics and allosteric regulatory mechanisms. Here we report an iterative approach to construct and validate a quantitative model for the Weimberg pathway. Two sensitive points in pathway performance have been identified as follows: (1) product inhibition of the dehydrogenases (particularly in the absence of an efficient NAD+ recycling mechanism) and (2) balancing the activities of the dehydratases. The resulting model is utilized to design enzyme cascades for optimized conversion and to analyse pathway performance in C. cresensus cell-free extracts.
Collapse
|
35
|
Alissandratos A. In vitro multi-enzymatic cascades using recombinant lysates of E. coli: an emerging biocatalysis platform. Biophys Rev 2020; 12:175-182. [PMID: 31960346 PMCID: PMC7040066 DOI: 10.1007/s12551-020-00618-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 11/26/2022] Open
Abstract
In recent years, cell-free extracts (or lysates) have (re-)emerged as a third route to the traditional options of isolated or whole-cell biocatalysts. Advances in molecular biology and genetic engineering enable facile production of recombinant cell-free extracts, where endogenous enzymes are enriched with heterologous activities. These inexpensive preparations may be used to catalyse multistep enzymatic reactions without the constraints of cell toxicity and the cell membrane or the cost and complexity associated with production of isolated biocatalysts. Herein, we present an overview of the key advancements in cell-free synthetic biology that have led to the emergence of cell-free extracts as a promising biocatalysis platform.
Collapse
Affiliation(s)
- Apostolos Alissandratos
- Research School of Chemistry, The Australian National University, ACT, Canberra, 2601, Australia.
- CSIRO Synthetic Biology Future Science Platform, The Australian National University, ACT, Canberra, 2601, Australia.
| |
Collapse
|
36
|
Kopp D, Willows RD, Sunna A. Cell-Free Enzymatic Conversion of Spent Coffee Grounds Into the Platform Chemical Lactic Acid. Front Bioeng Biotechnol 2019; 7:389. [PMID: 31850336 PMCID: PMC6901390 DOI: 10.3389/fbioe.2019.00389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/19/2019] [Indexed: 12/23/2022] Open
Abstract
The coffee industry produces over 10 billion kg beans per year and generates high amounts of different waste products. Spent coffee grounds (SCG) are an industrially underutilized waste resource, which is rich in the polysaccharide galactomannan, a polysaccharide consisting of a mannose backbone with galactose side groups. Here, we present a cell-free reaction cascade for the conversion of mannose, the most abundant sugar in SCG, into L-lactic acid. The enzymatic conversion is based on a so far unknown oxidative mannose metabolism from Thermoplasma acidophilum and uses a previously characterized mannonate dehydratase to convert mannose into lactic acid via 4 enzymatic reactions. In comparison to known in vivo metabolisms the bioconversion is free of phosphorylated intermediates and cofactors. Assessment of enzymes, adjustment of enzyme loadings, substrate and cofactor concentrations, and buffer ionic strength allowed the identification of crucial reaction parameters and bottlenecks. Moreover, reactions with isotope labeled mannose enabled the monitoring of pathway intermediates and revealed a reverse flux in the conversion process. Finally, 4.4 ± 0.1 mM lactic acid was produced from 14.57 ± 0.7 mM SCG-derived mannose. While the conversion efficiency of the process can be further improved by enzyme engineering, the reaction demonstrates the first multi-enzyme cascade for the bioconversion of SCG.
Collapse
Affiliation(s)
- Dominik Kopp
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Robert D Willows
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
37
|
Yong Y, Ouyang P, Wu J, Liu Z. A Diffusion‐Reaction Model for One‐Pot Synthesis of Chemicals with Enzyme Cascades. ChemCatChem 2019. [DOI: 10.1002/cctc.201901161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- You Yong
- Key Lab of Industrial Biocatalysis Ministry of Education Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| | - Pingkai Ouyang
- Jiangsu National Synergistic Innovation Centre for Advanced Materials Nanjing 211800 P. R. China
| | - Jianzhong Wu
- Department of Chemical and Environmental EngineeringUniversity of California Riverside CA 92521 USA
| | - Zheng Liu
- Key Lab of Industrial Biocatalysis Ministry of Education Department of Chemical EngineeringTsinghua University Beijing 100084 P. R. China
| |
Collapse
|
38
|
Gmelch TJ, Sperl JM, Sieber V. Optimization of a reduced enzymatic reaction cascade for the production of L-alanine. Sci Rep 2019; 9:11754. [PMID: 31409820 PMCID: PMC6692406 DOI: 10.1038/s41598-019-48151-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/25/2019] [Indexed: 11/09/2022] Open
Abstract
Cell-free enzymatic reaction cascades combine the advantages of well-established in vitro biocatalysis with the power of multi-step in vivo pathways. The absence of a regulatory cell environment enables direct process control including methods for facile bottleneck identification and process optimization. Within this work, we developed a reduced, enzymatic reaction cascade for the direct production of L-alanine from D-glucose and ammonium sulfate. An efficient, activity based enzyme selection is demonstrated for the two branches of the cascade. The resulting redox neutral cascade is composed of a glucose dehydrogenase, two dihydroxyacid dehydratases, a keto-deoxy-aldolase, an aldehyde dehydrogenase and an L-alanine dehydrogenase. This artificial combination of purified biocatalysts eliminates the need for phosphorylation and only requires NAD as cofactor. We provide insight into in detail optimization of the process parameters applying a fluorescamine based L-alanine quantification assay. An optimized enzyme ratio and the necessary enzyme load were identified and together with the optimal concentrations of cofactor (NAD), ammonium and buffer yields of >95% for the main branch and of 8% for the side branch were achieved.
Collapse
Affiliation(s)
- Tobias J Gmelch
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
| | - Josef M Sperl
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany. .,Catalysis Research Center, Technical University of Munich, Garching, Germany. .,Fraunhofer Institute of Interfacial Biotechnology (IGB), Bio-, Electro- and Chemo Catalysis (BioCat) Branch, Straubing, Germany. .,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
39
|
Hanatani Y, Imura M, Taniguchi H, Okano K, Toya Y, Iwakiri R, Honda K. In vitro production of cysteine from glucose. Appl Microbiol Biotechnol 2019; 103:8009-8019. [PMID: 31396682 DOI: 10.1007/s00253-019-10061-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022]
Abstract
Cysteine is a commercially valuable amino acid with an increasing demand in the food, cosmetic, and pharmaceutical industries. Although cysteine is conventionally manufactured by extraction from animal proteins, this method has several problems, such as troublesome waste-water treatment and incompatibility with some dietary restrictions. Fermentative production of cysteine from plant-derived substrates is a promising alternative for the industrial production of cysteine. However, it often suffers from low product yield as living organisms are equipped with various regulatory systems to control the intracellular cysteine concentration at a moderate level. In this study, we constructed an in vitro cysteine biosynthetic pathway by assembling 11 thermophilic enzymes. The in vitro pathway was designed to be insensitive to the feedback regulation by cysteine and to balance the intra-pathway consumption and regeneration of cofactors. A kinetic model for the in vitro pathway was built using rate equations of individual enzymes and used to optimize the loading ratio of each enzyme. Consequently, 10.5 mM cysteine could be produced from 20 mM glucose through the optimized pathway. However, the observed yield and production rate of the assay were considerably lower than those predicted by the model. Determination of cofactor concentrations in the reaction mixture indicated that the inconsistency between the model and experimental assay could be attributed to the depletion of ATP and ADP, likely due to host-derived, thermo-stable enzyme(s). Based on these observations, possible approaches to improve the feasibility of cysteine production through an in vitro pathway have been discussed.
Collapse
Affiliation(s)
- Yohei Hanatani
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Makoto Imura
- Bio Science Research Center, Mitsubishi Corporation Life Sciences Ltd., Higashihama 1-6, Saiki, Oita, 876-8580, Japan
| | - Hironori Taniguchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Kenji Okano
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka, 565-0871, Japan
| | - Ryo Iwakiri
- Bio Science Research Center, Mitsubishi Corporation Life Sciences Ltd., Higashihama 1-6, Saiki, Oita, 876-8580, Japan
| | - Kohsuke Honda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
40
|
Mixed-mode liquid chromatography for the rapid analysis of biocatalytic glucaric acid reaction pathways. Anal Chim Acta 2019; 1066:136-145. [DOI: 10.1016/j.aca.2019.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 01/25/2023]
|
41
|
A critical comparison of cellular and cell-free bioproduction systems. Curr Opin Biotechnol 2019; 60:221-229. [PMID: 31207555 DOI: 10.1016/j.copbio.2019.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/07/2019] [Indexed: 12/22/2022]
Abstract
Conversion of biological feedstocks into value-added chemicals is mostly performed via microbial fermentation. An emerging alternative approach is the use of cell-free systems, consisting of purified enzymes and cofactors. Unfortunately, the in vivo and in vitro research communities rarely interact, which leads to oversimplifications and exaggerations that do not permit fair comparison of the two strategies and impede synergistic interactions. Here, we provide a comprehensive account for the advantages and drawbacks associated with each strategy, and further discuss recent research efforts that aim to breach the limits of cellular and cell-free production. We also explore emerging hybrid solutions that integrate the benefits of both worlds and could expand the boundaries of biosynthesis.
Collapse
|
42
|
Taniguchi H, Imura M, Okano K, Honda K. Developing a single strain for in vitro salvage synthesis of NAD + at high temperatures and its potential for bioconversion. Microb Cell Fact 2019; 18:75. [PMID: 31023312 PMCID: PMC6482498 DOI: 10.1186/s12934-019-1125-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/22/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Thermostable enzymes have several advantages over their mesophilic counterparts for industrial applications. However, trade-offs such as thermal instability of enzyme substrates or co-factors exist. Nicotinamide adenine dinucleotide (NAD+) is an important co-factor in many enzyme-catalyzed oxidation-reduction reactions. This compound spontaneously decomposes at elevated temperatures and basic pH, a property that limits catalysis of NAD+/NADH-dependent bioconversions using thermostable enzymes to short timeframes. To address this issue, an "in vitro metabolic pathway" for salvage synthesis of NAD+ using six thermophilic enzymes was constructed to resynthesize NAD+ from its thermal decomposition products at high temperatures. RESULTS An integrated strain, E. coli DH5α (pBR-CI857, pGETS118-NAD+), that codes for six thermophilic enzymes in a single operon was constructed. Gene-expression levels of these enzymes in the strain were modulated by their sequential order in the operon. An enzyme solution containing these enzymes was prepared by the heat purification from the cell lysate of the integrated strain, and used as an enzyme cocktail for salvage synthesis of NAD+. The salvage activity for synthesis of NAD+ from its thermal decomposition products was found to be 0.137 ± 0.006 µmol min-1 g-1 wet cells. More than 50% of this initial activity remained after 24 h at 60 °C. The enzyme cocktail could maintain a NAD+ concentration of 1 mM for 12 h at 60 °C. Furthermore, this enzyme cocktail supported continuous NAD+/NADH-dependent redox reactions using only NAD+/NADH derived from host cells, without the need for addition of external NAD+. CONCLUSIONS The integrated strain allows preparation of an enzyme cocktail that can solve the problem of NAD+ instability at high temperatures. The strain simplifies preparation of the enzyme cocktail, and thus expands the applicability of the in vitro metabolic engineering method using thermostable enzymes. Further optimization of gene expressions in the integrated strain can be achieved by using various types of ribosome binding sites as well as promoters.
Collapse
Affiliation(s)
- Hironori Taniguchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Makoto Imura
- KOHJIN Life Sciences Co., Ltd., Higashihama 1-6, Saiki, Oita, 876-858, Japan
| | - Kenji Okano
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Kohsuke Honda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
43
|
A cell-free platform for the prenylation of natural products and application to cannabinoid production. Nat Commun 2019; 10:565. [PMID: 30718485 PMCID: PMC6362252 DOI: 10.1038/s41467-019-08448-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Prenylation of natural compounds adds structural diversity, alters biological activity, and enhances therapeutic potential. Because prenylated compounds often have a low natural abundance, alternative production methods are needed. Metabolic engineering enables natural product biosynthesis from inexpensive biomass, but is limited by the complexity of secondary metabolite pathways, intermediate and product toxicities, and substrate accessibility. Alternatively, enzyme catalyzed prenyl transfer provides excellent regio- and stereo-specificity, but requires expensive isoprenyl pyrophosphate substrates. Here we develop a flexible cell-free enzymatic prenylating system that generates isoprenyl pyrophosphate substrates from glucose to prenylate an array of natural products. The system provides an efficient route to cannabinoid precursors cannabigerolic acid (CBGA) and cannabigerovarinic acid (CBGVA) at >1 g/L, and a single enzymatic step converts the precursors into cannabidiolic acid (CBDA) and cannabidivarinic acid (CBDVA). Cell-free methods may provide a powerful alternative to metabolic engineering for chemicals that are hard to produce in living organisms. Producing individual cannabinoids by metabolically engineered microbes has proven challenging. Here, the authors develop a cell-free enzymatic prenylating system to generate isoprenyl pyrophosphate substrates directly from glucose and produce both common and rare cannabinoids at >1 g/L.
Collapse
|
44
|
Wang Y, Zhang N, Zhang E, Han Y, Qi Z, Ansorge-Schumacher MB, Ge Y, Wu C. Heterogeneous Metal-Organic-Framework-Based Biohybrid Catalysts for Cascade Reactions in Organic Solvent. Chemistry 2019; 25:1716-1721. [DOI: 10.1002/chem.201805680] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Yangxin Wang
- Sino-German Joint Research Lab for Space Biomaterials, and Translational Technology; School of Life Sciences; Northwestern Polytechnical University, 127 Youyi Xilu; Xi'an Shaanxi 710072 P. R. China
- Institute of Microbiology; Technische Universität Dresden; Zellescher Weg 20b 01217 Dresden Germany
| | - Ningning Zhang
- Institute of Microbiology; Technische Universität Dresden; Zellescher Weg 20b 01217 Dresden Germany
| | - En Zhang
- Department of Chemistry; Technische Universität Dresden; Bergstraβe 66 01062 Dresden Germany
| | - Yunhu Han
- Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
| | - Zhenhui Qi
- Sino-German Joint Research Lab for Space Biomaterials, and Translational Technology; School of Life Sciences; Northwestern Polytechnical University, 127 Youyi Xilu; Xi'an Shaanxi 710072 P. R. China
| | | | - Yan Ge
- Sino-German Joint Research Lab for Space Biomaterials, and Translational Technology; School of Life Sciences; Northwestern Polytechnical University, 127 Youyi Xilu; Xi'an Shaanxi 710072 P. R. China
| | - Changzhu Wu
- Danish Institute for Advanced Study (DIAS), and Department of Physics, Chemistry and Pharmacy; University of Southern Denmark; 5230 Odense Denmark
| |
Collapse
|
45
|
Petroll K, Kopp D, Care A, Bergquist PL, Sunna A. Tools and strategies for constructing cell-free enzyme pathways. Biotechnol Adv 2018; 37:91-108. [PMID: 30521853 DOI: 10.1016/j.biotechadv.2018.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/22/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022]
Abstract
Single enzyme systems or engineered microbial hosts have been used for decades but the notion of assembling multiple enzymes into cell-free synthetic pathways is a relatively new development. The extensive possibilities that stem from this synthetic concept makes it a fast growing and potentially high impact field for biomanufacturing fine and platform chemicals, pharmaceuticals and biofuels. However, the translation of individual single enzymatic reactions into cell-free multi-enzyme pathways is not trivial. In reality, the kinetics of an enzyme pathway can be very inadequate and the production of multiple enzymes can impose a great burden on the economics of the process. We examine here strategies for designing synthetic pathways and draw attention to the requirements of substrates, enzymes and cofactor regeneration systems for improving the effectiveness and sustainability of cell-free biocatalysis. In addition, we comment on methods for the immobilisation of members of a multi-enzyme pathway to enhance the viability of the system. Finally, we focus on the recent development of integrative tools such as in silico pathway modelling and high throughput flux analysis with the aim of reinforcing their indispensable role in the future of cell-free biocatalytic pathways for biomanufacturing.
Collapse
Affiliation(s)
- Kerstin Petroll
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Dominik Kopp
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, Australia
| | - Peter L Bergquist
- Department of Molecular Sciences, Macquarie University, Sydney, Australia; Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, Australia.
| |
Collapse
|
46
|
Cheng K, Zheng W, Chen H, Zhang YHPJ. Upgrade of wood sugar d-xylose to a value-added nutraceutical by in vitro metabolic engineering. Metab Eng 2018; 52:1-8. [PMID: 30389613 DOI: 10.1016/j.ymben.2018.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/09/2018] [Accepted: 10/27/2018] [Indexed: 11/30/2022]
Abstract
The upgrade of D-xylose, the most abundant pentose, to value-added biochemicals is economically important to next-generation biorefineries. myo-Inositol, as vitamin B8, has a six-carbon carbon-carbon ring. Here we designed an in vitro artificial NAD(P)-free 12-enzyme pathway that can effectively convert the five-carbon xylose to inositol involving xylose phosphorylation, carbon-carbon (C-C) rearrangement, C-C bond circulation, and dephosphorylation. The reaction conditions catalyzed by all thermostable enzymes from hyperthermophilic microorganisms Thermus thermophiles, Thermotoga maritima, and Archaeoglobus fulgidus were optimized in reaction temperature, buffer type and concentration, enzyme composition, Mg2+ concentration, and fed-batch addition of ATP. The 11-enzyme cocktail, whereas a fructose 1,6-bisphosphatase from T. maritima has another function of inositol monophosphatase, converted 20 mM xylose to 16.1 mM inositol with a conversion efficiency of 96.6% at 70 °C. Polyphosphate was found to replace ATP for xylulose phosphorylation due to broad substrate promiscuity of the T. maritima xylulokinase. The Tris-HCl buffer effectively mitigated the Maillard reaction at 70 °C or higher temperature. The co-production of value-added biochemicals, such as inositol, from wood sugar could greatly improve economics of new biorefineries, similar to oil refineries that make value-added plastic precursors to subsidize gasoline/diesel production.
Collapse
Affiliation(s)
- Kun Cheng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Wenming Zheng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China; College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Hongge Chen
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China; College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China.
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.
| |
Collapse
|
47
|
Expanding biological applications using cell-free metabolic engineering: An overview. Metab Eng 2018; 50:156-172. [PMID: 30367967 DOI: 10.1016/j.ymben.2018.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 11/21/2022]
Abstract
Expanding the concept of cell-free biology, implemented both with purified components and crude extracts, is continuing to deepen our appreciation of biological fundamentals while enlarging the range of applications. We are no longer intimidated by the complexity of crude extracts and complicated reaction systems with hundreds of active components, and, instead, coordinately activate and inactivate metabolic processes to focus and expand the capabilities of natural biological processes. This, in turn, dramatically increases the range of benefits offered by new products, both natural and supernatural, that were previously infeasible and/or unimaginable. This overview of cell-free metabolic engineering provides a broad range of examples and insights to guide and motivate continued research that will further expand fundamental understanding and beneficial applications. However, this survey also reveals how far we are from fully unlocking the potential offered by natural and engineered biological components and systems. This is an exciting conclusion, but metabolic engineering by itself is not sufficient. Going forward, innovative metabolic engineering must be intimately combined with creative process engineering to fully realize potential contributions toward a sustainable global civilization.
Collapse
|
48
|
Loan TD, Easton CJ, Alissandratos A. Recombinant cell-lysate-catalysed synthesis of uridine-5'-triphosphate from nucleobase and ribose, and without addition of ATP. N Biotechnol 2018; 49:104-111. [PMID: 30347258 DOI: 10.1016/j.nbt.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022]
Abstract
Nucleoside triphosphates (NTPs) are important synthetic targets with diverse applications in therapeutics and diagnostics. Enzymatic routes to NTPs from simple building blocks are attractive, however the cost and complexity of assembling the requisite mixtures of multiple enzymes hinders application. Here, we describe the use of an engineered E. coli cell-free lysate as an efficient readily-prepared multi-enzyme biocatalyst for the production of uridine triphosphate (UTP) from free ribose and nucleobase. Endogenous lysate enzymes are able to support the nucleobase ribosylation and nucleotide phosphorylation steps, while uridine phosphorylation and the production of ribose phosphates (ribose 1-phosphate, ribose 5-phosphate and phosphoribosyl pyrophosphate) require recombinant enrichment of endogenous activities. Co-expression vectors encoding all required recombinant enzymes were employed for host cell transformation, such that a cell-free lysate with all necessary activities was obtained from a single bacterial culture. ATP required as phosphorylation cofactor was recycled by endogenous lysate enzymes using cheap, readily-prepared acetyl phosphate. Surprisingly, acetyl phosphate initiated spontaneous generation of ATP in the lysate, most likely from the breakdown of endogenous pools of adenosine-containing starting materials (e.g. adenosine cofactors, ribonucleic acids). The sub-stoichiometric amount of ATP produced and recycled in this way was enough to support all ATP-dependent steps without addition of any exogenous cofactor or auxiliary enzyme. Using this approach, equimolar solutions of orotic acid and ribose are transformed near quantitatively into 1.4 g L-1 UTP within 2.5 h, using a low-cost, readily-generated biocatalytic preparation.
Collapse
Affiliation(s)
- Thomas D Loan
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christopher J Easton
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Apostolos Alissandratos
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
49
|
Increasing carbon source uptake rates to improve chemical productivity in metabolic engineering. Curr Opin Biotechnol 2018; 53:254-263. [DOI: 10.1016/j.copbio.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/22/2018] [Accepted: 06/13/2018] [Indexed: 11/24/2022]
|
50
|
Kang SY, Heo KT, Hong YS. Optimization of Artificial Curcumin Biosynthesis in E. coli by Randomized 5'-UTR Sequences To Control the Multienzyme Pathway. ACS Synth Biol 2018; 7:2054-2062. [PMID: 30160937 DOI: 10.1021/acssynbio.8b00198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the optimization strategies of an artificial biosynthetic metabolic flux with a multienzyme pathway is when the enzyme concentrations are present at the appropriate ratios rather than at their maximum expression. Thus, many recent research efforts have focused on the development of tools that fine-tune the enzyme expression, and these research efforts have facilitated the search for the optimum balance between pathway expression and cell viability. However, the rational approach has some limitations in finding the most optimized expression ratio in in vivo systems. In our study, we focused on fine-tuning the expression level of a six-enzyme reaction for the artificial biosynthesis of curcumin by screening a library of 5'-untranslational region (UTR) sequence mutants made by a multiplex automatic genome engineering (MAGE) tool. From the screening results, a variant (6M08rv) showed about a 38.2-fold improvement in the production of curcumin compared to the parent strain, in which the calculated expression levels of 4-coumarate:CoA ligase (4CL) and phenyldiketide-CoA synthase (DCS), two of the six enzymes, were much lower than those of the parent strain.
Collapse
Affiliation(s)
- Sun-Young Kang
- Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungbuk 28116, Korea
| | - Kyung Taek Heo
- Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungbuk 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Young-Soo Hong
- Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongju-si, Chungbuk 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| |
Collapse
|