1
|
Inácio AR, Lam KC, Zhao Y, Pereira F, Gerfen CR, Lee S. Brain-wide presynaptic networks of functionally distinct cortical neurons. Nature 2025:10.1038/s41586-025-08631-w. [PMID: 40011781 DOI: 10.1038/s41586-025-08631-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
Revealing the connectivity of functionally identified individual neurons is necessary to understand how activity patterns emerge and support behaviour. Yet the brain-wide presynaptic wiring rules that lay the foundation for the functional selectivity of individual neurons remain largely unexplored. Cortical neurons, even in primary sensory cortex, are heterogeneous in their selectivity, not only to sensory stimuli but also to multiple aspects of behaviour. Here, to investigate presynaptic connectivity rules underlying the selectivity of pyramidal neurons to behavioural state1-10 in primary somatosensory cortex (S1), we used two-photon calcium imaging, neuropharmacology, single-cell-based monosynaptic input tracing and optogenetics. We show that behavioural state-dependent activity patterns are stable over time. These are minimally affected by direct neuromodulatory inputs and are driven primarily by glutamatergic inputs. Analysis of brain-wide presynaptic networks of individual neurons with distinct behavioural state-dependent activity profiles revealed that although behavioural state-related and behavioural state-unrelated neurons shared a similar pattern of local inputs within S1, their long-range glutamatergic inputs differed. Individual cortical neurons, irrespective of their functional properties, received converging inputs from the main S1-projecting areas. Yet neurons that tracked behavioural state received a smaller proportion of motor cortical inputs and a larger proportion of thalamic inputs. Optogenetic suppression of thalamic inputs reduced behavioural state-dependent activity in S1, but this activity was not externally driven. Our results reveal distinct long-range glutamatergic inputs as a substrate for preconfigured network dynamics associated with behavioural state.
Collapse
Affiliation(s)
- Ana R Inácio
- Unit on Functional Neural Circuits, Systems Neurodevelopment Laboratory, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ka Chun Lam
- Machine Learning Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Yuan Zhao
- Machine Learning Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Francisco Pereira
- Machine Learning Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Charles R Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Soohyun Lee
- Unit on Functional Neural Circuits, Systems Neurodevelopment Laboratory, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Inacio AR, Lam KC, Zhao Y, Pereira F, Gerfen CR, Lee S. Distinct brain-wide presynaptic networks underlie the functional identity of individual cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.25.542329. [PMID: 37425800 PMCID: PMC10327181 DOI: 10.1101/2023.05.25.542329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Neuronal connections provide the scaffolding for neuronal function. Revealing the connectivity of functionally identified individual neurons is necessary to understand how activity patterns emerge and support behavior. Yet, the brain-wide presynaptic wiring rules that lay the foundation for the functional selectivity of individual neurons remain largely unexplored. Cortical neurons, even in primary sensory cortex, are heterogeneous in their selectivity, not only to sensory stimuli but also to multiple aspects of behavior. Here, to investigate presynaptic connectivity rules underlying the selectivity of pyramidal neurons to behavioral state 1-12 in primary somatosensory cortex (S1), we used two-photon calcium imaging, neuropharmacology, single-cell based monosynaptic input tracing, and optogenetics. We show that behavioral state-dependent neuronal activity patterns are stable over time. These are minimally affected by neuromodulatory inputs and are instead driven by glutamatergic inputs. Analysis of brain-wide presynaptic networks of individual neurons with distinct behavioral state-dependent activity profiles revealed characteristic patterns of anatomical input. While both behavioral state-related and unrelated neurons had a similar pattern of local inputs within S1, their long-range glutamatergic inputs differed. Individual cortical neurons, irrespective of their functional properties, received converging inputs from the main S1-projecting areas. Yet, neurons that tracked behavioral state received a smaller proportion of motor cortical inputs and a larger proportion of thalamic inputs. Optogenetic suppression of thalamic inputs reduced behavioral state-dependent activity in S1, but this activity was not externally driven. Our results revealed distinct long-range glutamatergic inputs as a substrate for preconfigured network dynamics associated with behavioral state.
Collapse
|
3
|
Lucas-Romero J, Rivera-Arconada I, Lopez-Garcia JA. Noise or signal? Spontaneous activity of dorsal horn neurons: patterns and function in health and disease. Pflugers Arch 2024; 476:1171-1186. [PMID: 38822875 PMCID: PMC11271371 DOI: 10.1007/s00424-024-02971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/10/2024] [Accepted: 05/05/2024] [Indexed: 06/03/2024]
Abstract
Spontaneous activity refers to the firing of action potentials by neurons in the absence of external stimulation. Initially considered an artifact or "noise" in the nervous system, it is now recognized as a potential feature of neural function. Spontaneous activity has been observed in various brain areas, in experimental preparations from different animal species, and in live animals and humans using non-invasive imaging techniques. In this review, we specifically focus on the spontaneous activity of dorsal horn neurons of the spinal cord. We use a historical perspective to set the basis for a novel classification of the different patterns of spontaneous activity exhibited by dorsal horn neurons. Then we examine the origins of this activity and propose a model circuit to explain how the activity is generated and transmitted to the dorsal horn. Finally, we discuss possible roles of this activity during development and during signal processing under physiological conditions and pain states. By analyzing recent studies on the spontaneous activity of dorsal horn neurons, we aim to shed light on its significance in sensory processing. Understanding the different patterns of activity, the origins of this activity, and the potential roles it may play, will contribute to our knowledge of sensory mechanisms, including pain, to facilitate the modeling of spinal circuits and hopefully to explore novel strategies for pain treatment.
Collapse
Affiliation(s)
- Javier Lucas-Romero
- Department of Systems Biology, University of Alcala, 28805, Madrid, Spain
- Department of Physical Therapy, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | | | - Jose Antonio Lopez-Garcia
- Department of Systems Biology, University of Alcala, 28805, Madrid, Spain.
- Departamento de Biologia de Sistemas, Edificio de Medicina, Universidad de Alcala, Ctra. Madrid-Barcelona, Km 33,600, 28805, Alcala de Henares, Madrid, Spain.
| |
Collapse
|
4
|
Wu MW, Kourdougli N, Portera-Cailliau C. Network state transitions during cortical development. Nat Rev Neurosci 2024; 25:535-552. [PMID: 38783147 PMCID: PMC11825063 DOI: 10.1038/s41583-024-00824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Mammalian cortical networks are active before synaptogenesis begins in earnest, before neuronal migration is complete, and well before an animal opens its eyes and begins to actively explore its surroundings. This early activity undergoes several transformations during development. The most important of these is a transition from episodic synchronous network events, which are necessary for patterning the neocortex into functionally related modules, to desynchronized activity that is computationally more powerful and efficient. Network desynchronization is perhaps the most dramatic and abrupt developmental event in an otherwise slow and gradual process of brain maturation. In this Review, we summarize what is known about the phenomenology of developmental synchronous activity in the rodent neocortex and speculate on the mechanisms that drive its eventual desynchronization. We argue that desynchronization of network activity is a fundamental step through which the cortex transitions from passive, bottom-up detection of sensory stimuli to active sensory processing with top-down modulation.
Collapse
Affiliation(s)
- Michelle W Wu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nazim Kourdougli
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Logashkin A, Silaeva V, Mamleev A, Shumkova V, Sitdikova V, Popova Y, Suchkov D, Minlebaev M. Dexmedetomidine as a Short-Use Analgesia for the Immature Nervous System. Int J Mol Sci 2024; 25:6385. [PMID: 38928091 PMCID: PMC11204225 DOI: 10.3390/ijms25126385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Pain management in neonates continues to be a challenge. Diverse therapies are available that cause loss of pain sensitivity. However, because of side effects, the search for better options remains open. Dexmedetomidine is a promising drug; it has shown high efficacy with a good safety profile in sedation and analgesia in the immature nervous system. Though dexmedetomidine is already in use for pain control in neonates (including premature neonates) and infants as an adjunct to other anesthetics, the question remains whether it affects the neuronal activity patterning that is critical for development of the immature nervous system. In this study, using the neonatal rat as a model, the pharmacodynamic effects of dexmedetomidine on the nervous and cardiorespiratory systems were studied. Our results showed that dexmedetomidine has pronounced analgesic effects in the neonatal rat pups, and also weakly modified both the immature network patterns of cortical and hippocampal activity and the physiology of sleep cycles. Though the respiration and heart rates were slightly reduced after dexmedetomidine administration, it might be considered as the preferential independent short-term therapy for pain management in the immature and developing brain.
Collapse
Affiliation(s)
- Anatoliy Logashkin
- Laboratory of New Engineering Solutions for Modern Laboratory Research, Kazan Federal University, Kazan 420008, Russia; (A.L.)
| | - Valentina Silaeva
- Laboratory of New Engineering Solutions for Modern Laboratory Research, Kazan Federal University, Kazan 420008, Russia; (A.L.)
| | - Arsen Mamleev
- Laboratory of New Engineering Solutions for Modern Laboratory Research, Kazan Federal University, Kazan 420008, Russia; (A.L.)
| | - Viktoria Shumkova
- Laboratory of New Engineering Solutions for Modern Laboratory Research, Kazan Federal University, Kazan 420008, Russia; (A.L.)
| | - Violetta Sitdikova
- Laboratory of New Engineering Solutions for Modern Laboratory Research, Kazan Federal University, Kazan 420008, Russia; (A.L.)
| | - Yaroslavna Popova
- Laboratory of New Engineering Solutions for Modern Laboratory Research, Kazan Federal University, Kazan 420008, Russia; (A.L.)
| | - Dmitrii Suchkov
- Institut de Neurobiologie de la Méditerranée (INMED U1249), Aix-Marseille University, 13273 Marseille, France
| | - Marat Minlebaev
- Laboratory of New Engineering Solutions for Modern Laboratory Research, Kazan Federal University, Kazan 420008, Russia; (A.L.)
- Institut de Neurobiologie de la Méditerranée (INMED U1249), Aix-Marseille University, 13273 Marseille, France
| |
Collapse
|
6
|
Liu M, Zhang W, Han S, Zhang D, Zhou X, Guo X, Chen H, Wang H, Jin L, Feng S, Wei Z. Multifunctional Conductive and Electrogenic Hydrogel Repaired Spinal Cord Injury via Immunoregulation and Enhancement of Neuronal Differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313672. [PMID: 38308338 DOI: 10.1002/adma.202313672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Indexed: 02/04/2024]
Abstract
Spinal cord injury (SCI) is a refractory neurological disorder. Due to the complex pathological processes, especially the secondary inflammatory cascade and the lack of intrinsic regenerative capacity, it is difficult to recover neurological function after SCI. Meanwhile, simulating the conductive microenvironment of the spinal cord reconstructs electrical neural signal transmission interrupted by SCI and facilitates neural repair. Therefore, a double-crosslinked conductive hydrogel (BP@Hydrogel) containing black phosphorus nanoplates (BP) is synthesized. When placed in a rotating magnetic field (RMF), the BP@Hydrogel can generate stable electrical signals and exhibit electrogenic characteristic. In vitro, the BP@Hydrogel shows satisfactory biocompatibility and can alleviate the activation of microglia. When placed in the RMF, it enhances the anti-inflammatory effects. Meanwhile, wireless electrical stimulation promotes the differentiation of neural stem cells (NSCs) into neurons, which is associated with the activation of the PI3K/AKT pathway. In vivo, the BP@Hydrogel is injectable and can elicit behavioral and electrophysiological recovery in complete transected SCI mice by alleviating the inflammation and facilitating endogenous NSCs to form functional neurons and synapses under the RMF. The present research develops a multifunctional conductive and electrogenic hydrogel for SCI repair by targeting multiple mechanisms including immunoregulation and enhancement of neuronal differentiation.
Collapse
Affiliation(s)
- Mingshan Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Wencan Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Shuwei Han
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Dapeng Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Xiaolong Zhou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Xianzheng Guo
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Haosheng Chen
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Haifeng Wang
- Department of Orthopaedics, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Tianqiao District, Jinan, 250033, China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, No. 6, Middle Section of Wenchang Avenue, Chuanhui District, Zhoukou, 466001, China
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
- Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Zhijian Wei
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| |
Collapse
|
7
|
Kohler M, Röhrbein F, Knoll A, Albu-Schäffer A, Jörntell H. The Bcm rule allows a spinal cord model to learn rhythmic movements. BIOLOGICAL CYBERNETICS 2023; 117:275-284. [PMID: 37594531 PMCID: PMC10600281 DOI: 10.1007/s00422-023-00970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
Currently, it is accepted that animal locomotion is controlled by a central pattern generator in the spinal cord. Experiments and models show that rhythm generating neurons and genetically determined network properties could sustain oscillatory output activity suitable for locomotion. However, current central pattern generator models do not explain how a spinal cord circuitry, which has the same basic genetic plan across species, can adapt to control the different biomechanical properties and locomotion patterns existing in these species. Here we demonstrate that rhythmic and alternating movements in pendulum models can be learned by a monolayer spinal cord circuitry model using the Bienenstock-Cooper-Munro learning rule, which has been previously proposed to explain learning in the visual cortex. These results provide an alternative theory to central pattern generator models, because rhythm generating neurons and genetically defined connectivity are not required in our model. Though our results are not in contradiction to current models, as existing neural mechanism and structures, not used in our model, can be expected to facilitate the kind of learning demonstrated here. Therefore, our model could be used to augment existing models.
Collapse
Affiliation(s)
- Matthias Kohler
- Department of Informatics, Technical University of Munich, Boltzmannstraße 3, 85748, Garching, Bavaria, Germany.
| | - Florian Röhrbein
- Department of Computer Science, Chemnitz University of Technology, Straße der Nationen 62, 09111, Chemnitz, Saxony, Germany
| | - Alois Knoll
- Department of Informatics, Technical University of Munich, Boltzmannstraße 3, 85748, Garching, Bavaria, Germany
| | - Alin Albu-Schäffer
- Department of Informatics, Technical University of Munich, Boltzmannstraße 3, 85748, Garching, Bavaria, Germany
- Institute of Robotics and Mechatronics, German Aerospace Center, Münchener Straße 20, 82234, Weßling, Bavaria, Germany
| | - Henrik Jörntell
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, 22184, Lund, Scania, Sweden
| |
Collapse
|
8
|
Dolinskaya IY, Solopova IA, Zhvansky DS, Rubeca D, Sylos-Labini F, Lacquaniti F, Ivanenko Y. Muscle Activity during Passive and Active Movements in Preterm and Full-Term Infants. BIOLOGY 2023; 12:biology12050724. [PMID: 37237537 DOI: 10.3390/biology12050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Manifestation of muscle reactions at an early developmental stage may reflect the processes underlying the generation of appropriate muscle tone, which is also an integral part of all movements. In preterm infants, some aspects of muscular development may occur differently than in infants born at term. Here we evaluated early manifestations of muscle tone by measuring muscle responses to passive stretching (StR) and shortening (ShR) in both upper and lower limbs in preterm infants (at the corrected age from 0 weeks to 12 months), and compared them to those reported in our previous study on full-term infants. In a subgroup of participants, we also assessed spontaneous muscle activity during episodes of relatively large limb movements. The results showed very frequent StR and ShR, and also responses in muscles not being primarily stretched/shortened, in both preterm and full-term infants. A reduction of sensorimotor responses to muscle lengthening and shortening with age suggests a reduction in excitability and/or the acquisition of functionally appropriate muscle tone during the first year of life. The alterations of responses during passive and active movements in preterm infants were primarily seen in the early months, perhaps reflecting temporal changes in the excitability of the sensorimotor networks.
Collapse
Affiliation(s)
- Irina Y Dolinskaya
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Irina A Solopova
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
| | - Dmitry S Zhvansky
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
| | - Damiana Rubeca
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Francesca Sylos-Labini
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| |
Collapse
|
9
|
Gainutdinov A, Shipkov D, Sintsov M, Fabrizi L, Nasretdinov A, Khazipov R, Valeeva G. Somatosensory-Evoked Early Sharp Waves in the Neonatal Rat Hippocampus. Int J Mol Sci 2023; 24:8721. [PMID: 37240066 PMCID: PMC10217913 DOI: 10.3390/ijms24108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The developing entorhinal-hippocampal system is embedded within a large-scale bottom-up network, where spontaneous myoclonic movements, presumably via somatosensory feedback, trigger hippocampal early sharp waves (eSPWs). The hypothesis, that somatosensory feedback links myoclonic movements with eSPWs, implies that direct somatosensory stimulation should also be capable of evoking eSPWs. In this study, we examined hippocampal responses to electrical stimulation of the somatosensory periphery in urethane-anesthetized, immobilized neonatal rat pups using silicone probe recordings. We found that somatosensory stimulation in ~33% of the trials evoked local field potential (LFP) and multiple unit activity (MUA) responses identical to spontaneous eSPWs. The somatosensory-evoked eSPWs were delayed from the stimulus, on average, by 188 ms. Both spontaneous and somatosensory-evoked eSPWs (i) had similar amplitude of ~0.5 mV and half-duration of ~40 ms, (ii) had similar current-source density (CSD) profiles, with current sinks in CA1 strata radiatum, lacunosum-moleculare and DG molecular layer and (iii) were associated with MUA increase in CA1 and DG. Our results indicate that eSPWs can be triggered by direct somatosensory stimulations and support the hypothesis that sensory feedback from movements is involved in the association of eSPWs with myoclonic movements in neonatal rats.
Collapse
Affiliation(s)
- Azat Gainutdinov
- Institut de Neurobiologie de la Méditerranée (INMED U1249), Aix-Marseille University, 13273 Marseille, France;
| | - Dmitrii Shipkov
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia (M.S.); (L.F.); (G.V.)
| | - Mikhail Sintsov
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia (M.S.); (L.F.); (G.V.)
| | - Lorenzo Fabrizi
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia (M.S.); (L.F.); (G.V.)
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Azat Nasretdinov
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia (M.S.); (L.F.); (G.V.)
| | - Roustem Khazipov
- Institut de Neurobiologie de la Méditerranée (INMED U1249), Aix-Marseille University, 13273 Marseille, France;
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia (M.S.); (L.F.); (G.V.)
| | - Guzel Valeeva
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia (M.S.); (L.F.); (G.V.)
| |
Collapse
|
10
|
DeMasi A, Horger MN, Scher A, Berger SE. Infant motor development predicts the dynamics of movement during sleep. INFANCY 2023; 28:367-387. [PMID: 36453144 DOI: 10.1111/infa.12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/29/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022]
Abstract
The characteristics of infant sleep change over the first year. Generally, infants wake and move less at night as they grow older. However, acquisition of new motor skills leads to temporary increases in night waking and movement at night. Indeed, sleep-dependent movement at night is important for sensorimotor development. Nevertheless, little is known about how movement during sleep changes as infants accrue locomotor experience. The current study investigated whether infant sleep and movement during sleep were predicted by infants' walking experience. Seventy-eight infants wore an actigraph to measure physical activity during sleep. Parents reported when their infants first walked across a room >10 feet without stopping or falling. Infants in the midst of walking skill acquisition had worse sleep than an age-group estimate. Infants with more walk experience had more temporally sporadic movement during sleep and a steeper hourly increase in physical activity over the course of the night. Ongoing motor skill consolidation changes the characteristics of movement during sleep and may alter sleep state-dependent memory consolidation. We propose a model whereby changes in gross motor activity during night sleep reflect movement-dependent consolidation.
Collapse
Affiliation(s)
- Aaron DeMasi
- Department of Psychology, The Graduate Center, City University of New York (CUNY), New York, New York, USA.,Department of Psychology, The College of Staten Island, CUNY, Staten Island, New York, USA
| | - Melissa N Horger
- Department of Psychology, The Graduate Center, City University of New York (CUNY), New York, New York, USA.,Department of Psychology, The College of Staten Island, CUNY, Staten Island, New York, USA.,Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Anat Scher
- Department of Counseling and Human Development, University of Haifa, Haifa, Israel
| | - Sarah E Berger
- Department of Psychology, The Graduate Center, City University of New York (CUNY), New York, New York, USA.,Department of Psychology, The College of Staten Island, CUNY, Staten Island, New York, USA
| |
Collapse
|
11
|
Abstract
Human behaviors, with whole-body coordination, involve large-scale sensorimotor interaction. Spontaneous bodily movements in the early developmental stage potentially lead toward acquisition of such coordinated behavior. These movements presumably contribute to the structuration of sensorimotor interaction, providing specific regularities in bidirectional information among muscle activities and proprioception. Whether and how spontaneous movements, despite being task-free, structure and organize sensorimotor interactions in the entire body during early development remain unknown. Herein, to address these issues, we gained insights into the structuration process of the sensorimotor interaction in neonates and 3-mo-old infants. By combining detailed motion capture and musculoskeletal simulation, sensorimotor information flows among muscle activities and proprioception throughout the body were obtained. Subsequently, we extracted spatial modules and temporal state in sensorimotor information flows. Our approach demonstrated that early spontaneous movements elicited body-dependent sensorimotor modules, revealing age-related changes in them, depending on the combination or direction. The sensorimotor interactions also displayed temporal non-random fluctuations analogous to those seen in spontaneous activities in the cerebral cortex and spinal cord. Furthermore, we found recurring state sequence patterns across multiple participants, characterized by a substantial increase in infants compared to the patterns in neonates. Therefore, early spontaneous movements induce the spatiotemporal structuration in sensorimotor interactions and subsequent developmental changes. These results implicated that early open-ended movements, emerging from a certain neural substrate, regulate the sensorimotor interactions through embodiment and contribute to subsequent coordinated behaviors. Our findings also provide a conceptual linkage between early spontaneous movements and spontaneous neuronal activity in terms of spatiotemporal characteristics.
Collapse
|
12
|
Blumberg MS, Dooley JC, Tiriac A. Sleep, plasticity, and sensory neurodevelopment. Neuron 2022; 110:3230-3242. [PMID: 36084653 PMCID: PMC9588561 DOI: 10.1016/j.neuron.2022.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/04/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
A defining feature of early infancy is the immense neural plasticity that enables animals to develop a brain that is functionally integrated with a growing body. Early infancy is also defined as a period dominated by sleep. Here, we describe three conceptual frameworks that vary in terms of whether and how they incorporate sleep as a factor in the activity-dependent development of sensory and sensorimotor systems. The most widely accepted framework is exemplified by the visual system where retinal waves seemingly occur independent of sleep-wake states. An alternative framework is exemplified by the sensorimotor system where sensory feedback from sleep-specific movements activates the brain. We prefer a third framework that encompasses the first two but also captures the diverse ways in which sleep modulates activity-dependent development throughout the nervous system. Appreciation of the third framework will spur progress toward a more comprehensive and cohesive understanding of both typical and atypical neurodevelopment.
Collapse
Affiliation(s)
- Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA.
| | - James C Dooley
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Alexandre Tiriac
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
13
|
Dard RF, Leprince E, Denis J, Rao Balappa S, Suchkov D, Boyce R, Lopez C, Giorgi-Kurz M, Szwagier T, Dumont T, Rouault H, Minlebaev M, Baude A, Cossart R, Picardo MA. The rapid developmental rise of somatic inhibition disengages hippocampal dynamics from self-motion. eLife 2022; 11:e78116. [PMID: 35856497 PMCID: PMC9363116 DOI: 10.7554/elife.78116] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Early electrophysiological brain oscillations recorded in preterm babies and newborn rodents are initially mostly driven by bottom-up sensorimotor activity and only later can detach from external inputs. This is a hallmark of most developing brain areas, including the hippocampus, which, in the adult brain, functions in integrating external inputs onto internal dynamics. Such developmental disengagement from external inputs is likely a fundamental step for the proper development of cognitive internal models. Despite its importance, the developmental timeline and circuit basis for this disengagement remain unknown. To address this issue, we have investigated the daily evolution of CA1 dynamics and underlying circuits during the first two postnatal weeks of mouse development using two-photon calcium imaging in non-anesthetized pups. We show that the first postnatal week ends with an abrupt shift in the representation of self-motion in CA1. Indeed, most CA1 pyramidal cells switch from activated to inhibited by self-generated movements at the end of the first postnatal week, whereas the majority of GABAergic neurons remain positively modulated throughout this period. This rapid switch occurs within 2 days and follows the rapid anatomical and functional surge of local somatic GABAergic innervation. The observed change in dynamics is consistent with a two-population model undergoing a strengthening of inhibition. We propose that this abrupt developmental transition inaugurates the emergence of internal hippocampal dynamics.
Collapse
Affiliation(s)
- Robin F Dard
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Erwan Leprince
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Julien Denis
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Shrisha Rao Balappa
- Turing Centre for Living systems, Aix-Marseille University, Université de Toulon, CNRS, CPT (UMR 7332)MarseilleFrance
| | - Dmitrii Suchkov
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Richard Boyce
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Catherine Lopez
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Marie Giorgi-Kurz
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Tom Szwagier
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
- Mines ParisTech, PSL Research UniversityParisFrance
| | - Théo Dumont
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
- Mines ParisTech, PSL Research UniversityParisFrance
| | - Hervé Rouault
- Turing Centre for Living systems, Aix-Marseille University, Université de Toulon, CNRS, CPT (UMR 7332)MarseilleFrance
| | - Marat Minlebaev
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Agnès Baude
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Rosa Cossart
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Michel A Picardo
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| |
Collapse
|
14
|
Luhmann HJ, Kanold PO, Molnár Z, Vanhatalo S. Early brain activity: Translations between bedside and laboratory. Prog Neurobiol 2022; 213:102268. [PMID: 35364141 PMCID: PMC9923767 DOI: 10.1016/j.pneurobio.2022.102268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 01/29/2023]
Abstract
Neural activity is both a driver of brain development and a readout of developmental processes. Changes in neuronal activity are therefore both the cause and consequence of neurodevelopmental compromises. Here, we review the assessment of neuronal activities in both preclinical models and clinical situations. We focus on issues that require urgent translational research, the challenges and bottlenecks preventing translation of biomedical research into new clinical diagnostics or treatments, and possibilities to overcome these barriers. The key questions are (i) what can be measured in clinical settings versus animal experiments, (ii) how do measurements relate to particular stages of development, and (iii) how can we balance practical and ethical realities with methodological compromises in measurements and treatments.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.,Correspondence:, , ,
| | - Patrick O. Kanold
- Department of Biomedical Engineering and Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, 720 Rutland Avenue / Miller 379, Baltimore, MD 21205, USA.,Correspondence:, , ,
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | - Sampsa Vanhatalo
- BABA Center, Departments of Physiology and Clinical Neurophysiology, Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
15
|
Harry GJ, McBride S, Witchey SK, Mhaouty-Kodja S, Trembleau A, Bridge M, Bencsik A. Roadbumps at the Crossroads of Integrating Behavioral and In Vitro Approaches for Neurotoxicity Assessment. FRONTIERS IN TOXICOLOGY 2022; 4:812863. [PMID: 35295216 PMCID: PMC8915899 DOI: 10.3389/ftox.2022.812863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
With the appreciation that behavior represents the integration and complexity of the nervous system, neurobehavioral phenotyping and assessment has seen a renaissance over the last couple of decades, resulting in a robust database on rodent performance within various testing paradigms, possible associations with human disorders, and therapeutic interventions. The interchange of data across behavior and other test modalities and multiple model systems has advanced our understanding of fundamental biology and mechanisms associated with normal functions and alterations in the nervous system. While there is a demonstrated value and power of neurobehavioral assessments for examining alterations due to genetic manipulations, maternal factors, early development environment, the applied use of behavior to assess environmental neurotoxicity continues to come under question as to whether behavior represents a sensitive endpoint for assessment. Why is rodent behavior a sensitive tool to the neuroscientist and yet, not when used in pre-clinical or chemical neurotoxicity studies? Applying new paradigms and evidence on the biological basis of behavior to neurobehavioral testing requires expertise and refinement of how such experiments are conducted to minimize variability and maximize information. This review presents relevant issues of methods used to conduct such test, sources of variability, experimental design, data analysis, interpretation, and reporting. It presents beneficial and critical limitations as they translate to the in vivo environment and considers the need to integrate across disciplines for the best value. It proposes that a refinement of behavioral assessments and understanding of subtle pronounced differences will facilitate the integration of data obtained across multiple approaches and to address issues of translation.
Collapse
Affiliation(s)
- G. Jean Harry
- Neurotoxicology Group, Molecular Toxicology Branch, Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sandra McBride
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Shannah K. Witchey
- Division National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine – Institut de Biologie Paris Seine, Paris, France
| | - Alain Trembleau
- Sorbonne Université, CNRS UMR8246, Inserm U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Matthew Bridge
- Social & Scientific Systems, Inc., a DLH Holdings Company, Durham, NC, United States
| | - Anna Bencsik
- Anses Laboratoire de Lyon, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université de Lyon 1, Lyon, France
| |
Collapse
|
16
|
Luhmann HJ. Neurophysiology of the Developing Cerebral Cortex: What We Have Learned and What We Need to Know. Front Cell Neurosci 2022; 15:814012. [PMID: 35046777 PMCID: PMC8761895 DOI: 10.3389/fncel.2021.814012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 11/15/2022] Open
Abstract
This review article aims to give a brief summary on the novel technologies, the challenges, our current understanding, and the open questions in the field of the neurophysiology of the developing cerebral cortex in rodents. In the past, in vitro electrophysiological and calcium imaging studies on single neurons provided important insights into the function of cellular and subcellular mechanism during early postnatal development. In the past decade, neuronal activity in large cortical networks was recorded in pre- and neonatal rodents in vivo by the use of novel high-density multi-electrode arrays and genetically encoded calcium indicators. These studies demonstrated a surprisingly rich repertoire of spontaneous cortical and subcortical activity patterns, which are currently not completely understood in their functional roles in early development and their impact on cortical maturation. Technological progress in targeted genetic manipulations, optogenetics, and chemogenetics now allow the experimental manipulation of specific neuronal cell types to elucidate the function of early (transient) cortical circuits and their role in the generation of spontaneous and sensory evoked cortical activity patterns. Large-scale interactions between different cortical areas and subcortical regions, characterization of developmental shifts from synchronized to desynchronized activity patterns, identification of transient circuits and hub neurons, role of electrical activity in the control of glial cell differentiation and function are future key tasks to gain further insights into the neurophysiology of the developing cerebral cortex.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
17
|
Martini FJ, Guillamón-Vivancos T, Moreno-Juan V, Valdeolmillos M, López-Bendito G. Spontaneous activity in developing thalamic and cortical sensory networks. Neuron 2021; 109:2519-2534. [PMID: 34293296 DOI: 10.1016/j.neuron.2021.06.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022]
Abstract
Developing sensory circuits exhibit different patterns of spontaneous activity, patterns that are related to the construction and refinement of functional networks. During the development of different sensory modalities, spontaneous activity originates in the immature peripheral sensory structures and in the higher-order central structures, such as the thalamus and cortex. Certainly, the perinatal thalamus exhibits spontaneous calcium waves, a pattern of activity that is fundamental for the formation of sensory maps and for circuit plasticity. Here, we review our current understanding of the maturation of early (including embryonic) patterns of spontaneous activity and their influence on the assembly of thalamic and cortical sensory networks. Overall, the data currently available suggest similarities between the developmental trajectory of brain activity in experimental models and humans, which in the future may help to improve the early diagnosis of developmental disorders.
Collapse
Affiliation(s)
- Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| | - Teresa Guillamón-Vivancos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Miguel Valdeolmillos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| |
Collapse
|
18
|
Abstract
In mammals, the selective transformation of transient experience into stored memory occurs in the hippocampus, which develops representations of specific events in the context in which they occur. In this review, we focus on the development of hippocampal circuits and the self-organized dynamics embedded within them since the latter critically support the role of the hippocampus in learning and memory. We first discuss evidence that adult hippocampal cells and circuits are sculpted by development as early as during embryonic neurogenesis. We argue that these primary developmental programs provide a scaffold onto which later experience of the external world can be grafted. Next, we review the different sequences in the development of hippocampal cells and circuits at anatomical and functional levels. We cover a period extending from neurogenesis and migration to the appearance of phenotypic diversity within hippocampal cells, and their wiring into functional networks. We describe the progressive emergence of network dynamics in the hippocampus, from sensorimotor-driven early sharp waves to sequences of place cells tracking relational information. We outline the critical turn points and discontinuities in that developmental journey, and close by formulating open questions. We propose that rewinding the process of hippocampal development helps understand the main organization principles of memory circuits.
Collapse
Affiliation(s)
- Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems, Aix Marseille University, Marseille, France
| | - Rustem Khazipov
- Inserm, INMED, Turing Center for Living Systems, Aix Marseille University, Marseille, France.,Laboratory of Neurobiology, Kazan Federal University, Kazan Russia
| |
Collapse
|
19
|
Thielen B, Meng E. A comparison of insertion methods for surgical placement of penetrating neural interfaces. J Neural Eng 2021; 18:10.1088/1741-2552/abf6f2. [PMID: 33845469 PMCID: PMC8600966 DOI: 10.1088/1741-2552/abf6f2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Many implantable electrode arrays exist for the purpose of stimulating or recording electrical activity in brain, spinal, or peripheral nerve tissue, however most of these devices are constructed from materials that are mechanically rigid. A growing body of evidence suggests that the chronic presence of these rigid probes in the neural tissue causes a significant immune response and glial encapsulation of the probes, which in turn leads to gradual increase in distance between the electrodes and surrounding neurons. In recording electrodes, the consequence is the loss of signal quality and, therefore, the inability to collect electrophysiological recordings long term. In stimulation electrodes, higher current injection is required to achieve a comparable response which can lead to tissue and electrode damage. To minimize the impact of the immune response, flexible neural probes constructed with softer materials have been developed. These flexible probes, however, are often not strong enough to be inserted on their own into the tissue, and instead fail via mechanical buckling of the shank under the force of insertion. Several strategies have been developed to allow the insertion of flexible probes while minimizing tissue damage. It is critical to keep these strategies in mind during probe design in order to ensure successful surgical placement. In this review, existing insertion strategies will be presented and evaluated with respect to surgical difficulty, immune response, ability to reach the target tissue, and overall limitations of the technique. Overall, the majority of these insertion techniques have only been evaluated for the insertion of a single probe and do not quantify the accuracy of probe placement. More work needs to be performed to evaluate and optimize insertion methods for accurate placement of devices and for devices with multiple probes.
Collapse
Affiliation(s)
- Brianna Thielen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Ellis Meng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
20
|
Li R, Huang ZC, Cui HY, Huang ZP, Liu JH, Zhu QA, Hu Y. Utility of somatosensory and motor-evoked potentials in reflecting gross and fine motor functions after unilateral cervical spinal cord contusion injury. Neural Regen Res 2021; 16:1323-1330. [PMID: 33318412 PMCID: PMC8284273 DOI: 10.4103/1673-5374.301486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Fine motor skills are thought to rely on the integrity of ascending sensory pathways in the spinal dorsal column as well as descending motor pathways that have a neocortical origin. However, the neurophysiological processes underlying communication between the somatosensory and motor pathways that regulate fine motor skills during spontaneous recovery after spinal cord contusion injury remain unclear. Here, we established a rat model of cervical hemicontusive injury using C5 laminectomy followed by contusional displacement of 1.2 mm (mild injury) or 2.0 mm (severe injury) to the C5 spinal cord. Electrophysiological recordings were performed on the brachial muscles up to 12 weeks after injury to investigate the mechanisms by which spinal cord pathways participate in motor function. After spinal cord contusion injury, the amplitudes of somatosensory and motor-evoked potentials were reduced, and the latencies were increased. The forelimb open field locomotion test, grooming test, rearing test and Montoya staircase test revealed improvement in functions. With increasing time after injury, the amplitudes of somatosensory and motor-evoked potentials in rats with mild spinal cord injury increased gradually, and the latencies gradually shortened. In comparison, the recovery times of somatosensory and motor-evoked potential amplitudes and latencies were longer, and the recovery of motor function was delayed in rats with severe spinal cord injury. Correlation analysis revealed that somatosensory-evoked potential and motor-evoked potential parameters were correlated with gross and fine motor function in rats with mild spinal cord contusion injury. In contrast, only somatosensory-evoked potential amplitude was correlated with fine motor skills in rats with severe spinal cord injury. Our results show that changes in both somatosensory and motor-evoked potentials can reflect the changes in gross and fine motor functions after mild spinal cord contusion injury, and that the change in somatosensory-evoked potential amplitude can also reflect the change in fine motor function after severe spinal cord contusion injury. This study was approved by the Animal Ethics Committee of Nanfang Hospital, Southern Medical University, China (approval No. NFYY-2017-67) on June 11, 2017.
Collapse
Affiliation(s)
- Rong Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin; Department of Orthopedics and Traumatology, The Hong Kong University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Zu-Cheng Huang
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hong-Yan Cui
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhi-Ping Huang
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jun-Hao Liu
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qing-An Zhu
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yong Hu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin; Department of Orthopedics and Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Orthopedics and Traumatology, The Hong Kong University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
21
|
Whitehead K, Meek J, Fabrizi L, Smith BA. Long-range temporal organisation of limb movement kinematics in human neonates. Clin Neurophysiol Pract 2020; 5:194-198. [PMID: 32984665 PMCID: PMC7493046 DOI: 10.1016/j.cnp.2020.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Movement provides crucial sensorimotor information to the developing brain, evoking somatotopic cortical EEG activity. Indeed, temporal-spatial organisation of these movements, including a diverse repertoire of accelerations and limb combinations (e.g. unilateral progressing to bilateral), predicts positive sensorimotor outcomes. However, in current clinical practice, movements in human neonates are qualitatively characterised only during brief periods (a few minutes) of wakefulness, meaning that the vast majority of sensorimotor experience remains unsampled. Here our objective was to quantitatively characterise the long-range temporal organisation of the full repertoire of newborn movements, over multi-hour recordings. METHODS We monitored motor activity across 2-4 h in 11 healthy newborn infants (median 1 day old), who wore limb sensors containing synchronised tri-axial accelerometers and gyroscopes. Movements were identified using acceleration and angular velocity, and their organisation across the recording was characterised using cluster analysis and spectral estimation. RESULTS Movement occurrence was periodic, with a 1-hour cycle. Peaks in movement occurrence were associated with higher acceleration, and a higher proportion of movements being bilateral. CONCLUSIONS Neonatal movement occurrence is cyclical, with periods consistent with sleep-wake behavioural architecture. Movement kinematics are organised by these fluctuations in movement occurrence. Recordings that exceed 1-hour are necessary to capture the long-range temporal organisation of the full repertoire of newborn limb movements. SIGNIFICANCE Future work should investigate the prognostic value of combining these movement recordings with synchronised EEG, in at-risk infants.
Collapse
Affiliation(s)
- Kimberley Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Judith Meek
- Elizabeth Garrett Anderson Wing, University College London Hospitals, London WC1E 6DB, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Beth A. Smith
- Division of Biokinesiology and Physical Therapy and Department of Pediatrics, University of Southern California, Los Angeles, CA 90033, United States
| |
Collapse
|
22
|
Del Rio-Bermudez C, Kim J, Sokoloff G, Blumberg MS. Active Sleep Promotes Coherent Oscillatory Activity in the Cortico-Hippocampal System of Infant Rats. Cereb Cortex 2020; 30:2070-2082. [PMID: 31922194 PMCID: PMC7175014 DOI: 10.1093/cercor/bhz223] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Active sleep (AS) provides a unique developmental context for synchronizing neural activity within and between cortical and subcortical structures. In week-old rats, sensory feedback from myoclonic twitches, the phasic motor activity that characterizes AS, promotes coherent theta oscillations (4-8 Hz) in the hippocampus and red nucleus, a midbrain motor structure. Sensory feedback from twitches also triggers rhythmic activity in sensorimotor cortex in the form of spindle bursts, which are brief oscillatory events composed of rhythmic components in the theta, alpha/beta (8-20 Hz), and beta2 (20-30 Hz) bands. Here we ask whether one or more of these spindle-burst components are communicated from sensorimotor cortex to hippocampus. By recording simultaneously from whisker barrel cortex and dorsal hippocampus in 8-day-old rats, we show that AS, but not other behavioral states, promotes cortico-hippocampal coherence specifically in the beta2 band. By cutting the infraorbital nerve to prevent the conveyance of sensory feedback from whisker twitches, cortical-hippocampal beta2 coherence during AS was substantially reduced. These results demonstrate the necessity of sensory input, particularly during AS, for coordinating rhythmic activity between these two developing forebrain structures.
Collapse
Affiliation(s)
- Carlos Del Rio-Bermudez
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Jangjin Kim
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Greta Sokoloff
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52245, USA
| |
Collapse
|
23
|
Valeeva G, Janackova S, Nasretdinov A, Rychkova V, Makarov R, Holmes GL, Khazipov R, Lenck-Santini PP. Emergence of Coordinated Activity in the Developing Entorhinal-Hippocampal Network. Cereb Cortex 2020; 29:906-920. [PMID: 30535003 PMCID: PMC6319314 DOI: 10.1093/cercor/bhy309] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/15/2018] [Indexed: 11/18/2022] Open
Abstract
Correlated activity in the entorhinal–hippocampal neuronal networks, supported by oscillatory and intermittent population activity patterns is critical for learning and memory. However, when and how correlated activity emerges in these networks during development remains largely unknown. Here, we found that during the first postnatal week in non-anaesthetized head-restrained rats, activity in the superficial layers of the medial entorhinal cortex (MEC) and hippocampus was highly correlated, with intermittent population bursts in the MEC followed by early sharp waves (eSPWs) in the hippocampus. Neurons in the superficial MEC layers fired before neurons in the dentate gyrus, CA3 and CA1. eSPW current-source density profiles indicated that perforant/temporoammonic entorhinal inputs and intrinsic hippocampal connections are co-activated during entorhinal–hippocampal activity bursts. Finally, a majority of the entorhinal–hippocampal bursts were triggered by spontaneous myoclonic body movements, characteristic of the neonatal period. Thus, during the neonatal period, activity in the entorhinal cortex (EC) and hippocampus is highly synchronous, with the EC leading hippocampal activation. We propose that such correlated activity is embedded into a large-scale bottom-up circuit that processes somatosensory feedback resulting from neonatal movements, and that it is likely to instruct the development of connections between neocortex and hippocampus.
Collapse
Affiliation(s)
- Guzel Valeeva
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Sona Janackova
- INMED, Aix-Marseille University, INSERM, Marseille, France
| | - Azat Nasretdinov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | | | - Roman Makarov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Gregory L Holmes
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,INMED, Aix-Marseille University, INSERM, Marseille, France
| | - Pierre-Pascal Lenck-Santini
- INMED, Aix-Marseille University, INSERM, Marseille, France.,Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
24
|
Sokoloff G, Hickerson MM, Wen RY, Tobias ME, McMurray B, Blumberg MS. Spatiotemporal organization of myoclonic twitching in sleeping human infants. Dev Psychobiol 2020; 62:697-710. [PMID: 32037557 DOI: 10.1002/dev.21954] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 11/11/2022]
Abstract
During the perinatal period in mammals when active sleep predominates, skeletal muscles twitch throughout the body. We have hypothesized that myoclonic twitches provide unique insight into the functional status of the human infant's nervous system. However, assessments of the rate and patterning of twitching have largely been restricted to infant rodents. Thus, here we analyze twitching in human infants over the first seven postnatal months. Using videography and behavioral measures of twitching during bouts of daytime sleep, we find at all ages that twitching across the body occurs predominantly in bursts at intervals of 10 s or less. We also find that twitching is expressed differentially across the body and with age. For example, twitching of the face and head is most prevalent shortly after birth and decreases over the first several months. In addition, twitching of the hands and feet occurs at a consistently higher rate than does twitching elsewhere in the body. Finally, the patterning of twitching becomes more structured with age, with twitches of the left and right hands and feet exhibiting the strongest coupling. Altogether, these findings support the notion that twitches can provide a unique source of information about typical and atypical sensorimotor development.
Collapse
Affiliation(s)
- Greta Sokoloff
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA.,DeLTA Center, The University of Iowa, Iowa City, IA, USA.,Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Meredith M Hickerson
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA
| | - Rebecca Y Wen
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA
| | - Megan E Tobias
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA
| | - Bob McMurray
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA.,DeLTA Center, The University of Iowa, Iowa City, IA, USA.,Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA.,DeLTA Center, The University of Iowa, Iowa City, IA, USA.,Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
25
|
Leikos S, Tokariev A, Koolen N, Nevalainen P, Vanhatalo S. Cortical responses to tactile stimuli in preterm infants. Eur J Neurosci 2019; 51:1059-1073. [PMID: 31679163 DOI: 10.1111/ejn.14613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
The conventional assessment of preterm somatosensory functions using averaged cortical responses to electrical stimulation ignores the characteristic components of preterm somatosensory evoked responses (SERs). Our study aimed to systematically evaluate the occurrence and development of SERs after tactile stimulus in preterm infants. We analysed SERs performed during 45 electroencephalograms (EEGs) from 29 infants at the mean post-menstrual age of 30.7 weeks. Altogether 2,087 SERs were identified visually at single-trial level from unfiltered signals capturing also their slowest components. We observed salient SERs with a high-amplitude slow component at a high success rate after hand (95%) and foot (83%) stimuli. There was a clear developmental change in both the slow wave and the higher-frequency components of the SERs. Infants with intraventricular haemorrhage (IVH; eleven infants) had initially normal SERs, but those with bilateral IVH later showed a developmental decrease in the ipsilateral SER occurrence after 30 weeks of post-menstrual age. Our study shows that tactile stimulus applied at bedside elicits salient SERs with a large slow component and an overriding fast oscillation, which are specific to the preterm period. Prior experimental research indicates that such SERs allow studying both subplate and cortical functions. Our present findings further suggest that they might offer a window to the emergence of neurodevelopmental sequelae after major structural brain lesions and, hence, an additional tool for both research and clinical neurophysiological evaluation of infants before term age.
Collapse
Affiliation(s)
- Susanna Leikos
- Children's Clinical Neurophysiology, BABA Center, Children's Hospital, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anton Tokariev
- Children's Clinical Neurophysiology, BABA Center, Children's Hospital, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ninah Koolen
- Children's Clinical Neurophysiology, BABA Center, Children's Hospital, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Päivi Nevalainen
- Children's Clinical Neurophysiology, BABA Center, Children's Hospital, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sampsa Vanhatalo
- Children's Clinical Neurophysiology, BABA Center, Children's Hospital, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Abstract
Given the prevalence of sleep in early development, any satisfactory account of infant brain activity must consider what happens during sleep. Only recently, however, has it become possible to record sleep-related brain activity in newborn rodents. Using such methods in rat pups, it is now clear that sleep, more so than wake, provides a critical context for the processing of sensory input and the expression of functional connectivity throughout the sensorimotor system. In addition, sleep uniquely reveals functional activity in the developing primary motor cortex, which establishes a somatosensory map long before its role in motor control emerges. These findings will inform our understanding of the developmental processes that contribute to the nascent sense of embodiment in human infants.
Collapse
|
27
|
Wu TL, Yang PF, Wang F, Shi Z, Mishra A, Wu R, Chen LM, Gore JC. Intrinsic functional architecture of the non-human primate spinal cord derived from fMRI and electrophysiology. Nat Commun 2019; 10:1416. [PMID: 30926817 PMCID: PMC6440970 DOI: 10.1038/s41467-019-09485-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Resting-state functional MRI (rsfMRI) has recently revealed correlated signals in the spinal cord horns of monkeys and humans. However, the interpretation of these rsfMRI correlations as indicators of functional connectivity in the spinal cord remains unclear. Here, we recorded stimulus-evoked and spontaneous spiking activity and local field potentials (LFPs) from monkey spinal cord in order to validate fMRI measures. We found that both BOLD and electrophysiological signals elicited by tactile stimulation co-localized to the ipsilateral dorsal horn. Temporal profiles of stimulus-evoked BOLD signals covaried with LFP and multiunit spiking in a similar way to those observed in the brain. Functional connectivity of dorsal horns exhibited a U-shaped profile along the dorsal-intermediate-ventral axis. Overall, these results suggest that there is an intrinsic functional architecture within the gray matter of a single spinal segment, and that rsfMRI signals at high field directly reflect this underlying spontaneous neuronal activity.
Collapse
Affiliation(s)
- Tung-Lin Wu
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA.
- Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Zhaoyue Shi
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ruiqi Wu
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
- Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
28
|
Petrovic A, Veeraraghavan P, Olivieri D, Nistri A, Jurcic N, Mladinic M. Loss of inhibitory synapses causes locomotor network dysfunction of the rat spinal cord during prolonged maintenance in vitro. Brain Res 2018; 1710:8-21. [PMID: 30578767 DOI: 10.1016/j.brainres.2018.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/06/2018] [Accepted: 12/19/2018] [Indexed: 12/17/2022]
Abstract
The isolated spinal cord of the neonatal rat is widely employed to clarify the basic mechanisms of network development or the early phase of degeneration after injury. Nevertheless, this preparation survives in Krebs solution up to 24 h only, making it desirable to explore approaches to extend its survival for longitudinal studies. The present report shows that culturing the spinal cord in oxygenated enriched Basal Medium Eagle (BME) provided excellent preservation of neurons (including motoneurons), glia and primary afferents (including dorsal root ganglia) for up to 72 h. Using DMEM medium was unsuccessful. Novel characteristics of spinal networks emerged with strong spontaneous activity, and deficit in fictive locomotion patterns with stereotypically slow cycles. Staining with markers for synaptic proteins synapsin 1 and synaptophysin showed thoroughly weaker signal after 3 days in vitro. Immunohistochemical staining of markers for glutamatergic and glycinergic neurons indicated significant reduction of the latter. Likewise, there was lower expression of the GABA-synthesizing enzyme GAD65. Thus, malfunction of locomotor networks appeared related to loss of inhibitory synapses. This phenomenon did not occur in analogous opossum preparations of the spinal cord kept in vitro. In conclusion, despite histological data suggesting that cultured spinal cords were undamaged (except for inhibitory biomarkers), electrophysiological data revealed important functional impairment. Thus, the downregulation of inhibitory synapses may account for the progressive hyperexcitability of rat spinal networks despite apparently normal histological appearance. Our observations may help to understand the basis of certain delayed effects of spinal injury like chronic pain and spasticity.
Collapse
Affiliation(s)
- Antonela Petrovic
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy; Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | | | - Dario Olivieri
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Andrea Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Nina Jurcic
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Miranda Mladinic
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy; Department of Biotechnology, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
29
|
Greenspon CM, Battell EE, Devonshire IM, Donaldson LF, Chapman V, Hathway GJ. Lamina-specific population encoding of cutaneous signals in the spinal dorsal horn using multi-electrode arrays. J Physiol 2018; 597:377-397. [PMID: 30390415 PMCID: PMC6332738 DOI: 10.1113/jp277036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/31/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Traditional, widely used in vivo electrophysiological techniques for the investigation of spinal processing of somatosensory information fail to account for the diverse functions of each lamina. To overcome this oversimplification, we have used multi-electrode arrays, in vivo, to simultaneously record neuronal activity across all laminae of the spinal dorsal horn. Multi-electrode arrays are sensitive enough to detect lamina- and region-specific encoding of different subtypes of afferent fibres and to detect short-lived changes in synaptic plasticity as measured by the application of cutaneous electrical stimulation of varying intensity and frequency. Differential encoding of innocuous and noxious thermal and mechanical stimuli were also detected across the laminae with the technique, as were the effects of the application of capsaicin. This new approach to the study of the dorsal spinal cord produces significantly more information per experiment, permitting accelerated research whilst also permitting the effects of pharmacological tools to modulate network responses. ABSTRACT The dorsal horn (DH) of the spinal cord is a complex laminar structure integrating peripheral signals into the central nervous system. Spinal somatosensory processing is commonly measured electrophysiologically in vivo by recording the activity of individual wide-dynamic-range neurons in the deep DH and extrapolating their behaviour to all cells in every lamina. This fails to account for the specialized processes that occur in each lamina and the considerable heterogeneity in cellular phenotype within and between laminae. Here we overcome this oversimplification by employing linear multi-electrode arrays (MEAs) in the DH of anaesthetized rats to simultaneously measure activity across all laminae. The MEAs, comprising 16 channels, were inserted into the lumbar dorsal horn and peripheral neurons activated electrically via transcutaneous electrodes and ethologically with von Frey hairs (vFHs) or an aluminium heating block. Ascending electrical stimuli showed fibre thresholds with distinct dorsoventral innervation profiles. Wind up was observed across the DH during the C-fibre and post-discharge latencies following 0.5 Hz stimulation. Intrathecal application of morphine (5 ng/50 μl) significantly reduced Aδ- and C-fibre-evoked activity in deep and superficial DH. Light vFHs (≤10 g) predominantly activated intermediate and deep laminae whereas noxious vFHs (26 g) also activated the superficial laminae. Noxious heat (55°C) induced significantly greater activity in the superficial and deep laminae than the innocuous control (30°C). The application of these arrays produced the first description of the processing of innocuous and noxious stimuli throughout the intact DH.
Collapse
Affiliation(s)
- Charles M Greenspon
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Emma E Battell
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Ian M Devonshire
- Bio-Support Unit, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Lucy F Donaldson
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2UH, UK.,Arthritis Research UK Pain Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Victoria Chapman
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2UH, UK.,Arthritis Research UK Pain Centre, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Gareth J Hathway
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
30
|
Whitehead K, Meek J, Fabrizi L. Developmental trajectory of movement-related cortical oscillations during active sleep in a cross-sectional cohort of pre-term and full-term human infants. Sci Rep 2018; 8:17516. [PMID: 30504857 PMCID: PMC6269518 DOI: 10.1038/s41598-018-35850-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
In neonatal animal models, isolated limb movements during active sleep provide input to immature somatomotor cortex necessary for its development and are somatotopically encoded by alpha-beta oscillations as late as the equivalent of human full-term. Limb movements elicit similar neural patterns in very pre-term human infants (average 30 corrected gestational weeks), suggesting an analogous role in humans, but it is unknown until when they subserve this function. In a cohort of 19 neonates (31-42 corrected gestational weeks) we showed that isolated hand movements during active sleep continue to induce these same somatotopically distributed oscillations well into the perinatal period, but that these oscillations decline towards full-term and fully disappear at 41 corrected gestational weeks (equivalent to the end of gestation). We also showed that these highly localised alpha-beta oscillations are associated with an increase in delta oscillations which extends to the frontal area and does not decline with age. These results suggest that isolated limb movements during active sleep could have an important role in experience-dependent somatomotor development up until normal birth in humans.
Collapse
Affiliation(s)
- Kimberley Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom.
| | - Judith Meek
- Elizabeth Garrett Anderson Obstetric Wing, University College London Hospitals, London, WC1E 6BD, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
31
|
Rosa SG, Chagas PM, Pesarico AP, Nogueira CW. Monosodium glutamate induced nociception and oxidative stress dependent on time of administration, age of rats and susceptibility of spinal cord and brain regions. Toxicol Appl Pharmacol 2018; 351:64-73. [DOI: 10.1016/j.taap.2018.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/16/2022]
|
32
|
Del Rio-Bermudez C, Blumberg MS. Active Sleep Promotes Functional Connectivity in Developing Sensorimotor Networks. Bioessays 2018; 40:e1700234. [PMID: 29508913 PMCID: PMC6247910 DOI: 10.1002/bies.201700234] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/01/2018] [Indexed: 12/15/2022]
Abstract
A ubiquitous feature of active (REM) sleep in mammals and birds is its relative abundance in early development. In rat pups across the first two postnatal weeks, active sleep promotes the expression of synchronized oscillatory activity within and between cortical and subcortical sensorimotor structures. Sensory feedback from self-generated myoclonic twitches - which are produced exclusively during active sleep - also triggers neural oscillations in those structures. We have proposed that one of the functions of active sleep in early infancy is to provide a context for synchronizing developing structures. Specifically, neural oscillations contribute to a variety of neurodevelopmental processes, including synapse formation, neuronal differentiation and migration, apoptosis, and the refinement of topographic maps. In addition, synchronized oscillations promote functional connectivity between distant brain areas. Consequently, any condition or manipulation that restricts active sleep can, in turn, deprive the infant animal of substantial sensory experience, resulting in atypical developmental trajectories.
Collapse
Affiliation(s)
- Carlos Del Rio-Bermudez
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, 52242, Iowa, USA
- Delta Center, University of Iowa, Iowa City, 52242, Iowa, USA
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, 52242, Iowa, USA
- Delta Center, University of Iowa, Iowa City, 52242, Iowa, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, 52245, Iowa, USA
- Department of Biology, University of Iowa, Iowa City, 52242, Iowa, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, 52242, Iowa, USA
| |
Collapse
|
33
|
Khazipov R, Milh M. Early patterns of activity in the developing cortex: Focus on the sensorimotor system. Semin Cell Dev Biol 2018; 76:120-129. [DOI: 10.1016/j.semcdb.2017.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 02/08/2023]
|
34
|
Blumberg MS, Dooley JC. Phantom Limbs, Neuroprosthetics, and the Developmental Origins of Embodiment. Trends Neurosci 2018; 40:603-612. [PMID: 28843655 DOI: 10.1016/j.tins.2017.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/12/2017] [Accepted: 07/25/2017] [Indexed: 01/11/2023]
Abstract
Amputees who wish to rid themselves of a phantom limb must weaken the neural representation of the absent limb. Conversely, amputees who wish to replace a lost limb must assimilate a neuroprosthetic with the existing neural representation. Whether we wish to remove a phantom limb or assimilate a synthetic one, we will benefit from knowing more about the developmental process that enables embodiment. A potentially critical contributor to that process is the spontaneous activity - in the form of limb twitches - that occurs exclusively and abundantly during active (REM) sleep, a particularly prominent state in early development. The sensorimotor circuits activated by twitching limbs, and the developmental context in which activation occurs, could provide a roadmap for creating neuroprosthetics that feel as if they are part of the body.
Collapse
Affiliation(s)
- Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242, USA; Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA; DeLTA Center, University of Iowa, Iowa City, Iowa 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA.
| | - James C Dooley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242, USA; DeLTA Center, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
35
|
Black BJ, Atmaramani R, Pancrazio JJ. Spontaneous and Evoked Activity from Murine Ventral Horn Cultures on Microelectrode Arrays. Front Cell Neurosci 2017; 11:304. [PMID: 29033792 PMCID: PMC5626830 DOI: 10.3389/fncel.2017.00304] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/12/2017] [Indexed: 12/11/2022] Open
Abstract
Motor neurons are the site of action for several neurological disorders and paralytic toxins, with cell bodies located in the ventral horn (VH) of the spinal cord along with interneurons and support cells. Microelectrode arrays (MEAs) have emerged as a high content assay platform for mechanistic studies and drug discovery. Here, we explored the spontaneous and evoked electrical activity of VH cultures derived from embryonic mouse spinal cord on multi-well plates of MEAs. Primary VH cultures from embryonic day 15–16 mice were characterized by expression of choline acetyltransferase (ChAT) by immunocytochemistry. Well resolved, all-or-nothing spontaneous spikes with profiles consistent with extracellular action potentials were observed after 3 days in vitro, persisting with consistent firing rates until at least day in vitro 19. The majority of the spontaneous activity consisted of tonic firing interspersed with coordinated bursting across the network. After 5 days in vitro, spike activity was readily evoked by voltage pulses where a minimum amplitude and duration required for excitation was 300 mV and 100 μs/phase, respectively. We characterized the sensitivity of spontaneous and evoked activity to a host of pharmacological agents including AP5, CNQX, strychnine, ω-agatoxin IVA, and botulinum neurotoxin serotype A (BoNT/A). These experiments revealed sensitivity of the cultured VH to both agonist and antagonist compounds in a manner consistent with mature tissue derived from slices. In the case of BoNT/A, we also demonstrated intoxication persistence over an 18-day period, followed by partial intoxication recovery induced by N- and P/Q-type calcium channel agonist GV-58. In total, our findings suggest that VH cultures on multi-well MEA plates may represent a moderate throughput, high content assay for performing mechanistic studies and for screening potential therapeutics pertaining to paralytic toxins and neurological disorders.
Collapse
Affiliation(s)
- Bryan J Black
- Neuronal Networks and Interfaces Laboratory, Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Rahul Atmaramani
- Neuronal Networks and Interfaces Laboratory, Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Joseph J Pancrazio
- Neuronal Networks and Interfaces Laboratory, Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
36
|
Arichi T, Whitehead K, Barone G, Pressler R, Padormo F, Edwards AD, Fabrizi L. Localization of spontaneous bursting neuronal activity in the preterm human brain with simultaneous EEG-fMRI. eLife 2017; 6. [PMID: 28893378 PMCID: PMC5595428 DOI: 10.7554/elife.27814] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022] Open
Abstract
Electroencephalographic recordings from the developing human brain are characterized by spontaneous neuronal bursts, the most common of which is the delta brush. Although similar events in animal models are known to occur in areas of immature cortex and drive their development, their origin in humans has not yet been identified. Here, we use simultaneous EEG-fMRI to localise the source of delta brush events in 10 preterm infants aged 32–36 postmenstrual weeks. The most frequent patterns were left and right posterior-temporal delta brushes which were associated in the left hemisphere with ipsilateral BOLD activation in the insula only; and in the right hemisphere in both the insular and temporal cortices. This direct measure of neural and hemodynamic activity shows that the insula, one of the most densely connected hubs in the developing cortex, is a major source of the transient bursting events that are critical for brain maturation.
Collapse
Affiliation(s)
- Tomoki Arichi
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Kimberley Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Giovanni Barone
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Department of Pediatrics, Catholic University of Sacred Heart, Rome, Italy
| | - Ronit Pressler
- Clinical Neurosciences, UCL-Institute of Child Health, London, United Kingdom
| | - Francesco Padormo
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom.,Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
37
|
Lotfullina N, Khazipov R. Ethanol and the Developing Brain: Inhibition of Neuronal Activity and Neuroapoptosis. Neuroscientist 2017; 24:130-141. [PMID: 28580823 DOI: 10.1177/1073858417712667] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ethanol induces massive neuroapoptosis in the developing brain. One of the main hypotheses that has been put forward to explain the deleterious actions of ethanol in the immature brain involves an inhibition of neuronal activity. Here, we review recent evidence for this hypothesis obtained in the somatosensory cortex and hippocampus of neonatal rodents. In both structures, ethanol strongly inhibits brain activity. At the doses inducing massive neuroapoptosis, ethanol completely suppresses the early activity patterns of spindle-bursts and gamma oscillations in the neocortex and the early sharp-waves in the hippocampus. The inhibitory effects of ethanol decrease with age and in adult animals, ethanol only mildly depresses neuronal firing and induces delta-wave activity. Suppression of cortical activity in neonatal animals likely involves inhibition of the myoclonic twitches, an important physiological trigger for the early activity bursts, and inhibition of the thalamocortical and intracortical circuits through a potentiation of GABAergic transmission and an inhibition of N-methyl-d-aspartate (NMDA) receptors, that is in keeping with the neuroapoptotic effects of other agents acting on GABA and NMDA receptors. These findings provide support for the hypothesis that the ethanol-induced inhibition of cortical activity is an important pathophysiological mechanism underlying massive neuroapoptosis induced by ethanol in the developing brain.
Collapse
Affiliation(s)
- Nailya Lotfullina
- 1 INMED-INSERM, Aix-Marseille University, Marseille, France.,2 Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Roustem Khazipov
- 1 INMED-INSERM, Aix-Marseille University, Marseille, France.,2 Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
38
|
Luhmann HJ, Khazipov R. Neuronal activity patterns in the developing barrel cortex. Neuroscience 2017; 368:256-267. [PMID: 28528963 DOI: 10.1016/j.neuroscience.2017.05.025] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 11/26/2022]
Abstract
The developing barrel cortex reveals a rich repertoire of neuronal activity patterns, which have been also found in other sensory neocortical areas and in other species including the somatosensory cortex of preterm human infants. The earliest stage is characterized by asynchronous, sparse single-cell firing at low frequencies. During the second stage neurons show correlated firing, which is initially mediated by electrical synapses and subsequently transforms into network bursts depending on chemical synapses. Activity patterns during this second stage are synchronous plateau assemblies, delta waves, spindle bursts and early gamma oscillations (EGOs). In newborn rodents spindle bursts and EGOs occur spontaneously or can be elicited by sensory stimulation and synchronize the activity in a barrel-related columnar network with topographic organization at the day of birth. Interfering with this early activity causes a disturbance in the development of the cortical architecture, indicating that spindle bursts and EGOs influence the formation of cortical columns. Early neuronal activity also controls the rate of programed cell death in the developing barrel cortex, suggesting that spindle bursts and EGOs are physiological activity patterns particularly suited to suppress apoptosis. It remains to be studied in more detail how these different neocortical activity patterns control early developmental processes such as formation of synapses, microcircuits, topographic maps and large-scale networks.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Rustem Khazipov
- INMED - INSERM, Aix-Marseille University, Marseille 13273, France; Laboratory of Neurobiology, Kazan Federal University, Kazan 420008, Russia
| |
Collapse
|