1
|
Han L, Sun C, Wang HT, Lin WX, Chen JL, Pao CW, Chuang YC, Wang CH, Zhou J, Wang J, Pong WF, Xin HL. Interrogation of 3d Transition Bimetallic Nanocrystal Nucleation and Growth Using In Situ Electron Microscope and Synchrotron X-ray Techniques. NANO LETTERS 2024; 24:7645-7653. [PMID: 38875704 DOI: 10.1021/acs.nanolett.4c01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Understanding the nucleation and growth mechanism of 3d transition bimetallic nanocrystals (NCs) is crucial to developing NCs with tailored nanostructures and properties. However, it remains a significant challenge due to the complexity of 3d bimetallic NCs formation and their sensitivity to oxygen. Here, by combining in situ electron microscopy and synchrotron X-ray techniques, we elucidate the nucleation and growth pathways of Fe-Ni NCs. Interestingly, the formation of Fe-Ni NCs emerges from the assimilation of Fe into Ni clusters together with the reduction of Fe-Ni oxides. Subsequently, these NCs undergo solid-state phase transitions, resulting in two distinct solid solutions, ultimately dominated by γ-Fe3Ni2. Furthermore, we deconvolve the interplays between local coordination and electronic state concerning the growth temperature. We directly visualize the oxidation-state distributions of Fe and Ni at the nanoscale and investigate their changes. This work may reshape and enhance the understanding of nucleation and growth in atomic crystallization.
Collapse
Affiliation(s)
- Lili Han
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Chen Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Hsiao-Tsu Wang
- Bachelor's Program in Advanced Materials Science, Tamkang University, New Taipei City 25137, Taiwan
| | - Wei-Xuan Lin
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yu-Chun Chuang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Jigang Zhou
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon S7N 2 V3, Canada
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon S7N 2 V3, Canada
| | - Way-Faung Pong
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Huolin L Xin
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| |
Collapse
|
2
|
Li L, Ouyang B, Lun Z, Huo H, Chen D, Yue Y, Ophus C, Tong W, Chen G, Ceder G, Wang C. Atomic-scale probing of short-range order and its impact on electrochemical properties in cation-disordered oxide cathodes. Nat Commun 2023; 14:7448. [PMID: 37978171 PMCID: PMC10656575 DOI: 10.1038/s41467-023-43356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Chemical short-range-order has been widely noticed to dictate the electrochemical properties of Li-excess cation-disordered rocksalt oxides, a class of cathode based on earth abundant elements for next-generation high-energy-density batteries. Existence of short-range-order is normally evidenced by a diffused intensity pattern in reciprocal space, however, derivation of local atomic arrangements of short-range-order in real space is hardly possible. Here, by a combination of aberration-corrected scanning transmission electron microscopy, electron diffraction, and cluster-expansion Monte Carlo simulations, we reveal the short-range-order is a convolution of three basic types: tetrahedron, octahedron, and cube. We discover that short-range-order directly correlates with Li percolation channels, which correspondingly affects Li transport behavior. We further demonstrate that short-range-order can be effectively manipulated by anion doping or post-synthesis thermal treatment, creating new avenues for tailoring the electrochemical properties. Our results provide fundamental insights for decoding the complex relationship between local chemical ordering and properties of crystalline compounds.
Collapse
Affiliation(s)
- Linze Li
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bin Ouyang
- Department of Materials Science and Engineering, University of California - Berkeley, Berkeley, CA, USA.
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA.
| | - Zhengyan Lun
- Department of Materials Science and Engineering, University of California - Berkeley, Berkeley, CA, USA
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haoyan Huo
- Department of Materials Science and Engineering, University of California - Berkeley, Berkeley, CA, USA
| | - Dongchang Chen
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yuan Yue
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Wei Tong
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Guoying Chen
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gerbrand Ceder
- Department of Materials Science and Engineering, University of California - Berkeley, Berkeley, CA, USA.
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
3
|
Bera S, Sahu P, Dutta A, Nobile C, Pradhan N, Cozzoli PD. Partial Chemicalization of Nanoscale Metals: An Intra-Material Transformative Approach for the Synthesis of Functional Colloidal Metal-Semiconductor Nanoheterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305985. [PMID: 37724799 DOI: 10.1002/adma.202305985] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/09/2023] [Indexed: 09/21/2023]
Abstract
Heterostructuring colloidal nanocrystals into multicomponent modular constructs, where domains of distinct metal and semiconductor phases are interconnected through bonding interfaces, is a consolidated approach to advanced breeds of solution-processable hybrid nanomaterials capable of expressing richly tunable and even entirely novel physical-chemical properties and functionalities. To meet the challenges posed by the wet-chemical synthesis of metal-semiconductor nanoheterostructures and to overcome some intrinsic limitations of available protocols, innovative transformative routes, based on the paradigm of partial chemicalization, have recently been devised within the framework of the standard seeded-growth scheme. These techniques involve regiospecific replacement reactions on preformed nanocrystal substrates, thus holding great synthetic potential for programmable configurational diversification. This review article illustrates achievements so far made in the elaboration of metal-semiconductor nanoheterostructures with tailored arrangements of their component modules by means of conversion pathways that leverage on spatially controlled partial chemicalization of mono- and bi-metallic seeds. The advantages and limitations of these approaches are discussed within the context of the most plausible mechanisms underlying the evolution of the nanoheterostructures in liquid media. Representative physical-chemical properties and applications of chemicalization-derived metal-semiconductor nanoheterostructures are emphasized. Finally, prospects for developments in the field are outlined.
Collapse
Affiliation(s)
- Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Sciences (IACS), Kolkata, 700032, India
| | - Puspanjali Sahu
- School of Materials Sciences, Indian Association for the Cultivation of Sciences (IACS), Kolkata, 700032, India
| | - Anirban Dutta
- School of Materials Sciences, Indian Association for the Cultivation of Sciences (IACS), Kolkata, 700032, India
| | - Concetta Nobile
- CNR NANOTEC - Institute of Nanotechnology, UOS di Lecce, Lecce, 73100, Italy
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Sciences (IACS), Kolkata, 700032, India
| | - P Davide Cozzoli
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Lecce, 73100, Italy
- UdR INSTM di Lecce, c/o Università del Salento, Lecce, 73100, Italy
| |
Collapse
|
4
|
You R, Ou Y, Qi R, Yu J, Wang F, Jiang Y, Zou S, Han ZK, Yuan W, Yang H, Zhang Z, Wang Y. Revealing Temperature-Dependent Oxidation Dynamics of Ni Nanoparticles via Ambient Pressure Transmission Electron Microscopy. NANO LETTERS 2023; 23:7260-7266. [PMID: 37534944 DOI: 10.1021/acs.nanolett.3c00923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Understanding the oxidation mechanism of metal nanoparticles under ambient pressure is extremely important to make the best use of them in a variety of applications. Through ambient pressure transmission electron microscopy, we in situ investigated the dynamic oxidation processes of Ni nanoparticles at different temperatures under atmospheric pressure, and a temperature-dependent oxidation behavior was revealed. At a relatively low temperature (e.g., 600 °C), the oxidation of Ni nanoparticles underwent a classic Kirkendall process, accompanied by the formation of oxide shells. In contrast, at a higher temperature (e.g., 800 °C), the oxidation began with a single crystal nucleus at the metal surface and then proceeded along the metal/oxide interface without voids formed during the whole process. Through our experiments and density functional theory calculations, a temperature-dependent oxidation mechanism based on Ni nanoparticles was proposed, which was derived from the discrepancy of gas adsorption and diffusion rates under different temperatures.
Collapse
Affiliation(s)
- Ruiyang You
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Ou
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui Qi
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jian Yu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fei Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Jiang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shihui Zou
- Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhong-Kang Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wentao Yuan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| | - Hangsheng Yang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| | - Ze Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Zhang M, Liu F, Yang H, Xu Z, Wang J, Gong Y. Elucidating the exceptional halide ion etching of bimetallic Ag-Cu oxides for efficient adsorption and porous nanostructure formation. MATERIALS HORIZONS 2023. [PMID: 37060143 DOI: 10.1039/d3mh00231d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Elucidating the interactions between halide ions and bimetallic oxides can help understand their influences on the physicochemical properties of bimetallic oxides and ultimately lead to better performance, but this has not yet been explored. We report here the first study of the interaction of halide ions with two phase-pure bimetallic Ag-Cu oxides, Ag2Cu2O3 and Ag2Cu2O4, which have different chemical valences of Ag and Cu atoms. We found that halide ions have an aggressive etching effect on both bimetallic oxides, leading to a dramatic evolution of crystal structures and morphology. Halide ions act like "nano-carving knives", selectively etching out silver atoms to form silver halides and leaving a porous CuO skeleton. We revealed that Ag2Cu2O4 underwent a redox reaction with iodide ions (I-) to produce additional I3- in the solution, which was not observed in Ag2Cu2O3. Interestingly, according to the revealed interactions, both bimetallic oxides are confirmed as superior adsorbents to remove I- from wastewater in terms of a record-high uptake capacity, fast adsorption kinetics, and excellent selectivity for I-. Furthermore, such a halide etching can be turned into a powerful synthetic strategy. The out-etched silver halides were dissolved to give robust porous CuO nanostructures, which are proved to be excellent glucose-sensing electrodes with high sensitivity, excellent anti-interference, and stability, showing great application potential. This work contributes to improving the understanding of the mechanisms of halide ion-metal oxide interactions and ultimately to innovative applications.
Collapse
Affiliation(s)
- Meng Zhang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Fuzhu Liu
- School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Hongliang Yang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.
| | - Zhanglian Xu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Junjie Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.
| | - Yutong Gong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.
| |
Collapse
|
6
|
Pu Y, He B, Niu Y, Liu X, Zhang B. Chemical Electron Microscopy (CEM) for Heterogeneous Catalysis at Nano: Recent Progress and Challenges. RESEARCH (WASHINGTON, D.C.) 2023; 6:0043. [PMID: 36930759 PMCID: PMC10013794 DOI: 10.34133/research.0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/18/2022] [Indexed: 01/12/2023]
Abstract
Chemical electron microscopy (CEM), a toolbox that comprises imaging and spectroscopy techniques, provides dynamic morphological, structural, chemical, and electronic information about an object in chemical environment under conditions of observable performance. CEM has experienced a revolutionary improvement in the past years and is becoming an effective characterization method for revealing the mechanism of chemical reactions, such as catalysis. Here, we mainly address the concept of CEM for heterogeneous catalysis in the gas phase and what CEM could uniquely contribute to catalysis, and illustrate what we can know better with CEM and the challenges and future development of CEM.
Collapse
Affiliation(s)
- Yinghui Pu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Bowen He
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
7
|
Xia W, Gong M, Wang C, Chen L, Wang Y, Cai R, Liu Z, Zhang M, Zhang Q, Sun L. Electron Tomography Reveals Porosity Degradation Spatially on Individual Pt-Based Nanocatalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25366-25373. [PMID: 35638553 DOI: 10.1021/acsami.2c03570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Probing porosity evolution is essential to understand the degradation mechanism of electrocatalytic activity. However, spatially dependent degradation pathways for porous catalysts remain elusive. Here, we reveal the multiple degradation behaviors of individual PtCu3 nanocatalysts spatially by three-dimensional (3D) electron tomography. We demonstrate that the surface area-volume ratio (SVR) of cycled porous particles decreases linearly rather than reciprocally with particle size. Additionally, an improved SVR (about 3-fold enhancement) results in increased oxygen reduction reaction (ORR) efficiency at the early stage. However, in the subsequent cycles, the degradation of catalytic activity is due to the excessive growth of pores, the reduction of reaction sites, and the chemical segregation of Cu atoms. The spatial porosity evolution model of nanocatalysts is applicable for a wide range of catalytic reactions, providing a critical insight into the degradation of catalyst activity.
Collapse
Affiliation(s)
- Weiwei Xia
- Shaanxi Materials Analysis and Research Center, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710000, China
| | - Mingxing Gong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Chuanyun Wang
- Shaanxi Materials Analysis and Research Center, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710000, China
| | - Lianyang Chen
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710000, China
| | - Yu Wang
- Shaanxi Materials Analysis and Research Center, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710000, China
| | - Ran Cai
- Beijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Zhichao Liu
- Shaanxi Materials Analysis and Research Center, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710000, China
| | - Mengqian Zhang
- Shaanxi Materials Analysis and Research Center, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710000, China
| | - Qiubo Zhang
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
8
|
Wang Z, Ke X, Sui M. Recent Progress on Revealing 3D Structure of Electrocatalysts Using Advanced 3D Electron Tomography: A Mini Review. Front Chem 2022; 10:872117. [PMID: 35355785 PMCID: PMC8959462 DOI: 10.3389/fchem.2022.872117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Electrocatalysis plays a key role in clean energy innovation. In order to design more efficient, durable and selective electrocatalysts, a thorough understanding of the unique link between 3D structures and properties is essential yet challenging. Advanced 3D electron tomography offers an effective approach to reveal 3D structures by transmission electron microscopy. This mini-review summarizes recent progress on revealing 3D structures of electrocatalysts using 3D electron tomography. 3D electron tomography at nanoscale and atomic scale are discussed, respectively, where morphology, composition, porous structure, surface crystallography and atomic distribution can be revealed and correlated to the performance of electrocatalysts. (Quasi) in-situ 3D electron tomography is further discussed with particular focus on its impact on electrocatalysts' durability investigation and post-treatment. Finally, perspectives on future developments of 3D electron tomography for eletrocatalysis is discussed.
Collapse
Affiliation(s)
| | - Xiaoxing Ke
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Manling Sui
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| |
Collapse
|
9
|
Lee JD, Miller JB, Shneidman AV, Sun L, Weaver JF, Aizenberg J, Biener J, Boscoboinik JA, Foucher AC, Frenkel AI, van der Hoeven JES, Kozinsky B, Marcella N, Montemore MM, Ngan HT, O'Connor CR, Owen CJ, Stacchiola DJ, Stach EA, Madix RJ, Sautet P, Friend CM. Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Chem Rev 2022; 122:8758-8808. [PMID: 35254051 DOI: 10.1021/acs.chemrev.1c00967] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity. Dilute alloy catalysts─in which isolated atoms or small ensembles of the minority metal on the host metal lead to enhanced reactivity while retaining selectivity─are particularly promising as selective catalysts. Several dilute alloy materials using Au, Ag, and Cu as the majority host element, including more recently introduced support-free nanoporous metals and oxide-supported nanoparticle "raspberry colloid templated (RCT)" materials, are reviewed for selective oxidation and hydrogenation reactions. Progress in understanding how such dilute alloy catalysts can be used to enhance selectivity of key synthetic reactions is reviewed, including quantitative scaling from model studies to catalytic conditions. The dynamic evolution of catalyst structure and composition studied in surface science and catalytic conditions and their relationship to catalytic function are also discussed, followed by advanced characterization and theoretical modeling that have been developed to determine the distribution of minority metal atoms at or near the surface. The integrated approach demonstrates the success of bridging the divide between fundamental knowledge and design of catalytic processes in complex catalytic systems, which can accelerate the development of new and efficient catalytic processes.
Collapse
Affiliation(s)
- Jennifer D Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jeffrey B Miller
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Anna V Shneidman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lixin Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jason F Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Juergen Biener
- Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - J Anibal Boscoboinik
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.,Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jessi E S van der Hoeven
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nicholas Marcella
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Matthew M Montemore
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Christopher R O'Connor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Cameron J Owen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dario J Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert J Madix
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
10
|
Zheng S, Wang C, Yuan X, Xin HL. Super-compression of large electron microscopy time series by deep compressive sensing learning. PATTERNS (NEW YORK, N.Y.) 2021; 2:100292. [PMID: 34286306 PMCID: PMC8276025 DOI: 10.1016/j.patter.2021.100292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/21/2021] [Accepted: 05/26/2021] [Indexed: 11/14/2022]
Abstract
The development of ultrafast detectors for electron microscopy (EM) opens a new door to exploring dynamics of nanomaterials; however, it raises grand challenges for big data processing and storage. Here, we combine deep learning and temporal compressive sensing (TCS) to propose a novel EM big data compression strategy. Specifically, TCS is employed to compress sequential EM images into a single compressed measurement; an end-to-end deep learning network is leveraged to reconstruct the original images. Owing to the significantly improved compression efficiency and built-in denoising capability of the deep learning framework over conventional JPEG compression, compressed videos with a compression ratio of up to 30 can be reconstructed with high fidelity. Using this approach, considerable encoding power, memory, and transmission bandwidth can be saved, allowing it to be deployed to existing detectors. We anticipate the proposed technique will have far-reaching applications in edge computing for EM and other imaging techniques.
Collapse
Affiliation(s)
- Siming Zheng
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, USA
| | - Chunyang Wang
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, USA
| | - Xin Yuan
- Bell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
| | - Huolin L. Xin
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
11
|
Kim J, Choi H, Kim D, Park JY. Operando Surface Studies on Metal-Oxide Interfaces of Bimetal and Mixed Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jeongjin Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hanseul Choi
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daeho Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
12
|
Lin R, Bak SM, Shin Y, Zhang R, Wang C, Kisslinger K, Ge M, Huang X, Shadike Z, Pattammattel A, Yan H, Chu Y, Wu J, Yang W, Whittingham MS, Xin HL, Yang XQ. Hierarchical nickel valence gradient stabilizes high-nickel content layered cathode materials. Nat Commun 2021; 12:2350. [PMID: 33879789 PMCID: PMC8058063 DOI: 10.1038/s41467-021-22635-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/12/2021] [Indexed: 02/02/2023] Open
Abstract
High-nickel content cathode materials offer high energy density. However, the structural and surface instability may cause poor capacity retention and thermal stability of them. To circumvent this problem, nickel concentration-gradient materials have been developed to enhance high-nickel content cathode materials' thermal and cycling stability. Even though promising, the fundamental mechanism of the nickel concentration gradient's stabilization effect remains elusive because it is inseparable from nickel's valence gradient effect. To isolate nickel's valence gradient effect and understand its fundamental stabilization mechanism, we design and synthesize a LiNi0.8Mn0.1Co0.1O2 material that is compositionally uniform and has a hierarchical valence gradient. The nickel valence gradient material shows superior cycling and thermal stability than the conventional one. The result suggests creating an oxidation state gradient that hides the more capacitive but less stable Ni3+ away from the secondary particle surfaces is a viable principle towards the optimization of high-nickel content cathode materials.
Collapse
Affiliation(s)
- Ruoqian Lin
- grid.202665.50000 0001 2188 4229Chemistry Division, Brookhaven National Laboratory, Upton, NY USA
| | - Seong-Min Bak
- grid.202665.50000 0001 2188 4229Chemistry Division, Brookhaven National Laboratory, Upton, NY USA ,grid.202665.50000 0001 2188 4229Present Address: National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY USA
| | - Youngho Shin
- grid.187073.a0000 0001 1939 4845Applied Materials Division, Argonne National Laboratory, Lemont, IL USA
| | - Rui Zhang
- grid.266093.80000 0001 0668 7243Department of Physics and Astronomy, University of California, Irvine, CA USA
| | - Chunyang Wang
- grid.266093.80000 0001 0668 7243Department of Physics and Astronomy, University of California, Irvine, CA USA
| | - Kim Kisslinger
- grid.202665.50000 0001 2188 4229Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY USA
| | - Mingyuan Ge
- grid.202665.50000 0001 2188 4229National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY USA
| | - Xiaojing Huang
- grid.202665.50000 0001 2188 4229National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY USA
| | - Zulipiya Shadike
- grid.202665.50000 0001 2188 4229Chemistry Division, Brookhaven National Laboratory, Upton, NY USA
| | - Ajith Pattammattel
- grid.202665.50000 0001 2188 4229National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY USA
| | - Hanfei Yan
- grid.202665.50000 0001 2188 4229National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY USA
| | - Yong Chu
- grid.202665.50000 0001 2188 4229National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY USA
| | - Jinpeng Wu
- grid.184769.50000 0001 2231 4551Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Wanli Yang
- grid.184769.50000 0001 2231 4551Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - M. Stanley Whittingham
- grid.264260.40000 0001 2164 4508Materials Science and Engineering, Binghamton University, Binghamton, NY USA
| | - Huolin L. Xin
- grid.266093.80000 0001 0668 7243Department of Physics and Astronomy, University of California, Irvine, CA USA
| | - Xiao-Qing Yang
- grid.202665.50000 0001 2188 4229Chemistry Division, Brookhaven National Laboratory, Upton, NY USA
| |
Collapse
|
13
|
Cui J, Zheng H, He K. In Situ TEM Study on Conversion-Type Electrodes for Rechargeable Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000699. [PMID: 32578290 DOI: 10.1002/adma.202000699] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Conversion-type materials have been considered as potentially high-energy-density alternatives to commercially dominant intercalation-based electrodes for rechargeable ion batteries and have attracted tremendous research effort to meet the performance for viable energy-storage technologies. In situ transmission electron microscopy (TEM) has been extensively employed to provide mechanistic insights into understanding the behavior of battery materials. Noticeably, a great portion of previous in situ TEM studies has been focused on conversion-type materials, but a dedicated review for this group of materials is missing in the literature. Herein, recent developments of in situ TEM techniques for investigation of dynamic phase transformation and associated structural, morphological, and chemical evolutions during conversion reactions with alkali ions in secondary batteries are comprehensively summarized. The materials of interest broadly cover metal oxides, chalcogenides, fluorides, phosphides, nitrides, and silicates with specific emphasis on spinel metal oxides and recently emerged 2D metal chalcogenides. Special focus is placed on the scientific findings that are uniquely obtained by in situ TEM to address fundamental questions and practical issues regarding phase transformation, structural evolution, electrochemical redox, reaction mechanism, kinetics, and degradation. Critical challenges and perspectives are discussed for advancing new knowledge that can bridge the gap between prototype materials and real-world applications.
Collapse
Affiliation(s)
- Jiang Cui
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Hongkui Zheng
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Kai He
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
14
|
Yang Y, Xiong Y, Zeng R, Lu X, Krumov M, Huang X, Xu W, Wang H, DiSalvo FJ, Brock JD, Muller DA, Abruña HD. Operando Methods in Electrocatalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04789] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yin Xiong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Francis J. DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joel. D. Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - David A. Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - Héctor D. Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
15
|
Choi JIJ, Kim TS, Kim D, Lee SW, Park JY. Operando Surface Characterization on Catalytic and Energy Materials from Single Crystals to Nanoparticles. ACS NANO 2020; 14:16392-16413. [PMID: 33210917 DOI: 10.1021/acsnano.0c07549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Modern surface science faces two major challenges, a materials gap and a pressure gap. While studies on single crystal surface in ultrahigh vacuum have uncovered the atomic and electronic structures of the surface, the materials and environmental conditions of commercial catalysis are much more complicated, both in the structure of the materials and in the accessible pressure range of analysis instruments. Model systems and operando surface techniques have been developed to bridge these gaps. In this Review, we highlight the current trends in the development of the surface characterization techniques and methodologies in more realistic environments, with emphasis on recent research efforts at the Korea Advanced Institute of Science and Technology. We show principles and applications of the microscopic and spectroscopic surface techniques at ambient pressure that were used for the characterization of atomic structure, electronic structure, charge transport, and the mechanical properties of catalytic and energy materials. Ambient pressure scanning tunneling microscopy and X-ray photoelectron spectroscopy allow us to observe the surface restructuring that occurs during oxidation, reduction, and catalytic processes. In addition, we introduce the ambient pressure atomic force microscopy that revealed the morphological, mechanical, and charge transport properties that occur during the catalytic and energy conversion processes. Hot electron detection enables the monitoring of catalytic reactions and electronic excitations on the surface. Overall, the information on the nature of catalytic reactions obtained with operando spectroscopic and microscopic techniques may bring breakthroughs in some of the global energy and environmental problems the world is facing.
Collapse
Affiliation(s)
- Joong Il Jake Choi
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Taek-Seung Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Daeho Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Si Woo Lee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jeong Young Park
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
16
|
Song B, Yang Y, Rabbani M, Yang TT, He K, Hu X, Yuan Y, Ghildiyal P, Dravid VP, Zachariah MR, Saidi WA, Liu Y, Shahbazian-Yassar R. In Situ Oxidation Studies of High-Entropy Alloy Nanoparticles. ACS NANO 2020; 14:15131-15143. [PMID: 33079522 DOI: 10.1021/acsnano.0c05250] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although high-entropy alloys (HEAs) have shown tremendous potential for elevated temperature, anticorrosion, and catalysis applications, little is known on how HEA materials behave under complex service environments. Herein, we studied the high-temperature oxidation behavior of Fe0.28Co0.21Ni0.20Cu0.08Pt0.23HEA nanoparticles (NPs) in an atmospheric pressure dry air environment by in situ gas-cell transmission electron microscopy. It is found that the oxidation of HEA NPs is governed by Kirkendall effects with logarithmic oxidation rates rather than parabolic as predicted by Wagner's theory. Further, the HEA NPs are found to oxidize at a significantly slower rate compared to monometallic NPs. The outward diffusion of transition metals and formation of disordered oxide layer are observed in real time and confirmed through analytical energy dispersive spectroscopy, and electron energy loss spectroscopy characterizations. Localized ordered lattices are identified in the oxide, suggesting the formation of Fe2O3, CoO, NiO, and CuO crystallites in an overall disordered matrix. Hybrid Monte Carlo and molecular dynamics simulations based on first-principles energies and forces support these findings and show that the oxidation drives surface segregation of Fe, Co, Ni, and Cu, while Pt stays in the core region. The present work offers key insights into how HEA NPs behave under high-temperature oxidizing environment and sheds light on future design of highly stable alloys under complex service conditions.
Collapse
Affiliation(s)
- Boao Song
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Yong Yang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemical Engineering and Materials Science, University of California Riverside, Riverside, California 92521, United States
| | - Muztoba Rabbani
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Timothy T Yang
- Department of Mechanical Engineering and Materials Science and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kun He
- Department of Materials Science and Engineering, International Institute for Nanotechnology (IIN), Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaobing Hu
- Department of Materials Science and Engineering, International Institute for Nanotechnology (IIN), Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Yifei Yuan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Pankaj Ghildiyal
- Department of Chemical Engineering and Materials Science, University of California Riverside, Riverside, California 92521, United States
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, International Institute for Nanotechnology (IIN), Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael R Zachariah
- Department of Chemical Engineering and Materials Science, University of California Riverside, Riverside, California 92521, United States
| | - Wissam A Saidi
- Department of Mechanical Engineering and Materials Science and Pittsburgh Quantum Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Reza Shahbazian-Yassar
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
17
|
Zhang M, Han C, Cao WQ, Cao MS, Yang HJ, Yuan J. A Nano-Micro Engineering Nanofiber for Electromagnetic Absorber, Green Shielding and Sensor. NANO-MICRO LETTERS 2020; 13:27. [PMID: 34138252 PMCID: PMC8187527 DOI: 10.1007/s40820-020-00552-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/15/2020] [Indexed: 05/16/2023]
Abstract
The role of electron transport characteristics in electromagnetic (EM) attenuation can be generalized to other EM functional materials. The integrated functions of efficient EM absorption and green shielding open the view of EM multifunctional materials. A novel sensing mechanism based on intrinsic EM attenuation performance and EM resonance coupling effect is revealed. It is extremely unattainable for a material to simultaneously obtain efficient electromagnetic (EM) absorption and green shielding performance, which has not been reported due to the competition between conduction loss and reflection. Herein, by tailoring the internal structure through nano-micro engineering, a NiCo2O4 nanofiber with integrated EM absorbing and green shielding as well as strain sensing functions is obtained. With the improvement of charge transport capability of the nanofiber, the performance can be converted from EM absorption to shielding, or even coexist. Particularly, as the conductivity rising, the reflection loss declines from - 52.72 to - 10.5 dB, while the EM interference shielding effectiveness increases to 13.4 dB, suggesting the coexistence of the two EM functions. Furthermore, based on the high EM absorption, a strain sensor is designed through the resonance coupling of the patterned NiCo2O4 structure. These strategies for tuning EM performance and constructing devices can be extended to other EM functional materials to promote the development of electromagnetic driven devices.
Collapse
Affiliation(s)
- Min Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Chen Han
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Wen-Qiang Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Mao-Sheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Hui-Jing Yang
- Department of Physics, Tangshan Normal University, Tangshan, 063000, People's Republic of China.
| | - Jie Yuan
- School of Information Engineering, Minzu University of China, Beijing, 100081, People's Republic of China.
| |
Collapse
|
18
|
Zhdanov VP. Simulations of oxidation of metal nanoparticles with a grain boundary inside. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01818-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe generic 2D lattice Monte Carlo simulations presented herein are focused on the spatio-temporal kinetics of oxidation of metal nanoparticles composed of two grains separated by a single grain boundary. The oxidation is assumed to occur via inward diffusion of interstitial oxygen ions in the oxide. The results of simulations illustrate that the regimes of oxidation can range from one where the presence of grains is negligible and the oxide shell is formed at the periphery of a whole nanoparticle to one where each grain is oxidized almost independently.
Collapse
|
19
|
Shahid M, He C, Sankarasubramanian S, Ramani VK, Basu S. Co 3O 4-Impregnated NiO-YSZ: An Efficient Catalyst for Direct Methane Electrooxidation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32578-32590. [PMID: 32589004 DOI: 10.1021/acsami.0c06407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Co3O4-impregnated NiO-YSZ (yttria-stabilized zirconia) is a possible electrocatalyst for direct methane electrooxidation with both high catalytic activity and the ability to mitigate coking. The physical and electrochemical properties of Co3O4-impregnated NiO-YSZ anodes are investigated and benchmarked against NiO-YSZ and CeO2-impregnated NiO-YSZ anodes. The following methane electrooxidation activity trend: Co3O4-impregnated NiO-YSZ > CeO2-impregnated NiO-YSZ > NiO-YSZ with io (exchange current density) values of 88, 83, and 2 mA cm-2, respectively, is obtained in the high overpotential region. The high activity of Co3O4-impregnated NiO-YSZ is attributed to the changes in the electronic structure and microstructure with the incorporation of nickel into the lattice of Co3O4 as observed using X-ray photoelectron spectroscopy, temperature-programmed reduction, high-resolution transmission electron microscopy, and field emission scanning electron microscopy. Co3O4-impregnated NiO-YSZ also demonstrated the least coking during operation, confirming its utility as a methane electrooxidation catalyst.
Collapse
Affiliation(s)
- Mohamed Shahid
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas 110016, India
| | - Cheng He
- Center for Solar Energy and Energy Storage and Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Shrihari Sankarasubramanian
- Center for Solar Energy and Energy Storage and Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Vijay K Ramani
- Center for Solar Energy and Energy Storage and Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Suddhasatwa Basu
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas 110016, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| |
Collapse
|
20
|
Collective dipole effects in ionic transport under electric fields. Nat Commun 2020; 11:3330. [PMID: 32620904 PMCID: PMC7335081 DOI: 10.1038/s41467-020-17173-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/20/2020] [Indexed: 11/17/2022] Open
Abstract
In the context of ionic transport in solids, the variation of a migration barrier height under electric fields is traditionally assumed to be equal to the classical electric work of a point charge that carries the transport charge. However, how reliable is this phenomenological model and how does it fare with respect to Modern Theory of Polarization? In this work, we show that such a classical picture does not hold in general as collective dipole effects may be critical. Such effects are unraveled by an appropriate polarization decomposition and by an expression that we derive, which defines the equivalent polarization-work charge. The equivalent polarization-work charge is not equal neither to the transported charge, nor to the Born effective charge of the migrating atom alone, but it is defined by the total polarization change at the transition state. Our findings are illustrated by oxygen charged defects in MgO and in SiO2. Ionic transport in solids is important for applications including rapid access memories and ion-based batteries. Here, the authors introduce polarization work contributions from the migrating ion and its environment, demonstrating the representative profile is given by a unique charge parameter.
Collapse
|
21
|
Xu C, Vasileff A, Jin B, Wang D, Xu H, Zheng Y, Qiao SZ. Graphene-encapsulated nickel–copper bimetallic nanoparticle catalysts for electrochemical reduction of CO2to CO. Chem Commun (Camb) 2020; 56:11275-11278. [DOI: 10.1039/d0cc04779a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
High CO selectivity for the CO2electroreduction reaction was achieved on Ni–Cu bimetallic catalysts. We observed that changing the Cu content in the catalysts causes charge redistribution which results in a negative correlation with CO selectivity.
Collapse
Affiliation(s)
- Chaochen Xu
- Centre for Materials in Energy and Catalysis
- School of Chemical Engineering and Advanced Materials
- The University of Adelaide
- Adelaide
- Australia
| | - Anthony Vasileff
- Centre for Materials in Energy and Catalysis
- School of Chemical Engineering and Advanced Materials
- The University of Adelaide
- Adelaide
- Australia
| | - Bo Jin
- Centre for Materials in Energy and Catalysis
- School of Chemical Engineering and Advanced Materials
- The University of Adelaide
- Adelaide
- Australia
| | - Dan Wang
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing
- China
| | - Haolan Xu
- Future Industries Institute
- University of South Australia
- SA 5095
- Australia
| | - Yao Zheng
- Centre for Materials in Energy and Catalysis
- School of Chemical Engineering and Advanced Materials
- The University of Adelaide
- Adelaide
- Australia
| | - Shi-Zhang Qiao
- Centre for Materials in Energy and Catalysis
- School of Chemical Engineering and Advanced Materials
- The University of Adelaide
- Adelaide
- Australia
| |
Collapse
|
22
|
Zheng H, Cao F, Zhao L, Jiang R, Zhao P, Zhang Y, Wei Y, Meng S, Li K, Jia S, Li L, Wang J. Atomistic and dynamic structural characterizations in low-dimensional materials: recent applications of in situ transmission electron microscopy. Microscopy (Oxf) 2019; 68:423-433. [PMID: 31746339 DOI: 10.1093/jmicro/dfz038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 11/14/2022] Open
Abstract
In situ transmission electron microscopy has achieved remarkable advances for atomic-scale dynamic analysis in low-dimensional materials and become an indispensable tool in view of linking a material's microstructure to its properties and performance. Here, accompanied with some cutting-edge researches worldwide, we briefly review our recent progress in dynamic atomistic characterization of low-dimensional materials under external mechanical stress, thermal excitations and electrical field. The electron beam irradiation effects in metals and metal oxides are also discussed. We conclude by discussing the likely future developments in this area.
Collapse
Affiliation(s)
- He Zheng
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Fan Cao
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.,Hubei Key Lab of Ferro- and Piezo-electric Materials and Devices, Faculty of Physics & Electronic Sciences, Hubei University, Wuhan 430062, China
| | - Ligong Zhao
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Renhui Jiang
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Peili Zhao
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ying Zhang
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yanjie Wei
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Shuang Meng
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Kaixuan Li
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Shuangfeng Jia
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Luying Li
- Center for Nanoscale Characterization and Devices, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianbo Wang
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
23
|
Tuning the Néel temperature in an antiferromagnet: the case of Ni xCo 1-xO microstructures. Sci Rep 2019; 9:13584. [PMID: 31537821 PMCID: PMC6753089 DOI: 10.1038/s41598-019-49642-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/27/2019] [Indexed: 11/08/2022] Open
Abstract
We show that it is possible to tune the Néel temperature of nickel(II)-cobalt(II) oxide films by changing the Ni to Co ratio. We grow single crystalline micrometric triangular islands with tens of nanometers thickness on a Ru(0001) substrate using high temperature oxygen-assisted molecular beam epitaxy. Composition is controlled by adjusting the deposition rates of Co and Ni. The morphology, shape, crystal structure and composition are determined by low-energy electron microscopy and diffraction, and synchrotron-based x-ray absorption spectromicroscopy. The antiferromagnetic order is observed by x-ray magnetic linear dichroism. Antiferromagnetic domains up to micrometer width are observed.
Collapse
|
24
|
Song H, Yang Y, Geng J, Gu Z, Zou J, Yu C. Electron Tomography: A Unique Tool Solving Intricate Hollow Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801564. [PMID: 30160340 DOI: 10.1002/adma.201801564] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Innovations in nanofabrication have expedited advances in hollow-structured nanomaterials with increasing complexity, which, at the same time, set challenges for the precise determination of their intriguing and complicated 3D configurations. Conventional transmission electron microscopy (TEM) analysis typically yields 2D projections of 3D objects, which in some cases is insufficient to reflect the genuine architectures of these 3D nano-objects, providing misleading information. Advanced analytical approaches such as focused ion beam (FIB) and ultramicrotomy enable the real slicing of nanomaterials, realizing the direct observation of inner structures but with limited spatial discrimination. Electron tomography (ET) is a technique that retrieves spatial information from a series of 2D electron projections at different tilt angles. As a unique and powerful tool kit, this technique has experienced great advances in its application in materials science, resolving the intricate 3D nanostructures. Here, the exceptional capability of the ET technique in the structural, chemical, and quantitative analysis of hollow-structured nanomaterials is discussed in detail. The distinct information derived from ET analysis is highlighted and compared with conventional analysis methods. Along with the advances in microscopy technologies, the state-of-the-art ET technique offers great opportunities and promise in the development of hollow nanomaterials.
Collapse
Affiliation(s)
- Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jing Geng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhengying Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jin Zou
- Materials Engineering and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
25
|
Lee JD, Jishkariani D, Zhao Y, Najmr S, Rosen D, Kikkawa JM, Stach EA, Murray CB. Tuning the Electrocatalytic Oxygen Reduction Reaction Activity of Pt-Co Nanocrystals by Cobalt Concentration with Atomic-Scale Understanding. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26789-26797. [PMID: 31283175 DOI: 10.1021/acsami.9b06346] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The development of a suitable catalyst for the oxygen reduction reaction (ORR), the cathode reaction of proton exchange membrane fuel cells (PEMFC), is necessary to push this technology toward widespread adoption. There have been substantial efforts to utilize bimetallic Pt-M alloys that adopt the ordered face-centered tetragonal (L10) phase in order to reduce the usage of precious metal, enhance the ORR performance, and improve catalyst stability. In this work, monodisperse Pt-Co nanocrystals (NCs) with well-defined size (4-5 nm) and cobalt composition (25-75 at%) were synthesized via colloidal synthesis. The transformation from the chemically disordered A1 (face-centered cubic, fcc) to the L10 phase was achieved via thermal annealing using both a conventional oven and a rapid thermal annealing process. The structure of the Pt-Co catalysts was characterized by a variety of techniques, including transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy in high-angle annular dark-field scanning transmission electron microscopy (STEM-EDS), small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), and inductively coupled plasma-optical emission spectrometry (ICP-OES). The effects of annealing temperature on the composition-dependent degree of ordering and subsequent effect on ORR activity is described. This work provides insights regarding the optimal spatial distribution of elements at the atomic level to achieve enhanced ORR activity and stability.
Collapse
|
26
|
Albinsson D, Nilsson S, Antosiewicz TJ, Zhdanov VP, Langhammer C. Heterodimers for in Situ Plasmonic Spectroscopy: Cu Nanoparticle Oxidation Kinetics, Kirkendall Effect, and Compensation in the Arrhenius Parameters. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:6284-6293. [PMID: 30906496 PMCID: PMC6428146 DOI: 10.1021/acs.jpcc.9b00323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Indexed: 05/12/2023]
Abstract
The ability to study oxidation, reduction, and other chemical transformations of nanoparticles in real time and under realistic conditions is a nontrivial task due to their small dimensions and the often challenging environment in terms of temperature and pressure. For scrutinizing oxidation of metal nanoparticles, visible light optical spectroscopy based on the plasmonic properties of the metal has been established as a suitable method. However, directly relying on the plasmonic resonance of metal nanoparticles as a built-in probe to track oxidation has a number of drawbacks, including the loss of optical contrast in the late oxidation stages. To address these intrinsic limitations, we present a plasmonic heterodimer-based nanospectroscopy approach, which enables continuous self-referencing by using polarized light to eliminate parasitic signals and provides large optical contrast all the way to complete oxidation. Using Au-Cu heterodimers and combining experiments with finite-difference time-domain simulations, we quantitatively analyze the oxidation kinetics of ca. 30 nm sized Cu nanoparticles up to complete oxidation. Taking the Kirkendall effect into account, we extract the corresponding apparent Arrhenius parameters at various extents of oxidation and find that they exhibit a significant compensation effect, implying that changes in the oxidation mechanism occur as oxidation progresses and the structure of the formed oxide evolves. In a wider perspective, our work promotes the use of model-system-type in situ optical plasmonic spectroscopy experiments in combination with electrodynamics simulations to quantitatively analyze and mechanistically interpret oxidation of metal nanoparticles and the corresponding kinetics in demanding chemical environments, such as in heterogeneous catalysis.
Collapse
Affiliation(s)
- David Albinsson
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Sara Nilsson
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | | | - Vladimir P. Zhdanov
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Boreskov
Institute of Catalysis, Russian Academy
of Sciences, Novosibirsk 630090, Russia
| | - Christoph Langhammer
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
27
|
Baaziz W, Bahri M, Gay AS, Chaumonnot A, Uzio D, Valette S, Hirlimann C, Ersen O. Thermal behavior of Pd@SiO 2 nanostructures in various gas environments: a combined 3D and in situ TEM approach. NANOSCALE 2018; 10:20178-20188. [PMID: 30362491 DOI: 10.1039/c8nr06951d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The thermal stability of core-shell Pd@SiO2 nanostructures was for the first time monitored by using in situ Environmental Transmission Electron Microscopy (E-TEM) at atmospheric pressure coupled with Electron Tomography (ET) on the same particles. The core Pd particles, with octahedral or icosahedral original shapes, were followed during thermal heating under gas at atmospheric pressure. In the first step, their morphology/faceting evolution was investigated in a reductive H2 environment up to 400 °C by electron tomography performed on the same particles before and after the in situ treatment. As a result, we observed the formation of small Pd particles inside the silica shell due to the thermally activated diffusion from the core particle. A strong dependence of the shape and faceting transformations on the initial structure of the particles was evidenced. The octahedral monocrystalline NPs were found to be less stable than the icosahedral ones; in the first case, the Pd diffusion from the core towards the silica external surface led to a progressive decrease of the particle size. The icosahedral polycrystalline NPs do not exhibit a morphology/faceting change, as in this case the atom diffusion within the particle is favored against diffusion towards the silica shell, due to a high amount of crystallographic defects in the particles. In the second part, the Pd@SiO2 NPs behavior at high temperatures (up to 1000 °C) was investigated under reductive or oxidative conditions; it was found to be strongly related to the thermal evolution of the silica shell: (1) under H2, the silica is densified and loses its porous structure leading to a final state with Pd core NPs encapsulated in the shell; (2) under air, the silica porosity is maintained and the increase of the temperature leads to an enhancement of the diffusion mechanism from the core towards the external surface of the silica; as a result, at 850 °C all the Pd atoms are expelled outside the silica shell.
Collapse
Affiliation(s)
- Walid Baaziz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS - Université de Strasbourg, 23 rue du Lœss BP 43, 67034 Strasbourg cedex 2, France.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Fang C, Zhao J, Jiang R, Wang J, Zhao G, Geng B. Engineering of Hollow PdPt Nanocrystals via Reduction Kinetic Control for Their Superior Electrocatalytic Performances. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29543-29551. [PMID: 30101581 DOI: 10.1021/acsami.8b08657] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Synthesis of hollow metal nanocrystals (NCs) is greatly attractive for their high active surface areas, which gives rise to excellent catalytic activity. Taking PdPt alloy nanostructure as an example, we designed a synthetic tactic for the preparation of hollow metal nanostructures by delicate control over the difference in the reduction kinetic of metal precursors. At a high reduction rate difference, the Pd layer forms from H2PdCl4 and is subsequently etched, leading to the formation of a hollow space. A solid PdPt structure is achieved when the reduction rate of Pd and Pt precursor is comparable. Obviously, the hollow space and composition are tunable as well by adjusting the reduction rate difference. More importantly, the prepared hollow PdPt nanostructures exhibit a branched outer, porous wall, and rough hollow interior. The branched outer and rough hollow interior provide the higher density of unsaturated atoms, whereas the porous wall serves as channels connecting the inner, outer, and reactive agents. Moreover, the periodic self-consistent density function theory suggests that the d-band theory density of state of the PdPt nanoalloys is upshifted in comparison to the monometallic component, which will beneficial for improvement in their catalytic performances. Electrocatalytic tests reveal that the PdPt bimetallic NCs, especially for Pt32Pd68 nanostructures, show excellent catalytic activity and stability toward methanol oxidation reaction owing to their special structures as well as compositions.
Collapse
Affiliation(s)
- Caihong Fang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , China
| | - Jun Zhao
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , China
| | - Ruibin Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Jing Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Guili Zhao
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , China
| | - Baoyou Geng
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , China
| |
Collapse
|
29
|
Xia W, Yang Y, Meng Q, Deng Z, Gong M, Wang J, Wang D, Zhu Y, Sun L, Xu F, Li J, Xin HL. Bimetallic Nanoparticle Oxidation in Three Dimensions by Chemically Sensitive Electron Tomography and in Situ Transmission Electron Microscopy. ACS NANO 2018; 12:7866-7874. [PMID: 30080965 DOI: 10.1021/acsnano.8b02170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The formation of hollow-structured oxide nanoparticles is primarily governed by the Kirkendall effect. However, the degree of complexity of the oxidation process multiplies in the bimetallic system because of the incorporation of more than one element. Spatially dependent oxidation kinetics controls the final morphology of the hollow nanoparticles, and the process is highly dependent on the elemental composition. Currently, a theoretical framework that can predict how different metal elements result in different oxide morphologies remains elusive. In this work, utilizing a combination of state-of-the-art in situ environmental transmission electron microscopy and three-dimensional (3D) chemically sensitive electron tomography, we provide an in situ and 3D investigation of the oxidation mechanism of the Ni-Fe nanoparticles. The direct measurements allow us to correlate the 3D elemental segregation in the particles with the oxidation morphologies, that is, single-cavity or dual-cavity hollow structure, and multicavity porous structures. Our findings in conjunction with theoretical calculations show that metal concentration, diffusivity, and particle size are important parameters that dictate the mechanical and phase stabilities of the hollow oxide shell, which in turn determine its barrier properties and the final hollow oxide morphology. It sheds light on how to use multielemental oxidation to control morphology in nanomaterials and demonstrates the power of 3D chemical imaging.
Collapse
Affiliation(s)
- Weiwei Xia
- SEU-FEI Nano-Pico Center, Key laboratory of MEMS of Ministry of Education , Southeast University , Nanjing 210096 , China
| | - Yang Yang
- Department of Nuclear Science and Engineering and Department of Materials Science and Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | | | - Zhiping Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Mingxing Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Jie Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | | | - Litao Sun
- SEU-FEI Nano-Pico Center, Key laboratory of MEMS of Ministry of Education , Southeast University , Nanjing 210096 , China
| | - Feng Xu
- SEU-FEI Nano-Pico Center, Key laboratory of MEMS of Ministry of Education , Southeast University , Nanjing 210096 , China
| | - Ju Li
- Department of Nuclear Science and Engineering and Department of Materials Science and Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | | |
Collapse
|
30
|
Carenco S, Bonifacio CS, Yang JC. Ensemble versus Local Restructuring of Core‐shell Nickel–Cobalt Nanoparticles upon Oxidation and Reduction Cycles. Chemistry 2018; 24:12037-12043. [DOI: 10.1002/chem.201802764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/12/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Sophie Carenco
- Sorbonne Université, CNRS, Collège de France Laboratoire de Chimie de la Matière Condensée de Paris 4 Place Jussieu 75252 Paris France
| | - Cecile S. Bonifacio
- Department of Chemical and Petroleum Engineering University of Pittsburgh 4200 Fifth Avenue Pittsburgh Pennsylvania 15260 USA
- E.A. Fischione Instruments Inc. 9003 Corporate Circle Export PA 15632 USA
| | - Judith C. Yang
- Department of Chemical and Petroleum Engineering University of Pittsburgh 4200 Fifth Avenue Pittsburgh Pennsylvania 15260 USA
- Department of Physics University of Pittsburgh 4200 Fifth Avenue Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
31
|
Luo ZM, Wang JW, Tan JB, Zhang ZM, Lu TB. Self-Template Synthesis of Co-Se-S-O Hierarchical Nanotubes as Efficient Electrocatalysts for Oxygen Evolution under Alkaline and Neutral Conditions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8231-8237. [PMID: 29433305 DOI: 10.1021/acsami.8b00986] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We develop a facile self-template synthetic method to construct hierarchical Co-Se-S-O (CoSe xS2- x@Co(OH)2) nanotubes on a carbon cloth as a self-standing electrode for electrocatalytic oxygen evolution reaction (OER). In the synthetic process, separate selenization and sulfurization on the Co(OH)F precursor in different solvents have played an important role in constructing CoSe xS2- x (Co-Se-S) hierarchical nanotubes, which was further transformed into the nanotube-like Co-Se-S-O via an in situ electrochemical oxidation process. The Co-Se-S-O obtained by the Kirkendall effect through two stepwise anion-exchange reactions represents the first quaternary Co-Se-S-O nanotube array, which dramatically enhances its surface area and conductivity. Further, it only requires low overpotentials of 230 and 480 mV to achieve a 10 mA cm-2 current density. The OER performance of Co-Se-S-O is much more efficient than that of its monochalcogenide counterparts, as well as the commercial benchmark catalyst IrO2.
Collapse
Affiliation(s)
- Zhi-Mei Luo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , People's Republic of China
| | - Jia-Wei Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , People's Republic of China
| | - Jing-Bo Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , People's Republic of China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , People's Republic of China
| | - Tong-Bu Lu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , People's Republic of China
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , People's Republic of China
| |
Collapse
|
32
|
Moscu A, Theodoridi C, Cardenas L, Thieuleux C, Motta-Meira D, Agostini G, Schuurman Y, Meunier F. CO dissociation on Pt-Sn nanoparticles triggers Sn oxidation and alloy segregation. J Catal 2018. [DOI: 10.1016/j.jcat.2017.12.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Sneed BT, Cullen DA, Reeves KS, Dyck OE, Langlois DA, Mukundan R, Borup RL, More KL. 3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29839-29848. [PMID: 28809471 DOI: 10.1021/acsami.7b09716] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Furthermore, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.
Collapse
Affiliation(s)
- Brian T Sneed
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - David A Cullen
- Materials Science and Technology Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Kimberly S Reeves
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Ondrej E Dyck
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - David A Langlois
- Materials Physics and Applications Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Rangachary Mukundan
- Materials Physics and Applications Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Rodney L Borup
- Materials Physics and Applications Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Karren L More
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
34
|
Sanna Angotzi M, Musinu A, Mameli V, Ardu A, Cara C, Niznansky D, Xin HL, Cannas C. Spinel Ferrite Core-Shell Nanostructures by a Versatile Solvothermal Seed-Mediated Growth Approach and Study of Their Nanointerfaces. ACS NANO 2017; 11:7889-7900. [PMID: 28735529 DOI: 10.1021/acsnano.7b02349] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An easy, low-cost, repeatable seed-mediated growth approach in solvothermal condition has been proposed to synthesize bimagnetic spinel ferrite core-shell heterostructures in the 10-20 nm particle size range. Cobalt ferrite and manganese ferrite nanoparticles (CoFe2O4 and MnFe2O4) have been coated with isostructural spinel ferrites like maghemite/magnetite, MnFe2O4, and CoFe2O4 with similar cell parameters to create different heterostructures. The conventional study of the structure, morphology, and composition has been combined with advanced techniques in order to achieve details on the interface at the nanoscale level. Clear evidence of the heterostructure formation have been obtained (i) indirectly by comparing the 57Fe Mössbauer spectra of the core-shell samples and an ad hoc mechanical mixture and (ii) directly by mapping the nanoparticles' chemical composition by electron energy loss spectroscopy (EELS) and energy-dispersive X-ray spectroscopy (EDX) in the scanning transmission electron microscopy mode (STEM). In addition, chemical-sensitive electron tomography in STEM-EDX mode has been applied in order to obtain detailed 3D images with a sub-nanometer spatial resolution.
Collapse
Affiliation(s)
- Marco Sanna Angotzi
- Department of Chemical and Geological Sciences, Università di Cagliari , S.S. 554 bivio per Sestu, 09042, Monserrato, Italy
- INSTM , Cagliari Unit, Via Giuseppe Giusti, 9, 50121 Firenze, Italy
| | - Anna Musinu
- Department of Chemical and Geological Sciences, Università di Cagliari , S.S. 554 bivio per Sestu, 09042, Monserrato, Italy
- INSTM , Cagliari Unit, Via Giuseppe Giusti, 9, 50121 Firenze, Italy
| | - Valentina Mameli
- Department of Chemical and Geological Sciences, Università di Cagliari , S.S. 554 bivio per Sestu, 09042, Monserrato, Italy
- INSTM , Cagliari Unit, Via Giuseppe Giusti, 9, 50121 Firenze, Italy
| | - Andrea Ardu
- Department of Chemical and Geological Sciences, Università di Cagliari , S.S. 554 bivio per Sestu, 09042, Monserrato, Italy
- INSTM , Cagliari Unit, Via Giuseppe Giusti, 9, 50121 Firenze, Italy
- Consorzio AUSI, Palazzo Bellavista Monteponi, 09016 Iglesias, Italy
| | - Claudio Cara
- Department of Chemical and Geological Sciences, Università di Cagliari , S.S. 554 bivio per Sestu, 09042, Monserrato, Italy
- INSTM , Cagliari Unit, Via Giuseppe Giusti, 9, 50121 Firenze, Italy
- Consorzio AUSI, Palazzo Bellavista Monteponi, 09016 Iglesias, Italy
| | - Daniel Niznansky
- Department of Inorganic Chemistry, Charles University of Prague , Staré Mesto 11636, Czech Republic
- AS CR, Inst. Inorgan. Chem., vvi, Husinec Rez 25068, Czech Republic
| | - Huolin L Xin
- Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Carla Cannas
- Department of Chemical and Geological Sciences, Università di Cagliari , S.S. 554 bivio per Sestu, 09042, Monserrato, Italy
- INSTM , Cagliari Unit, Via Giuseppe Giusti, 9, 50121 Firenze, Italy
- Consorzio AUSI, Palazzo Bellavista Monteponi, 09016 Iglesias, Italy
| |
Collapse
|
35
|
Wang J, Wu J, Wu Z, Han L, Huang T, Xin HL, Wang D. High-rate and long-life lithium-ion battery performance of hierarchically hollow-structured NiCo2O4/CNT nanocomposite. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.092] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
|